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Abstract. Often we are interested in a weaker notion of equivalence than isomorphism in a
category, such as homotopy equivalences of topological spaces, and infinity categories given a

natural way to make categorical constructions that respect these equivalences. In this paper, we
begin by introducing quasi-categories and describe some of their properties before discussing some
categorical constructions with an emphasis on (co)limits. We relate ∞-categorical (co)limits to

classical homotopy (co)limits, and describe examples in the setting of topological spaces.
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1. Introduction

In a first course in topology, we learn that the correct notion of “sameness” between topological
spaces is that of homeomorphisms: bijections that preserve topological structure. When we begin
studying algebraic topology, however, we often find it more convenient to work with spaces up to
homotopy equivalence or even weak homotopy equivalences, since these are the equivalences that
our invariants (homotopy groups, (co)homology, etc.) are able to distinguish. Hence, we might want
to work in a place (a category) that does not differentiate between homotopy equivalent spaces.
However, if we try to make our favourite constructions, we face some problems.

Example 1.1. One of the best ways to build our favourite topological spaces is by gluing together
simpler spaces, which is formalized using colimits. For instance, we could build the 2-sphere S2 by
taking the pushout of the diagram

D2 ←−↩ S1 ↪−→ D2 (1)

which takes two disks and glues them along their boundaries. If we stop distinguishing between
homotopy equivalent spaces, we can replace the diagram with

∗ ←− S1 −→ ∗ (2)

since disks are contractible. The pushout of this new diagram is obtained by gluing together two
points, which is a point. Clearly, this does not give us the sphere that we are after. In general, we
find that we have lost access to many of our favourite spaces (for instance, CW complexes), since
gluing together contractible spaces no longer gives us anything interesting.
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A naive idea for a better category to work in is the homotopy category of topological spaces,
where homotopic maps are identified and isomorphisms are indeed given by homotopy equivalences.
Unfortunately, it turns out that straight-up quotienting by homotopies destroys too much of the
categorical structure; for instance, the homotopy category does not have most limits and colimits.
Heuristically, the problem is that we need to not only remember when two maps are homotopic, but
also how they are homotopic. In other words, we need to remember “higher dimensional” information
encoded by homotopies. A good place to do this is in an ∞-category. Specifically, we will describe
a model of an (∞, 1)-category, which has n-morphisms for all n ∈ N such that any m-morphism
for m > 1 is invertible. This should bring to mind the prototypical example of topological spaces,
in which our higher morphisms are given by homotopies, which are invertible by reversing the
parametrization. It turns out that many of our favourite categorical constructions can be generalized
to (∞, 1)-categories, and surprisingly many of the theorems that hold for 1-categorical constructions
still hold in the ∞-categorical setting.

Our goal in this expository document is twofold. First, we wish to introduce ∞-categories in a
way that is more categorical in approach than simplicial. Although we will be focusing our discussion
on quasi-categories, which model ∞-categories using simplicial sets, we try to present proofs using
the ∞-cosmos framework developed by Riehl and Verity (see [RV22]), which are more model agnostic
and often 2-categorical in nature. We will try our best to avoid discussion of fibrations and simplicial
combinatorics by black boxing key results when necessary. In Section ??, we introduce some necessary
facts about simplicial sets including a formula for adjunctions and slice and join constructions. In
Section 3, we introduce quasi-categories using the example of spaces and motivate the definition by
drawing analogies to categories. We also introduce some properties about quasi-categories that make
them an ∞-cosmos, which will be used in later proofs. In Section 5, we introduce adjunctions and
limits using the ∞-cosmos framework, and we describe their universal properties in Section 6.

Secondly, we hope to motivate ∞-categories by introducing examples that “arise in nature” for
which the 1-categorical language is not sufficient. The prototypical example is the ∞-category of
spaces, where higher structure need to be taken into account when making homotopy invariant
constructions as we saw above. In Section 4, we will introduce∞-categories that arise from simplicially
enriched categories and model categories. In the last two sections we show that familiar classical
constructions have the expected universal property when considered ∞-categorically, and we give
explicit examples of ∞-categorical (co)limits in spaces.

1.1. Conventions. We assume all topological spaces are compacted generated and weakly Hausdorff,
and we let Top denote the cartesian closed category of cgwh spaces where internal homs have the
compact open topology.

We let ∆ denote the simplex category whose objects are non-empty finite ordinals [n] and order

preserving maps, and we let sSet := Set∆
op

denote the cartesian closed category of simplical sets.
We let ∆n := ∆(−, [n]) be the n-simplex, and we let Λnk := ∂∆n \ dk∆n−1 be the (n, k)-horn

constructed by discarding the k-th face from the boundary of the n-simplex.
We let N := Z≥0.

2. Useful Facts about Simplicial Sets

Before we begin the discussion of ∞-categories, we recall some useful facts about simplicial sets,
which are used to define the most popular model for (∞, 1)-categories. Our approach to defining
adjunctions involving sSet follows [Rie], which also gives a more detailed introduction to simplicial
sets.

2.1. A Formula for Adjunctions. In this subsection, we describe a formula for constructing
adjunctions involving the category of simplicial sets. First, we recall the density theorem, which
states that every presheaf can be canonically represented as a colimit of representables. See [Rie16,
Section 6.5] for a more detailed discussion.
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Proposition 2.1 (density). Let C be a category and F ∈ SetC
op

be a presheaf on C. Then, F is the
colimit of the diagram ∫

F
Π−→ C

よ
↪−→ SetC

op

(3)

where
∫
F denotes the category of elements on F and Π denotes the canonical projection functor.

Proof. See [Rie16, Theorem 6.5.7]. □

Specializing to the case where C = ∆, we get:

Example 2.2. Every simplicial set is canonically a colimit of n-simplices. Given a simplicial set X,
we call the category of elements

∫
X the category of simplices of X. By the Yoneda lemma, we can

equivalently describe
∫
X as the comma category よ ↓ X, whose objects are n-simplices ∆n → X for

all n ∈ Z≥0. We can thus write the colimit (3) as

X ∼= colim
∆n→X

∆n.

Equivalently, we can write the colimit as the coequalizer

∆m ∆n

∐
σ : ∆n→X

θ : ∆m→∆n

∆m
∐

σ : ∆n→X

∆n X

∆m

θ

ισ,θ ισ

ισ,θ ισθ

(4)

where the two maps being coequalized restrict to the top and bottom diagrams respectively on the
copy of ∆m indexed by σ and θ. We can simplify this coequalizer in two ways. First, it suffices to
vary θ over the coface and codegeneracy maps since these generate ∆. Secondly, every degenerate
σ is identified through the coequalizer to some non-degenerate simplex, so we can range over all
non-degenerate σ’s and take θ to only be coface maps. These simplifications allow us to explicitly
write down a finite colimit for in small cases, as we will do in the next example.

Example 2.3. Consider the horn Λ2
1, whose has three 0-simplices {0, 1, 2} and two non-degenerate

1-simplices. The simplified colimit formula describes Λ2
1 as a quotient of

∆0
(0) ⨿∆0

(1) ⨿∆0
(2) ⨿∆1

(10) ⨿∆1
(21) (5)

where we index each σ : ∆1 → X by the subscript (d0σ d1σ). The quotienting object consists of four
copies of ∆1, indexed by σ varying over the two non-degenerate 1-simplices and θ varying over the
two coface maps d0, d1 : ∆0 ⇒ ∆1. To give an example, when σ is given by the 1-simplex (10) and
θ = d0, the correspond summand ∆0 maps to ∆1

(10) through d
1 in the top arrow of (4) and to ∆0

(1)

in the bottom arrow. Hence, the summand has the effect of identifying ∆0
(1) with the codomain

of ∆1
(10) in the coproduct (5). Similarly, the other three summands of the quotienting coproduct

identify the domains and codomains of the copies of ∆1 in (5) with the corresponding 0-simplices to
obtain the correctly shaped inner horn.

Heuristically, the n-simplices form a kind of “basis” for the category of simplicial sets from which
all simplicial sets are assembled. Just like how linear maps are determined by extending the mapping
on basis vectors, colimit preserving functors out of sSet are given by extending the mapping on
n-simplices:
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Proposition 2.4 (nerve-realization adjunction). Let F : ∆ → E be a functor into a cocomplete
category. Then, there exists an extension | · |F : sSet→ E along the Yoneda embedding

∆ E

sSet
|·|F

F

よ

given by taking a simplicial set X ∈ sSet to

|X|F := colim
∆n→X

F [n] ∼=
∫ [n]∈∆

Xn · F [n].

Furthermore, | · |F has a right adjoint NF : E → sSet defined as the composite

NF := E
よ
↪−→ SetE

op F∗

−−→ Set∆
op

which sends an object e ∈ E to the simplicial set whose n-simplices are

NF (e)n = E(F [n], e).

We will generally refer to functors of the form | · |F as realization and functors of the form NF as
nerve.

Proof. Since E is cocomplete, the pointwise Kan extension formula is well defined, and since the
Yoneda embedding is fully faithful, the Kan extension restricts to F on ∆. Finally, we can calculate
that

E(|X|F , e) ∼= E
(
colim
∆n→X

F [n], e
)

∼= lim
∆n→X

E(F [n], e)
∼= lim

∆n→X
NF (e)n

∼= lim
∆n→X

sSet
(
∆n, NF (e)

)
(Yoneda lemma)

∼= sSet
(
colim
∆n→X

∆n, NF (e)
)

∼= sSet(X,NF (e)) (density)

naturally in all X ∈ sSet and e ∈ E which checks that | · |F ⊣ NF indeed defines an adjunction. □

Example 2.5 (geometric realization). Define a functor F : ∆ → Top by sending each [n] to the
standard n-simplex

F [n] :=

{
(x0, . . . , xn) ∈ Rn+1 :

n∑
i=0

xi = 1

}
⊆ Rn+1

and sending the coface and codegeneracy maps to the corresponding topological coface and codegen-
eracy maps. The extension | · | := | · |F is called geometric realization, which sends a simplicial set X
to the colimit

|X| := colim
∆n→X

|∆n| ∼=
∫ [n]∈∆

Xn · |∆n|.

The right adjoint NF sends a topological space E to the simplicial set whose n-cells are

NF (E)n := Top(|∆n|, E),

which are exactly the singular n-cells of E. We will thus call the functor S• := NF the singular
complex functor.
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Example 2.6. Let ι : ∆→ Cat be the inclusion functor. The nerve functor N := Nι sends a small
category C, to the simplicial set whose n-cells are functors [n]→ C. Such a functor is determined by
the image of the atomic arrows, and exactly picks out a string of n composable arrows in C. The
degeneracy map si : NCn → nCn+1 inserts the identity morphism at the i-th place; the outer face maps
d0, dn : NCn → NCn−1 leaves out the outermost morphisms; the inner face maps di : NCn → NCn−1

for 0 < i < n composes the i-th and i+ 1-th morphisms.
One can also think about n-simplices in the nerve as commutative diagrams of the shape of the

n-simplex. For instance, a 2-simplex in NC is a pair of composable morphisms

x
f−→ y

g−→ z,

in C, which can be equivalently described as a commutative triangle

y

x z.

gf

g◦f

#

The face maps, as we might expect, pick out the morphisms opposite the chosen vertex: d0 picks
out g which opposes the 0-th vertex, d2 picks out f which opposes the second vertex, and d1 picks
out the composite g ◦ f which opposes the first vertex. For an example of degeneracy maps, given a
1-simplex in NC which is a morphism

x
f−→ y,

the map s0 repeats the 0-th vertex x by inserting idx to form the commutative triangle

x

x y,

f

f

#

while the map s1 repeats the first vertex y by inserting idy.
We will now describe a left adjoint to ι. The existence of a left adjoint is guaranteed by Proposition

2.4, but we will give a simpler description than the Kan extension formula. Given a simplicial set X,
the objects of τ1X is defined to be the vertices ob τ1 := X0. The morphisms are freely generated by
the edges X1 subject to relations given by X2 which we describe below; the domain and codomain of
the generating morphisms are given by the the face maps d1, d0 : X1 → X0; the identity morphisms
for each object is given by the degeneracy map s0 : X0 → X1. The relation on the morphisms are as
follows: consider the free graph on X0 generated by arrows in X1; for each 2-cell σ ∈ X2

y

x z

gf

h

σ⇑

bounded by f := d2σ, g := d0σ and h := d1σ, impose the relation that h = gf . Associativity of
composition is true for the free graph on X0 generated by X1 and thus true for the quotient mor τ1X.
Unitality is given by the relation imposed by degenerate 2-cells coming from s0, s1 : X1 → X2. We
have thus shown that τ1X is indeed a category.

To show that τ1 ⊣ N is an adjunction, given a simplicial set X and a category C. notice that a
functor F : τ1X → C is given by an assignment on objects F : X0 → ob C along with an assignment on
morphisms given on generating arrows F : X1 → mor C such that domain and codomain is respected
and that for any 2-cell

y

x z

gf

h

σ⇑
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in X, we have F (g ◦ f) = Fh. We will use this to construct a map of simplicial sets ϕ : X → NC.
The data of ϕ is given at the level of n-cells by a set of functions

ϕn : Xn → (NC)n
for all n ∈ N that respect face and degeneracy maps. For n = 0, we take the assignment of F on
objects. For n = 1, we take the assignment of F on generating morphisms. The naturality for face
and degeneracy maps between n = 0 and n = 1 are guaranteed by functoriality. For n = 2, we define
a function

ϕ2 : X2 → mor C ×
ob C

mor C

by sending a 2-cell below left

y

x z

gf

h

σ⇑
7→

Fy

Fx Fz

FgFf

Fh

#

to the commutative square above right, which is well defined by our assumption that gf = h. Mapping
on higher cells are similarly well-defined by using the relationship imposed by the 2-cells. It is clear
that this construction defines a bijective correspondence between maps τ1X → C and X → NC, so
we are done.

Remark 2.7. Using the explicit description, we can check that τ1 preserves (finite) products. In
particular, this makes τ1 ⊣ N an sSet-enriched adjunction (where hom simplicial sets in Cat are taken
to be nerves of hom categories).

2.2. Joins of Simplicial Sets. In this subsection, we will very briefly introduce join and slice
simplicial sets, which is a generalization of their 1-categorical counterparts, which are a useful tool
for constructing new ∞-categories “analytically”.

Definition 2.8. Let X,Y be simplicial sets. Their join is the simplicial set X ⋆Y whose n-simplices
is the set

(X ⋆ Y )n := Xn ⨿

( ∐
p+1+q=n

Xp × Yq

)
⨿ Yn. (6)

The face and degeneracy maps are given on the first and third summands are by the corresponding
maps on X and Y , and on the second summand for a pair (σ, τ) ∈ Xp × Yq by

di(σ, τ) :=

{
(diσ, τ), if i ≤ p,
(σ, di−1−pτ), if i > p.

si(σ, τ) :=

{
(siσ, τ), if i ≤ p,
(σ, si−1−pτ), if i > p.

We have canonical simlpicial subset inclusions X ↪−→ X ⋆Y and Y ↪−→ X ⋆Y by including at the n-cell
level into the first and third summands respectively.

Example 2.9. Let C,D be categories. Their categorical join is the category C ⋆D whose

• objects are ob(C ⋆D) := ob C ⨿ obD;
• morphisms are

C ⋆D(a, b) :=


C(a, b), if a, b ∈ C;
D(a, b), if a, b ∈ D;
∗, if a ∈ C and b ∈ D;
∅, if a ∈ D and b ∈ C.

Then, the nerve of the join is (naturally) isomorphic to the join of the nerve

N(C ⋆D) ∼= NC ⋆ ND,
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which justifies the choice of notation. One can either check this fact by explicitly writing down the
simplices or using an alternate description of the join as a Day convolution on augmented simplicial
sets (see [RV22, Appendix D.2]).

Example 2.10. Using Example 2.9, we may obtain the join of simplices ∆n ⋆∆m as the nerve of
the join [n] ⋆ [m], which we can easily check to be [n+ 1 +m]. Hence, we have

∆n ⋆∆m ∼= ∆n+1+m.

The join defines a bifunctor − ⋆ − : sSet × sSet → sSet, which we can see either from direct
construction or using the Day convolution perspective. Rephrashing Definition 2.8, we have the
following characterization of the n-simplices in X ⋆ Y :

Lemma 2.11. For each n-simplex ρ : ∆n → X ⋆ Y , exactly one of the following holds:

• The morphism ρ factors through the simplicial subset X ↪−→ X ⋆ Y ;
• The morphism ρ factors through the simplicial subset Y ↪−→ X ⋆ Y ;
• There exist unique p, q ∈ N such that p+ 1 + q = n and σ factors as a composition

∆n ∼= ∆p ⋆∆q σ⋆τ−−→ X ⋆ Y

for some unique σ ∈ Xp and τ ∈ Yq.

