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Abstract. This expository paper describes Hausdorff and packing dimen-

sions, commenting on theorems which demonstrate duality between the two
fractal dimensions. It mainly presents algorithmic fractal dimension and the

Point to Set Principle, which relates the dimension of a set to the Kolmogorov

complexity of its points. The Point to Set Principle reveals additional du-
alities between Hausdorff and packing dimensions and significantly simplifies

some classical proofs of fractal dimension theorems. Furthermore, a concept

resulting from the Point to Set Principle, ’optimal oracles,’ provides another
category of sets that replaces the analytic requirement in Marstrand’s Pro-

jection Theorem, and may be applied in the future to broaden other notable

theorems.
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1. Introduction

Lebesgue measure, informally, gives a notion of the volume of a set, but can
classify drastically different sets as identically having measure zero. For example,
in R3, a plane, a line, and a point all have measure zero. Similarly, in R, a one-
thirds Cantor set and a Cantor set constructed by removing the middle 9/10ths
have Lebesgue measure zero. The amount of information this measure can provide
about a set depends on the space that the set is considered in.

An alternative measure, Hausdorff s-measure, returns values proportional to
Lebesgue measure (when taken in Rn with s = n) while also possessing a method for
determining the ’appropriate’ dimension in which to evaluate a set. This dimension
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is the Hausdorff dimension of a set. With a slightly different construction, packing
measure and packing dimensions can also be defined. Both Hausdorff dimension
and packing dimension are examples of fractal dimensions.

Using algorithmic information theory, it is possible to find effective dimensions
for individual points in Rn. The Point to Set Principle associates the Hausdorff
and packing dimension of a set with the effective Hausdorff and packing dimensions
of its points, allowing algorthmic information and computability results to be used
to prove theorems about fractal dimensions. Additionally, since the Point to Set
Principle does not assume that sets are Borel or analytic, this alternative method
may be able to remove these requirements from some classical theorems.

This expository paper will summarize both classical analysis results on duality
between Hausdorff and packing dimension, as well as the Point to Set Principle and
results using effective dimension. It will also present examples of sets in which the
inequality relations between Hausdorff and packing dimensions of sets and their
Cartesian product are equalities and strict inequalities. Finally, it describes a qual-
ity of a set (possessing ”optimal oracles”) which indicates the set is, in a sense, well
behaved. The quality of having optimal oracles has replaced analytic requirements
on sets in some theorems, significantly broadening the theorem’s applicability, and
this quality has the potential to be applied to other theorems in fractal geometry.

2. Hausdorff and Packing Dimensions

This section will define Hausdorff dimension and packing dimension, which are
both types of fractal dimensions. Although there are other notable fractal dimen-
sions, Hausdorff and packing dimension are the most relevant to this paper. First,
it is necessary to present the Hausdorff and packing measures, and define dimen-
sion relative to how these measures behave for various values of s. The definition
for Hausdorff dimension follows the construction in [5], and the packing dimension
definition follows [8] in N. Lutz’s section introducing classical fractal dimensions.

Definition 2.1. [5] Let E ⊆ Rn. If E ⊆
⋃

i Ui and for all i, it is true that
0 < |Ui| ≤ δ (where |Ui| is the diameter of Ui), then {Ui} is called a δ-cover of E.
For non-negative s and δ > 0, define H s

δ (E) as

H s
δ (E) = inf

{ ∞∑
i=1

|Ui|s
}

where the infimum is over all countable δ-covers {Ui} of E.
The s-dimensional Hausdorff outer measure of E is then

H s(E) = lim
δ→0

H s
δ (E).

Finally, the Hausdorff dimension of E is

dimH(E) = inf{s > 0 : H s(E) = 0}.

Notice that, because of how the Hausdorff measure is defined, for any set E and
any s, t with

0 ≤ s < dimH(E) < t,

then H s(E) = ∞ and H t(E) = 0. Therefore, the Hausdorff dimension of E
indicates, informally, the appropriate dimension for measuring E with the Hausdorff
measure. For example, if F is the one thirds Cantor set, then even though the
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Hausdorff 1-measure of F is zero, the s-dimensional Hausdorff measure of F is 1

for s = dimH(F ) = log(2)
log(3) [5]. A 9/10ths Cantor set, despite also having Hausdorff

1-measure zero, would have a smaller Hausdorff dimension of log(2)
log(20) , effectively

distinguishing the two ’differently sized’ sets.
Furthermore, note that, if dimH(E) = 0, then H 0(E) ’counts’ the number of

points in E ⊆ Rn. If E has one point, it can be covered by one set of arbitrary
diameter, so inf

{∑∞
i=1 |Ui|0

}
= 1 = H 0(E), for example.

Defining packing dimension similarly requires first defining packing s-measure.

Definition 2.2. [8] Let Bδ(x) indicate the open ball with diameter δ > 0 and
center at x. Then define

P s
δ (E) = sup

{ ∞∑
i=1

|Bδi(xi)|s
}

where the supremum is taken over all countable collections {Bδi(xi)} of open, pair-
wise disjoint balls with diameters at most δ and centers xi ∈ E. Now define P s

0 (E)
as

P s
0 (E) = lim

δ→∞
P s
δ (E).

