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Abstract. In this paper I examine the A1 sub-algebra of the Steenrod Al-

gebra. In particular, the cohomology groups H∗,∗(A1) over odd prime fields
are calculated. This paper gives a modern treatment of the computation and

elaborates on other computations which are concentrated at the odd prime 3.

The main computation tool used for the paper will be [6].
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1. Introduction

Much of algebraic topology is concentrated at the prime 2. This also extends
to computations involving the Steenrod Algebra and its subalgebras. Let A be the
mod p Steenrod algebra for a prime p. For odd p, let A1 be the subalgebra of the
Steenrod algebra generated by {β, P 1}.

Considerable computation has been done for the equivalent notion at the prime
2. Recently, there has been some interest in computations of A1 at the prime 3, as
well as higher odd primes. In particular, Culver gives a computation using Massey
products for the prime 3 in [1], while Hill gives a computation for the same object
in [2]. However, both references do not continue to higher odd primes, but restrict
themselves to the prime 3.

To compute the necessary algebras and coalgebras in order to completely deter-
mine the cohomology of A1 at all odd primes, several preliminary results must be
recalled.

2. Background on Lie Algebras

All of the computational tools used in this paper are found in [6]. Some of the
key results are summarized below.
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I will focus on describing the algebra and coalgebra structure necessary for con-
structing the spectral sequences used to compute the homology of A1 over the field
of characteristic p. The coalgebra structure is then integral in the calculations that
follow.

First, before creating a resolution of restricted Lie algebras, I will review the
resolution of non-restricted Lie algebras. Let L be any bigraded Lie algebra over a
field K, of prime characteristic p, with universal enveloping algebra U(L). Then,
a U(L)-free resolution of K as a trivial right U(L)-module will be constructed. As
a K module, the resolution will be given as Y (L) = Ȳ (L) ⊗ U(L) where Ȳ (L) =
Γ(sL−) ⊗ E(sL+). Here, L− denotes the odd degree elements in the Lie algebra,
L+ the even degree elements, Γ the standard divided polynomial algebra, E the
standard exterior algebra, and sL indicates a copy of L where all elements are given
a new, homological, degree of 1. The degree of an element will be given as the total
degree, i.e. the sum of the homological degree and the degree inherited from the
original grading.

If one gives Y (L) a structure of an algebra over the Hopf algebra U(L), then
Y (L), as a U(L)-module, can be defined as the semi-tensor product, Ȳ (L)⊙U(L),
which is originally defined by Massey and Peterson in [3]. Most important for our
calculation however, is the algebra, coalgebra, and differential structure that can
be created on Y (L).

Lemma 2.1. [6] Y (L) may be given an algebra structure by requiring the product
to agree with the natural one on Ȳ (L) and on U(L) and to satisfy the relations:

u⟨y⟩ = (−1)deg u⟨y⟩u+ (−1)deg us[u, y],

u ∈ L, ⟨y⟩ = sy ∈ sL+.

uγr(x) = γr(x)u+ (−1)deg uγr−1(x)s[u, x],

u ∈ L, γ1(x) = sx ∈ sL−.

Y(L) may be given a Hopf algebra structure with coproduct D by requiring D to be
a morphism of algebras and to agree with the natural coproduct on Ȳ (L) and on
U(L). In particular, the coalgebra structure on generators is given as:

D⟨y⟩ = ⟨y⟩ ⊗ 1 + 1⊗ ⟨y⟩

Dγr(x) =
∑

i+j=r

γi(x)⊗ γj(x)

Additionally, Y (L) can also be given a differential:

Theorem 2.2. [6] Define a differential d on Y (L) by

d(ab) = d(a)b+ (−1)deg aad(b), a, b ∈ Y (L)

and

d(u) = 0, d⟨y⟩ = y, dγr(x) = γr−1(x)x− 1

2
γr−2(x)⟨[x, x]⟩,

where u ∈ U(L), ⟨y⟩ ∈ sL+, γ1(x) ∈ sL−, and γ−1(x) = 0. Then, Y (L) is a U(L)-
free resolution of K, and is also a differential coalgebra over U(L) with differential
defined dually.
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3. Background on Restricted Lie Algebras

Now, to continue to restricted Lie algebras, some additional constructions are
necessary. Again, K is a field of characteristic p, this time over Fp for some prime
p, L is again the (restricted) Lie algebra, and V (L) is the universal enveloping
algebra of L. Let W (L) = Ȳ (L) ⊙ V (L) and X(L) = Γ(s2πL+) ⊗ W (L) as a
K-module. Here, s2πL denotes a copy of L with all degrees multiplied by p and
with all elements having a homological degree of 2. After X(L) is endowed with
the additional structure described below, it will become the desired resolution.

