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Abstract. A discussion of the mathematical prerequisites and economic in-

tuition necessary to understand the Black-Scholes options pricing model. We

begin with a foray into the construction of the Wiener Process, laying the
groundwork for a mathematical model of stock price behavior derived from

the Efficient Market Hypothesis. We then construct the famous Black-Scholes

Model and assess its empirical accuracy by analyzing historical options trading
data.
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1. Introduction

In the 1960’s, economists such as Eugene Fama and Paul Samuelson theorized
that the seemingly random movements of stock prices could be well-modeled by
tools from stochastic calculus. This culminated in the Efficient Market Hypothesis–
a collection of postulates which state, to varying degrees of extremity, that all
relevant information pertaining to the “fair” value of a stock is incorporated nearly
instantly by the large number of traders of that stock. The result is that stock
prices seem to wander randomly around their “fair” price. Then, in 1973, Fischer
Black and Myron Scholes derived a formula for pricing derivatives by building off
of this stochastic model of stock prices. The result was the Black-Scholes Model,
a partial differential equation governing the relationship between the price of an
option and its underlying asset. This model now forms the backbone of modern
financial markets. Starting from a discussion of stochastic calculus, we will examine
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the mathematical and economic concepts required to understand the Black-Scholes
Model, before providing an intuitive derivation of the famous Black-Scholes PDE.
Finally, we will quantify the accuracy of the model in predicting real-life options
prices in various markets by analyzing historical data from the NASDAQ and New
York Stock Exchange.

2. Stochastic Calculus

Definition 2.1. (Markov Process). A sequence consisting of random variables
X1, X2, ...Xn is a Markov process if

(2.2) P[Xn+1 = x |X1 = x1, X2 = x2, ..., Xn = xn] = P[Xn+1 = x |Xn = xn].

An example of a discrete-time Markov process is a simple random walk on Z.
Let ε1, ε2, ...εn be a sequence of independent random variables with probability
distribution P[εi = −1] = P[εi = 1] = 1

2 . Define X0 = x0, and let Xn =
∑n

i=0 εi,
so that εi represents the ith step of the walk and Xi is the location after i steps.
The key observation is that, due to the independent nature of the εi, the value of
Xn+1 depends only on the value of Xn and εn+1. Thus Xn satisfies the properties
of a Markov process.

2.1. Wiener Process. The Wiener process is a special type of Markov process
whose characteristics are more suited to modeling real-life phenomena such as stock
prices.

In the following discussion, we write X ∼ N (µ, σ2) to mean that the random
variable X has density function

f(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )

2

.

Definition 2.3. (Wiener Process). We say that Zt follows a Wiener process if it
satisfies the following criteria:

(1) Zt is a Markov process.
(2) Z0 = 0 almost surely.
(3) The function t → Zt is almost surely continuous with probability 1.
(4) (Zt+u − Zt) ∼ N (0, u).

Starting from a simple discrete-time model, we will develop the intuition for
the continuous Wiener Process. Consider a random variable Z which satisfies the
conditions for a Wiener process. Consider two discrete times, t0 and t1 = t0+1. By
property (4) above, we know that (Zt0+1−Zt0) ∼ N (0, 1). Dividing the elapsed time
in half, we get that the sum of the increments (Zt0+

1
2
−Zt0)+(Zt0+1−Zt0+

1
2
) must

also satisfy N (0, 1). Assuming symmetry between time periods, we can apply the
linearity of variance for independent random variables to find that (Zt0+

1
2
−Zt0) and

(Zt0+1 − Zt0+
1
2
) satisfy N (0, 1

2 ). The standard deviation of Zt on each subinterval

is
√

1
2 , and thus, we can rewrite N (0, 1

2 ) as
√

1
2 ∗ N (0, 1). We can continue this

process of subdividing each time interval into multiple smaller intervals. The key
observation is that during a small time interval ∆t, the change in Z, ∆Z, is equal
to ϵ∗

√
∆t, where ϵ ∼ N (0, 1). Taking the limit of this process, we arrive at a model

for continuous-time Wiener processes.
We now introduce a bit of informal notation, mirroring the standard calculus

of real variables. We write dZ to mean the infinitesimal change in Z, i.e. ∆Z as
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∆t → 0. With this tool, we may now define a generalized version of the continuous-
time Wiener process, the Ito process.