The s-dimensional packing outer measure of E is then

P s(E) = inf

{ ∞∑
i=1

P s
0 (Ei) : E ⊆

∞⋃
i=1

Ei

}
where the infimum is taken over possible countable covers of E.
The packing dimension is then

dimp(E) = inf {s > 0 : P s(E) = 0} .

Notice that, for any set E ⊆ Rn, then 0 ≤ dimH(E) ≤ dimp(E) ≤ n.

3. Some Classical Results

This section will present some basic results about these two fractal dimensions,
as well as an interesting theorem on duality between Hausdorff and packing dimen-
sions for additive complements. (Although this theorem is presented to discuss the
duality between Hausdorff and packing dimension, providing the detail necessary to
fully prove the theorem would distract from the focus of this paper. The complete
proof and discussion can be found in [9].)

Note that the term ”classical” contrasts against results which use algorithmic
information and effective dimension. The results obtained with algorithmic infor-
mation and the Point-to-Set Principle are discussed in the remaining sections of
this paper. The proofs of the following results also present introductory examples
of techniques used in obtaining classical fractal dimension theorems.

Proposition 3.1. Let E ⊆ Rn and fix z ∈ Rn. If E+z is defined as the translation
of E by z, or equivalently

E + z = {x+ z : x ∈ E},
then

H s(E + z) = H s(E).
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Proof. Let E ⊆ Rn and z ∈ Rn, and let {Ui} be any δ-cover of E. Construct
{Vi} to be a δ-cover of E + z by choosing Vi = Ui + z for all i ∈ N, noticing that
|Vi| = |Ui|, since translation does not change the diameter of a set. Therefore,

H s
δ (E) = inf

{ ∞∑
i=1

|Ui|s
}

= inf

{ ∞∑
i=1

|Vi|s
}

= H s
δ (E + z)

so that H s(E) = H s(E + z).
□

The following lemmas, presented partially in [5], prove that the Hausdorff di-
mension of any projection of a set is never larger than the dimension of the original
set.

Lemma 3.2. Let E ⊆ Rn and F ⊆ Rm, and let f : E → F be a surjective mapping
such that

∥f(x)− f(y)∥ ≤ c∥x− y∥
for some constant c ∈ [0,∞), for all x, y ∈ E. Then for any s ∈ [0,∞),

H s(F ) ≤ csH s(E).

Proof. First note that, if c = 0, then f(x) = f(y) for all x, y ∈ E. If E is the empty
set, then so is F , and the result is trivial. If E has at least one element, then since
f is surjective, F = {f(x)} and has dimH(F ) = 0 so that H 0(F ) = 1 ≤ H 0(E).
For any s > 0, then by definition H s(F ) = 0 so the result holds for all s.

Now assume that c > 0. Let {Ui} be some countable δ-cover of E, and construct
{Vi} such that for all i, the set has Vi = f(Ui∩E). Notice that, since f is surjective,

F ⊆
∞⋃
i=1

Vi.

Furthermore, notice that {Vi} is a cδ-cover of F , since |f(Ui ∩ E)| ≤ c|Ui| ≤ cδ.
Therefore, for any s,

H s
cδ(F ) = inf

{∑
i

|Vi|s
}

≤ inf

{∑
i

cs|Ui|s
}

= csH s
δ (E).

Since limδ→0 H s
δ (F ) = limcδ→0 H s

cδ(F ), then taking the limit gives

H s(F ) ≤ csH s(E)

completing the proof.
□

Lemma 3.3. Let E ⊆ Rn, let Π be any subspace of Rn, and let projΠ(E) denote
the orthogonal projection of E onto the subspace Π. Then for any s ≥ 0,

H s(projΠ(E)) ≤ H s(E)

and

dimH(projΠ(E)) ≤ dimH(E).
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Proof. Note that orthogonal projection onto Π does not increase distances, so for
any x, y ∈ E,

∥projΠ(x)− projΠ(y)∥ ≤ ∥x− y∥
and therefore Lemma 3.2 can be applied directly to give the first result. The second
result follows from the above and the definition of dimH(E). If H s(F ) ≤ H s(E)
for any s, then

inf {s > 0 : H s(F ) = 0} ≤ inf
{
d > 0 : H d(E) = 0

}
necessarily. Therefore, dimH(projΠ(E)) ≤ dimH(E).

□

Straightforward classical inequalities, like the ones above and the first portion
of the following lemma, are often proven in [5] by demonstrating that the inequal-
ity holds for any Hausdorff s-measure and later extending the result to Hausdorff
dimension. Due to the Point-to-Set Principle, algorithmic proofs rarely use the
Hausdorff or packing measures directly.

The following lemma is from [5] and [9], and is briefly used for the later theorem
on duality between additive complements. The first portion of the lemma, from [5],
does not require the sets to be Borel. However, the statements are combined here
for simplicity, and the most complete version of the lemma is proven in Section 6
using algorithmic dimension.

Lemma 3.4. For Borel sets E and F ,

dimH(E) + dimH(F ) ≤ dimH(E × F ) ≤ dimH(E) + dimp(F ).

The following results on Hausdorff and packing dimension duality with respect
to additive complements are from [9], and are briefly commented on at the end of
Section 6.