Proof. The three cases correspond to the three summands of (6). In the case of the middle summand,
we note that σ ⋆ τ corresponds exactly to the pair

(σ, τ) ∈ Xp × Yq ⊆ (X ⋆ Y )n,

as under the Yoneda identification the map picks out the image of the unique non-degenerate
n-simplex of ∆n, which is given by the pair of unique non-degenerate simplices in ∆p

p ×∆q
q that map

to (σ, τ) under σ ⋆ τ . □

Example 2.12. We consider X ⋆∆0, which should be thought about as the cone under X (the
geometric realization |X ⋆∆0| is indeed the topological cone over |X|). Its non-degenerate n-simplices
are

• the cone point ∆0 ↪−→ X ⋆∆0,
• the non-degenerate n-simplices of X and
• for each non-degenerate (n− 1)-simplex of X, an n-simplex whose final vertex is the cone

point and the opposing face is the chosen (n− 1)-simplex.

Remark 2.13. The cone point in X ⋆∆0 is terminal in the following sense: for all n ∈ Z≥1 and all
spheres σ in X ⋆∆0 whose final vertex is the cone point (which we denote by ⊤), the lifting problem

∆0 ∂∆n X ⋆∆0

∆n

{n}

⊤

σ

has a solution. To see this, consider the n-cell given by σ := dnσ ⋆⊤ such that

dn∆n ⨿∆0 ∂∆n X ⋆∆0

∆n

σ

σ̄

commutes, which we take to be the candidate for the solution to the lifting problem. It suffices to
check that σ agrees with σ on ∂∆n, which we can check by checking that they agree on dk∆n for all
0 ≤ k ≤ n. For k = n, this is true by construction. For all k < n, we notice that ⊤ is the final vertex
in both dkσ and dkσ and that

dndkσ = dndkσ
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are (n− 2)-simplices in X that agree by construction. Hence, dkσ and dkσ are both given by the
unique (n− 1)-simplex dndkσ ⋆⊤ from dndkσ to ⊤, and thus agree.

Definition 2.14. Let f : K → X be a morphism of simplicial sets. We define the slice simplicial set
of X over f to be the simplicial set X/f whose n-simplices are given by(

X/f

)
n
:= {σ : ∆n ⋆ K → X : σ|K = f}

and whose face and degeneracy maps are given on the left component of the join. Explicitly,
given a non-decreasing functor α : [m]→ [n], the associated function α∗ :

(
X/f

)
n
→
(
X/f

)
m

sends
σ : ∆n ⋆ K → X to the composite

∆m ⋆ K
α⋆K−−−→ ∆n ⋆ K

σ−→ X.

Example 2.15. Let J , C be small categories and F : J → C be a functor. Then, we observe that
(NC)/NF ∼= N(C/F ): the n-simplices of NC/NF are given by maps

∆n ⋆ NJ → NC

that restrict to NF on NJ . This is the same as functors

[n] ⋆ J → C

that restrict to F on C, which give the n-simplices of N(C/F ).

Example 2.16. Specializing F in the above example to an object c : 1 → C, we get a canonical
isomorphism (NC)/c ∼= N(C/c).

Proposition 2.17. Let f : K → X be a morphism of simplicial sets. Then, for any simplicial set Y ,
there is a natural isomorphism

HomsSet(Y,X/f ) ∼= HomK/sSet(Y ⋆ K,X)

Proof. This is true by definition for the simplices ∆n, and since any simplicial set is canonically a
colimit of the simplices, it suffices to show that both sides preserve colimits in the Y variable. This is

true on the right side as the functor − ⋆ K : sSet→ K/sSet preserves small colimits ([RV22, Lemma
D.2.7]). □

Corollary 2.18. The join and slice functors define an adjunction

sSet K/sSet.

−⋆K

⊥

−/−

3. The ∞-Cosmos of Quasi-Categories

3.1. The ∞-Category of Topological Spaces. Before we define what an ∞-category is, we
consider the prototypical example of topological spaces. This is a special case of a homotopy coherent
nerve, which we will discuss in 4.1, but we hope that the familiar setting of spaces will serve well for
motivation.

Informally speaking, an ∞-category is an object that has objects and morphisms (just like in a
1-category), but also 2-morphisms (i.e. morphisms between morphisms), 3-morphisms, and so on.
We will describe the ∞-category of topological spaces, which we will denote by S, in this informal
manner by describing the morphisms at each level.

As in the 1-category of topological spaces, the objects of S are topological spaces, and the
morphisms of S are continuous maps. The 2-morphisms are more interesting: these are given by
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homotopies between maps. Specifically, 2-cells in S are given by

Y

X Z

gf

h

α⇑

where f , g and h are continous maps, and α : X × I → Z is a homotopy from h to gf such that
α(−, 0) = h and α(−, 1) = gf . (Note that instead of describing 2-morphisms as homotopies between
two parallel continuous maps, we have opted for a more “triangular” shape. This is due to the fact
that our preferred model of ∞-categories — quasi-categories — are simplicial in nature rather than
globular. We can always recover homotopies between parallel maps by setting either f or g to be the
identity map.)

Our 3-morphisms should be morphisms between 2-morphisms, i.e. homotopies between homotopies.
Suppose we have the following continous maps

X1 X3

X0 X2

f31

f10
f30

f20

f21

f32
(7)

that do not necessarily commute. A 3-cell in S with this 1-skeleton is given by 2-cells (omitting
labels for 1-cells)

X1

X0 X2

α1
20⇑

X1

X0 X3

α1
30⇑

X2

X1 X3

α2
31⇑

X2

X0 X3

α2
30⇑

filling in the faces of the tetrahedron (7), along with a double homotopy

β : I2 → Top(X0, X3)

of the form

f30 f31f10

f32f20 f32f21f10

α1
30

α2
30 α2

31∗f10⇒
β

f32∗α1
20

filling in the “body” of the tetrahedron. Note that this is a picture, not a diagram! The vertices
given by the f ’s are not objects in S but rather points in the space Top(X0, X3); the edges are not
morphisms but paths in the mapping space, i.e. homotopies. We denote ∗ for the concatenation of
homotopies, and we abuse notation to denote the constant homotopy at a map f : X → Y by f itself.
(As in the 2-cell case, we can recover globular 3-morphisms by setting certain edges and faces to be
identity.)

We encourage the reader to take a guess on what higher cells should look like (an explicit description
of 4-cells in S is given in [Rav23, Section 7]), but we will now begin a more formal discussion of
∞-categories by introducing a popular model: quasi-categories.

Definition 3.1. A quasi-category is a simplicial set A satisfying the inner horn lifting property: for
all n > 0 and all 0 < k < n, the lifting problem

Λnk A

∆n
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has a solution. A map of simplicial sets between quasi-categories is called a (∞-)functor.

Remark 3.2. More generally, we call maps f : A→ B of simplicial sets inner fibrations if they have
the right lifting property against inner horn inclusions, i.e. lifting problems of the form

Λnk A

∆n B

f

have solutions. A simplicial set A is a quasi-category if and only if the unique map to the terminal
simplicial set is an inner fibration.

An important subset of inner fibrations are isofibrations, which are inner fibrations that also satisfy
right lifting properties against the (nerve of the) two endpoint inclusion functors 1 ↪−→ I, where I is
the walking isomorphism category. We will denote isofibrations by double headed arrows “−↠”.

Although isofibrations have no homotopy-theoretic significance (it turns out that all functors
between quasi-categories are equivalent to isofibrations), they allow us to work with ∞-categories
while considering strictly commuting diagrams (a bit like how fibrations in model categories allow us
to compute homotopy-theoretic constructions strictly).

Remark 3.3. At a first glance, the definition for quasi-categories does not look like the familiar axioms
for 1-categories, so let us unpack the definition a bit more at low dimensions. A quasi-category A
comes with the data of n-cells An for all n ∈ N. We will say that the 0-cells of A are its objects and
the 1-cells its morphisms. The face maps d0, d1 : A1 → A0 pick out the codomain and domain of
a morphism respectively, and the degeneracy map s0 : A0 → A1 picks out the identity morphisms.
Composition is a bit less obvious: a pair of composable morphisms

x
f−→ y

g−→ z

in A corresponds to a map g.f : Λ2
1 → A, and by inner horn lifting, we can find some lift

Λ2
1 A

∆2

g.f

α

that fills in the 2-cell
y

x z

gf

h

α⇑

We consider the morphism h := d1α to be a composite of g with f , and we say that the 2-cell α
witness the composition relationship. Note that there is no axiom saying that the horn filler has to
be unique, and in fact, enforcing uniqueness of horn filler will give us an ordinary category (Example
3.4). However, it turns out that composition is “unique up to contractible choice”, meaning that
given any pair of composable morphisms (g, f), the space of composites

comp(g, f) Hom(∆2, A)

{(g, f)} Hom(Λ2
1, A)

∼ ⌟
(8)

is contractible. (A strengthening of this fact can be found as [Cis19, Corollary 3.2.9], which says that
A is a quasi-category if and only if the vertical map on the right of (8) is a trivial fibration, which
one can think of encoding the uniqueness of composition “in families”.) This justifies the heuristic
that a quasi-category can be thought of as a category with weak composition.
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It remains to describe the analogues of the associativity and unitality axioms. Unitality is easy:
given any morphism f : x→ y, we wish to find a filler for

y

x y

f

f

witnessing f as a composite of f with idy, and such a filler is given by the degenerate 2-cell s1f .
Similarly, s0f witness the unitality for composing f with idx. Associativity is a bit more complicated.
Given a triple of composable morphisms

x
f−→ y

g−→ z
h−→ w,

we can find composites

y w

x z

l

g
f

k

hα⇑
β⇓

using fillers for Λ2
1. We wish to establish a relationship between a composite of l.f with a composite

of h.k. We first find a filler
y

x w

lf

m

γ⇑

for the back face of the tetrahedron. Notice that we have filled in three out of the four faces of the
3-cell whose edges are

y w

x z

l

f
m

k

g
h

meaning that we can now use inner horn filling for Λ3
1 ↪−→ ∆3. This allows us to fill in the bottom

face with some 2-cell
z

x w

hk

m

δ⇑

exhibiting m as a composite of h with k, as well as fill in the body of the 3-cell, which heuristically
tells us that the two ways of obtaining the composite m from f , g, and h — by composing g with f
first or by composing h with g first — agree, which is our new notion of “weak associativity”.

Our description of the analogues of the 1-category axioms for quasi-categories is justified by the
fact that 1-categories are examples of quasi-categories:

Example 3.4. Let C be a small category. We will show that the nerve of C is a quasi-category.
Consider a lifting problem

Λnk NC

∆n

When n ≥ 4, the diagram automatically has a unique lift: the horn Λnk contains all the 2-cells of ∆n,
so a map Λnk → NC picks out a diagram in which all faces commute, and hence the entire diagram
commutes. When n = 2 and k = 1, a map ∆2

1 → NC corresponds to a pair of composable arrows

x
f−→ y

g−→ z,
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which we can uniquely fill to a commutative triangle using the composite g ◦ f

y

x z.

gf

g◦f

#

which gives us a unique lift to ∆2. When n = 3 and k = 1, a map ∆3
1 → NC corresponds to a

diagram

x

w z

y

ℓf

m

k h

g

in which all but the bottom face commutes, i.e. we have the relations

gf = k, hg = ℓ, ℓf = m.

To lift this to a map from ∆3, it suffices to check that the bottom face also commutes, which is true
since hk = hgf = ℓf = m. A similar argument yields unique fillers for Λ3

2.
We thus have a fully faithful embedding Cat ↪−→ qCat, and we will often conflate a 1-category with

its nerve. Furthermore, it is straightforward to check that the essential image of the embedding is
exactly the quasi-categories that satisfy unique lifting with respect to inner horns.

Example 3.5 (opposite category). The opposite category of a 1-category C is defined to be the
category Cop where

• the objects are the same as C
• for X,Y ∈ C, the morphisms in Cop are given by

HomCop(X,Y ) := HomC(Y,X).

We generalize this idea to define the opposite of any simplicial set S by taking Sop to be the simplicial
set where

• the n-cells are the same as S:

Sop
n := Sn

• the face and degeneracy maps have “the opposite ordering”, i.e.

(di : S
op
n → Sop

n−1) := (dn−i : Sn → Sn−1)

(si : S
op
n → Sop

n+1) := (sn−i : Sn → Sn+1).

It is easy to see that a simplicial set A is a quasi-category if and only if Aop is, as A lifts againsts
(n, k)-horns if and only if Aop lifts against (n, n− k)-horns.

Example 3.6. Any Kan complex is a quasi-category, since Kan complexes satisfy lifting properties
with respect to all horn inclusions and in particular the inner horn inclusions.

Example 3.7. Given a topological space X, the singular complex S•X is a Kan complex and thus
a quasi-category. Recall that the n-cells of S•X are given by continuous maps |∆n| → X. Hence,
objects of S•X are given by points in X; a morphism p : x→ y for points x, y ∈ X is given by a map
p : |∆1| → X such that p(0) = x and p(1) = y, in other words, a path from x to y. Now, given paths

x
p−→ y

q−→ z,
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a composite is given by a singular 2-cell α : |∆2| → X, depicted by

y

x z

qp

r

α⇑

Notice that this is both a diagram in S•X and a picture in the spaceX. Under a fixed homeomorphism
|∆2| ∼= I2, we see that α encodes the data of a homotopy r to the standard concatenation p ∗ q (i.e.
the path sendings t ∈ [0, 1] to p(2t) when t ≤ 1/2 and q(2(t− 1/2)) when t ≥ 1/2). There are many
choices for such a composite: we could take the identity homotopy from p ∗ q to itself, but we could
also take any other reparametrization of the interval, for instance, fixing any a ∈ (0, 1) and defining
a path ra : I → X sending t ∈ I to

ra(t) :=

{
p
(
t
a

)
, t ∈ [0, a]

q
(

1−t
1−a

)
, t ∈ [a, 1].

In the quasi-categorical setting, no one choice of reparametrization for concatenation is preferred
over the others, and we instead consider the (contractible) space of all possible reparametrizations.
Although this approach forces us to keep track of more information, it is in some ways more natural
than simply quotienting out by the homotopy relationship which destroys a lot of structure. We may
also recover the quotient by taking the homotopy category, which we describe now.

Definition 3.8 (homotopy relation in a quasi-category). Fix a parallel pair of morphisms f, g in a
quasi-category A. We call a 2-cell such as below left a left homotopy, and we say that f ∼l g are left
homotopic if such a 2-cell exists;

y

x y

f

g

⇑

x

x y

f

g

⇑ (9)

similarly, we call a 2-cell such as above right a right homotopy, and we say that f ∼r g are right
homotopic if such a 2-cell exists.

Lemma 3.9. Parallel morphisms are left homotopic if and only if they are right homotopic, in
which case we say they are homotopic. Furthermore, the relationship induced by homotopies is an
equivalence relation on morphisms that is stable under composition.

Proof. We show the equivalence of left and right homotopies by constructing a 3-cell with edges

x

x y

y

f

g

f

f

where the left and right faces can be filled with degenerate 2-cells, so by inner horn fillers, filling the
bottom face with a left homotopy f ∼l g is possible if and only if we can fill the back face with a
right homotopy f ∼r g.

The reflexivity of both homotopy relations are witnessed by degenerate 2-cells on morphisms.
To show symmetry for the left homotopy relation, suppose we have a left homotopy f ∼l g. We
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construct a 3-cell whose edges are given by

y

x y

y

f

f

g

by filling in the left face with the given homotopy, the right face with the degenerate 2-cell idy, the
back face with idf , and using horn filling for Λ3

1 to find a filler for the bottom face, which gives us
a left homotopy g ∼l f . A similar argument gives us symmetry for the right homotopy relation.
Finally, to show transitivity, given left homotopies f ∼l g and g ∼l h, construct a 3-cell whose edges
are given by

x

y y

y

f

h

g

by filling in the right face with a degenerate cell and the left and bottom faces with the given
homotopies. Using horn lifting for Λ3

2, we obtain the desired homotopy f ∼l h in the back face.
Finally, to show that homotopy is stable under composition, let f, g : x→ y be homotopic 1-cells

and h : y → z. Given (a choice of) composites

y

x z

hf

h◦f

α⇑

y

x z

hg

h◦g

β⇑

construct a 3-cell whose edges are
x

x z

y

h◦f

h◦g

g h

f

by filling in the left face with the given homotopy f ∼ g, filling in the right and bottom faces
with α and β respectively, and using inner horn filler for Λ3

2. The filled in back face gives us our
desired homotopy h ◦ f ∼ h ◦ g. A similar argument for left homotopies grants us stability under
precomposition. □

Definition 3.10 (homotopy category of a quasi-category). Let A be a quasi-category. Its homotopy
category is the category hA whose

• objects are 0-cells of A, ob(hA) := A0;
• morphisms are homotopy classes of 1-cells of A;
• identity morphism at a ∈ A0 is represented by the degenerate 1-cell s0a ∈ A1;
• composition of a composable pair of arrows (g, f) is represented by any 1-cell h such that a
2-cell of the form

b

a c

gf

h

⇑
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exists.