Definition 2.4. X is an Ito process if it satisfies

(2.5) dX = a(X, t)dt+ b(X, t)dZ

where Z follows a Wiener process.

We use this somewhat informal equation to mean that at a certain time t, X
changes according to a deterministic component given by a(X, t), and a stochas-
tic/noise component given by b(X, t). In the stochastic differential equation, the
function a(X, t) determines the drift rate of the Ito process, while the function
b(X, t) determines the magnitude of the stochastic component. Intuitively, over a
small time interval ∆t, we may treat a and b as effectively constant, so the expected
change in X is E[∆X] = a∆t, and the variance of the change is Var[∆X] = b2∆t

(meaning that the standard deviation is b
√
∆t). The definition of an Ito process

can be made formal, although we will not discuss the theory here, as the preced-
ing informal discussion will be enough for our purposes. The curious reader may
consult any of the standard texts on stochastic calculus.

2.2. Ito’s Lemma. We now turn our attention to an indispensable tool in stochas-
tic calculus, Ito’s Lemma. It is analogous to the chain rule in basic calculus. Ito’s
Lemma gives an SDE for any process that is a function of another process given by
an SDE.

Theorem 2.6. (Ito’s Lemma). Consider a function f(X, t), where X follows an
Ito process of the form

dX = a(X, t)dt+ b(X, t)dZ

where Z is a Wiener process. Then Y = f(X, t) must also follow an Ito process of
the form

(2.7) dY =

(
∂f

∂x
a+

∂f

∂t
+

1

2

∂2f

∂x2
b2
)
dt+

∂f

∂x
b dZ.

While a rigorous proof of Theorem 2.6 is outside of the scope of this paper, this
result will prove pivotal in the derivation of the Black-Scholes Model.

3. The Stochastic Nature of Stock Prices

The Efficient Market Hypothesis (EMH) posits that in a reasonably liquid mar-
ket, all available information about the value of a stock is almost instantly reflected
in its price. The high volume of traders in such markets ensures that any opportu-
nity to profit from a systematic discrepancy between a stock’s intrinsic value and
its market price is rapidly exploited. Consequently, the most relevant predictor of
a stock’s future price behavior is its current price, as any information embedded
in its price history has already been assimilated by market participants. However,
due to the inherent uncertainty of the real world, it is impossible to precisely de-
termine a stock’s intrinsic value, allowing for differing opinions on its “fair” price
among market actors. Nevertheless, these varying predictions typically offset each
other, resulting in the market price following a random walk around its intrinsic
value. These properties suggest that a stock’s price is well modeled by a stochastic
process.



4 ASHER JIANG

A reasonable mathematical model for the behavior of stock prices is an Ito pro-
cess where the drift rate and magnitude of the stochastic component (known as
volatility) are proportional to the current price of the stock. Intuitively, this makes
sense because stocks themselves represent a fraction of a company’s perceived value.
Therefore, we expect the stochastic component of the stock price to be a fraction
of the stock price, rather than a flat amount. If we let St be the price of a stock at
time t, then its corresponding Ito process is

(3.1) dSt = µStdt+ σStdZ

where µ is the expected growth rate and σ is the volatility of the stock price. We
say the distribution followed by St for any fixed t is lognormal.

4. An Introduction to Options

We will introduce the concept of options through a classic motivating example.
Suppose a crude oil company “A” situated in the Middle East is deciding whether or
not to send a vessel of petroleum to Europe, where they expect to make a profit off
of the higher market price in the region. However, the trip takes many months, and
the risk of the market price of petroleum decreasing during that time is significant.
How can company A increase the chances of realizing a profit on your investment?