Theorem 3.5. [9] Let A ⊆ Rn be a nonempty Borel set. Then

dimH(A) = n− inf
{
dimM (B) : B ⊆ Rn is compact, int(A+B) ̸= ∅

}
= n− inf {dimp(B) : B ⊆ Rn is compact, int(A+B) ̸= ∅}
= n− inf {dimp(B) : B ⊆ Rn is Borel, A+B = Rn} ,

(3.6)

and

dimp(A) = n− inf {dimH(B) : B ⊆ Rn is compact, int(A+B) ̸= ∅}
= n− inf {dimH(B) : B ⊆ Rn is Borel, A+B = Rn} .

(3.7)

The following two lemmas are necessary to prove Theorem 3.5, and their proofs
can be found in detail in [9] (in which they are referred to as Lemma 1.6 and
Theorem 1.9, respectively). Note that A + B = {x + y : x ∈ A, y ∈ B}. It
should also be noted that dimM (B) is the upper Minkowski dimension of B, and
dimp(E) ≤ dimM (B) for any set B. The precise definition of upper Minkowski
dimension and related results will not be discussed in depth here.

Lemma 3.8. [9] Let n ∈ N and let A ⊆ Rn be a nonempty Borel set with
dimH(A) > s. Then there exists a compact E with dimM (E) = n − s such that
A+ E has nonempty interior.
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Lemma 3.9. [9] For any analytic A ⊆ Rn with dimp(A) > s, there exists a compact
B ⊆ Rn such that

H n−s(B) = 0

and int(A+B) ̸= ∅.

Proof of Theorem 3.5. Since Lemma 3.4 holds for Borel sets E and F and E + F
is a projection of E × F , then for Borel sets A and B such that A+ B = Rn, it is
the case that

dimH(A) + dimp(B) ≥ dimH(A×B) ≥ n.

This gives

dimH(A) ≥ n− inf {dimp(B) : B ⊆ Rn is Borel, A+B = Rn} and

dimp(A) ≥ n− inf {dimH(B) : B ⊆ Rn is Borel, A+B = Rn} ,

so it is now only necessary to prove that the opposite inequality also holds for both
statements. Note that, in the case that either dimH(A) = 0 or dimp(A) = 0, and
since dimH(B) and dimp(B) are both at most n, then the desired result follows
immediately.

Consider equation (3.6) from the theorem. Say that dimH(A) = d > 0. Then,
by Lemma 3.8, for any s such that d > s, there exists a compact Bs ∈ Rn such that

dimM (Bs) = n− s

and int(A+Bs) ̸= ∅. Then,

dimH(A) = d ≤ n− inf
{
dimM (Bs)

}
which gives the first line of the theorem.

Applying the fact that packing dimension is always less than or equal to upper
Minkowski dimension gives the second line of the first statement, and the fact that
countable translations of sets with nonempty interior can cover Rn gives the final
line.

Now consider (3.7), and say that dimp(A) = c. By Lemma 3.9, for s < c there
exists a compact Bs such that H n−s(Bs) = 0 and int(A + Bs) ̸= ∅. Therefore,
since H n−s(Bs) = 0, then

dimH(Bs) ≤ n− s

by definition. Therefore,

inf{dimH(Bs) : Bs compact, int(A+Bs) ̸= ∅} ≤ n− c

so that

dimp(A) = c ≤ n− inf{dimH(B) : B compact, int(A+B) ̸= ∅}

and so, combining both inequalities for (3.6) and (3.7) completes the proof.
□
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4. Kolmogorov Complexity and Algorithmic Dimension

This section introduces relevant subjects from information theory, including
Kolmogorov complexity, conditional Kolmogorov complexity, oracles, and effec-
tive Hausdorff and packing dimensions. From this point, note that points in Rn

are assumed to be expressed in binary, as Kolmogorov complexity takes in binary
strings.

Definition 4.1. Let σ ∈ {0, 1}∗ be a finite binary string and let U be a universal
prefix-free Turing machine. Then the Kolmogorov complexity of σ is

K(σ) = min
β∈{0,1}∗

{ℓ(β) : U(β) = σ},

where ℓ(β) returns the length of the string β.

Informally, the Kolmogorov complexity of σ gives the length of the shortest string
which, when given to U , causes it to output σ. See [3] for clarification on universal
Turing machines and their role in Kolmogorov complexity.

Example 4.2. If σ is the string 101010 . . . 10 where ′10′ is repeated 32 times, then
one possible string β such that U(β) = σ would be β = σ. However, this would not
be the shortest possible string that gives σ due to the repetition in σ. As 100000 in
binary is equal to 32, then it would only be necessary to give the computer 8 bits
of information on amount of repetition and content being repeated. Therefore, the
Kolmogorov complexity of σ is much shorter than its length. Similarly, for a string
of zeros of length r, the Kolmogorov complexity is on the order of log(r), not r.

Kolmogorov complexity effectively measures, in a sense, the randomness of a
string, and this measurement can be extended to arbitrary points in Rn by com-
paring them with sufficiently close points in Qn.

Definition 4.3. Let x ∈ Rn, and let r ∈ N. Then define

Kr(x) = inf{K(σ) : σ ∈ B2−r (x) ∩Qn}.
Then Kr(x) is called the Kolmogorov complexity of x at precision r. If r ∈ (0,∞),
then Kr(x) is defined as K⌈r⌉(x).

In this definition, the Kolmogorov complexity of σ, since σ is rational, is identical
to the complexity of the binary encoding string of σ, up to an additive constant [3].