To justify this definition, we check that:

Lemma 3.11. The homotopy category hA is well defined and naturally isomorphic to τ1A.

Proof. Given a composable pair of arrows (g, f), inner horn filler for Λ2
1 guarantees the existence of

a composite. Furthermore, we can check that any two composites h, h′ are necessarily homotopic by
considering a 3-cell with edges

y

x z

z

gf

h′

h

g

filling in the left and back faces with the 2-cells witnessing composition, the right face with a
degenerate 2-cell, and using inner horn filler to obtain the desired homotopy h ∼ h′ in the bottom
face. In addition to the stability of homotopy from Lemma 3.9, we see that composition is well-defined.
Unitality and associativity are given by the “weak” analogues described in Remark 3.3.

To show that hA ∼= τ1A, it suffices to show that h defines another left adjoint to nerve. Let C be a
category and F : hA → C be a functor. We would like to define a map of simplicial sets A → NC.
On 0-cells, we take the assignment of F on objects, and on 1-cells, we take the assignment of F on
morphisms. By 2-coskeletonality of NC, it suffices for us to check that for any 2-cell in A of the form

y

x z

gf

h

σ⇑
⇝

Fy

Fx Fz

FgFf

Fh

#

the diagram on the right in C commutes, which holds by definition. Conversely, we may construct
a functor G : hA → C from the data of a map A → NC by taking the mapping on objects and
morphisms from the mapping on 0- and 1-cells respectively, where functoriality is guaranteed by the
mapping on 2-cells. It is clear that the two procedures define a bijective correspondence. □

Example 3.12. Let C be a category. Two morphisms f, g : x→ y are homotopic if and only if the
triangle

y

x y

f

g

commutes, i.e. f = g. Hence, the homotopy category of C is just C itself.

Example 3.13. Let X be a topological space. Two paths p, q : x → y in S•X are homotopic in
the sense of Definition 3.8 if and only if they are homotopic in the topological sense. Hence, the
homotopy category hS•X is the category whose objects are points in X and whose morphisms are
paths in X up to homotopy, i.e. the fundamental groupoid Π1X.

Example 3.14. The homotopy category of the quasi-category of topological spaces is the “naive
homotopy category”, in which objects are topological spaces and maps are homotopy classes of
continuous maps.
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Example 3.15 (full subcategory). Let A be a quasi-category, and B0 ⊆ A0 be a subset of objects.
We say that the full subcategory of A spanned by the objects B0 is the pullback

B A

hB hA

⌟

in simplicial sets where hB ⊆ hA is defined to be the full (1-)subcategory of hA spanned by the
objects B0. Inner horn lifting for B is checked by using the universal property of the pullback.

Definition 3.16 (isomorphism in a quasi-category). A morphism f : x→ y in a quasi-category A is
an isomorphism if its image in the homotopy category hA is. Explicitly, f is an isomorphism if and
only if there exists morphisms g, g′ : y → x and 2-cells

y

x x

gf
⇑

x

y y

fg′

⇑

witnessing g, g′ as homotopy inverses to f .

Remark 3.17. Although by the definition above, the two homotopy inverses g and g′ are not necessarily
equal, we can always choose them to be so by finding a homotopy g ∼ g′ using inner horn lifting for
the back face of the 3-cell below left

x

y x

y

g′

g

g
f

y

y y

x
g

g′

f

then using inner horn lifting for the bottom face of the 3-cell above right to get our desired homotopy
fg ∼ idy.

Example 3.18. An isomorphism in S is a homotopy equivalence.

Example 3.19. Using the outer horn lifting properties for the 2-cell, we see that any morphism in a
Kan complex is an isomorphism.

In fact, all∞-groupoids (quasi-categories in which every morphism is invertible) are Kan complexes
(this fact is sometimes referred to as the homotopy hypothesis):

Theorem 3.20 ([Joy02]). A quasi-category is a Kan complex if and only if its homotopy category is
a groupoid.

Proof. See [RV22, Corollary 1.1.15]. □

Every quasi-category A contains a canonical maximal sub-∞-groupoid, given by taking the pullback

A≃ A

(hA)≃ hA

⌟

inside simplicial sets, where hA≃ denotes the maximal subgroupoid of the 1-category hA. In particular,
a morphism 2→ A (letting 2 := ∆1 be the arrow quasi-category) is an isomorphism if and only if it
factors through A≃. By the pullback universal property, any functor from an ∞-groupoid into A
factors through A≃, which gives us a functor

(−)≃ : qCat→ Kan (10)



HOMOTOPY LIMITS: AN ∞-CATEGORICAL PERSPECTIVE 17

right adjoint to the inclusion
Kan ↪−→ qCat.

The fact that ∞-groupoids are Kan complexes allow us to lift isomorphisms to homotopy coherent
isomorphisms, which are represented by functors I→ A where I is the nerve of the walking isomorphism
category:

Corollary 3.21. An arrow f in a quasi-category A is an isomorphism if and only if it extends to a
homotopy coherent isomorphism, i.e. a solution to the lifting problem

2 A.

I

f

exists.

Proof. The converse direction is easily shown by composing the functor I→ A with the quotienting
map A→ hA for a homotopy inverse to f . To check the forward direction, we know that the arrow
f is an isomorphism, so it necessarily lands in the subgroupoid

2 A≃ ⊆ A

I

f

which is a Kan complex by assumption. It then suffices to show that the inclusion 2→ I is anodyne
(meaning that it lifts against Kan fibrations), which we can check by inductively constructing the
inclusion as a sequential composite of outer horn inclusions. We denote the two objects in I by 0 and

1, and we denote the two non-identity morphisms as 0
f−→ 1 and 1

g−→ 0. The nerve of I has exactly
two non-degenerate n-cells for each n ∈ N given by alternating composites of f and g’s of length
n, either f . . . fgf and g . . . gfg when n is odd or gf . . . fgf and fg . . . gfg when n is even. Denote
σn ∈ In for the non-degenerate n-cell that starts at the vertex 0 (i.e. whose rightmost letter is f)
and τn ∈ In for the non-degenerate n-cell that starts at the vertex 1 (i.e. whose rightmost letter is
g), and observe that the outer faces of σn are given by

d0σn = τn−1 and dnσn = σn−1

and the inner faces are degenerate.
Let Xn ⊆ I be the subsimplicial set that contains all k-cells of I for k < n and all n-cells of I

except σn. We can easily check that

Λn0 Xn

∆n Xn+1σn

⌟

is a pushout diagram, which we may do levelwise: by n-skeletality it suffices to check for all k-cells
when k ≤ n; on k-cells when k < n, this is the identity pushout diagram; on n-cells, this is a pushout
diagram by construction. □

We are interested in studying categorical constructions in quasi-categories. Just like how it is often
useful in 1-category theory to study the 2-category of 1-categories, we will formally study ∞-category
theory by considering the “(∞, 2)-category of (∞, 1)-categories”. An axiomatization of this notion
is that of ∞-cosmoi due to Riehl and Verity. We will not be explicitly defining ∞-cosmoi in this
exposition since we will only focus on the example of quasi-categories, but our constructions and
proofs will be heavily influenced by the cosmological approach following [RV22], and most can be
generalized to arbitrary ∞-cosmoi or at least ∞-cosmoi of (∞, 1)-categories.
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We first introduce diagram ∞-categories. In ordinary category theory, we usually index diagrams
by categories, but we often also implicitly index diagrams by graphs. The generalization is to
index diagrams in the quasi-categorical setting by simplicial sets. Given a simplicial set J and a
quasi-category A, we will call a map of simplicial sets d : J → A a diagram. Since sSet is cartesian
closed, we naturally have simplicial set structure on the collection of diagrams from J to A, which
we denote by

AJ := sSet(J,A).

Using simplicial combinatorics, one can prove that these are in fact quasi-categories.

Theorem 3.22 (Joyal). If J is a simplicial set and A is a quasi-category, then AJ is a quasi-category.
Moreover, a 1-simplex in AJ is an isomorphism if and only if its components at each j ∈ J is an
isomorphism in A.

Proof. We omit the proof of this difficult theorem; one reference for the proof is [RV22, Corollary
1.1.22]. □

In particular, given two quasi-categories A,B, the collection of functors

Fun(A,B) := sSet(A,B)

forms a quasi-category, and qCat is cartesian closed. This describes the category of quasi-categories
as an “(∞, 2)-category”, which heuristically means that it has n-morphisms for all n ∈ Z≥0 which
are invertible for n > 2: the (m + 1)-morphisms in qCat are given by m-morphisms in functor
quasi-categories, which are invertible for m > 1. Since taking homotopy category preserves products
(Remark 2.7), we can perform base change to obtain a 2-category of quasi-categories by taking
the homotopy categories of functor categories. It turns out, somewhat surprisingly, that many
∞-categorical constructions in quasi-categories (and more generally in any ∞-cosmos) can be
characterized in this 2-category.

Definition 3.23. The homotopy 2-category of quasi-categories is the 2-category hqCat := h∗qCat
obtained by performing base change on qCat along h : qCat→ Cat. Explicitly, it is the 2-category
whose

• objects are quasi-categories,
• 1-cells are ∞-functors (maps of simplicial sets) and

• 2-cells A B

g

f

α are homotopy classes of 1-cells in Fun(A,B) from f to g, which are

represented by functors A×∆1 → B.

We will refer to the 2-cells in hqCat as ∞-natural transformations and invertible 2-cells as ∞-natural
isomorphisms.

Remark 3.24 (∞-cosmoi). Definition 3.23 can be generalized to arbitrary ∞-cosmoi, which are
quasi-categorically enriched categories K equipped with a specified subcategory of isofibrations that
satisfy certain completeness axioms ([RV22, Definition 1.2.1]). We refer to objects in an ∞-cosmos as
∞-categories. Given an∞-cosmos K, we can base change along h : qCat→ Cat to obtain a 2-category
hK, which we refer to as the homotopy 2-category of K. Examples of ∞-cosmoi include: (see [RV22,
Chapter 1.2] for details)

• ordinary categories Cat;
• Kan complexes Kan, which model (∞, 0)-categories or ∞-groupoids (3.20);
• models of (∞, 1)-categories such as quasi-categories, complete Segal spaces, and Segal

categories;
• models of (∞, n)-categories such as θn-spaces and iterated complete Segal spaces.
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Many of the results in the rest of the document can be easily generalized to arbitrary ∞-cosmos, as
we will often work 2-categorically in hqCat. Some analytic results about quasi-categories can even be
transferred to other models (∞, 1)-categories through model independence results due to Riehl and
Verity (see [RV22, Part III]), but these are much beyond the scope of this document.

Definition 3.25. An equivalence of quasi-categories is an equivalence in the homotopy 2-category
hqCat. Explicitly, the data of an equivalence consists of a pair of functors f : A⇆ B : g and∞-natural
isomorphisms α : idA ∼= gf and β : fg ∼= idB .

Since isomorphisms in quasi-categories lift to homotopy coherent isomorphisms (Corollary 3.21),
we have the following:

Corollary 3.26. A functor f : A→ B between quasi-categories defines an equivalence if and only if
it extends to the data of a “homotopy equivalence” with the free-living isomorphism I serving as the
interval, meaning that there exist maps g : B → A,

A

A AI

A

α

gf

ev0

ev1

and

B

B BI

B.

fg

β

ev0

ev1

Remark 3.27. The alternate description of equivalences makes it easy to check that taking homotopy
category preserves equivalences: the composites

hA
hα−→ h(AI)→ (hA)I and hB

hβ−→ h(BI)→ (hB)I

exhibit hg as an inverse to hf .

4. More Examples of Quasi-Categories

Before discussing∞-category theory, let us see a few more complicated examples of quasi-categories.

4.1. The Homotopy Coherent Nerve. We saw in Section 3.1 that the homotopical data in Top can
be encoded by considering spaces rather than sets of continous maps, i.e. in a topologically enriched
category. However, although topological categories do present one model for (∞, 1)-categories, they
are not the easiest to work with for ∞-categorical constructions, since often it is the more natural to
consider weak composition (for instance, in the case of the concatenation of two paths). In this section,
we will describe a general construction that produces a quasi-category from a topological category.
More specifically, we will first perform a base change to produce a Kan-complex enriched category,
then describe the homotopy coherent nerve of such a category using the formula for realization-nerve
adjunction on simplicial sets (Proposition 2.4).

Corollary 4.1. Let C be a topological category. Since S• : Top→ Kan is a right adjoint, it preserves
products and can be given a strong monoidal structure. Hence, we may regard C as a Kan-complex
enriched category using base change, with Hom-complexes given by

C(c, d)• := S• C(c, d)

for all c, d ∈ C. Explicitly, given any n ∈ N, an n-cell of C(c, d) is given by a map ∆n → C(c, d)•
in simplicial sets, which is equivalently given by a map |∆n| → C(c, d) in topological spaces under
transposition, i.e. a singular n-simplex in the mapping space C(c, d). In particular, we may regard
Top as a Kan-complex enriched category.

Now, we will use Proposition 2.4 to come up with an adjunction that goes between simplicial sets
and simplicially enriched categories. To do this, we define a cosimplicial object in sSet-Cat:
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Definition 4.2. The homotopy coherent n-simplex C[n] is the simplicially enriched category whose
set of objects is {0, 1, . . . , n}, and for 0 ≤ j, k ≤ n the mapping simplicial set C[n](j, k) has r-cells
given by sequences of nested subsets

{j, k} ⊆ T 0 ⊆ . . . ⊆ T r ⊆ [j, k].

The face and degeneracy maps are given by omitting and duplicating T i. In other words, the mapping
simplicial set is the nerve

C[n](j, k) := N
(
{j,k}/P[j, k]

)
.

where P [j, k] denotes the power set of [j, k]. In particular, an r-arrow T 0 ⊆ . . . ⊆ T r is non-degenerate
if and only if each inclusion is proper. We define a functor C : ∆→ sSet-Cat by defining the coface
and codegeneracy maps to be the usual ones on objects, which naturally extends to a mapping on
hom-simplicial sets.

Example 4.3. Let’s write down a few small examples to get an intuition for what the mapping-
simplicial sets are in the homotopy coherent simplices. When n = 0, we have the terminal simplicial
category {0}. When n = 1, we have two objects {0, 1}, and the hom-simplicial set from 0 to 1 has
a single 0-arrow, giving us the discrete simplicial category [1]. When n = 2, we have three objects
{0, 1, 2}. The hom’s between adjacent numbers still have a single 0-arrow, but the hom between
0 and 2 is more interesting: it is the nerve of {0, 2} ⊆ {0, 1, 2}, i.e. ∆1. In general, we visually
represent the 0-arrow given by a subset

{j, k} ⊆ {j, j1, . . . , ji, k} ⊆ [j, k]

as a string of arrows from j to k with vertices at each ji

j → j1 → . . .→ ji → . . .→ k.

Hence, we can visualize C[2] as a diagram

1

0 2

⇑

where the 2-cell represents the 1-arrow {0, 2} → {0, 1, 2}. When n = 3, the hom from 0 to 3 is the
nerve of the poset

{0, 3} ⊆ {0, 2, 3}

{0, 1, 3} ⊆ {0, 1, 2, 3}

⊆ ⊆

which is the simplicial square ∆1 ×∆1. In general, we can check that for all n ∈ N and 0 ≤ j, k ≤ n,
the mapping simplicial set can be described as

C[n](j, k) ∼=


∅, j > k;

∆0, j = k;

(∆1)k−j−1, j < k.

By Kan extension on the homotopy coherent simplices, we get the following:

Corollary 4.4. There is an adjunction

sSet sSet-Cat

C

⊥

N

(11)
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given by left Kan extension of C along the Yoneda embedding. We call C the homotopy coherent
realization and N the homotopy coherent nerve. Explicitly, N sends a simplicially enriched category
M to the simplicial set whose n-simplices are

(NM)n := sSet-Cat(C∆n,M).

In particular, taking the homotopy coherent nerve of a category enriched in Kan complexes gives
us a quasi-category:

Theorem 4.5 ([CP86]). The adjunction (11) restricts to

qCat Kan-Cat

C

⊥

N

between quasi-categories and Kan-complex enriched categories.

Remark 4.6. In fact, the adjunction (11) is a Quillen adjunction between the Joyal model structure
and the Bergner model structure (a fact due to Joyal). Heuristically, this says that quasi-categories how to credit? found

in bergner’s writing
but nothing was cited

and Kan-complex enriched categories are equivalent as models for (∞, 1)-categories.
Example 4.7. We can now make the description of the ∞-category of topological spaces in Section
3.1 precise: we obtain S by the cartesian closed category of topological spaces, base change to a
Kan-complex enrichment, and take the homotopy coherent nerve. Given X,Y ∈ Top, the mapping
Kan complex is defined to be

MapS(X,Y ) := S• Top(X,Y ),

and its n-cells are given by maps

∆n → S• Top(X,Y ) ↭ |∆n| → Top(X,Y ).