To solve this problem, modern markets make use of options. In the case of the
crude oil company, an appropriate way to hedge their risk is to purchase a “put
option.” This is a contract with a buyer “B” which gives A the right, but not
the obligation, to sell their shipment of petroleum at a certain strike price. By
purchasing this contract, the crude oil company ensures that, should the market
price of petroleum decrease when their shipment arrives, they will still be able to
offload their shipment at the predetermined price. Alternatively, if the market price
of petroleum happens to be above the strike price, the company can simply choose
not to exercise the option, and make a greater profit by selling their shipment at
market value.

To make this contract a fair deal, however, the option writer must be compen-
sated for the risk that they are taking on. Therefore, the crude oil company pays
an upfront cost, known as a premium, for the option. If the crude oil company
decides not to exercise their option, then the option writer earns a profit from the
premium without paying any additional costs.

This concept of buying and selling options is widely used in the stock market
today. Traders use options to hedge against risks posed by assets and make spec-
ulative bets on the future movement of stock prices. Put options are primarily
purchased when the buyer believes that the underlying stock’s price will go down.
Its counterpart, the call option, is purchased when the buyer believes that the stock
price will go up.

Call and put options fall under a broader classification of contracts known as
derivatives. These contracts derive their value from the value of an underlying
asset, which is often a stock. In the previous example, the underlying asset was
crude oil. There are four positions that a trader can take using call and put options:
They can buy a call option, buy a put option, sell a call option, or sell a put option.
The profit from each position is shown below.
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Proposition 4.1. Payouts of Options. In the following scenarios, let K be the
strike price of an option, T be the time of expiration, P be the premium, and ST

be the price of the underlying asset at time T .

(1) The return from buying a call option is max[0, (ST −K)− P ].
(2) The return from buying a put option is max[0, (K − ST )− P ].
(3) The return from selling a call option is min[0, P − (ST −K)].
(4) The return from selling a put option is min[0, P − (K − ST )].

An important distinction to make here is between American options and Euro-
pean options. American options allow the buyer to exercise the option at any point
on or before the expiration date, while European options can only be exercised on
the expiration date. Despite the regional affiliations suggested by their names, both
options are traded on stock exchanges around the world. For the purposes of this
paper, we assume all options to be European.

From the formulae above, it is clear that the price of the underlying stock
throughout an option’s lifetime plays a role in determining the value of the option.
We would like to express the value of the option as a function of the underlying
stock, which itself is a stochastic process. Our framework for doing this will be
Arbitrage Pricing Theory and portfolio replication.

5. Arbitrage Pricing Theory and Portfolio Replication

The modern financial market operates off of a concept known as Arbitrage Pric-
ing Theory. Arbitrage Pricing Theory states that two investments which produce
the same returns regardless of future developments in the market must require the
same initial investment. If there is a price mismatch, then traders could sell the
more expensive investment and purchase the less expensive one to reach a market-
neutral position while making a riskless profit. An example of this is the put-call
parity, which dictates the price of a put option based on a call option with the same
parameters.

Consider a world with two financial assets: a stock and a fixed-rate bond. The
stock’s price at time t is St, dependent on various market factors. The bond’s price
at time t is Bt, determined solely by its interest rate r, which is fixed. We will
assume that interest is continuously compounded, so that the value of the bond
follows an exponential growth model. Bonds are an example of a risk-free asset
because their return at a future time is guaranteed and independent of market
factors. Once a bond has been written, its payout is essentially guaranteed. A
common example of this is a US government treasury bill (T-bill).

We will set up two portfolios with the same payout. Portfolio 1 consists of a
call option on S with expiration time T and strike price K, as well as a bond
with a payout of K at time T . Portfolio 2 consists of a put option with the same
parameters as the call option, and a share of stock S.