The additional structure twists both the coproduct and the differential within
X(L). Most important for us is the differential twisting. First, we need some
preliminary definitions.

Definition 3.1. [6] We give R = Hom(Γ(s2πL+), Y (L+)) a structure of a differ-
ential algebra with differential δ and product ∪. The differential is defined by

δ(r)(b) = d(r(b)) + (−1)deg r+1r(d(b))

for b ∈ Γ(s2πL+) and r ∈ R. Here, d is the differential on the appropriate algebra.
Additionally, the product is defined by

(r ∪ r′)(b) = π(r ⊗ r′)D(b),

where π is the product on Y (L+), r, r′ ∈ R, and D is the coproduct on Γ(s2πL+).

Then, we introduce some additional structure.

Definition 3.2. [6] We give Γ(s2πL+) ⊗W (L) the structure of a left differential
R = Hom(Γ(s2πL+), Y (L+))-module with module product ∩. This is defined by

r ∩ (g ⊗ w) = (1⊗ σ)(1⊗ r ⊗ 1)(D ⊗ 1)(g ⊗ w).

In the equation above, r ∈ R, g ∈ Γ(s2πL+), w ∈ W (L), D is the coproduct
on Γ(s2πL+), and σ is determined by the epimorphism of differential algebras,
Y (L) → W (L), and the algebra structure of W(L).

Then, the differential above can be twisted by a homomorphism t.

Definition 3.3. [6] For t ∈ R1, with tn : Γ(s2πL+)n → Y (L+)n−1, n ≥ 1, we may
define dt : Γ(s

2πL+)⊗W (L) → Γ(s2πL+)⊗W (L) by

dt(g ⊗ w) = d(g ⊗ w) + t ∩ (g ⊗ w)

From this definition, a simple calculation yields d2t (b⊗f) = (δ(t)+ t∪ t)∩(b⊗f).

Definition 3.4. [6] t is said to be a twisting cochain if δ(t)+ t∪ t = 0 and ϵt1 = 0,
where ϵ is the counit Y (L+) → K. In particular, t is a twisting cochain if,

dtn + tn−1d+

n−1∑
i=1

ti ∪ tn−i = 0, n > 1.

If this map t is a twisting cochain, then dt is a differential for Γ(s2πL+) ⊗
W (L). For the next calculations, we would like to choose t to have a specific
property. In particular, we can (and will) choose the homomorphism t such that
t2 : Γ(s2πL+)2 → Y (L+)1 satisfies

t2(γ1(ỹ)) = ⟨y⟩yp−1 − ⟨ξ(y)⟩.
In the equation above, ỹ denotes the copy of y in Γ(s2πL+) and ξ is the restriction.

Finally, let us prove a short Lemma on the general structure of A1.
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Lemma 3.5. (Structure of A1) A1 is a primitively generated Hopf algebra with its
restriction being identically zero. Hence, it is isomorphic to the universal restricted
enveloping algebra of the restricted Lie algebra of its primitive elements, i.e. A1 =
V (PA1).

Proof. A1 is the subalgebra of the Steenrod algebra generated by the first Steenrod
operation, P 1, and the Bockstein homomorphism, β = Q0. According to Milnor
[4], the coproduct on generating elements is given by

D(Q0) = Q0 ⊗ 1 + 1⊗Q0

D(P ) =
∑

i+j=1

P i ⊗ P j = P 1 ⊗ 1 + 1⊗ P 1

indicating Q0 and P 1 are both primitive. From the structure of the coproduct we
also see that Q1 = [P 1, Q0] is also primitive. Since both P 1 and Q0 are primitive,
A1 is primitively generated and thus, A1 = V (PA1) by a theorem of Milnor and
Moore [5], where PA1 is the restricted Lie algebra of primitive elements. Also note,
since p is odd, the restriction is not defined on odd degree elements. □