An n-cell in the homotopy coherenet nerve of Top is thus given by a simplicial functors C∆n → Top,
the data of which is determined by a map of simplicial sets

C∆n(0, n) ∼= (∆1)n−1 → S• Top(X,Y )

for some topological spaces X,Y , which is what we described in Section 3.1 for small n.

Remark 4.8. Although we defined the ∞-category of spaces S using topological spaces, it is more
standard and often more convenient to describe S as the homotopy coherent nerve of the cartesian
closed category Kan. To do this, one needs to check that the mapping simplicial set between
Kan complexes satisfy the Kan condition. The Quillen adjunction between the Kan-Quillen model
structure on sSet and the Quillen model structure on Top given by geometric realization ⊣ singular
complex lifts to an equivalence of quasi-categories between the two different approaches to defining S.
Example 4.9. The category of quasi-categories qCat is naturally an (∞, 2)-category using the
self-enrichment. We can obtain an (∞, 1)-category of quasi-categories by forgetting all non-invertible
2-morphisms. Specifically, we perform base change along the maximal sub-∞-groupoid functor (10)
which produces a Kan-enriched category qCat≃ where objects A,B are quasi-categories and hom
simplicial sets are given by Hom(A,B) := Fun(A,B)≃. The quasi-category of quasi-categories is the
homotopy coherent nerve of qCat≃, which we simply denote by qCat when there is no ambiguity.

Example 4.10. Under the Dold-Kan correspondence, non-negatively graded chain complexes can
be equivalently regarded as simplicial abelian groups, which are automatically Kan complexes. This
allows us to base change from categories enriched in chain complexes (which are called dg categories)
to Kan-complex enriched ones, which then lets us produce a quasi-category by taking homotopy
coherent nerve. A standard example is the quasi-category Ch≥0

R of non-negatively graded chain
complexes over R, which is called the derived category of R as it turns out that it is the∞-categorical
localization of the 1-category of non-negatively graded chain complexes at quasi-isomorphisms. See
[Lur25, Subsection 00ND] for the details of this construction.

https://kerodon.net/tag/00ND
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4.2. The Underlying Quasi-Category of a Model Category. Up until now, our method for
writing down a quasi-category consisted of explicitly writing down n-cells at every level. It may come
as a surprise, then, that the data of a quasi-category can be equivalently described by an ordinary
categtory together with a specified collection of weak equivalences. In particular, model structures
on ordinary categories are a convenient way to present ∞-categorical data, since the structure of
fibrations and cofibrations allow us to better control localization. We will also see later that model
structures give us a way to write down functors between ∞-categories more easily by just writing
down a functor at the point set level. In this section, we will describe several equivalent methods to
obtain the underlying quasi-category of a category with weak equivalences.

Definition 4.11. A category with weak equivalences is a category C with a subcategory W ⊆ C
which

• contains all isomorphisms in C;
• satisfies two-out-of-three, given composable morphisms x

f−→ y
g−→ z in C, if two of {f, g, g ◦ f}

are in W , then so is the third.

The most conceptual way of obtaining the underlying ∞-category of a category with weak
equivalences is through ∞-categorical localization.

4.2.1. Localization. In commutative algebra, localization is a way of formally adjoining inverses to
certain elements in a commutative ring. This can be generalized to categories. We will first recall the
definition of localization for an ordinary category before presenting the definition in the∞-categorical
setting.

Definition 4.12. Let F : C → D be a functor between categories, and let W be a collection of
morphisms in C. We say that F exhibits D as a 1-categorical localization of C with respect to W if
for all categories E , the functor induced by precomposition

Fun(D, E) −◦F−−−→ Fun(C, E)
is fully faithful, and functors in the essential image are those who send morphisms in W to isomor-
phisms.

Remark 4.13. (1) The universal property of localization as stated above is 2-categorical, in
the sense that we require precomposition with F to determine an equivalence of categories
between Fun(D, E) and the full subcategory Fun

W 7→∼=
(C, E) of Fun(C, E) spanned by the functors

sending W to isomorphisms. If we ask for precomposition to determine a bijection on objects
instead, the universal property determines a category uniquely up to isomorphism, which we
call the strict localization of C with respect to W . Any strict localization is in particular a
1-categorical localization.

(2) By the Yoneda lemma, any two strict localizations of (C,W ) are isomorphic. Two weak
localizations may not be isomorphic but are necessarily equivalent: given two localizations
F : C → D and G : C → E for the same collection of morphisms W , use the essential
surjectivity of

Fun(D, E) F∗

−−→
∼

Fun
W 7→∼=

(C, E)

to find some functor K : D → E such that KF ∼= G. Similarly, using the essential surjectivity
of G∗, find some H : E → D such that HG ∼= F . Now, by fully faithfulness we have

HKF ∼= HG ∼= F =⇒ HK ∼= idE

and
KHG ∼= KF ∼= G =⇒ KH ∼= idD

so K and H define an equivalence between D and E .

We can always formally construct a 1-categorical localization as follows:
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Proposition 4.14. Let C be a category and W be a collection of morphisms in C. We can construct
a category C[W−1] by adjoining a new morphism w−1 : y → x for each morphism w : x→ y in W ,
and imposing the relations that w−1 ◦ w = idx and w ◦ w−1 = idy. The canonical map C → C[W−1]
exhibits C[W−1] as a strict localization. We will sometimes denote HoC := C[W−1] when the class of
weak equivalences is clear from context.

Remark 4.15. If C is small, then the strict localization C[W−1] is also small. However, if C is only
locally small, then C[W−1] is not necessarily locally small. This gives us evidence that the strict
localization is not often the most well behaved, and we often would like to look for other models that
are equivalent but not necessarily isomorphic to C[W−1]. One example where such a model exists is
in the case when C admits a model structure.

Proposition 4.16 (Quillen). LetM be a model category with functorial factorization, and denote
the full subcategory of fibrant-cofibrant objects byMcf . For any two objects x, y ∈Mcf , there is an
equivalence relationship on the hom setM(x, y) which is closed under composition (two equivalent
maps are said to be homotopic). Construct a category hMcf whose objects are that of Mcf and
whose hom sets are homotopy classes of maps

[x, y] :=M(x, y)/∼.

The composite functor

M RQ−−→Mcf −→ hMcf

of the quotient functor with the fibrant-cofibrant replacement functor exhibits hMcf as a 1-categorical
localization ofM with respect to weak equivalences.

Proof. See [BGH22], Chapter 2, sections 3.3 and 3.4. □

We mention a few familiar examples:

Example 4.17. (1) The 1-categorical localization of topological spaces by weak homotopy
equivalences is given by the category of CW-complexes with homotopy classes of maps (using
the Quillen model structure and Whitehead’s theorem).

(2) The 1-categorical localization of chain complexes by quasi-isomorphisms is given by the
category of projective chain complexes with chain homotopy classes of maps.

We now consider ∞-categorical localization.

Definition 4.18. Let A,B be a quasi-categories, let f : A → B be a functor, and let W be a
collection of morphisms in A. We say that f exhibits B as a localization of A with respect to W if
for all quasi-categories E, the precomposition functor

Fun(B,E)
◦f−→ Fun(A,E) (12)

is an equivalence onto the full subcategory Fun
W 7→∼=

(A,E) ⊆ Fun(A,E) spanned by functors that map

edges in W to isomorphisms, which we define by taking the pullback

Fun
W 7→∼=

(A,E) Fun(A,E)

hFun
W 7→∼=

(A,E) hFun(A,E)

⌟

in the category of simplicial sets.

Remark 4.19. The∞-categorical localization is unique up to equivalence: since the homotopy category
functor preserves equivalences (Remark 3.27), the functor (12) yields an equivalence of 1-categories

hFun(B,E)
◦f−→ hFun

W 7→∼=
(A,E).
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A similar argument as in Remark 4.13 gives us the desired equivalence between two localizations.

The uniqueness of localization justifies the following definition:

Definition 4.20. Let (C,W ) be a category with weak equivalences. Suppose there exists some
quasi-category A with a functor f : C → A exhibiting A as the localization of C with respect to W .
Then, we say that A is the underlying quasi-category of C and denote it by uqC.

The following theorem gives us evidence that we have the “correct” definition of equivalences
between quasi-categories:

Theorem 4.21 (Dwyer-Kan). Quillen equivalences induce equivalences of underlying quasi-categories.

Proof. Quillen equivalences are proved to induce weak equivalences of hammock localizations in
[DK80b, Proposition 5.2] in the Bergner model structure on simplicial categories, which becomes
an equivalence of quasi-categories upon taking fibrant replacement and homotopy coherent nerve
(which is a right Quillen functor from the Bergner model structure to the Joyal model structure).
See [Maz16] for a summary of the history of theorems relating homotopical structures on model
categories to structures on the underlying quasi-categories. □

Proposition 4.22. Let C be a small category with a collection of morphisms W ⊆ C. Suppose
f : C → B exhibits B as an ∞-categorical localization of C with respect to W . Then, the composite
functor

C f−→ B
π−→ hB

exhibits the homotopy category hB as a 1-categorical localization of C with respect to W .

Proof. Given a category E , we would like to show that

Fun(hB, E) π∗

−→ Fun(B, E) f∗

−→ Fun
W 7→∼=

(C, E)

is an equivalence. By the universal property of localization, f∗ is an equivalence, and by the
homotopy-nerve adjunction, so is π∗. □

Remark 4.23. In fact, the existence of the ∞-categorical localization is also guaranteed by a (∞-
categorical) colimit construction similar to the category of fractions in Proposition 4.14 (see [Lur25,
Subsection 01MZ] for details). However, similarly to the category of fractions, this construction
is often not the most helpful characterization of the localization. Since our goal is to characterize
the underlying quasi-category of model categories, we will describe a specific construction for the
localization of model categories in the following section, which originally appears in [DK80a].

Definition 4.24 (Hammock Localization). Let (C,W ) be a category with weak equivalences. Define
its hammock localization LH(C,W ) to be the simplicial category whose objects are those of C and
whose mapping simplicial set between X,Y ∈ C has k-simplices given by “reduced hammocks of
width k” from X to Y , which are commutative diagrams

A0,1 A0,2 · · · A0,n−1

A1,1 A0,2 · · · A1,n−1

X
...

...
... Y

Ak,1 Ak,2 · · · Ak,n−1

≀ ≀ ≀

≀ ≀ ≀

≀ ≀ ≀

where the length of the hammock is n ≥ 1 and the morphisms in the hammock are such that

https://kerodon.net/tag/01MZ
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i) all vertical maps are in W ;
ii) horizontal maps in the same columns go in the same direction and can go left if they are in

W ;
iii) maps in adjacent columns go in different directions.

The face and degeneracy maps are given by omitting and duplicating rows. Composition is defined
by horizontally pasting hammocks and reducing by

i) composing adjacent columns that point in the same direction and
ii) omitting any columns that contain only identity maps.

We have a canonical simplicial functor C → LH(C,W ) by sending a morphism to a length 1, width
0 hammock.

Proposition 4.25 (Hinich). Let (C,W ) be a category with weak equivalences. Let R denote fibrant
replacement in the Bergner model structure. The canonical map

C → NRLH(C,W )

exhibits NRLH(C,W ) as a localization of C with respect to W .

Proof. By [Hin16, Proposition 1.2.1], there is a weak equivalence

(NC, NW) −→ NRLH(C,W )♮

in the model category of marked simplicial sets, where ♮ denotes the natural marking in which
exactly the isomoprhisms are marked. By [Hin16, Proposition 1.1.3], the ∞-categorical localization
is represented by the fibrant replacement map. Composing the two weak equivalences, we see that
NRLH(C,W ) is weakly equivalent to the ∞-categorical localization in the model category of marked
simplicial sets, which exactly means that they are equivalent as quasi-categories. □

The upshot is that in a simplicial model category, there is a nicer model of the ∞-categorical
localization by the following result:

Proposition 4.26 ([DK80b]). LetM be a simplicial model category. Then, the simplicial categories
of fibrant-cofibrant objectsMcf is DK-equivalent to LH(M0,W ), whereM0 denotes the underlying
model category ofM. Hence, the quasi-categories NMcf and NRLH(M0,W ) are equivalent and
the canonical map NM0 → NMcf is a localization map.

Example 4.27. The archetypical example of a simplical model category is the Kan-Quillen model
structure on simplicial sets. The fibrant-cofibrant objects are Kan complexes, so the underlying
∞-category is the ∞-category of spaces (Remark 4.8).

5. Basic ∞-Category Theory

Our goal in this section is to introduce basic ∞-category theory by working in the 2-category of
quasi-categories. We begin with adjunctions, which have a familiar 2-categorical definition:

Definition 5.1. An adjunction between quasi-categories is one in the homotopy 2-category hqCat.
Specifically, an adjunction consists of the the data of

• two quasi-categories A,B ∈ qCat;
• a pair of functors f : B → A and u : A→ B;
• a pair of ∞-natural transformations η : idB ⇒ uf and ϵ : fu⇒ idA satisfying the triangle

identities:

B B

A A

f
u

uϵ⇓
η⇓ =

B

A

u

u

idu⇒

A A

B B

u
f

fη⇑
ϵ⇑ =

A

B

f

f

idf⇒

which in equations say that ϵu ◦ uη = idu and ϵf ◦ fη = idf .
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Example 5.2. Adjunctions between nerves of 1-categories are just adjunctions between the underlying
1-categories.

Example 5.3. Simplicially enriched adjunctions between Kan-enriched categories induce adjunctions
between the corresponding homotopy coherent nerves. However, these are too “strict” in some sense,
and do not account for all adjunctions between the nerves.

The following theorem provide us with our first non-strict ∞-categorical adjunctions between
quasi-categories that underlie model categories.

Theorem 5.4 ([Maz16]). Quillen adjunctions between model categories induce a canonical adjunction
between their underlying quasi-categories.

Remark 5.5. An analytic definition of adjunctions involving cartesian and cocartesian fibrations
is used instead of our categorical definition in [Maz16]. A description of this definition and its
equivalence can be found in [RV22, Appendix F.5].

Although the 2-categorical definition of adjunctions might not be the useful when constructing
examples, it allow us to prove facts about ∞-categories by doing 2-category theory, and the proofs
are often similar to the 1-categorical versions.

Proposition 5.6. Adjunctions are unique up to isomorphism: given f : B → A and u, u′ : A→ B
such that f ⊣ u and f ⊣ u′, u ∼= u′ are isomorphic. Conversely, given an adjunction f ⊣ u and an
isomorphism u ⊣ u′, we have f ⊣ u′.

Proof. In the first direction, denote the unit maps for u and u′ by η and η′ and the counit maps by ϵ
and ϵ′. The composite

B B

A A

f
u

u′ϵ⇓
η′⇓

is an isomorphism with inverse

B B

A A

f
u

u′ϵ′⇓
η⇓

which we see by using the triangle identities for both adjunctions. In the converse direction, let f ⊣ u
be an adjunction with unit and counit maps η and ϵ, and let α : u ⇒ u′ be an isomorphism with
inverse β : u′ ⇒ u. Define the new unit and counit maps for f ⊣ u′ by

ϵ′ :=

B

A A

f

u
β⇓

u′

⇓ϵ
η′ :=

A

B B

u

f α⇓
u′

η⇑

and it is straightforward to check that they satisfy the triangle identities using the triangle identities
for f ⊣ u. □

Proposition 5.7. Adjunctions compose: given adjunctions as below left

C B A
f

⊥
u

f ′

⊥
u′

⇝ C A
f ′f

⊥
uu′

the composites f ′f ⊣ uu′ form an adjunction.
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Proof. Denote the unit and counit maps for f ⊣ u by η and ϵ, and those for f ′ ⊣ u′ by η′ and ϵ′.
Define the unit and counit maps for the composite f ′f ⊣ uu′ by

C C

B B

A

f

f ′

u

u′

η⇑

η′⇑

C

B B

A A

fu

f ′
u′

ϵ⇓

ϵ′⇓

and the triangle identities follow from stacking those for f ⊣ u and f ′ ⊣ u′. □

Proposition 5.8. Any equivalence A B
f

≃
g

of quasi-categories can be promoted to an adjunction

f ⊣ g.

Proof. Let α : idA ∼= gf and β : fg ∼= idB be the structure∞-natural isomorphisms for the equivalence.
We wish to construct unit and counit natural isomorphisms that satisfy the triangle identities. The
failure of α and β to satisfy the triangle identities is encoded in the natural isomorphism

B

A

f

f

ϕ⇑∼= :=

B B

A A

g
f

f ′α⇑
β⇑

which we use to define the unit map

B

A A

gf

⇑η
:=

B

A A

g
f

f

ψ⇑
⇑α

taking ψ := ϕ−1. Keep the counit map the same by taking ϵ := β. One of the triangle identities is
satisfied by construction. For the other triangle identity, since the composite

B B

A A

f
u

uϵ∼=⇓
η∼=⇓

is an isomorphism, to check that it is the identity natural transformation it suffices to check that it
is idempotent, which follows by the first triangle identity. □

Now that we have the notion of an adjunction, we have one way to generalize the concept of limits:

Definition 5.9. An ∞-category A admits all limits indexed by a simplicial set J if the diagonal

map A
∆−→ AJ admits a right adjoint

A AJ .