Since both options have a strike price of K, there are two disjoint scenarios which
can occur at time T : either ST > K or ST ≤ K. If ST > K, then the call option
is exercised. Portfolio 1’s return is (ST − K) + K = ST . The put option is not
exercised, so portfolio 2’s return is ST , which is identical to portfolio 1.

If ST ≤ K, then the call option is not exercised, while the put option is. The
payout of portfolio 1 is K, while portfolio 2’s payout is (K − ST ) + ST = K.

Since portfolio 1 and 2 have the same payout regardless of circumstance, Ar-
bitrage Pricing Theory dictates that both portfolios must require the same initial
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investment. The cost of portfolio 1 is the cost of the call option, c, in addition to
the price of the fixed-rate bond, B0. For a bond with interest rate r to have a payoff
of K at time T , its value at t = 0 must be K

erT
= Ke−rT . The cost of portfolio 2 is

the cost of the put option, p, and the cost of the stock at t = 0, S0. Equating the
two gives us the famous put-call parity equation:

(5.1) c+Ke−rT = p+ S0

The method of analysis used in deriving the put-call parity is known as portfolio
replication. More generally, given an asset whose no-arbitrage price is hard to
determine, we attempt to construct a replication portfolio with the same financial
consequences as the asset. If the replication portfolio’s price can be found, then
we can find the price of the asset using Arbitrage Pricing Theory. As we shall now
see, portfolio replication is a powerful method of analysis when pricing options in
reasonably efficient markets.

6. The Black-Scholes Model

The Black-Scholes Model provides a theoretical framework for determining the
price of an option on an underlying asset. The model is derived by constructing
a replicating portfolio which fluctuates with the price of the underlying asset. By
continuously rebalancing the portfolio’s holdings in response to the current value
of the asset, we can ensure that the portfolio’s value consistently matches the value
of the option. Consequently, if we can determine the initial investment needed to
establish this replicating portfolio, we can accurately calculate the option’s price.

As in the example of put-call parity, we assume a simplified version of the market
with only two financial assets, a stock and a bond, in addition to the option whose
price we are attempting to find. We assume that the bond is a risk-free asset. Some
additional assumptions are presented below. We will then state the theorem and
then present a proof.

Assumptions 6.1. (Conditions for the Black-Scholes PDE)

(1) The price of the underlying stock follows the lognormal distribution pre-
sented in (4.1).

(2) The short-term risk-free interest rate r is known and remains constant.
(3) The volatility σ of the underlying stock remains constant throughout the

lifetime of the option.
(4) The market is frictionless, that is, there are no transaction costs and trans-

actions are instantaneous.
(5) The stock pays no dividends.
(6) Short selling is permitted without requiring collateral.
(7) The purchase of fractional shares and derivatives is possible.

Theorem 6.1. (Black-Scholes PDE). Let f(S, t) be the price of a derivative, and
St be the price of its underlying asset. Let r be the constant risk-free rate and σ be
the volatility of the underlying asset. Then the price of the derivative must obey

(6.2) rf =
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2

Proof. From the assumptions above, as well as Section 3, we know that the price
of the stock obeys

(6.3) St = µStdt+ σStdZ
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and the price of the bond satisfies the exponential growth model given by

(6.4) dBt = rBtdt

The payout of a call option with strike price K and expiration T is

(6.5) max(0, ST −K).

We would like to construct a replication portfolio with a known initial investment
which has the same payout as the call option. We approach this by considering a
portfolio with a continuously changing amount of bonds and stocks. Let at denote
the amount of stock and bt denote the amount of bonds in the replication portfolio
at time t, so that the total value of the portfolio is

(6.6) Π(t) = atSt + btBt.

Since the call option requires only an initial investment in the form of its premium,
our replication portfolio must also not require additional investments throughout
its lifetime. Therefore, any purchases of stocks or bonds throughout the lifetime of
the portfolio must be offset by liquidation of the other asset. This is known as the
self-financing condition, which can be expressed as

(6.7) dΠ = atdSt + btdBt.