Note that x[r] indicates the value in the rth place of the binary expansion of x.
Informally, it can be thought that Kr(x) truncates x to the rth place and calculates
the complexity of the resulting rational number.

We will now define conditional complexity and oracles, which both quantify how
providing additional information to compute a point may reduce the Kolmogorov
complexity of that point.

Definition 4.4. [8] First note that, for two finite strings σ, π ∈ {0, 1}∗, the condi-
tional Kolmogorov complexity of σ given π is defined as

K(σ | π) = min
β∈{0,1}∗

{ℓ(β) : U(β, π) = σ}

where the universal Turing machine is also given the information in π for outputting
σ.
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Notice that, using this format, K(σ) as defined previously is equal to K(σ | π)
where π is the empty string.

The types of Kolmogorov complexity which take strings as inputs are only used
in establishing the related definitions which take points in Rn as inputs. Whenever
Kolmogorov complexity or conditional Kolmogorov complexity is referenced outside
of these definitions, we assume that the complexity is taken with respect to points,
unless explicitly stated otherwise.

Definition 4.5. Let x ∈ Rn, y ∈ Rm and r, s ∈ N. Then the conditional Kol-
mogorov complexity of x to precision r given y to precision s is defined as

Kr,s(x | y) = max{min{K(p | q) : p ∈ B2−r ∩Qn} : q ∈ B2−s ∩Qm}

Note that Kr,r(x | y) is written as Kr(x | y).

Notice that, informally, if y is somehow random with respect to x or otherwise
not useful for calculating x, thenKr(x | y) will be similar toKr(x). If y is equivalent
to x up to the rth place, then Kr(x | y) will be much lower than Kr(x), since more
information about x was provided. (The idea of randomness and ”random with
respect to an oracle” is meant in the Martin-Löf sense, as discussed in [4], and will
be briefly elaborated on later.)

We will now consider a broader way to provide the universal Turing machine with
information. An oracle or oracle set A ⊆ N is countable information that may be
provided while calculating Kolmogorov complexity, replacing the universal Turing
machine with a universal oracle machine with access to the established oracle.

Definition 4.6. Let σ be a string and let A ⊆ N be an oracle. The relativized
Kolmogorov complexity KA(σ) is defined as

KA(σ) = inf{ℓ(β) : UA(β) = σ}

where the universal prefix-free Turing machine from the definition of Kolmogorov
complexity is replaced with UA, a universal oracle machine with access to A. Note
that UA may use a computational step to query membership in A.

The definitions of KA
r (x) and KA

r,s(x | y) for points x, y are identical to their
definitions excluding the oracle, except the universal Turing machine they reference
is replaced with a universal oracle machine with access to A.

A very useful property that Kolmogorov complexity possesses is the Symmetry
of Information. The following forms of this symmetry are presented in [3] and [7],
where it is also referred to as a chain rule.

Theorem 4.7. Let n,m, r, s ∈ N with r ≥ s and let x ∈ Rn and y ∈ Rm. Then

(1) |Kr(x | y) +Kr(y)−Kr(x, y)| ≤ O(log r) +O(log log ∥y∥)
(2) |Kr,s(x | x) +Ks(x)−Kr(x)| ≤ O(log r) +O(log log ∥x∥)
(3) Kr(x, y) = Kr(x | y) +Kr(y) + o(r)

Now I will define effective Hausdorff and packing dimension, which describe the
’dimension’ of points in Rn by using the ratio of the points’ Kolmogorov complexity
up to precision r to the value of r.
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Definition 4.8. Let x ∈ Rn. The effective Hausdorff dimension of x is

dim(x) = lim inf
r→∞

Kr(x)

r
and the effective packing dimension of x is

Dim(x) = lim sup
r→∞

Kr(x)

r
.

The definition presented above was originally a theorem, for dim(x) and Dim(x)
defined with respect to gales, as described in [8]. In this paper, these equivalences
will be taken as definitions instead of theorems.

From this definition, notice that for any x ∈ Rn,

0 ≤ dim(x) ≤ Dim(x) ≤ n.

The last inequality holds because, if a point has n coordinates, then Kr(x) may be
up to nr, such as in the case that all of the coordinates are random.

Lemma 4.9. [3] Let x ∈ Rn and y ∈ Rm. Then

dim(x | y) + dim(y) ≤ dim(x, y)

≤ Dim(x | y) + dim(y)

≤ Dim(x, y)

≤ Dim(x | y) + Dim(y).

Notice that this lemma on effective dimensions follows from the Symmetry of
Information and properties of addition of sequences with lim inf and lim sup.

It should be noted that conditional effective dimension and relativized effective
dimensions dim(x | y),dimA(x),Dim(x | y) and DimA(x) are defined by replacing
the Kolmogorov complexity in the original definition with the corresponding con-
ditional or relativized Kolmogorov complexities. The above lemma also holds for
relativized effective dimensions, since its proof does not depend on the presence or
absence of relativized Kolmogorov complexity.