4. Calculation for Unrestricted Lie Algebra

With this background, we can now proceed to a preliminary calculation of the
cohomology of A1 without considering its restriction. In this case, the differential
graded algebra (DGA) we are considering to compute the cohomology of U(PA1)
is Y (L)∗ = (Ȳ (L)⊗ U(L))∗ = ((Γ(sL−)⊗ E(sL+))⊗ U(L))∗

Theorem 4.1. If p ≥ 3, then, when A1 is considered as an unrestricted Lie algebra,

H∗,∗(U(PA1)) = P [a0, a1]⊗ E[γj |0 ≤ j ≤ p− 1]

modulo the relations

a0γj = 0 for j ≤ p− 2 and γiγj = 0 for all i and j.

where the elements a0, a1, andγi have respective (s, t) bidegrees

(1, 1), (p, p(q + 1)), and (j + 1, (j + 1)q + j),

for q = 2(p− 1).

Proof. First, the DGA mentioned above must be computed. Since P has degree
2(p− 1), Q0 has degree 1, and Q1 has degree 2(p− 1) + 1, L+ has basis {P}, and
L− has basis {Q0, Q1}. To compute H∗(U(L)), we must first examine

Ȳ (L)∗ = P ((sL+)∗)⊗ E(sL+).

Letting q0, q1, and p1 denote the basis elements corresponding to Q0, Q1, and P ,
the DGA has the form

Ȳ (L)∗ = P (q0, q1)⊗ E(p1)

with all basis elements having homological degree 1. The differential in this DGA
takes elements of bidegree (a,b) to elements of bidegree (a+1,b). Examining degrees
yields

d(q0) = 0, d(q1) = q0p
1, d(p1) = 0.

Recalling that

d(ab) = d(a)b+ (−1)deg(a)deg(b)ad(b)
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from above, this yields that the differential on all possible elements is given by

d(qi0q
j
1) = jqi+1

0 qj−1
1 p1, d(qi0q

j
1p

1) = 0.

So, a basis for the cohomology of Ȳ (L)∗ is given by elements of the form

qi0q
p
1 , qj1p

1, qi+1
0 qpj−1

1 p1

where i ≥ 0, j ≥ 0. Letting a0, a1, and γi denote the cohomology classes represented
by q0, q

p
1 , and qi1p

1, respectively, allows the above theorem to follow readily. The
bidegrees of the generators are also easily computed to coincide with the theorem
above. □

5. Calculation for Restricted Lie Algebra

Before continuing to the calculation of the cohomology of A1 as a restricted Lie
algebra, some preliminary results regarding the structure of the spectral sequence
that will be employed should be covered.

Theorem 5.1. [6] There exists a spectral sequence {ErL} of differential coalgebras
which converges to H∗(V (L)) and satisfies

E2L = Γ(s2πL+)⊗H∗(U(L)).

The dual spectral sequence {ErL} of differential algebras converges to H∗(V (L))
and satisfies

E2L = P ((s2πl+)∗)⊗H∗(U(L)).

Remark 5.2. Note that in the spectral sequence above, one way to filter the
complex X(L)⊗V (L) K = X̄ is by

FiX̄n(L) = ⊕m≤iΓm(s2πL+)⊗ Ȳn−m(L).

This yields the E0 term to be

E0L = Γ(s2πL+)⊗ Ȳ (L).

Note, the second differential in this spectral sequence, which will be denoted ∂2,
is inherited from the differential on E0L = Γ(s2πL+) ⊗ Ȳ (L), dt, as defined in
Definition 3.4. The first differential of this spectral sequence, ∂0, has no effect on
Γ(s2πL+) since its elements are all of degree two or higher, and, by the unrestricted
calculations above, the homology of Ȳ (L) is H∗(U(L). This gives the desired E2L
term.

The next nonzero differential, ∂2, is zero on Γ(s2πL+) by assumption. So, the
differential simplifies to

∂2(g ⊗ y) = dt(g ⊗ y) = g ⊗ d(y) + t ∩ (g ⊗ y).