At time T , we want the value in the portfolio, Π(T ) to equal the payout of the call
option, max(0, ST−K). Now we want to find functions which satisfy the constraints
listed above. Since the bond price model is deterministic, the only stochastic source
in the value of the portfolio is from the dZ term in the stock price model. Thus,
we may assume that Π(t) can be represented by a function f(St, t). Substituting
(6.3) and (6.4) into (6.7) gives

(6.8) dΠ(t) = atSt[µdt+ σdZ] + btrBtdt = [atµSt + btrBt]dt+ atσStdZ.

Now, we can find another SDE relating f to its derivatives using Ito’s Lemma. This
will allow us to solve for at and bt. Applying Ito’s Lemma shows that Π(t) = f(St, t)
must satisfy

(6.9) dΠ =

(
∂f

∂S
µSt +

df

dt
+

1

2

∂2f

∂S2
σ2S2

t

)
dt+

∂f

∂S
σSt dZ.

for all t. We can match the coefficients for the dt and dZ terms to find expressions
for at and bt. From the dZ term, we find that

(6.10) at =
∂f

∂S

and the dt term gives

(6.11) µSt
∂f

∂S
+ rbtBt = µSt

∂f

∂S
+

df

dt
+

1

2

∂2f

∂S2
σ2S2

t

Solving for bt in (6.11), we get

(6.12) bt =
1

rBt

(
df

dt
+

1

2

∂2f

∂S2
σ2S2

t

)
Finally, we substitute (6.10) and (6.12) into (6.3) to get

(6.13) f(St, t) = Π(t) =
∂f

∂S
St +

1

rBt

(
df

dt
+

1

2

∂2f

∂S2
σ2S2

t

)
Bt.
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Canceling out the Bt term on the RHS gives

(6.14) f(S, t) =
∂f

∂S
St +

1

r

(
df

dt
+

1

2

∂2f

∂S2
σ2S2

t

)
which simplfies to the Black-Scholes PDE :

(6.15) rf =
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2

□

Using the boundary conditions in Proposition 4.1, we can find unique solutions
to the Black-Scholes PDE corresponding to the no-arbitrage price of a call or put
option. We present the formulae below, omitting the detailed solution process,
which is beyond the scope of this paper. The interested reader may refer to external
resources for the general solution techniques of PDEs.

In the following theorem, we use Φ(x) to denote the cumulative distribution
function of the standard normal distribution given by

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt.

Theorem 6.16. (Black-Scholes(BSM) Formula). Let Φ(x) denote the CDF of the
normal distribution. If S0 is the current price of a stock, K is the strike price, T
is the expiration date, and r is the risk-free rate, then the no-arbitrage price of a
European call option is

(6.17) C = S0Φ(d1)−Ke−rTΦ(d2)

and the price of a European put option is

(6.18) P = Ke−rTΦ(−d2)− S0Φ(−d1)

where

d1 =
ln
(
S0

K

)
+
(
r + σ2

2

)
T

σ
√
T

d2 = d1 − σ
√
T

7. Empirical Testing of the Black-Scholes Formula

Our derivation of the Black-Scholes Model involved making a variety of assump-
tions and simplifications. In the real world, there are rarely such ideal conditions.
We would like to quantify the accuracy of our model, and analyze its shortcomings.

To test our model empirically, we implemented the Black-Scholes Formula using
a computer program. Our dataset is a list of approximately 15 million options
which were listed on the New York Stock Exchange (NYSE) and NASDAQ from
2021 until 2024. For each option, we have the corresponding parameters needed to
calculate the input variables of the Black-Scholes formula, including strike price,
expiration date, current stock price, and the risk free rate, as well as several metrics
for historical volatility.