Note also that, for x ∈ Rn and y ∈ Rm, it is possible to define an oracle Ay which
provides the expansion of y [8]. In this case, Kolmogorov complexity or dimension
calculations with access to oracle Ay are conventionally written as Ky

r (x), dim
y(x),

etc. instead of K
Ay
r (x). The value Ky

r (x) is distinct from Kr(x | y) in the fact that
the former has access to the entire countable expansion of y, while the latter only
has access to y up to precision r (or finite precision s, in the case of Kr,s(x | y)).
Lemma 4.10. [8] Let x ∈ Rn, y ∈ Rm, and r ∈ N. Then

Ky
r (x) ≤ Kr(x | y) +O(log n),

so that dimy(x) ≤ dim(x | y) and Dimy(x) ≤ Dim(x | y).
Remark 4.11. [1] Note that any finite or countable combination of oracles is also
an oracle. The join of oracles A and B is denoted by (A,B). Providing more
information may not increase dimension; for any oracles A,B and x ∈ Rn,

dimA,B(x) ≤ dimA(x)

and similarly,
DimA,B(x) ≤ DimA(x).



10 GRAYSON JARBOE

5. The Point to Set Principle

The Point to Set Principle provides methods to manipulate Hausdorff and pack-
ing dimensions by using effective dimension and algorithmic information. This
principle allows some statements about fractal dimension to be proven much more
concisely or without unnecessarily restrictive requirements on sets.

Theorem 5.1 (Point to Set Principle). [3] Let E ⊆ Rn. Then

dimH(E) = min
A⊆N

sup
x∈E

dimA(x)

and

dimp(E) = min
A⊆N

sup
x∈E

DimA(x).

Note that the minimums, instead of infimums, in both equivalences indicate that
there are oracles such that the minimum value is achieved.

Definition 5.2. Let E ⊆ Rn and let A ⊆ N be an oracle such that

sup
x∈E

dimA(x) = dimH(E)

then A is called a Hausdorff oracle for E. Let B ⊆ N be an oracle such that

sup
x∈E

DimB(x) = dimp(E)

then B is called a packing oracle for E.

Remark 5.3. Note the following results from Theorem 5.1 and properties of effec-
tive dimension and oracles:

(1) [8] Let E ⊆ Rn and ϵ > 0. For any oracle A ⊆ N, there is an x ∈ E such

that dimA(x) ≥ dimH(E) − ϵ and there is a y ∈ E such that DimA(y) ≥
dimp(E)− ϵ.

(2) Since the addition of more oracles cannot increase dimension, then notice
that, if A is a Hausdorff (or packing) oracle for a set E, and B is an arbitrary
oracle, then (A,B) is also a Hausdorff (or packing) oracle for E. Therefore,
since every set has a Hausdorff oracle and a packing oracle by the Point
to Set Principle, then every set has infinitely many Hausdorff and packing
oracles.

(3) [6] For any oracle A ⊆ N, almost every x ∈ Rn is Martin-Löf random
relative to A. This formally means that there exists a constant c such that
∀r ∈ N, then KA

r (x) ≥ nr− c, or dimA(x) = DimA(x) = n. Informally, the
oracle A is entirely unhelpful for calculating x.

The form of the Point to Set Principle can provide intuition about what informa-
tion an oracle may encode. For example, since the dimension of a set is unchanged
by translation, rotation, or scaling, it is clear that an oracle must be able to encode
these types of transformations. Additionally, since countable sets have dimension
zero, and oracles may encode countable information, it is clear that there is an
oracle that, informally, contains all or most of the information of a countable set.
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6. Initial Results Using Algorithmic Dimension

Before demonstrating the value of the Point to Set Principle for expanding or
proving major theorems in fractal geometry, it is useful to introduce how this prin-
ciple may be used to prove initial results about Hausdorff and packing dimensions.
This exercise also provides insight on the different techniques required to use algo-
rithmic information for completing proofs, as compared to classical methods.

This first result is a useful description of the relationship between the Hausdorff
and packing dimension of any sets E,F and the fractal dimensions of their product
E × F .

Theorem 6.1. [8] Let E ⊆ Rn and F ⊆ Rm. Then

dimH(E) + dimH(F ) ≤ dimH(E × F )

≤ dimH(E) + dimp(F )

≤ dimp(E × F )

≤ dimp(E) + dimp(F )

Proof. Let E ⊆ Rn and F ⊆ Rm. This proof generally follows each inequality in
Lemma 4.9 by establishing specific oracles and points in E,F , and E × F using
parts 1 and 2 of Remark 5.3.
Inequality one:
Consider E × F , and let A be a Hausdorff oracle of E × F . Let ϵ > 0. Then the
following are true, by Remark 5.3:

(1) Since A is a Hausdorff oracle, then dimH(E × F ) = supz∈E×F dimA(z)

(2) There exists an x1 ∈ E such that dimA(x1) ≥ dimH(E)− ϵ
2 . Fix this x1.

(3) There exists a y1 ∈ F such that dimA,x1(y1) ≥ dimH(F )− ϵ
2 . Fix this y1.

Therefore,

dimH(E × F ) = sup
z∈E×F

dimA(z) ≥ dimA(x1, y1)

since (x1, y1) is in E × F by definition. By Lemma 4.9,

dimA(x1, y1) ≥ dimA(x1) + dimA(y1 | x1)

and by Lemma 4.10, dimA(y1 | x1) ≥ dimA,x1(y1), so

dimH(E × F ) ≥ dimA(x1) + dimA,x1(y1) ≥ dimH(E) + dimH(F )− ϵ.