∆

⊥

lim

Example 5.10. A terminal object is a limit over the empty diagram, and is hence given by an
element t : 1 ∼= A∅ → A and an adjunction

A 1.

!

⊥

t

The functorial definition of limits is very nice: using the fact that adjunctions compose, we
immediately get:
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Corollary 5.11. Right adjoints preserve functorial limits.

Unfortunately, this easy definition does not cover all cases. Often times, we will have categories
that admit certain limits but not others with the same indexing category. We need a definition that
deals with colimits on a case by case basis. Let’s try to draw some inspiration from 1-category theory.

Definition 5.12. Let C,D be categories, and let F : D → C be a functor. An object limF together
with a cone λ : ∆ limF ⇒ F is a limit for F if one of the following equivalent statements hold:

(1) for all c ∈ C, given a set of maps µd : c→ Fd natural in d ∈ D, there exists a unique map
µ : c→ limF such that

c

limF Fd

∃!µ
µd

λd

commutes for all d ∈ D;
(2) for all c ∈ C, given any cone µ : ∆c⇒ F , there exists a unique map µ : c→ limF such that

λ∆µ = µ;
(3) the natural transformation

C(c, limF )→ CD(∆c, F )
corresponding to λ under Yoneda is a natural isomorphism;

(4) the cone λ is terminal in the category of cones over F .

Definition (2) is easy to encode 2-categorically: represent the limit cone λ diagrammatically as

C

1 CD
∆limF

F

λ⇓

and the universal property of the limit then says that given any object c ∈ C and cone µ : ∆c =⇒ F ,

there exists a unique factorization µ : colimF → c, depicted 2-categorically as:

1 C

1 CD

c

∆

F

µ⇓ =

1 C

1 CD

c

∆

F

∃!µ̄⇓

λ⇓

In the ∞-categorical setting, it is not enough to just consider the global elements (i.e. objects), but
it turns out that we obtain the correct definition by considering generalized elements. We will encode
this generalization using the following 2-categorical notion:

Definition 5.13. Given a cospan C
g−→ A

f←− B, a functor r : C → B and a 2-cell

B

C A

fr

g

ρ⇓
(13)

defines an absolute right lifting of g through f if for any 2-cell as below left

X B

C A

b

c f

g

χ⇓ =

X B

C A

b

c fr

g

∃!χ̄⇓

ρ⇓

there exists a unique factorization as above right. In this case, we say that the 2-cell (13) is an
absolute right lifting diagram.
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The adjective “absolute” refers to the following stability property:

Lemma 5.14. Absolute right lifting diagrams are stable under restriction of domain: let

B

C A

fr

g

ρ⇓

be an absolute right lifting diagram. For any c : X → C, the whiskered diagram

B

X C Ac

fr

g

ρ⇓

is an absolute right lifting diagram, i.e. the pair (rc, ρc) defines an absolute right lifting of gc through
f .

Proof. Given a 2-cell

Z B

X C A

b

x χ⇓

c

f

g

we use the absolute lifting property of λ to obtain a factorization

Z B Z B

X = X

C A C A

b

x

f

b

x

f

c c

g

r

g

χ⇓

∃!χ⇓

ρ⇓

exhibiting (rc, ρc) as an absolute right lifting diagram. □

Example 5.15. Given a pair of functors f : B → A and u : A → B, we claim that a natural
transformation ϵ : fu⇒ idA defines a counit for an adjunction if and only if

B

A A

fu

ϵ⇓

is an absolute right lifting diagram. To show this, we obtain the unit η for the adjunction using
absolute lifting for idf

B B

A A

f f= =

B B

A A

f fu
η⇓

ϵ⇓

which satisfies one of the triangle identities by definition. For the other triangle identity, the universal
property of the absolute right lifting diagram tells us that pasting with ϵ to the right is injective,
hence the equality

B B

A A A

f
u

u
ϵ⇓

η⇓ f

ϵ⇓
=

B

A A

f
u

ϵ⇓

gives us the second triangle identity.
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The absolute lifting diagram encoding of the counit recovers the “transposition” axiomatization of
adjunctions: the factorization

X B

A A

b

a fχ⇓ =

X B

A A

b

f fu
∃!χ⇓

ϵ⇓

induces a bijection between generalized arrows

χ : fb→ a ↭ χ : b→ ua.

In particular, taking K = Cat and X = 1 recovers the usual definition of adjunction.

Using an easy argument that is exactly the same as showing the uniqueness of limits in 1-categories,
we show the uniqueness of absolute liftings:

Proposition 5.16. Absolute right lifting diagrams are unique up to isomorphism: given two absolute
right lifting diagrams

B

C A

fr

g

ρ⇓

B

C A

fr′

g

ρ′⇓

for the same cospan B
f−→ A

g←− C, there exists some unique 2-cell isomorphism ϕ : r′ ∼= r such that

B

C A

fϕ⇓
∼= r

r′

g

ρ⇓
=

B

C A.

fr′

g

ρ′⇓

Proof. Obtain ϕ by factorizing ρ′ through ρ using absolute right lifting:

C B

C A

r′

f

g

ρ′⇓ =

C B

C A

r′

fr

g

∃!ϕ⇓

ρ⇓

Similarly obtain a 2-cell ψ : r ⇒ r′ using absolute right lifting for ρ′. The composite ϕψ : r ⇒ r
satisfies that ρ · fϕψ = ρ, so by uniqueness we have ϕψ = idr. Similarly check that ψϕ = idr′ , so ψ
defines an inverse to ϕ. □

Proposition 5.17. Absolute right lifting diagrams are invariant under isomorphisms: given an
absolute right lifting diagram

B

C A

fr

g

ρ⇓

and natural isomorphisms

C B

r′

r

θ⇓∼= B A

f ′

f

ϕ⇓∼= C A,

g

g′

ψ⇓∼=
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the pasted composite

B

C A

f ′r′

g′

ρ′⇓
:=

B

C A

f f ′⇐
ϕ

r

r′

θ⇓

g

g′

ψ⇓

ρ⇓

is an absolute lifting diagram.

Proof. Given a 2-cell

X B

C A,

b

c f ′

g′

⇓χ

we compose with inverses to obtain a 2-cell

X B

C A,

b

c
f ′

ϕ−1

⇒
f

g′

g

ψ−1⇓

⇓χ =

X B

C A

b

c fr

g

∃!χ̄⇓

ρ⇓

which factors through the absolute lifting diagram ρ as above right. Our desired lift through ρ′ is
given by pasting χ with the isomorphism θ−1. □

Definition 5.18. Let A be an ∞-category, J be an simplicial set, and d : J → A be a diagram.
A limit of d is an absolute right lifting of the diagram d through the constant diagram functor
∆: A→ AJ :

A

1 AJ

∆lim d

d

λ⇓

We call the 2-cell λ : ∆ limD ⇒ d the limit cone.

Example 5.19. Let C,D be a 1-categories and F : D → C be a functor. A quasi-categorical limit of F
is just a 1-categorical limit for F : we would need to check absolute lifting for arbitrary quasi-categories

X C

1 CD

c

! ∆

F

⇓χ

but by the adjunction h ⊣ N , the generalized arrow χ factors through hX. Hence, we only need to
check absolute lifting for 1-categories, which we claim is equivalent to the ordinary limit condition
(which say that the absolute lifting condition is true for 1). Given a category E and a natural
transformation

E C

1 CD

G

! ∆

F

⇓χ

we would like to factor it uniquely through the 1-categorical limit cone, which we will denote by
λ : ∆ limF ⇒ F . In other words, we would like to show that

(CD)E(∆ ◦G,∆F ) ∼= CE(G,∆limF ).
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Writing natural transformations as ends, we have

(CD)E(∆ ◦G,∆F ) ∼=
∫
d∈D

∫
e∈E
C(Ge, Fd)

∼=
∫
e∈E

∫
d∈D
C(Ge, Fd)

∼=
∫
e∈E
C
(
Ge,

∫
d∈D

Fd

)
∼=
∫
e∈E
C(Ge, limF )

∼= CE(G,∆limF )

as desired.

Example 5.20. Let C be a 1-category and J be a simplical set. We have a natural identification

Fun(J,NC) ∼= N Fun(τ1J, C)

of quasi-categories. Hence, quasi-categorical limits in nerves of 1-categories can always be computed
as 1-categorical limits after replacing the indexing simplicial set by a graph.

Stability of absolute lifting diagrams tells us that functorial limits are limits:

Corollary 5.21. Suppose A admits all limits of shape J . Then, a limit for a diagram d : J → A is
given by evaluating lim: AJ → A at d, i.e. the composite

A

1 AJ AJ
d

∆
lim

ϵ⇓

is absolute right lifting.

From the uniqueness and isomorphism invariance of absolute liftings (Propositions 5.16 and 5.17),
we get the following:

Corollary 5.22. Limits are unique up to isomorphism: any two limits (ℓ, λ), (ℓ′, λ′) of a diagram
d : J → A are isomorphic in A through an isomorphism α : ℓ → ℓ′ such that λ′ ◦∆α = λ which is
unique up to homotopy.

Remark 5.23. In fact, the isomorphism relating (ℓ, λ) and (ℓ′, λ′) is unique not just up to homotopy
but up to contractible choice, meaning that the space of such isomorphisms is contractible (see
Corollary 6.33 and Proposition 6.34).

Corollary 5.24. Two naturally isomorphic diagrams d, d′ : J → A have isomorphic limits. Any
object ℓ that is isomorphic to lim d is a limit for d.

Since all of our definitions are 2-categorical, we are able to prove the following standard result
using 2-categorical techniques (in an arbitrary ∞-cosmos):

Proposition 5.25. Right adjoints preserve limits.

Proof. Let B A
f

⊥
u

be an adjunction and d : J → A be a diagram. Fix a limit lim d ∈ A with

limit cone λ : ∆ lim d⇒ d. We first recall the strategy for proving this statement for 1-categories: given

a cone µ : ∆b⇒ ud for some b ∈ B, we take the transpose µ† : ∆fb⇒ d, factor it as µ† : fb→ lim d,
which we then transpose again to obtain the desired factorization. The 2-categorical strategy is the
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same, but we need to write out the transposes as pasting diagrams using the unit and counit 2-cells.
Our goal is to show that

A B

1 AJ BJ

u

∆

uJ

∆lim d

d

λ⇓
(14)

is a absolute right lifting diagram. Start with a 2-cell of the form

X B

1 AJ BJ

b

! ∆χ⇓

d uJ

and take the transpose (below left)

X B A

1 AJ BJ AJ

b

! ∆

f

χ⇓ ∆

d
ϵJ⇓

uJ fJ

=

X B A

1 AJ

b

!
∃!ϕ⇓

f

∆

d

lim d
λ⇓

which we can factor using our hypothesis (above right). The (unique) candidate for our desired
factorization is the 2-cell

X B A B

1

b

! ∃!ϕ⇓
f

η⇓

u

lim d

as upon pasting with (14), we get

X B A B

1 AJ BJ

b

!
∃!ϕ⇓

f

η⇓

∆

u

∆

d

lim d
λ⇓

uJ

=

X B A B

1 AJ BJ AJ BJ

b

! ∆

f

χ⇓

η⇓

∆

u

∆

d
ϵJ⇓

uJ fJ

uJ

where using the enriched functoriality of the simplicial cotensor sSet× qCat→ qCat we may rewrite
the above right as

X B

1 AJ BJ AJ BJ

b

! ∆χ⇓

d
ϵJ⇓

uJ fJ
ηJ⇓

uJ

which is equal to χ by the triangle equality. □



34 YOYO JIANG

6. Universal Properties of Adjunctions and Limits

6.1. Naturality and Discrete Fibrations. Now that we have defined limits and colimits in an
∞-category, we would like to show that they satisfy an expected universal property, just like the
1-categorical limit (Definition 5.12, (3)). Unfortunately, naturality is more difficult to encode in a
∞-categorical setting, as we need to consider functorial mappings for higher morphisms.

Example 6.1. Let A ∈ qCat be a quasicategory and a, b ∈ A0 be objects. We can define the
hom-space as the pullback

HomA(a, b) A2

1 A×A

⌟
(cod,dom)

(b,a)

of simplicial sets. We will soon introduce techniques to show that HomA(a, b) is actually a space
(i.e. a Kan complex), but let’s first focus on a different question. We know from our experience
with 1-category theory that one of the most important functors is the representable functor, which
we use to define universal properties, prove the Yoneda lemma, etc. We definitely would like to
define something similar for ∞-categories, for instance, a functor HomA(−, a) : Aop → Kan that at
the object level maps x to HomA(x, a). However, manually defining such a functor requires us to
specify mappings at every cell level in a compatible way, which are not obvious, especially since
we no longer have strict composition. We will sidestep this issue by considering certain kinds of
fibrations, which encode the data of a functor in a much simpler way. Let’s go back to 1-category
land for some inspiration.

Definition 6.2. Let C ∈ Cat be a small category and F : C → Set be a functor. The category of
elements of F is a category elF whose

• objects are pairs (c, x), where c ∈ C is an object and x ∈ Fc is an element;
• morphisms (c, x)→ (d, y) are given by morphisms f : c→ d in C such that Ff(x) = y.

It turns out that together with the canonical projection Π: elF → C, the category of elements
encodes all information about F . The categories over C that arise as categories of elements of functors,
which we call discrete fibrations, can be characterized by a lifting property as follows:

Definition 6.3. A discrete fibration is a functor p : E → C such that for all objects e ∈ E and
all morphisms g : c → pe, there exists a unique lift h : d → e in E such that Fh = g. A discrete
opfibration is a functor p : E → C such that pop : Eop → Cop is a discrete fibration.

Example 6.4. Let F : Cop → Set be a functor. The projection Π: elF → C is a discrete fibration:
given a pair (c, x) in elF and a morphism g : b→ c in C, we have a unique lift to (b, Fg(x))→ (c, x)
in elF (note the contravariance).

As the name suggests, fibers of discrete fibrations are discrete:

Lemma 6.5. Let p : E → C be a discrete fibration. Then, for all objects c ∈ C, the fiber

Ec E

{c} C

⌟
p

is a discrete category, i.e. a set.

Proof. The morphisms of Ec are morphisms f : e→ e′ in E such that pf = idc. Since ide′ : e
′ → e′

is another lift of f , by the discrete fibration assumption we necessarily have f = ide′ . Hence, all
morphisms in Ec are identity morphisms. □
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As we mentioned earlier, taking categories of elements is a lossless way to encode the data of a
presheaf as a discrete fibration, which is captured in the following:

Proposition 6.6. There is an equivalence of categories

CatDFib
/C Fun(Cop, Set)≃

St

Un

between the category of discrete fibrations, regarded as a full subcategory of the slice category Cat/C ,
and the category of presheaves on C. This is called the straightening-unstraightening equivalence,
where St is called the straightening functor and Un is called the unstraightening functor.

Proof. Define St by sending a discrete fibration p : E → C to the presheaf St(p) : Cop → Set that sends
an object c ∈ C to the set Ec. Given any morphisms f : c→ d in C and an element x ∈ Ed, we get a
unique lift

∃y x E

c d C

∃! ∈
p

f
∈

7→
which we define to be St(p)f(x) := y. Functoriality is guaranteed by the uniqueness of lifts. The
action of St on morphisms is given by sending a fibered functor

E F

C

r

p q

to the natural transformation that sends x ∈ Ec to rx ∈ Fc, where naturality is again guaranteed by
uniqueness of lifts. The unstraightening functor Un is defined by sending a presheaf to its category
of elements. It is straightforward to check that the two procedures define inverses to each other. □

When working with quasi-categories, it is often much easier to write down the corresponding
fibration than the functor itself. We cite the following ∞-categorical analogue of Proposition 6.6
without proof to motivate our discussion of universal properties in the following sections using fibered
equivalences rather than isomorphisms of functors:

Theorem 6.7 ([Lur09], Theorem 2.2.1.2). Let A be a small quasi-category. Then, there is an
equivalence of quasi-categories

qCatLFib/A Fun(Aop,S)≃
St

Un

where the left hand side denotes the subcategory of the slice quasi-category over A spanned by left
fibrations (maps of quasi-categories with horn fillers for Λnk for all 0 ≤ k < n).

Example 6.8. Let’s return to our motivating example from 6.1, first in a 1-categorical setting.
Given a category C, consider the representable functor

C(−, c) : Cop → Set,

whose category of elements has

• objects (b ∈ C, f : b→ c);
• morphisms (b, f)→ (b′, f ′) given by maps g : b→ b′ such that f ′g = f .