For each option, the program calculates the theoretical price given by the Black-
Scholes Formula and compares it to the actual bid and ask prices of the option
listing. The results from our tests on several subsets of the data are presented
below.
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7.1. A Survey of Large-Cap Stock Options. We first examine options on the
top 500 stocks by daily trading volume. The parameters we used for filtering the
data are:

(1) Option listed between 1 January 2021 and 5 July 2024.
(2) Daily trading volume of underlying stock≥ 10.5 million units per day, which

filters down to the approximately 500 largest stocks by trade volume.
(3) Option premium ≥ $5.00. This eliminates options whose intrinsic value is

too low for the BSM formula to reasonably calculate, given the precision of
the data.

We calculate the percent error of the Black Scholes Model’s prediction for each
option. The summary stats are presented below, along with a histogram to visualize
the data.

# data points 1.011446e+06
mean -0.2330984
std 8.791468
min -127.7954
Q1 -4.448919

median 0.4942469
Q3 3.483092
max 199.8684

Table 1. Summary statistics of the percent error between the
BSM Formula’s prediction and market price of options for large-
cap stocks.

Figure 1. Distribution curve of the percent error between the
BSM Formula’s prediction and market price of options for large-
cap stocks.

At first glance, the results are extremely promising. The mean error of the model
is less than 1 percent, and the distribution curve formed by the percent error plot
is almost perfectly symmetrical. This suggests that the model itself is good at rep-
resenting the behavior of the market. Strangely, the mean and median, although
both less than a percent away from 0, fall on different sides. This prompts us to
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Figure 2. Log-scaled distribution curve of the percent error be-
tween the BSM Formula’s prediction and market price of options
for large-cap stocks.

investigate the tail behavior of the distribution graph. Examining the logarithmi-
cally scaled distribution curve shown in Figure 2 reveals that the data points are
skewed slightly to the right, suggesting that the model tends to price options higher
than the market when it deviates significantly from the real-life data.

It is very difficult to pinpoint a reason for this skew. A possible explanation
of the skew is that some traders will use options to speculate on future market
movements, relying on factors not reflected in current market conditions. These
riskier speculations may be more frequent in markets during times of high volatility,
when stock prices have more potential to chart massive gains or losses. If the factors
that the traders are relying on turn out to be biased or otherwise incorrect, it can
lead to many options becoming near-worthless. The buyer of these options might
be tempted to resell them on the exchange in hopes of salvaging a portion of the
option premium.

While this prediction is hard to ascertain, it does lead us to wonder if the market
tends to deviate more from the Black-Scholes Model for stocks with higher volatility.

7.2. High vs. Low Volatility. We now take the dataset from Trial 1 and strat-
ify it by volatility. The high volatility subgroup consists of the top quartile of
options from the previous dataset by volatility, while the low volatility subgroup
consists of the bottom quartile. Figure 3 shows log-scaled distribution curves of
both subgroups overlaid on each other.

A visual inspection of the distribution graph reveals that the high volatility
subgroup is much more skewed than the low volatility subgroup, which matches
our expectations. The skewness of the high volatility subgroup is 6.03, while the
skewness of the low volatility subgroup is -1.33. The summary stats for the high
volatility subgroup suggests that traders tend to deviate more from the Black-
Scholes Model during times of high volatility. This is not surprising, since periods
of high volatility tend to encompass major events for the underlying stock, such as
quarterly earnings announcements or a change of leadership in the company.
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Figure 3. Log-scaled distribution curve of the percent error be-
tween BSM Model’s prediction and market prices. The options
from the low volatility group are in blue and the options from the
high volatility group are in red.

# data points 252840
mean 0.870750
std 11.071532
min -72.945531
Q1 -4.120367

median 0.305213
Q3 4.928789
max 199.868386

Table 2. Summary Stats: Percent error between BSM prediction
and market in high volatility group.