Furthermore, since ϵ may be chosen to be arbitrarily small, it must be the case that

dimH(E) + dimH(F ) ≤ dimH(E × F ),

proving the first line of the theorem.
Inequality two:

By Remark 5.3, there exist oracles Bp and BH and a point (x2, y2) ∈ E × F such
that

(1) dimp(E) = supx∈E DimBp(x),

(2) dimH(F ) = supy∈F dimBH (y), and

(3) dimBp,BH (x2, y2) ≥ dimH(E × F )− ϵ
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using the same ϵ as was established initially. Therefore,

dimp(E) + dimH(F ) ≥ DimBp(x2) + dimBH (y2) ≥ DimBp,BH (x2) + dimBp,BH (y2)

since the addition of oracles cannot increase dimension. Since adding information
does not increase dimension, or, formally, DimBp,BH (x2) ≥ DimBp,BH (x2 | y2),
then

dimp(E) + dimH(F ) ≥ DimBp,BH (x2 | y2) + dimBp,BH (y2) ≥ dimBp,BH (x2, y2)

by Lemma 4.9. Therefore, it holds that

dimp(E) + dimH(F ) ≥ dimH(E × F )− ϵ

for any ϵ > 0, so the second inequality is proven.

Inequality three:
Let ϵ, Bp, BH be as previously defined. Let B′ be a packing oracle of E × F , and
let B be the join of oracles Bp, BH , and B′. Let x3 and y3 be elements in E and F
such that

(1) dimB(y3) ≥ dimH(F )− ϵ
2 and

(2) DimB,y3(x3) ≥ dimp(E)− ϵ
2 .

Then, by Remark 5.3, Lemma 4.10, Lemma 4.9, and the fact that relativization
can only decrease dimension, the following series of inequalities hold:

dimp(E × F ) ≥ DimB′
(x3, y3)

≥ DimB(x3, y3)

≥ DimB(x3 | y3) + dimB(y3)

≥ DimB,y3(x3) + dimB(y3)

≥ dimp(E) + dimH(F )− ϵ

so the third inequality is proven.
Inequality four:

Let ϵ, Bp be as defined previously, let C be a packing oracle for F , and let D =
(Bp, C). Then find (x4, y4) ∈ E × F such that

DimD(x4, y4) ≥ dimp(E × F )− ϵ.

Then

dimp(E) + dimp(F ) ≥ DimBp(x4) + DimC(y4)

≥ DimBp(x4 | y4) + DimC(y4)

≥ DimD(x4 | y4) + DimD(y4)

≥ DimD(x4, y4)

≥ dimp(E × F )− ϵ

so inequality four is proven, and the proof of the theorem is complete.
□

The straightforward nature of the above proof makes clear the benefit of applying
effective dimension and algorithmic information to theorems on fractal dimensions.
The following is an immediate corollary from Theorem 6.1.
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Corollary 6.2. Let E ∈ Rn such that dimH(E) = dimp(E) = s for some s. Then
∀F ∈ Rm,

s+ dimH(F ) = dimH(E × F )

and

s+ dimp(F ) = dimp(E × F ).

In light of the generality provided by Theorem 6.1, we will briefly return to
comment on Theorem 3.5 and the possibility of removing Borel requirements in
portions of its proof.

Remark 6.3. Note that for any E,F ∈ Rn, it is the case that E+F is a projection
of E × F , so by Lemma 3.3,

dimH(E + F ) ≤ dimH(E × F ).

Since Theorem 6.1 holds for any sets E and F , then the fact that

dimH(E + F ) ≤ dimH(E × F ) ≤ dimH(E) + dimp(F )

gives

dimH(E) ≥ n− dimp(F )

and

dimp(E) ≥ n− dimH(F )

for any F such that dimH(E + F ) = n.

However, the Borel requirement for the opposite direction of Theorem 3.5 is not
easily removed with the application of algorithmic fractal dimension.

It should also be noted that, in [8], N. Lutz presents a statement equating pack-
ing dimension of a set to a difference between Hausdorff dimension of two related
sets. The statement was previously proven for analytic sets; Lutz’s proof extends
the result to arbitrary sets with the Point to Set Principle. Although this result
has key differences from Theorem 3.5, including lacking a requirement on additive
complements, it demonstrates a similar duality between packing dimension and
Hausdorff dimension.

Theorem 6.4. [8] Let E ⊆ Rn. Then

dimp(E) = sup
F⊆Rn

{dimH(E × F )− dimH(F )}.

There are a variety of other notable proofs that make use of the Point to Set
Principle. This principle has been successfully applied to finding the Hausdorff
dimension of plane Kakeya sets [3], finding the dimension of a pinned distance set
[2], and describing a broader condition for sets which ensures that Marstrand’s
projection theorem holds [1]. Most of these examples are cited as evidence for the
value of the Point to Set Principle, and will not be presented in full in this paper.
However, Section 8 will describe the result on Marstrand’s projection theorem and
the condition of having optimal oracles in detail.
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7. Examples of Equality and Strict Inequality in Theorem 6.1

It is useful to provide insight on Theorem 6.1, and demonstrate that the inequal-
ities present cannot be replaced with equalities, by constructing examples of sets
for which equality and strict inequality hold.

