
A1 CALCULATION

JULIAN KAUFMANN

Abstract. In this paper I examine the A1 sub-algebra of the Steenrod Alge-

bra. In particular, the cohomology groups, H∗,∗(A1) over odd prime fields are

calculated. This gives a modern treatment of the computation and elaborates
on other computations which are concentrated at the odd prime 3. The main

computation tool used for the paper will be [6].
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1. Introduction

Much of algebraic topology is concentrated at the prime 2. This also extends
to computations involving the Steenrod Algebra and its subalgebra. Let A be the
mod p Steenrod algebra for a prime p. For odd p, let A1 be the subalgebra of the
Steenrod algebra generated by {β, P 1}.

Much computation has been done for the equivalent notion at the prime 2.
Recently, there has been some interest in computations of A1 at the prime 3, as
well as higher odd primes. In particular, Culver gives a computation using Massey
products for the prime 3 in [1], while Hill gives a computation for the same object
in [2]. However, both references do not continue to higher odd primes, but restrict
themselves to the prime 3.

To compute the necessary algebras and coalgebras in order to completely deter-
mine the cohomology of A1 at all odd primes, several preliminary results must be
recalled.

2. Background on Lie Algebras

All of the computational tools used in this paper are found in [6] and some of
the key results are summarized below.

I will focus on describing the algebra and coalgebra structure used in constructing
spectral sequences which are used to compute the homology of A1 over the field of
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characteristic p. The coalgebra structure is then integral in the calculations that
follow.

First, before creating a resolution of restricted Lie algebras, I will review the
resolution of non-restricted Lie algebras. Let L be any bigraded Lie algebra over a
field K, of prime characteristic p, with universal enveloping algebra U(L). Then,
a U(L)-free resolution of K as a trivial right U(L)-module will be constructed. As
a K module, the resolution will be given as Y (L) = Ȳ (L) ⊗ U(L) where Ȳ (L) =
Γ(sL−) ⊗ E(sL+). Here, L− denotes the odd degree elements in the Lie algbera,
L+ the even degree elements, Γ the standard divided polynomial algebra, E the
standard exterior algebra, and sL indicates a copy of L where all elements are given
a new, homological, degree of 1.

If one gives Ȳ (L) a structure of a an algebra over the Hopf algebra U(L), then
Y (L), as a U(L)-module, can be defined as the semi-tensor product, Ȳ (L)⊙U(L),
which is originally defined by Massey and Peterson in [3]. Most important for our
calculation however, is the algebra, coalgebra, and differential structure that can
be created on Y (L).

Lemma 2.1. [6] Y (L) may be given an algebra structure by requiring the product
to agree with the natural one on Ȳ (L) and on U(L) and to satisfy the relations:

u⟨y⟩ = (−1)deg u⟨y⟩u+ (−1)deg us[u, y],

u ∈ L, ⟨y⟩ = sy ∈ sL+.

uγr(x) = γr(x)u+ (−1)deg uγr−1(x)s[u, x],

u ∈ L, γ1(x) = sx ∈ sL−.

Y(L) may be given a Hopf algebra structure with coproduct D by requiring D to be
a morphism of algebras and to agree with the natural coproduct on Ȳ (L) and on
U(L). In particular, the coalgebra structure on genrators is given as:

D⟨y⟩ = ⟨y⟩ ⊗ 1 + 1⊗ ⟨y⟩

Dγr(x) =
∑

i+j=r

γi(x)⊗ γj(x)

Additionally, Y (L) can also be given a differential:

Theorem 2.2. [6] Define a differential d on Y (L) by

d(ab) = d(a)b+ (−1)deg aad(b), a, b ∈ Y (L)

and

d(u) = 0, d⟨y⟩ = y, dγr(x) = γr−1(x)x− 1

2
γr−2(x)⟨[x, x]⟩,

where u ∈ U(L), ⟨y⟩ ∈ sL+, γ1(x) ∈ sL−, and γ−1(x) = 0. Then, Y (L) is a U(L)-
free resolution of K, and is also a differential coalgebra over U(L) with differential
defined dually, i.e. for d(x) nonzero,