A few additional remarks about the differential will be helpful later. When
considering elements y ∈ H∗(U(L)), the second differential further simplifies to

∂2(g ⊗ y) = dt(g ⊗ y) = t ∩ (g ⊗ y).

Furthermore, when the restriction is zero (as in A1), the chosen map t2, from which
the total map t and the differential dt can be computed via Definition 3.4, is given
by

(5.3) t2(γ1(ỹ)) = ⟨y⟩yp−1.

Note that this does not mean t2 is identically zero, as the module action of y on
the image of t2 is not necessarily zero.
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This now allows us to compute the desired cohomology.

Theorem 5.4. If p ≥ 3, then

H∗,∗(A1) = P [a0, a1, δ]⊗ E[γj |0 ≤ j ≤ p− 2]

modulo the relations

ap−1
0 δ = 0, a0γj = 0 for j ≤ p− 2, and γiγj = 0 for all i and j.

Here the elements a0, a1, γ0, γ1 and δ have respective (s, t) bidegrees

(1, 1), (p, p(q + 1)), (j + 1, (j + 1)q + j), and (2, pq)

for q = 2(p− 1). In terms of Massey products, the generators are given by

γj = ⟨a0, γj−1, γ1⟩ and a1 = ⟨a0, γ0, a0, γp−2⟩.

Proof. From the unrestricted calculation we have that a basis for the cohomology
of Ȳ (L)∗ is given by elements of the form

qi0q
p
1 , qj1p

1, qi+1
0 qpj−1

1 p1.

This basis is then generated by elements q0, q
p
1 , and qi1p

1. Now, the image these
elements have under the new differential, ∂2 = dt, must be examined. Recall that
dt is the differential twisted by an element t ∈ Hom(Γ(s2πL+), Y (L+)) (given in

3.4). In particular, we will see that the dual differential has dt(q
p−1
0 δ) = qp−1

1 p1

and no other nonzero values, indicating that all cohomology classes carry over from
the unrestricted case, except for qp−1

1 p1 since dt(qp−1
1 p1) = qp−1

0 δ.
Examining the bidgrees of the above generators shows that no element has a

new nonzero differential after tensoring with P (s2πL+∗
) except for qp−1

1 p1. This
element has bidegree (p, p(q+1)− 1), which indicates its cohomological differential
has bidegree (p, p(q + 1). There is a nonzero element with this bidegree, namely

qp−1
0 δ. Direct computation confirms the result:

dt(q
p−1
0 δ) = t ∩ (δ ⊗ γ1(q0)

p−1)

= (1⊗ σ)(1⊗ t⊗ 1)(D ⊗ 1)(δ ⊗ γ1(q0)
p−1)

= (1⊗ σ)(1⊗ t(δ)⊗ γ1(q0)
p−1)

= 1⊗ ⟨p1⟩(p1)p−1 ⊗ γ1(q0)
p−1)

= 1⊗ ⟨p1⟩ ⊗ (p1)p−1(γ1(q0)
p−1) = qp−1

1 p1

where the last step, (p1)p−1(γ1(q0)
p−1) = qp−1

1 , is completed by induction.

The induction argument is presented below. Recall that multiplication in Y (L)⊙
V (L) is given by

vz1z2 = (vz1)z2 + (−1)deg(v)deg(z1)z1vz2

vγr(x) = γr(x)v + (−1)deg(v)γr−1(x)s[u, x].

Then, for n = 1 we have

p1γ1(q0) = s[p1, q0] = q1
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and assuming the claim holds for n = k − 1, we get, for n = k,

(p1)nγ1(q0)
n

= p1(γ1(q1)
n−1γ1(q0) + γ1(q1)

n−2γ1(q0)γ1(q1) + · · ·+ γ1(q0)γ1(q1)
n−1)

= nqn1 .

This direct calculation further confirms no other elements can have new nonzero
differentials since t ∈ Hom(Γ(s2πL+), Y (L+)) is completely determined by t(δ) =
t2(δ), and the formula for the map t2 indicates that t(δ) = ⟨p1⟩(p1)p−1, so products

containing δ must be generated by qp−1
1 p1. So, the spectral sequence collapses for

larger degrees, and the conclusion follows. Then, in terms of basis elements the
generators are given by

a0 = q0, a1 = qp1 , and γi = qi1p
1.

□
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