Because of Corollary 6.2, it is straightforward to generate examples where equal-
ity holds in part or in all of the theorem. For example, if E = F = ∅, or both
E and F are sets with equivalent packing and Hausdorff dimension, then clearly
dimH(E) + dimH(F ) = dimp(E) + dimp(F ), and all of the inequalities in Theo-
rem 6.1 are equal. If dimH(E) = dimp(E) = s but dimH(F ) ̸= dimp(F ), then

dimH(F ) + s = dimH(E × F ) < dimp(E × F ) = dimp(F ) + s,

so some portions of the theorem are equal and others are strict inequalities.

The proposition below provides an example of sets E,F for which

dimH(E)+dimH(F ) < dimH(E×F ) = dimH(E)+dimp(F ) < dimp(E)+dimp(F ).

The construction presented in this proposition is similar to one described in [5],
but Falconer’s proof is classical. The use of effective dimension for this proof, and
specifically the method for proving that dimH(E) = 0 as well as the intuition be-
hind the construction of the sets, was explained to me by my mentor, Iqra Altaf.

Proposition 7.1. There exist sets E and F such that dimH(E) = dimH(F ) = 0
and dimH(E × F ) = 1.

Proof. Let {mn} be a sequence of integers such that m1 = 1 and for all n ∈ N,
mn+1 ≥ nmn. Recall that x[r] indicates the value in the rth place of the binary
expansion of x. Let E be the set of x ∈ [0, 1] such that for all r ∈ N withm2j−1+1 ≤
r ≤ m2j for some j, then x[r] = 0.

Note that, since E includes all x of this form, then for any z ∈ [0, 1], it is possible
to find a point xz in E which has xz[r] = z[r] for r /∈ [m2j−1 + 1,m2j ] for some j.
Therefore, since almost every point in [0, 1] is Martin Löf random, it is possible to
find points in E that have random strings in their expansion between the strings
that are set to be zero.

Similarly, construct F as the set of all y ∈ [0, 1] such that for all r with
m2j + 1 ≤ r ≤ m2j+1 for some j ∈ N ∪ {0} (and setting m0 = 0 for clarity),
then y[r] = 0.

The following is an informal picture, intended to provide intuition about the
construction. Say, for example, that mn = n!, and say that having x[r] represented
as z for some value r within a binary expansion indicates that the value is random
or may vary. Then all x ∈ E and y ∈ F are of the forms

x = 0. z 0 z z z z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z . . .

y = 0. 0 z 0 0 0 0 z z z z z z z z z z z z z z z z z z 0 . . .

where spacing is exaggerated to demonstrate alignment between random sections
and zero sections of x and y, and the length of each section is determined by the
values of {mn}. With this visualization and the construction of E and F complete,
we will return to the proof.
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Consider the dimensions of E and F . I claim that, for any x ∈ E,

lim inf
r→∞

Kr(x)

r

occurs for the subsequence of r = m2j for j ∈ N. Informally, this is true because,
for r such that m2j +1 ≤ r ≤ m2j+1, then x[r] may be random as discussed above,

so Kr(x)
r may be up to one. For r such that m2j−1 + 1 ≤ r < m2j , then since all

places after x[m2j−1] are zeroes, they only contribute to Kr(x) proportionally to

log(r). Since, in this case, log(r)
r ≥ log(m2j)

m2j
, then the claim holds.

Returning to the proof of the Hausdorff dimension of E, fix x ∈ E. By the
symmetry of information,

Km2j (x) ≤ Km2j ,m2j−1(x | x) +Km2j−1(x) + o(m2j)

≤ log(m2j) +m2j−1 + o(m2j).

Notice that Km2j ,m2j−1
(x) is approximately log(m2j) because, by construction,

this finds the complexity of the m2j −m2j−1 long string of zeros in this section of
the expansion. Therefore,

dim(x) = lim inf
r→∞

Kr(x)

r
= lim

j→∞

Km2j (x)

m2j

where
Km2j (x)

m2j
≤ m2j−1

m2j
+

log(m2j)

m2j
+

o(m2j)

m2j

and since
m2j−1

m2j
≤ 1

2j−1 , then, taking the limit,

dim(x) ≤ 0

for all x ∈ E, since this was computed with respect to an arbitrary x. Furthermore,
since the addition of oracles cannot increase effective dimension, then

min
A∈N

sup
x∈E

dimA(x) = dimH(E) = 0.

Since y ∈ F is constructed in an almost identical manner as x ∈ E, then by the
same argument,

dimH(F ) = 0.

Now consider the Hausdorff dimension of E × F . First note that E + F is a
projection of E × F onto the line y = x. Take any z ∈ [0, 1]. By construction, it
is possible to find an x ∈ E and a y ∈ F such that, ∀r ∈ N and j ∈ N ∪ {0}, if
m2j + 1 ≤ r ≤ m2j+1, then x[r] = z[r], and if r is such that m2j−1 + 1 ≤ r ≤ m2j ,
then y[r] = z[r]. In a sense, it is possible to find x, y such that z is split between
them, with x and y alternating between a section of the expansion of z and a string
of zeroes. Then, since x, y are zero everywhere except for the sections assigned to
equal z, it is true that x+ y = z.

Therefore, for any z ∈ [0, 1], it is the case that z ∈ E + F , so dimH(E + F ) = 1.
By Lemma 3.3,

dimH(E × F ) ≥ dimH(E + F ) = 1.