δ(d(x)) = x
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3. Background on Restricted Lie Algebras

Now, to continue to restricted Lie algebras, some additional constructions are
necessary. Again, K is a field of characteristic p, this time over Zp for some prime p,
L is again the (restricted) Lie algebra, and V (L) is the universal enveloping algebra
of L. Let W (L) = Ȳ (L) ⊙ V (L) and X(L) = Γ(s2πL+) ⊗ W (L) as a K-module.
Here, s2πL denotes a copy of L with all degree multiplied by p and with all elements
having a homological degree of 2. After X(L) is endowed with additional structure,
it will become the desired resolution.

The additional structure twists both the coproduct and the differential within
X(L). Most important for us is the differential twisting. First we need some
preliminary definitions.

Definition 3.1. [6] We give R = Hom(Γ(s2πL+), Y (L+)) a structure of a differ-
ential algebra with differential δ and product ∪. The differential is defined by

δ(r)(b) = d(r(b)) + (−1)deg r+1r(d(b))

for b ∈ Γ(s2πL+) and r ∈ R. Here, d is the differential on the approriate algebra.
Additionally, the product is defined by

(r ∪ r′)(b) = π(r ⊗ r′)D(b),

where π is the product on Y (L+), r, r′ ∈ R, and D is the coproduct on Γ(s2πL+).

Then, we introduce some additional structure.

Definition 3.2. [6] We give Γ(s2πL+) ⊗W (L) the structure of a left differential
R = Hom(Γ(s2πL+), Y (L+))-module with module product ∩. This is defined by

r ∩ (g ⊗ w) = (1⊗ σ)(1⊗ r ⊗ 1)(D ⊗ 1)(g ⊗ w).

In the equation above, r ∈ R, g ∈ Γ(s2πL+), w ∈ W (L), D is the coproduct
on Γ(s2πL+), and σ is determined by the epimorphism of differential algebras,
Y (L+) → W (L+), and by the algebra structure of W(L).

Then, the differential above can be twisted by a homomorphism t.

Definition 3.3. [6] Then, for t ∈ R1, so that tn : Γ(s2πL+)n → Y (L+)n−1, n ≥ 1,
we may define dt : Γ(s

2πL+)⊗W (L) → Γ(s2πL+)⊗W (L) by

dt(g ⊗ w) = d(g ⊗ w) + t ∩ (g ⊗ w)

From this definition, a simple calculation yields d2t (b⊗f) = (δ(t)+ t∪ t)∩(b⊗f).

Definition 3.4. [6] t is said to be a twisting cochain if δ(t)+ t∪ t = 0 and ϵt1 = 0,
where ϵ is the counit Y (L+) → K. In particular, t is a twisting cochain if,

dtn + tn−1d+

n−1∑
i=1

ti ∪ tn−i = 0, n > 1.

If this map t is a twisting cochain, then dt is a differential for Γ(s2πL+) ⊗
W (L). For the next calculations, we would like to chosse t to have a specific
property. In particular, we can (and will) choose the homomorphism t such that
t2 : Γ(s2πL+)2 → Y (L+)1 satisfies

t2(γ1(ỹ)) = ⟨y⟩yp−1 − ⟨ξ(y)⟩.
In the equation above, ỹ denotes the copy of y in Γ(s2πL+), and ξ is the restriction.

Finally, let us prove a short Lemma on the general structure of A1.
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Lemma 3.5. (Structure of A1) A1 is a primitively generated Hopf algebra with
its restriction being identically zero. Hence, it is isomorphic to the universal re-
stricted enveloping algebra of the restricted Lie algebra of its primitive elements,
i.e. A1 = V (PA1). Additionally, when considered as an unrestricted Lie algebra,
A1 is isomorphic to the universal enveloping algebra of its primitive elements, i.e.
A1 = U(PA1).