Notice that the category of elements is exactly the slice category C/c, with the defining discrete
fibration being the forgetful functor C/c→ C. By Proposition 6.6, we can encode naturality statements
in terms of fibered equivalences. For instance, a functor F : Cop → Set is representable if and only if
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there exists a fibered equivalence C/c ≃C elF . As an application, given a functor K : J → C, the
defining universal property of the limit limK can be encoded as a fibered equivalence

C/ limK ≃C el
(
CJ (∆−,K)

)
where the category of elements on the right hand side is the category of cones, whose

• objects are pairs (c ∈ C, µ : ∆c⇒ K), i.e. cones above K
– and morphisms (c, µ)→ (c′, µ′) are maps c→ c′ in C that commute with the cones.

6.2. Comma Categories. The framework in which we will discuss universal properties in an
∞-cosmos is that of comma categories.

Lemma 6.9. The map (cod, dom): A2 −→ A×A is an isofibration.

Proof. We first check that the map is an inner fibration. Changing to simplicial set notation, we

recognize this map as A∆1 → A∂∆
1

, induced by precomposing the boundary inclusion ∂∆1 ↪−→ ∆1.
Given 0 < k < n ∈ N, we can transpose a lifting problem

Λnk A∆1

∆n A∂∆
1

α

β

as follows: the given data is equivalent to

Λnk × ∂∆1 ∆n × ∂∆1

Λnk ×∆1 •

A

β

α

⌟

∃!

and the desired lift transposes to a map

∆n ×∆1 → A

that agrees with α and β on their respective domains. In other words, the inner horn lifting problem
transposes to a lifting problem

(∆n × ∂∆1) ∪ (Λnk ×∆1) A

∆n ×∆1

which is a special case of a “Leibniz product” of an inner horn inclusion with a monomorphism,
shown combinatorially to be inner anodyne in [RV22, Corollary D.3.11].

To show that (cod,dom) lifts against the endpoint inclusions 1 ↪−→ I, we make use of the description
of homotopy coherent isomorphisms in Corollary 3.21. Given a lifting problem

1 A2

I A×A

(cod,dom)

let f : a→ b denote the morphism in A picked out by 1→ A2, and let g : a
∼=−→ c and h : b

∼=−→ d be
the isomorphisms in A picked out by I→ A×A (taking 1 ↪−→ I to be, without loss of generality, the
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domain inclusion). Using inner horn lifting for 2-cells twice, we obtain some composite

a b

c d

f

∃k hg−1
⇑

⇑

∃ℓ

which we use in the (3,2)-horn filler for

c

a d,

a

ℓg

k

k

g−1

the back face of which can be pasted to obtain a square

a b

c d

f

k hg
⇑

⇐

ℓ

giving ourselves a map ∆1 ×∆1 → A that transposes to a lift

1 A2

2

I A×A

Since isomorphisms in functor categories can be checked objectwise (Theorem 3.22), we obtain our
desired lift. □

Remark 6.10. Lemma 6.9 is a special case of the stability of isofibrations under “Leibniz exponentials”
(see [RV22, Proposition 1.1.20]), which is axiomatized as a part of the definition for an ∞-cosmos.

Definition 6.11. Let C
g−→ A

f←− B be a diagram of∞-categories. The comma category is constructed
as the pullback

HomA(f, g) A2

C ×B A×A

ϕ

(p1,p0)
⌟

(cod,dom)

f×g

in the ∞-cosmos K. It is sometimes also denoted as f ↓ g. This construction comes with a canonical
natural transformation

HomA(f, g)

C B

A

p1 p0

⇐
ϕ

g f

which we call the comma cone.
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The comma category of quasi-categories unfortunately does not satisfy the 2-categorical universal
property of a comma object as we might expect. Instead, it satisfies a weaker kind of universal
property, introduced by Riehl and Verity in [RV15], which uniquely characterizes it up to equivalence.
We will only cite it here, and the interested reader is encouraged to read [RV22, Chapter 3] for more
details.

Proposition 6.12. The canonical functor

hFun(X, f ↓ g)→ hFun(X, f) ↓ hFun(X, g) (15)

is smothering, meaning that it is surjective on objects, full and conservative. Equivalently, this says
that the comma cone satisfies the following weak universal property in hK:

i) 1-cell induction: given B
b←− X c−→ C and a natural transformation

X

C B

A

c b

⇐
α

g f

=

X

HomA(f, g)

C B

A

∃⌈α⌉
c b

p1 p0

⇐
ϕ

g f

there exists a functor ⌈α⌉ : X → HomA(f, g) such that p0⌈α⌉ = b, p1⌈α⌉ = c and ϕ⌈α⌉ = α
as depicted above right.

ii) 2-cell induction: given a, a′ : X → HomA(f, g) and natural transformations τ0 : p0a⇒ p0a
′

and τ1 : p1a⇒ p1a
′ such that

X X

f ↓ g f ↓ g = f ↓ g f ↓ g

C B C B

A A

a′ a a′ a

⇐
τ0

p1 p1

p0

⇐
τ1

⇐
ϕ

p1 p0

⇐
ϕ

p0

g f g f

(16)

then there exists a natural transformation τ : a⇒ a′ such that p0τ = τ0 and p1τ = τ1.
iii) 2-cell conservativity: A natural transformation

X f ↓ g
a

a′

⇓τ

is an isomorphism if and only if p0τ and p1τ are.

Proof. [RV22, Proposition 3.4.6] □

Example 6.13. Let C G−→ A F←− B be a cospan of 1-categories. The comma category F ↓ G is the
category in which

• objects are triples (b ∈ B, c ∈ C, α : Fb→ Gc ∈ A)
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• a morphism (b, c, α) → (b′, c′, α′) is given by a pair of maps β : b → b′ and γ : c → c′ such
that the square

Fb Gc

Fb′ Gc′

α

Fβ Gγ

α′

commutes.

Example 6.14. We continue to let K = Cat and specialize to a few familiar examples.

• Consider the cospan 1
c−→ C d←− C given by two objects in C. The comma category c ↓ d has

objects the maps c→ d and no non-identity morphisms, so it is just the hom-set HomC(c, d).
This justifies the hom notation for comma categories.

• Consider the cospan 1
c−→ C idc←−− C. The comma category c ↓ C is isomorphic to the slice

category c/C. Similarly, the comma category C ↓ c is isomorphic to C/c.
• Consider the cospan 1

c−→ C F←− D. The comma category c ↓ F is the generalized slice category
c/F , where objects are maps a→ Fd and morphisms are commutative triangles

a

Fd Fd′.

f f ′

Fg

#

• Consider the cospan C ∆−→ CJ F←− 1. The comma category ∆ ↓ F is the category of cones
over F : objects are cones µ : ∆c⇒ F and morphisms are commutative triangles

∆c ∆c′

F.

∆f

#
µ µ′

• Consider the cospan C
よ
↪−→ SetC

op F←− 1. The comma category よ ↓ F is the category of
elements

∫
C F .

Example 6.15. Let A be a quasi-category, and let a, b : 1→ A be objects. The comma category
HomA(a, b) is defined as the pullback

HomA(a, b) A2

1 A×A

⌟
(cod,dom)

(b,a)

which we already know is a quasi-category. It then suffices to check that HomA(a, b) is an∞-groupoid
in order to check that it is a Kan complex. By 2-cell conservativity, a morphism f : 2→ HomA(a, b)
is an isomorphism if and only if the whiskered composites p0f, p1f : 2⇒ 1 are isomorphisms, which
is always the case since 1 is 2-terminal.

As one might expect, taking homotopy coherent nerves preserve mapping spaces (up to homotopy):

Theorem 6.16 (Lurie). Let M be a Kan-complex enriched category. For every pair of objects
x, y ∈M, there is a canonical map

M(x, y)→ HomN(M)(x, y)

that is a homotopy equivalence of Kan complexes.
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Proof. This was originally proved in [Lur09] using a theorem of Joyal; a direct proof is given in
[HK20]. □

The weak universal property of the comma ∞-category f ↓ g can be used to show that they
“represent 2-cells between f and g” in the following way:

Proposition 6.17. Whiskering with the comma cone ϕ induces a bijection between natural trans-
formations depicted below left

X

C B

A

c b

⇐
α

g f


∼=



X

C B

HomA(f, g)

g f

⌈α⌉

p1 p0


/∼=

and fibered isomorphism classes of maps as displayed above right, where fibered isomorphisms are
given by invertible 2-cells

X

C B

HomA(f, g)

c b

⌈α′⌉ ⌈α⌉∼=
γ

p1 p0

such that p0γ = idb and p1γ = idc.

Proof. The fiber of any smothering functor is a connected groupoid: fullness and surjectivity on
objects are used to lift the identity morphism in the codomain to a morphism between any two
objects in the fiber, and conservativity is used to check that such a lift is an isomorphism. The action
of the smothering functor (15) defines a bijection between objects of the codomain and their fibers,
which are respectively the left and right sides of the bijection in the statement of the result. □

Proposition 6.18. (uniqueness of comma categories) Let C
g−→ A

f←− B be a diagram of∞-categories,
and suppose we have a 2-cell

E

C B

A

e1 e0

⇐
ϵ

g f

which induces a map e := (⌈ϵ⌉ : E → f ↓ g) to the comma category by 1-cell induction. Then, e is
a fibered equivalence E ≃C×B f ↓ g if and only if the 2-cell ϵ satisfies the weak universal property
described in Proposition 6.12.

Proof. First, assuming e is a fibered equivalence, we would like to show that the composite

hFun(X,E)
e∗−→
∼

hFun(X, f ↓ g)→ hFun(X, f) ↓ hFun(X, g) (17)

is smothering. Since e∗ is an equivalence which is in particular full and conservative, so is the
composite, and it suffices to show that the composite is surjective on objects. Given an object
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α ∈ hFun(X, f) ↓ hFun(X, g), which encodes the data of a 2-cell

X

C B

A,

c b

⇐
α

g f

we use 1-cell induction for f ↓ g to obtain a map ⌈α⌉ : X → f ↓ g. Then, we claim that the map

X
⌈α⌉−−→ f ↓ g e−1

−−→
∼

E

maps to α under the composite (17): since the equivalence is fibered, the composite ee−1⌈α⌉ is
fibered isomorphic to ⌈α⌉ and hence pastes with the universal arrow ϕ to become α.

Conversely, suppose ϵ satisfies the weak universal property. Using 1-cell induction for ϵ on the
universal arrow ϕ, we obtain a map e′ := (⌈ϕ⌉ : f ↓ g → E). By Proposition 6.17 (used here for the
universal property of E), to check that e′e ∼= idE over C ×B it suffices to check that they compose
with ϵ to the same 2-ccell, which is true by construction. The same argument using Proposition 6.17
for f ↓ g shows that ee′ ∼= idf↓g over C ×B. □

Using the comma categories that we just described, we can rephrase part (3) of Definition 5.12 as
saying that the canonical functor

C ↓ limF → ∆ ↓ F

induced by

C C 1

C CJ 1

∆ λ⇓

limF

∆ F

defines a fibered equivalence over C. We will generalize this kind of universal property to the
quasi-categorical setting.

Definition 6.19. A map between isofibrations of quasi-categories

E F

B

f

p q

is a fibered equivalence if the underlying functor f is an equivalence.

Proposition 6.20. Fibered equivalences between isofibrations are stable under pullback: given a
fibered equivalence

E F

B

∼
f

p q
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and a functor g : A→ B of quasi-categories, the pullback A×B f is an fibered equivalence.

A×B F F

A×B E E

A B

q

∼

⌟

f
∼

p

g

⌟

Proof. See [RV22, Proposition 3.3.4], taking r and q to be identity. The proof uses some nice
properties of isofibrations as alluded in Remark 3.2 that we do not go into in this exposition. □

Specializing f to be a global element, we get the following:

Corollary 6.21. Fibered equivalences are fiberwise equivalences: given a fibered equivalence

E F

B

∼
f

p q

and given any b : 1→ B, the induced map fb : Eb → Fb is an equivalence.

Fibered equivalences to fiberwise equivalences are as natural isomorphisms to objectwise isomor-
phisms: when p, q are (co)cartesian fibrations, the analogies are precise under the straightening-
unstraightening correspondence. Just like how not all objectwise isomorphisms are necessarily natural,
not all fiberwise equivalences can be promoted to fibered equivalences. However, it turns out that in
quasi-categories (more generally, in (∞, 1)-categories), fibered equivalences can be detected fiberwise.
This is exactly the unstraightened version of the fact that natural isomorphisms can be detected
objectwise (Theorem 3.22).

Proposition 6.22. A functor between left fibrations

E F

B

f

p q

is a fibered equivalence if and only if it is a fiberwise equivalence.

Proof. A more general statement is proven as [RV22, Proposition 12.2.11] for cartesian functors
between cocartesian fibrations. It is straightforward to check from definition that left fibrations are
cocartesian fibrations and all functors between them are cartesian. □

Finally, we cite a recognition theorem from [RV22] that specializes to familiar universal properties
for adjunctions and limits:

Theorem 6.23 ([RV22], Theorem 3.5.8). Given functor r : C → B, f : B → A and g : C → A, there
is a bijection between natural transformations displayed below left and fibered isomorphism classes
of maps of spans displayed below right


B

C A
⇓ρ

fr

g

 ∼=



B ↓ r

C B

f ↓ g

p1 p0

y

p1 p0


/∼=
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constructed by sending ρ to the fibered isomorphism class of the functor obtained by 1-cell induction
on the pasted diagram ρϕ, depicted below:

B ↓ r

C B

A

r

p1 p0

⇐
ϕ

⇐
ρ

g f

=

B ↓ r

f ↓ g

C B

A

∃y
p1 p0

p1 p0

⇐
ϕ

g f

Moreover, ρ displays r as an absolute right lifting of g through f if and only if the corresponding
map y : B ↓ r → f ↓ g is an equivalence, in which case we say that f ↓ g is right representable.

Using the absolute lifting diagram encoding of an adjunction in Example 5.15 and applying

Theorem 6.23 to the cospan A
idA−−→ A

f←− B we immediately obtain the familiar universal property of
adjunctions:

Corollary 6.24. A pair of functors f : B ⇄ A : u defines an adjunction f ⊣ u if and only if there
exists a fibered equivalence

f ↓ B ≃B×A A ↓ u. (18)

Remark 6.25. By 6.21, the fibered equivalence (18) is also a fiberwise equivalence, meaning that for
all a : 1→ A and all b : 1→ B, the induced map

HomB(fa, b)→ HomA(a, ub)

is an equivalence. Naturality in a and b is encoded in the “fibered-ness” of the equivalence, and in
fact comes for free by Proposition 6.22.

Similarly, applying Theorem 6.23 to the cospan 1
d−→ AJ

∆←− A, we obtain the universal property
for limits:

Corollary 6.26. A cone λ : ∆ℓ⇒ d defines a limit cone for d if and only if the induced functor

A ↓ ℓ ∆ ↓ d

A

⌈λ⌉

is a fibered equivalence, which occurs if and only if for all global elements a : 1→ A, the pullback of
⌈λ⌉ along a yields equivalences of mapping spaces

HomA(a, ℓ)
∼−→ HomAJ (∆a, d).

6.3. The ∞-Category of Cones. Finally, we will generalize part (4) of Definition 5.12 to quasi-
categories, which begins with a representability theorem for comma categories.

Theorem 6.27. The comma category f ↓ g associated to a cospan C
g−→ A

f←− B is right representable
if and only if the codomain projection functor admits a right adjoint right inverse

f ↓ g

C B

p1
p0

i

⊣

in which r := p0i defines the representing functor and the natural transformation ϕi : fr ⇒ g defines
an absolute right lifting of g through f .
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Proof. See [RV22, Theorem 3.5.12]. □

Specializing to when f is ∆: A→ AJ and g is d : 1→ AJ , we obtain an alternate characterization
of limits in terms of terminal cones:

Corollary 6.28. A functor d : J → A admits a limit if and only if the category of cones ∆ ↓ F
admits a terminal element, which pastes with the universal arrow to become the limit cone.

6.4. A lifting property to characterize limits. In this subsection, we will give one more
characterization of limit cones. For 1-categories, an alternative description of the category of cones
can be given using slice categories. Given a functor F : J → C between categories, the category of
cones over F can be described as the slice category C/F , which is isomorphic as categories over C to
the comma category ∆ ↓ F . We will generalize this to the quasi-category setting using slice simplicial
sets (Definition 2.14). We first note that slices of quasi-categories are quasi-categories:

Proposition 6.29 (Joyal). Let J be a simplicial set, let A be a quasi-category, and let d : J → A be
a diagram. Then, A/d is a quasi-category.

Proposition 6.30 ([RV22, Proposition D.6.4]). Let J be a simplicial set, A be a quasi-category,
and d : J → A be a diagram. Then, there is a canonical equivalence

A/d ∆ ↓ d

A.