What is more surprising is the trend revealed by the summary stats of the low
volatility subgroup. We can see from Table 3 that the mean and median of the
group has shifted significantly to the left compared to the full dataset and the high
volatility subgroup. This implies that traders tend to transact at a higher price
relative to the Black-Scholes Model’s prediction during periods of lower volatil-
ity. This shift in the dataset is apparent in Figure 4, which shows linearly scaled
distribution curves of the two subgroups.
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# data points 252748
mean -1.222670
std 7.514144
min -127.795441
Q1 -5.018839

median -1.236977
Q3 2.296168
max 151.454063

Table 3. Summary Stats: Percent error between BSM prediction
and market in low volatility group.

Figure 4. Distribution curve of percent difference between BSM
model prediction and market in high and low volatility subgroups.

7.3. The Super Micro Computer Inc. Anomaly. We now turn our attention
to an anomaly in the recent large-cap options market. The parameters for our data
are presented below:

(1) Option listing dates between 28 December 2023 and 5 July 2024.
(2) Daily trading volume of underlying ≥ 5.05 million shares.
(3) Option premium ≥ $5.00.
The summary stats of the percent error of the model’s prediction is shown below,

along with a histogram.

# data points 317981
mean 0.811951
std 8.639830
min -72.438899
Q1 -3.164326

median 0.265585
Q3 3.861148
max 180.210774

Table 4. Summary Stats: Percent error between BSM Model’s
prediction and market price for options.
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Figure 5. Distribution curve of percent error between BSM
Model prediction and market price of options.

At a glance, it appears that the BSM formula has predicted the real-life options
quite well. However, when we plot the actual price of each option against the
corresponding prediction of the BSM formula, we find an anomaly.

Figure 6. Scatter plot of BSM model’s prediction vs. market
price of options. Line of best fit: y = 1.00x + 0.14. Coefficient of
determination (R2): 0.990

Despite a near-perfect one-to-one correlation and a R2 value of 0.99, there is a
distinct set of points which fall significantly above the line, indicating a trend of
options being sold for far less than their theoretical value. Extracting the individual
data points reveals that out of the 81 outliers, 67 were options on SMCI (Super Mi-
cro Computer Inc.), with AVGO (Broadcom), NVDA (Nvidia), and ADBE (Adobe)
making up the remaining 14 points. Moreover, 60 out of the 67 SMCI options were
calls.

A moment’s reflection on macroeconomic trends during the time period provides
vital context for the anomaly. All four stocks benefited greatly from massive devel-
opments in the artificial intelligence sector, which led to unprecedented increases
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for the stock price of many established companies within the industry. For example,
SMCI’s stock price rose fourfold in the first three months of 2024. However, the
speculative nature of the “AI bubble” also meant that traders may have deviated
from standard metrics for pricing options, instead opting to make risky bets on
the continuation of the stocks’ historic runs. Along with the period of sell-off that
SMCI experienced in the second quarter of 2024, an increase in speculation could
provide a plausible reason for the significant number of call options which were
selling for well below their theoretical value.

This case study highlights one of the major shortcomings of the Black-Scholes
Model: an inability to factor in macroeconomic trends such as disruptive technologi-
cal advancements. It also provides some context for the results of Section 7.2, where
we observed a tendency for the distribution curve to skew right for high-volatility
stock options.

Our investigation into the empirical accuracy of the Black-Scholes Model high-
lights both the remarkable consistency of the model and some of its limitations.
In the first trial, the model demonstrated a strong alignment with market prices
for options on large-cap stocks, suggesting that the Black-Scholes Model performs
well for highly liquid and relatively stable markets. In Section 7.2, we found that
the model fails to capture a tendency for markets to price options lower than their
theoretical value in high-volatility environments. We also observed a tendency for
the model to systematically undervalue options in low-volatility environments rela-
tive to the market. This demonstrates the model’s shortcomings in accounting for
speculative trading or major market events, which is underscored by the findings in
Section 7.3. Our results suggest that while there may be room for improvement in
the Black-Scholes Model when dealing with volatile market conditions, the model
provides a stable foundation for understanding the pricing of options in reasonably
efficient markets.
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