Proof. A1 is the subalgebra of the Steenrod algebra generated by the first Steenrod
operation, P 1 = P , and the Bockstein homomorphism, β = Q0. According to
Milnor [4], the coproduct on generating elements is given by

D(Q0) = Q0 ⊗ 1 + 1⊗Q0

D(P ) =
∑

i+j=1

P i ⊗ P j = P ⊗ 1 + 1⊗ P.

indicating Q0 and P are both primitive. From the structure of the coproduct we
also see that Q1 = [P,Q0] is also primitive. Since both P and Q0 are primitive,
A1 is primitively generated and thus, A1 = V (PA1) by a theorem of Milnor and
Moore [5], where PA1 is the algebra of primitive elements (or A1 = U(PA1) when
considered without restriction). The structure of PA1 is also easy to compute.
Namely, since all other elements are products of P , Q0, and Q1, PA1 has basis
{Q0, Q1, P}.

Next, the restriction on PA1 is also considered. Note that Qp
0 = 0 as Q2

0 = 0 and
p > 2. Similarly, Qp

1 = (PQ0−Q0P )p = (PQ0)
p−(Q0P )p = 0 as we are working in

characteristic p. Finally, by the Adem relations, P p =
(
p−2
1

)(
p−2
2

)
. . .

(
p−2
p−1

)
P p = 0.

So, the restriction is identically zero and the Lemma above holds. □

4. Calculation for Unrestricted Lie Algebra

With this background, we can now proceed to a preliminary calculation of the
cohomology of A1 without considering its restriction. In this case the differential
graded algebra (DGA) we are considering to compute the cohomology of A1 is
Y (L)∗ = ( ¯Y (L)⊗ U(L))∗ = ((Γ(sL−)⊗ E(sL+))⊗ U(L))∗

Theorem 4.1. If p ≥ 3, then, when A1 is considered as an unrestricted Lie algebra,

H∗,∗(U(A1)) = P [a0, a1]⊗ E[γj |0 ≤ j ≤ p− 1]

modulo the relations

a0γj = 0 for j ≤ p− 2 and γiγj = 0 for all i and j.

In terms of basis elements, these generators are given by

a0 = q0, a1 = qp1 , and γi = qi1p,

where the elements a0, a1, andγi have respective (s, t) bidegrees

(1, 1), (p, p(q + 1)), and (j + 1, (j + 1)q + j),

for q = 2(p− 1).

Proof. First, the DGA mentioned above must be computed. Since P has degree
2(p− 1), Q0 has degree 1, and Q1 has degree 2(p− 1) + 1, L+ has basis {P}, and
L− has basis {Q0, Q1}. To compute H∗(U(L)) = H∗(PA1), we must first examine

Ȳ (L)∗ = P ((sL+)∗)⊗ E(sL+)
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Letting q0, q1, and p denote the basis elements corresponding to Q0, Q1, and P ,
the DGA has the form

Ȳ (L)∗ = P (q0, q1)⊗ E(p)

with all basis elements having homological degree 1. The differential in this
DGA takes elements of bidegree (a,b) to elements of bidegree (a+1,b). Examining
degrees yields

d(q0) = 0, d(q1) = q0p d(p) = 0

Recalling that

d(ab) = d(a)b+ (−1)deg(a)deg(b)ad(b)

from above, this yields that the differential on all possible elements is given by

d(qi0q
j
1) = jqi+1

0 qj−1
1 p, d(qi0q

j
1p) = 0.

So, a basis for the cohomology of Ȳ (L)∗ is given by elements of the form

qi0q
p
1 qj1p qi+1

0 qpj−1
1 p

where i ≥ 0, j ≥ 0. Letting a0, a1, and γi denote the cohomology classes repre-
sented by q0, q

p
1 , and qi1p, respectively, allows the theorem above to follow readily.

The bidegrees of the generators are also easily computed to coincide with the the-
orem above. □

5. Calculation for Restricted Lie Algebra

Before continuing to the calculation of A1 as a restricted Lie algebra, some
preliminary results regarding the structure of the spectral sequence that will be
employed should be covered.

Theorem 5.1. [6] There exists a spectral sequence {ErL} of differential coalgebras
which converges to H∗(V (L)) and satisfies

E2L = Γ(s2πL+)⊗H∗(U(L)).