∼

res res

In particular, A/d satisfies the weak universal property of the comma category (Proposition 6.12),
and its elements are represented by cones

1

1 A

AJ .

a

⇐
µ

d ∆

Specializing to the case where d is a global element and the constant diagram functor is identity on
A, we get:

Corollary 6.31. Let A be a quasi-category and let a : 1→ A be an object. Then, there is a canonical
equivalence

A/a A ↓ a

A.

∼

res res

To summarize, we have the following equivalent characterizations for a terminal object in A:

Proposition 6.32. Let A be a quasi-category. An object t : 1→ A is terminal in A if one of the
following equivalent condition holds:

(i) There exists an adjunction

A 1.
!

⊥
t

(ii) The object t is a limit over the empty diagram ∅→ A.
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(iii) The domain projection functor

A ↓ t p0−−↠
∼

A

is a trivial fibration.
(iv) For all objects a ∈ A, the mapping space HomA(a, t) is contractible.
(v) The projection functor

A/t
∼−↠ A

is a trivial fibration.
(vi) Any sphere in A whose final vertex is t admits a filler: for all n ∈ Z≥1, the lifting problem

∆0 ∂∆n A

∆n

{n}

t

(19)

has a solution.

Proof. From the absolute lifting diagram characterization of adjunctions (Example 5.15), we get (i)
if and only if (ii). By the universal property of the adjunction described in Corollary 6.24, t is a
right adjoint to ! if and only if

! ↓ 1 A ↓ t

A

∼

is a fibered equivalence, but ! ↓ 1 = A by definition, so we get (i) if and only if (iii). Using the fact
that fibered equivalences between between left fibrations are detected fiberwise (Proposition 6.22;
one could convince oneself that A ↓ a −↠ A is a left fibration using its straightening-unstraightening
correspondence to the representable functor, a non-trivial fact which is proven in [RV22, p. 5.5.14]),
we get (iii) if and only if (iv). By the fibered equivalence of the two models of slice categories
(Corollary 6.31), we get (iii) if and only if (v).

We will conclude by showing that (v) if and only if (vi). By definition, a map of simplicial sets is a
trivial fibration if and only if it satisfies left lifting against all sphere inclusions, i.e. for all m ∈ Z≥0,
the lifting problem

∂∆m A/t

∆m A

σ

≀

τ

(20)

It suffices to show that this lifting problem is equivalent to the lifting problem (19). By the join-slice
adjunction (Corollary 2.18), the data of σ is equivalent to a map

σ̃ : ∂∆m ⋆∆0 → A

such that σ̃|∆0 = t. It is straightforward to check that ∂∆m ⋆∆0 = Λm+1
m+1, and that the n-simplex τ

provides the data for the missing face in the outer horn. Hence, the given data in the lifting problem
(20) is exactly a map

∆0 ∂∆n A
{n}

t

for n = m+ 1 and the solution to (20) transposes to define a solution to (19). □

Using the analytical description of terminal objects in quasi-categories, we show that terminal
objects are unique up to contractible choice:
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Corollary 6.33. Let A be a quasi-category and T ⊆ A be the full subcategory of terminal objects.
Then, T is either empty or contractible.

Proof. If A does not admit any terminal objects, then T is empty. Suppose A admits a terminal
object. To check that T is contractible, it suffices to check that the lifting problem

∂∆n T

∆n

has a solution for any n ∈ N. Since every object in T is terminal, by the lifting property characteri-
zation of the terminal object in Proposition 6.32 we conclude the desire result. □

Finally, we summarize equivalent characterizations of a limit:

Proposition 6.34. Let A be a quasi-category, J be a simplicial set and d : J → A be a diagram. A
cone λ : ∆ℓ⇒ d is a limit cone for d if one of the following equivalent conditions hold:

(i) The diagram

A

1 AJ

∆l

d

λ⇓

is absolute right lifting.
(ii) The functor A ↓ ℓ→ ∆ ↓ d induced by the composite diagram

A ↓ ℓ

1 A

AJ

ℓ

p1 p0

⇐
ϕ

⇐
λ

d ∆

is a fibered equivalence over A.
(iii) The functor described in (ii) induces a fiberwise equivalence: for all a : 1→ A,

HomA(a, ℓ)→ HomAJ (∆a, d)

is an equivalence of Kan complexes (by which we mean an isomorphism in the ∞-category of
Kan complexes).

(iv) The cone ⌈λ⌉ : 1→ ∆ ↓ d obtained by 1-cell induction is terminal.
(v) The cone ⌈λ⌉ : 1→ A/d obtained by 1-cell induction is terminal.

An analytical result about quasi-categories by Joyal and Lurie can be used to show that limits are
automatically functorial:

Proposition 6.35. Let A be a quasi-category and J be a simplicial set. If A admits limits for all
d : 1→ AJ , then there exists a limit functor

lim: AJ → A

that is right adjoint to the contant diagram functor ∆: A→ AJ .

Proof. See [RV22, Corollary 12.2.10]. □
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7. Limits in Homotopy Coherent Nerves

So far, we have discussed the motivation behind the definition of (co)limits, and we have shown
that they satisfy the expected universal property. However, we have not yet presented any non-trivial
examples. In the ∞-categorical setting, showing that an object satisfies the universal property of the
(co)limit requires checking that certain hom-spaces are equivalent, which is much less straightforward
than checking that certain hom-sets are bijective in the 1-categorical setting. Our goal in this section
will be to identify explicit models for ∞-categorical (co)limits in quasi-categories that arise as the
homotopy coherent nerves of Kan-complex enriched categories, following [RV20].

We first recall the notion of weighted (co)limits, the “correct” notion of (co)limits in the enriched
setting. We will consider the general case where we enrich over any closed symmetric monoidal
category V, but in all applications we will take V = sSet.

Definition 7.1. Let D,M be V-categories, and F : D →M be a V-functor. Let W : D → V be a
V-functor, which we call the weight. A W -weighted limit over F is an object limW F inM along
with isomorphisms

M(m, limWF ) ∼= VD(W,M(m,F ))

natural in m ∈M. We say that a simplicial natural transformation W →M(m,F ) is a W -cone over
F with apex m.

Remark 7.2. Suppose M is cotensored over V, in the sense that for all v ∈ V and all m,n ∈ M,
there exists some mv ∈M such that

V(v,M(n,m)) ∼=M(n,mv)

naturally. Then, we can write the universal property of the weighted limit to write

M(m, limWF ) ∼= VD(W,M(m,F )

∼=
∫
d∈D
V(Wd,M(m,Fd))

∼=
∫
d∈D
M(m,FdWd)

∼=M
(
m,

∫
d∈D

FdWd

)

using enriched ends and coends. By the (enriched) Yoneda lemma, we get the formula

limWF ∼=
∫
d∈D

FdWd. (21)

Dually, we have the formula

colimWF ∼=
∫ d∈D

Wd⊗ Fd (22)

for weighted colimits whenM is tensored over V , meaning that for all v ∈ V and all m,n ∈M, there
exists some v ⊗m ∈M such that

V(v,M(m,n)) ∼=M(v ⊗m,n).

The weight of the (co)limit describes the “shape” of the cones over the diagram. By “fattening
up” the weight, we are able to describe some sort of homotopy coherent cones that are homotopically
well behaved. Our goal is to describe a particular weight WX : C[X]→ sSet for all simplicial sets X
such that WX -weighted limit cones for functors F : C[X] →M correspond to ∞-categorical limit
cones for the transposed functor F : X → Nhc(M). To do this, we first describe an alternate way to
present a simplicial weight W :M→ sSet as a simplicial category, which we call its collage.
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Definition 7.3. Given a weight W : D → sSet, the collage of W is a simplicial category coll(W ) that
contains D as a full subcategory along with precisely one extra object ⊥ whose endomorphism space
is the point. For all d ∈ D, the simplicial set Mapcoll(W )(⊥, d) is taken to be empty, and we define

Mapcoll(W )(⊥, d) :=Wd.

The composition operations

Wd×MapM(d, d′)→Wd′

are given by the transpose of the action of the functor W .

The collage construction gives us an equivalent way to describe simplicial weights, by the following
proposition:

Proposition 7.4. The collage construction defines a fully faithful functor

sSetD
coll
↪−−→ 1+D/sSet-Cat

whose essential image is comprised of the simplicial functors F : 1 + D → C that are bijective on
objects, fully faithful on 1 + D and have the property that any arrow with codomain F⊥ is the
identity. Furthermore, the collage functor coll admits a (1-categorical) right adjoint

1+D/sSet-Cat
wgt−−→ sSetD

which sends a simplicial functor F : 1+D → C to MapC(F⊥, F−).

Proof. See [RV20, Proposition 5.2.3] □

Corollary 7.5. Functors coll(W )→M that restrict to m on 1 and F on D correspond to W -cones
over F with apex m, i.e. natural transformations W →M(m,F ).

Proof. Use the adjunction in Proposition 7.4 and notice that wgtM, considering the composite
1+D → coll(W )→M as a category under 1+D, is exactly the functorM(m,F ) : D → sSet. □

Now, given a simplicial set X, the shape of cones for functors out of X in the quasi-category
setting is given by functors out of the simplicial join ∆0 ⋆ X. Taking the homotopy coherent
realization of the simplicial set inclusion ∆0+X ↪−→ ∆0 ⋆X, we get a inclusion of simplicial categories
1+CX ↪−→ C[∆0 ⋆X]. By the counit isomorphism of the adjunction in Proposition 7.4, this simplicial
category under 1+ CX is isomorphic to the collage of its corresponding weight, which we denote by
WX : CX → sSet.

Definition 7.6. We call the weight WX the weight for the pseudo limit of a homotopy coherent
diagram of shape X, and we call aWX -weighted limit of such a diagram F : CX →M the pseudo limit
of the diagram. Explicitly, the functor WX sends a vertex x ∈ X to the Kan complex C[∆0 ⋆X](⊥, x),
where ⊥ denotes the cone point ∆0 in ∆0 ⋆ X.

It turns out that the pseudo limit gives us one model of the ∞-categorical limit, in the following
sense:

Theorem 7.7 ([RV20], Theorem 6.1.4). LetM be a Kan-complex enriched category, let X be a
simplicial set, and let F : C[X]→M be a homotopy coherent diagram. If F admits a pseudo limit
inM, then the WX -weighted limit cone

Λ: C[∆0 ⋆ X]→M

transposes to define a limit cone over the transposed diagram

F : X → Nhc(M).
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7.1. Examples in Topological Spaces. To get some intuition of what ∞-categorical (co)limits
look like, we will apply Theorem 7.7 in the case whenM is the familiar category of topological spaces.
We will denote Top for the category of cgwh (compactly generated weakly Hausdorff) spaces, which
is cartesian closed. We will use Map(−,−) to denote the internal hom of Top (the set of continuous
maps with the compact open topology). In Example 4.7, we saw that base change using the singular
complex map S• : Top→ Kan realizes Top as a Kan-complex enriched category, where the enriched
hom, which we denote by Top(−,−), is the simplicial set

Top(X,Y ) := S• Map(X,Y )

for X,Y ∈ Top. Our goal will be to use the formulas (21) and (22) to explicitly write down our
desired pseudo (co)limits, for which we need simplicial (co)tensors in Top.

Proposition 7.8. The simplicial category Top admits tensors and cotensors: given a simplicial set
K and a topological space X, the tensor is given by

K ⊗X ∼= |K| ×X,

and the cotensor is given by

XK ∼= Map(|K|, X).

Proof. First, we notice that the singular complex ⊢ geometric realization adjunction can be promoted
to an enriched adjunction of simplicial categories, i.e. for all simplicial sets K and topological spaces
Z, we have

sSet(K,S•X) ∼= Top(|K|, X).

We check this isomorphism at the level of simplices: for all n ∈ N, we have

sSet(K,S•X)n ∼= sSet(K ×∆n, S•X)

∼= Map(|K ×∆n|, X)

∼= Map(|K| × |∆n|, X)

∼= Map(|∆n|,Map(|K|, X))

∼= sSet(∆n, S• Map(|K|, X))

∼= SnMap(|K|, X)

∼= Top(|K|, X)n

where crucially we used the fact that geometric realization preserves products (note that we use
underline to denote the underlying set of the enriched homs). Now, for any topological spaces X,Y
and simplicial sets K, we have

sSet(K,Top(X,Y )) = sSet(K,S• Map(X,Y ))

∼= Top(|K|,Map(X,Y ))

∼= Top(|K| ×X,Y ))

∼= Top(X,Map(|K|, Y ))

where the last two lines exhibit the universal properties of our candidates for tensors and cotensors
respectively. □

Now, we are finally ready to see some examples of ∞-categorical (co)limits in spaces. We will
start with a few small examples of colimits since they are easier to visualize.

Example 7.9 (coproduct). Take D = C[∆0 ⨿∆0] = 1 ⨿ 1. A functor D → Top simply encodes
the data of two topololgical spaces X,Y . The collage of the weight W :=W∆0⨿∆0 is the geometric
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realization of Λ2
2, which we may depict as

0 1

⊤

.

The corresponding weight is simply the trivial one (that sends all objects in D to ∗), so the pseudo
colimit is simply the ordinary colimit.

Example 7.10 (mapping cylinder). Take D = C[∆1]. A functor F : C[∆1]→ Top encodes the data
of a continuous map f : X → Y between topological spaces. If we took the 1-categorical colimit of
this functor, we would simply get Y : a cocone under F is a commutative diagram

X Y

Z

f

h g

which is determined by the map g. The ∞-categorical colimit is more interesting. A map from the
∞-categorical colimit corresponds to a homotopy coherent cocone under F

X Y

Z

f

h
⇒α

g

as a W∆1 -weighted cocone is given by a functor from C[∆1 ⋆∆1] = C[∆2] into Top. Denote W :=W∆1

for simplicity. Using formula (22), the pseudo colimit can be written as

colimWF ∼=
∫ i∈C[∆1]

|Wi| × Fi.

Let’s first compute what W : C[∆1]op → sSet is. Recall that the collage of W is the category C[∆2],
which we can depict as

0 1

⊤

10

⊤0
⇒

⊤1

labelling arrows by “codomain domain”. Note that morphisms in homotopy coherent realizations are
given by strings of composable arrows, which we will notate by using “.” to separate atomic arrows
in the string. Using Proposition 7.4, we see that the weight maps the object 0 to

C[∆2](0,⊤) ∼= {⊤0⇒ ⊤1.10} ∼= ∆1,

the object 1 to

C[∆2](1,⊤) ∼= {⊤1} ∼= ∆0,

and the morphism 0→ 1 to precomposition by 10, which in this case gives us the boundary map d0.
Now, we can write the pseudo colimit as the pushout

|W1| × F0 |W1| × F1

|W0| × F0 colimW F

⌟

=

X Y

|∆1| ×X colimW F

f

ι1 ⌟

which is the familiar mapping cylinder construction from topology.
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Example 7.11 (double mapping cylinder). Take D := C[Λ2
1]
∼= C[∆1 ⨿∆0 ∆1], and a functor

F : D → Top given by continuous maps

X
f−→ Y

g−→ Z.

The collage of the weight W :=WΛ2
1
is the rigidification of the simplicial set

(∆1 ⨿∆0 ∆1) ⋆∆0 ∼= (∆1 ⋆∆0)⨿(∆0⋆∆0) (∆
1 ⋆∆0) ∼= ∆2 ⨿∆1 ∆2

(since joins preserve connected colimits) which looks like

1

0 2

⊤

⇒ ⇒

so our weight W has the following mappings:

0 7→ Λ2
1

1 7→ ∆1

2 7→ ∆0.

d0

d0

The pseudo colimit is given by the colimit under the diagram

|∆1| ×X Y

|Λ2
1| ×X |∆1| × Y Z

d0 |∆1|×f d0 g

that looks something like

X

Y

Z

which we may recognize as the classical double mapping cylinder.

Example 7.12 (mapping telescope). We generalize the double mapping cylinder in Example 7.11 to
arbitrary sequence of continuous maps

X0
f1,0−−→ X1

f2,1−−→ X2 → . . .→ Xn → . . .
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that may or may not stabilize (i.e. fi,i−1 is the identity map for all i ≥ k for some k ∈ N). The
indexing simplicial set is

S := ∆1 ⨿∆0 ∆1 ⨿∆0 . . . = coeq

(∐
n∈N

∆0
(n) ⇒

∐
k∈N

∆1
(k)

)

where the two maps in the coequalizer are given on ∆0
(n) by

∆0
(n) ∆1

(n)

∆1
(n+1).

d0

d1

The collage of the weight W :=WS is the rigidification of

coeq

(∐
n∈N

∆1
(n) ⇒

∐
k∈N

∆2
(k)

)
which looks like

0 1 2 3 . . .

⊤

. . .

with right-pointing 2-arrows in each of the triangular cells bound by n, n+ 1 and ⊤. The weight WS

maps each n ∈ N to

Map(n,⊤) = {n→ n+ 1→ n+ 2→ . . .} ∼= S

and maps n→ n+ 1 to inclusion maps

{n+ 1→ n+ 2→ . . .} ↪−→ {n→ n+ 1→ n+ 2→ . . .} (23)

i.e. shift maps S ↪−→ S. We can realize its geometric realization as the half open interval |Map(n,⊤)| ∼=
[n,∞) so that the inclusion maps (23) are mapped to the inclusions

[n+ 1,∞) ⊆ [n,∞).

The pseudo colimit is thus the topological space(∐
n∈N

[n,∞)×Xn

)
/ ∼

where the equivalence relation ∼ identifies [n + 1,∞) × Xn with its image under id×fn+1,n in
[n+ 1,∞)×Xn+1, which looks something like

X0

X1

X2

. . .

where we have an infinitely expanding “telescope”.
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Example 7.13 (homotopy pushout). Take D = C[Λ2
0], the cospan category, which we will denote

by 1←− 0→ 2. A functor D → Top is some cospan of spaces Y
f←− X g−→ Z. The cone shape for the

pseudo colimit is the simplicial set Λ2
0 ⋆∆

0 ∼= ∆1 ×∆1, the realization of which we depict as follows:
(omitting labels for arrows, which are always “codomain domain”):

0 2

1 ⊤.

⇒
⇐

The corresponding weight W : C[Λ2
0]→ sSet sends the object 0 to

C[∆1 ×∆1](0,⊤) =


⊤0 ⊤1.10

⊤2.20

 ∼= Λ2
0,

the object 1 to {⊤1} ∼= ∆0 and the object 2 to {⊤2} ∼= ∆0; the morphisms 0→ 1 and 0→ 2 are sent
to the two endpoint inclusions ∆0 → Λ2

0. Using the coend formula, we get that the pseudo colimit
for the cospan is the colimit under the diagram

X X

Y |Λ2
0| ×X Z

f ι1 ι2 g

looking something like

X × IY Z

which we may recognize as the homotopy pushout.

Example 7.14 (mapping cone). Specializing Example 7.13 to when Z = ∗, the pseudo colimit is
obtained by gluing one end of the cylinder I ×X (letting I := [0, 1] denote the topological interval)
to Y and identifying the other end to a point. This construction gives us the mapping cone, or the
homotopy cofiber.

Example 7.15 (suspension). Specializing Example 7.13 even more to when Y = Z = ∗, the pseudo
colimit is obtained by identifying both ends of the cylinder I ×X, which gives us the suspension of
X.

Now let’s see some examples of limits.

Example 7.16 (product). Similar to Example 7.9, the homotopy product is just the ordinary
product.

Example 7.17. Take D = C[∆1] again. The cone shape is once again ∆2, but we will depict it as

⊥

0 1

1⊥0⊥

10

⇐

since we now want cones and not cocones. The weight for the pseudo limit is a functor W : C[∆1]→
sSet sending the object 0 to {0⊥} ∼= ∆0, the object 1 to {1⊥ ⇒ 10.0⊥} ∼= ∆1, and the morphism
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0→ 1 to the codomain inclusion map d0 : ∆0 → ∆1. The psuedo limit is the pullback

limW F FW1
1 limW F Y I

FW0
0 FW0

1 X Y

⌟ ⌟
π1

f

=

which we can describe as the subspace of X × Y I consisting of the points

{(x, p : I → Y ) : p(1) = f(x)}.

In other words, this is the space of paths in Y that end in the image of X.

Example 7.18 (homotopy pullback). Take D = C[Λ2
2], which we denote by 0→ 2←− 1. We depict

the cone shape ∆0 ⋆ Λ2
2
∼= ∆1 ×∆1 as follows:

⊥ 1

0 2

⇒
⇐

Similar to the case for the homotopy pushout, the weight for this pseudo limit is the functor
W : C[Λ2

2] → sSet sending the objects 0 and 1 to ∆0, the object 2 to Λ0
2, and the two morphisms

0→ 2 and 1→ 2 to the two endpoint inclusions. Given a span X
f−→ Y

g←− Z, the pseudo limit is the
limit over the diagram

X Y I Z

Y Y
f p0 p1 g

This is the subspace of X × Y I × Z consisting of triples (x, α, z) such that the path α starts at x
and ends at z.

Example 7.19 (loop space). Specializing Example 7.18 to the case whereX = Z = ∗ and f = g = {y}
for a point y ∈ Y , we see that the pseudo limit is the subspace of paths that start and end at y, in
other words, the loop space Ω(Y, y).

8. Classical Perspectives on Homotopy Limits

We now have a more concrete description of (co)limits in Kan-complex enriched categories, and
we have seen some examples of familiar constructions in the category of topological spaces. To give
ourselves more computational tools, we will turn to look at the classical topic of homotopy (co)limits,
which turn out to give us models for ∞-categorical (co)limits in nice settings.

8.1. Derived Functors. In this section, we will briefly recall the theory of derived functors on
homotopical categories, following [Rie14], which we will use to define (traditional) homotopy limits.

Definition 8.1. A homotopical category is a categoryM with a distinguished subcategory W ⊆M
that contains all object and satsifies the 2-of-6 property: given composable morphisms

w
f−→ x

g−→ y
h−→ z,

if hg and gf are inW , then so are f, g, h, hgf . A homotopical functor between homotopical categories
is one that preserves weak equivalences.
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Definition 8.2. Let F :M → N be a functor. A total right derived functor for F is a left Kan
extension

M N

HoM HoN

F

γ δ

LF

⇑

(note the opposing convention in handedness). Dually, a total left derived functor is a right Kan
extension.

A total derived functor can be equivalently described as a homotopical functor fromM→ HoN .
In some situations, we can lift this to an approximationM→N , which we will simply call a derived
functor.

Definition 8.3. A right derived functor for F :M → N is a homotopical functor RF :M → N
with a natural transformation λ : F =⇒ RF such that

M N

HoM HoN

F

γ δδλ⇓

δRF

is a total right derived functor. As before, one can easily dualize to define right derived functors.

Remark 8.4. Let RF,R′F be two right derived functors for F :M→N . By the uniqueness of Kan
extensions, we know that the total derived functors δRF and δR′F are naturally isomorphic. If N is
saturated (meaning that weak equivalences are exactly the maps that become isomorphisms in the
homotopy category — in particular all model categories are saturated), then we know that for all

m ∈M, there exists some weak equivalence RFm ∼−→ R′Fm. We do not necessarily know, however,
that RF and R′F themselves are isomorphic, and we will often see examples where we have different
point set level models for the same derived functors.

Example 8.5. Let F :M→N be a homotopical functor between homotopical categories. We claim
that F is a left and right derived functor for itself with the identity natural transformation. Indeed,
let F̃ : HoM→ HoN be the factorization

M N

HoM HoN

F

γ δ

∃!F̃

arising from the universal property of HoM. We have

HoNHoM(RF,G) ∼= HoNM(δF,Gγ) (Kan extension)

= HoNM(F̃ γ,Gγ)

∼= HoNHoM(F̃ , G) (universal property)

naturally in G : HoM→ HoN , so F̃ ∼= LF is a total right derived functor, and F is a right derived
functor for itself. The same argument applies for the dual case.

Theorem 8.6 ([DHKS04]). Let F :M→N be a functor between homotopical categories, and let

R :M→M be an endofunctor equipped with a natural weak equivalence q : 1
∼
=⇒ R which we call a

right deformation. LetMR ⊆M be the full subcategory containing the image of R, and suppose F
is homotopical onMR. Then, RF = FR is a right derived functor of F .
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Example 8.7. SupposeM admits a model structure. By Ken Brown’s lemma (see [Rie14, Lemma
2.2.6]), a right Quillen functor F :M → N preserves weak equivalences between fibrant objects.
Hence, fibrant replacement is a right deformation for F , making FR a right derived functor of F .

Now that we have a general formalism for computing derived functors, we define homotopy limits
as simply the derived functor of the limit functor

Definition 8.8. LetM be a homotopical category, and let D be a small category. We consider the
functor categoryMD as a homotopical category, where the weak equivalences are given pointwise.
Then, any right derived functor of lim:MD →M is called a homotopy limit functor, denoted by
holim, and any left derived functor of colim:MD →M is called a homotopy colimit functor, denoted
by hocolim.

Example 8.9. If the functor category admits a model structure (e.g. projective, injective, Reedy,
etc.), then we may compute homotopy (co)limits by (co)fibrantly replacing. This is convenient when
we have a good description of what cofibrant and fibrant objects are in the functor model structure.
For instance, this allows us to deduce that pushouts of cofibrant objects along a cofibration are
homotopy pushouts (using the Reedy model structure on the span category.

Example 8.10. (Bousfield-Kan formula) The flexibility of the deformation approach to derived
functors is that it works for any homotopical categories, not just ones admitting a model structure.
This is helpful when computing homotopy (co)limits, since there isn’t always an obvious model
structure on functor categories. One deformation that always works in the setting of a simplicial
model category is the classical Bousfield-Kan formula. See

8.2. Homotopy (Co)limits in a Simplicial Model Category. In Section 7, we described a
model for ∞-categorical (co)limits in homotopy coherent nerves of Kan-complex enriched categories.
In this section, we will show that the pseudo (co)limits we defined model homotopy (co)limits in the
derived functor sense, in the setting of simplicial model categories where we have access to both the
structure of hom-spaces as well as the structure of fibrations and cofibrations.

Theorem 8.11 ([Gam10]). LetM be a simplicial model category and let D be a small simplicial
category. The weighted limit bifunctor

(sSetD)op ×MD lim−(−)−−−−−→M

is right Quillen when we endow the domain with either the (projective, projective) or (injective,
injective) model structure.

Dually, the weighted colimit bifunctor

sSetD
op

×MD colim−(−)−−−−−−−→M

is left Quillen when we endow the domain with the (projective, injective) or (injective, projective)
model structure.

We will present all the results in this section for the case of limits and leave the reader to dualize
arguments for the case of colimits.

Corollary 8.12. Let W : D → sSet be a weight that is projectively cofibrant and pointwise
contractible, i.e. weakly equivalent to ∗. A model for the homotopy limit functor is given by

MD R∗−−→MD
f

limW

−−−→M

by first taking pointwise fibrant replacement of the diagram, then taking limit weighted by W .

Proof. The functor

∗ × id :MD → (sSetD)op ×MD
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sending a functor F to the pair (∗, F ), where ∗ denotes the constant diagram at ∗, preserves weak
equivalences, fibrations and cofibrations by the definition of the product model structure. The limit
functor is the composite

MD ∗×id−−−→ (sSetD)op ×MD lim−(−)−−−−−→M
and by the pseudofunctoriality of taking derived functors, we obtain our desired derived functor as
a composite of the derived functors for ∗ × id and lim. Since ∗ × id is homotopical, it is a derived
functor for itself (Example 8.5). By Theorem 8.11, a derived functor for the weighted limit is given
by fibrant replacement in the (projective, projective) model structure. Fibrant replacement inMD

proj

is given simply by pointwise fibrant replacement of the objects. Fibrant replacement in (sSetDproj)
op is

given by cofibrant replacement in sSetDproj, and for conical limits weighted by ∗, such a replacement is
given by W . □

Proposition 8.13. Let M be a simplicial model category and let X be a simplicial set. Let
D := C[X] be the homotopy coherent realization of X and F : D →M be a simplicial functor. Let
RQ :M→Mcf be a bifibrant replacement functor. Then, we have a model of the homotopy limit
given by

holimF ≃ limWXRQF.

Proof. Since homotopy limit is invariant under weak equivalences, we have

holimF ≃ holimRQF.

We can then assume, without loss of generality, that F lands in the bifibrant subcategoryMcf , and
the statement we would like to check reduces to

holimF ≃ limWXF.

By Corollary 8.12, this reduces to checking thatWX is projectively cofibrant and pointwise contractible,
which is the content of Corollary 8.21. □

Since homotopy (co)limits always exist in simplicial model categories (for instance, using the
Bousfield-Kan formulas), we have:

Corollary 8.14. Underlying quasi-categories of simplicial model categories are complete and
cocomplete.

By Dugger’s theorem (see [Dug01]), every model category is Quillen equivalent to a simplicial one.
We can thus generalize Proposition 8.13 to all model categories by checking that Quillen equivalences
preserve homotopy limits:

Lemma 8.15. Let G :M→N be the left or right adjoint in an Quillen equivalence with inverse K,
and let F : D →M be a functor. Then, we have a weak equivalence

G holimF ≃ holimGF

natural in F .

Proof. Using the fact that Quillen equivalences induce equivalences on homotopy categories, we can
write down the following diagram of homotopy categories:

Ho(ND) Ho(MD) HoM HoN≃

Ho(K∗)

⊥

Ho(G∗)

holim

≃
Ho∆

HoG

HoK

The top composite at the point set level sends an object n ∈ N to ∆GKn, which admits a counit or
unit map to or from (depending on whether G is the left or right adjoint) ∆n, which upon taking
homotopy categories becomes a natural isomorphism to the constant diagram functor Ho∆. Hence,
as equivalences preserve adjunctions, the bottom composite, which sends GF to G holimKGF , is
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naturally isomorphic to the homotopy limit functor on N . Combining this with the weak equivalence
KGF ≃ F using the other (co)unit map, we have a natural weak equivalence

G holimF ≃ GholimKGF ≃ holimGF

as desired. □

Corollary 8.16. LetM be a model category, D be a category, and F : D →M be a functor. Then,
a homotopy limit holimF is a limit of F in the underlying quasi-category uqM.

Alternatively, we lift the Quillen equivalence from Dugger’s theorem to an equivalence of underlying
quasi-categories using Theorem 4.21 and the fact that equivalences preserve (co)limits to immediately
get:

Corollary 8.17. Underlying quasi-categories of model categories are complete and cocomplete.

We turn back to finishing the proof for Propositon 8.13. To show that the weight for the pseudo
limit is projectively cofibrant, we will introduce some definitions from [RV20].

Definition 8.18. Let D be a small simplicial category, and fix a pair of objects [n] ∈ ∆ and d ∈ D.
The projective n-cell associated with d is the simplicial natural transformation

∂∆n ×D(d,−) ↪−→ ∆n ×D(d,−). (24)

We say that a monomorphism V →W in sSetD is a projective cell complex if it may be expressed as
a countable composite of pushouts of coproducts of projective cells. A weight W : D → sSet is said
to be a flexible weight if the inclusion ∅→W is a projective cell complex.

Proposition 8.19. Projective cell complexes are projective cofibrations.

Proof. Since cofibrations are stable under pushouts, coproducts and countable composition, it suffices
to show that the projective n-cells (24) are cofibrations in the projective model structure. Fix a

trivial fibration Y
∼−↠ X in sSetDproj, i.e. a natural transformation that is pointwise a trivial fibrations.

We would like to show that any lifting problem

∂∆n ×D(d,−) Y

∆n ×D(d,−) X

∼∃? (25)

has a solution. To do this, we construct a simplicially enriched adjunction

−×D(d,−) : sSet sSetD⊣ : evd (26)

as follows: for any simplicial set K and a functor Z : D → sSet, we have the following chain of
isomorphisms of simplicial sets

sSetD
(
K ×D(d,−), Z

)
=

∫
x∈D

sSet
(
K ×D(d, x), Zx

)
∼=
∫
x∈D

sSet
(
K, sSet

(
D(d, x), Zx

))
∼= sSet

(
K,

∫
x∈D

sSet
(
D(d, x), Zx

))
∼= sSet

(
K, sSetD

(
D(d,−), Z

))
∼= sSet(K,Zd)
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each of which is natural in K and Z. Going back to our lifting problem (25) and forgetting the
enriched adjunction (26) to an adjunction of the underlying categories, we may transpose the lifting
problem to an equivalent one

∂∆n Y d

∆n Xd

∼

∃?

inside sSet, which admits a solution. □

Remark 8.20. In fact, a corollary of Quillen’s small object argument (see for instance, [Rie14, Corollary
12.2.4]) tells us that all projective cofibrations are given by projective cell complexes, and hence

cofibrant objects in sSetDproj are exactly the flexible weights.

Corollary 8.21. Let X be a simplicial set, and let D := CX. The weight for the pseudo limit
WX : CX → sSet (Definition 7.6) is projectively cofibrant and pointwise contractible.

Proof. By [RV20, Lemma 5.2.9], WX is flexible and hence projectively cofibrant by Proposition 8.19.
To see that WX is also pointwise contractible, recall that for any vertex x ∈ X, we have

WX(x) = C[∆0 ⋆ X](⊥, x)
by definition. Using the identification of the mapping spaces in a homotopy coherent nerve (Theorem
6.16), we get that

C[∆0 ⋆ X](⊥, x) ≃ Hom∆0⋆X(⊥, x).
Finally, the fact that ⊥ is initial in ∆0 ⋆ X (Remark 2.13) tells us that

Hom∆0⋆X(⊥, x) ≃ ∗
is contractible using characterization (iv) in Proposition 6.32, the proof of which does not use the
fact that A is a quasi-category. □
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