The dual spectral sequence {ErL} of differential algebras converges to H∗(V (L))
and satisfies

E2L = P ((s2πl+)∗)⊗H∗(U(L))

Remark 5.2. Note that in the spectral sequence above, one way to filter the
complex X(L)⊗V (L) K = X̄ is by

FiX̄n(L) = ⊕m≤iΓm(s2πL+)⊗ Ȳn−m(L).

This yields the E0 term to be

E0L = Γ(s2πL+)⊗ Ȳ (L).

It should be noted that the first differential, d0 has no effect on Γ(s2πL+) since its
elements are all of degree two or higher, and, by the unrestricted calculations above,
the homology of Ȳ (L) is H∗(U(L). This gives the desired E2L term as above. The
next non-zero differential, d2, is mainly focused on the twisting cochain. Since the
differential on Γ(s2πL+) is assumed to be zero, the differential dt simplifies to

dt(g ⊗ y) = g ⊗ d(w) + t ∩ (g ⊗ w).

Of course, when considering only elements w ∈ H∗(U(L)), this further simplifies to

dt(g ⊗ y) = t ∩ (g ⊗ w).
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Finally, it should also be remarked that when the restriction is zero, such as in the
case of A1, the map t2 is given by

t2(γ1(ỹ)) = ⟨y⟩yp−1.

Note that this does not mean t2 is identically zero, as the module action of w on
the image of t2 is not necessarily zero.

This lets us now compute the desired cohomology.

Theorem 5.3. If p ≥ 3, then

H∗,∗(A1) = P [a0, a1, δ]⊗ E[γj |0 ≤ j ≤ p− 2].

In terms of basis elements, these generators are given by

a0 = q0, a1 = qp1 , and γi = qi1p,

modulo the relations

a0γj = 0 for j ≤ p− 2 and γiγj = 0 for all i and j.

Here the elements a0, a1, γ0, γ1 and δ have respective (s, t) bidegrees

(1, 1), (p, p(q + 1)), (j + 1, (j + 1)q + j), and (2, pq)

for q = 2(p− 1).

Proof. From the unrestricted calculation we have that a basis for the cohomology
of Ȳ (L)∗ is given by elements of the form

qi0q
p
1 qj1p qi+1

0 qpj−1
1 p.

This basis is then generated by elements q0, q
p
1 , and qi1p. Now, from the above

remark, the effect that t2 has on these elements must be examined. In particular,
we will see that the dual differential has dt(q

p−1
o δ) = pqp−1

1 and no other non-zero

values, indicating that dt(pqp−1
1 ) = qp−1

0 δ and that all other cohomology classes
remain.

Examining the bidegrees of the generators above shows that none of them are
affected by tensoring with P (s2πL+∗

) except q21p. This has bidegree (p, p(q+1)−1),
which indicates its cohomological differential has bidegree (p, p(q + 1). There is a

non-zero element with this bidegree, namely qp−1
0 δ. Indeed, direct computation

also yields the same result,

dt(q
p−1
0 δ) = t ∩ (δ ⊗ γ1(q0)

p−1)

= (1⊗ σ)(1⊗ t⊗ 1)(D ⊗ 1)(δ ⊗ γ1(q0)
p−1)

= 1⊗ ⟨p⟩ ⊗ pp−1(γ1(q0)
p−1) = pqp−1

1

where the last step is completed by induction. Indeed, recalling that multiplication
in Y (L)⊙ V (L) is given by

vz1z2 = (vz1)z2 + (−1)deg(v)deg(z1)z1vz2

vγr(x) = γr(x)v + (−1)deg(v)γr−1(x)s[u, x]

For n = 1 we have

pγ1(q0) = s[p, q0] = q1
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and assuming it is true for n = k − 1, we get, for n = k,

pnγ1(q0)
n

= p(γ1(q1)
n−1γ1(q0) + γ1(q1)

n−2γ1(q0)γ1(q1) + · · ·+ γ1(q0)γ1(q1)
n−1)

= nqn1

No other new homology elements can occur since examining the formula for t
shows the only product containing δ that has non-zero differential is δq21 . So, the
spectral sequence collapses for larger degrees, and the conclusion follows. □
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