To determine that dimH(E × F ) = 1, consider dimp(E). By Theorem 6.1,

1 ≤ dimH(E × F ) ≤ dimp(E) + dimH(F ) = dimp(E)
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and since E ⊆ R, then dimp(E) ≤ 1. Notice that the same argument holds for
dimp(F ). Therefore, dimp(E) = 1 = dimp(F ), and dimH(E × F ) = 1. This
completes the proof, and also demonstrates that

dimH(E) + dimH(F ) < dimH(E × F )

= dimH(E) + dimp(F ) = dimp(E) + dimH(F )

< dimp(E) + dimp(F ).

□

8. Optimal Oracles

Another concept motivated by the Point to Set Principle and Hausdorff and
packing oracles is the idea of optimal oracles and sets which possess optimal or-
acles. Broadly, optimal Hausdorff or packing oracles are Hausdorff or packing
oracles which minimize the complexity of most points. This section follows [1],
which defines optimal oracles, constructs sets without optimal oracles, and replaces
the requirement of sets being analytic in Marstrand’s projection theorem with a
requirement for sets to have optimal oracles. This section aims to briefly introduce
the main ideas of [1].

Say that E is a set without optimal Hausdorff oracles, and let A be a Hausdorff
oracle for E. Then, even though A achieves the minimum for supx∈E dimA(x),

it would be the case that, for some oracle B and x ∈ E, the value dimA,B(x)

is significantly less than dimA(x) (but B leaves supx∈E dimA,B(x) unchanged).
The existence of optimal oracles for a set establishes that there is an oracle for
which the addition of any further oracles only minimally reduces the Kolmogorov
complexity of most points in the set, preventing most points from dramatically
changing complexity with the addition of more oracles. The optimal oracle is a
’best’ oracle for reducing the complexity at most points.

Definition 8.1. [1] Let E ⊆ Rn and let A ⊆ N be a Hausdorff oracle for E. Then
A is called a Hausdorff optimal oracle for E if, for every oracle B and ϵ > 0, there
exists an x ∈ E such that

dimA,B(x) ≥ dimH(E)− ϵ

and, for almost every r ∈ N,

KA,B
r (x) ≥ KA

r (x)− ϵr.

To demonstrate the value of this definition of an optimal oracle, it is also neces-
sary to define the following set. If B is an oracle and ϵ > 0, then

N(A,B, ϵ) = {x ∈ E | (∀∞r)KA,B
r (x) ≥ KA

r (x)− ϵr},

where ∀∞r indicates ’for almost every r.’

Proposition 8.2. [1] Let E ⊆ Rn have positive Hausdorff dimension, and let A
be an oracle. Then A is a Hausdorff optimal oracle for E if and only if A is a
Hausdorff oracle and, for every B ⊆ N and ϵ > 0,

dimH(N(A,B, ϵ)) = dimH(E).
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Proof. [1] To prove the forward direction, assume that A is a Hausdorff optimal
oracle for E. The result that A is a Hausdorff oracle for E follows trivially. Let
B ⊆ N and fix ϵ > 0. Let C be a Hausdorff oracle for N(A,B, ϵ). Notice that, by
construction, dimH(N(A,B, ϵ)) ≤ dimH(E). Suppose for contradiction that there
is some λ > 0 (assuming, without loss of generality, that ϵ > λ) such that

dimH(N(A,B, ϵ)) < dimH(E)− λ.

Then, for every x ∈ N(A,B, ϵ), it is true that

dimA,(B,C)(x) ≤ dimC(x) ≤ dimH(N(A,B, ϵ)) < dimH(E)− λ

and, since A is a Hausdorff optimal oracle, there exists a point x ∈ E such

that dimA,(B,C)(x) ≥ dimH(E) − λ and, for almost every r, it is the case that

K
A,(B,C)
r (x) ≥ KA

r (x)− λr. Any such x that fulfills these properties cannot be in
the set N(A,B, ϵ), by the above. Since x /∈ N(A,B, ϵ), then, for infinitely many r,

KA,(B,C)
r (x) < KA

r (x)− ϵr

which produces a contradiction. Therefore, dimH(N(A,B, ϵ)) = dimH(E).

To prove the backward direction, let A be a Hausdorff oracle for E, and assume
that, for any B and ϵ > 0, then dimH(N(A,B, ϵ)) = dimH(E). Fix B ⊆ N and
ϵ > 0. Then

dimH(E) = dimH(N(A,B, ϵ)) ≤ sup
x∈N(A,B,ϵ)

dimA,B(x).

Therefore, there exists an x ∈ E such that dimA,B(x) ≥ dimH(E)−ϵ and, for almost
every r, it holds thatKA,B

r ≥ KA
r (x)−ϵr. This proves that A is a Hausdorff optimal

oracle.
□

Even though the definition of having optimal oracles only requires that Kol-
mogorov complexity is minimized at one point in the set, the above proposition
demonstrates that this requirement ensures that the Kolmogorov complexity of
most points are minimized by the optimal oracle.

Just as any oracle joined with a Hausdorff or packing oracle is also a Hausdorff or
packing oracle, the join of any oracle and a Hausdorff optimal oracle is an optimal
oracle.

Lemma 8.3. [1] Let E ⊆ Rn. Let A be a Hausdorff optimal oracle for E. Then
for any oracle B ⊆ N, the join (A,B) is a Hausdorff optimal oracle for E.

Proof. [1] Let A be a Hausdorff optimal oracle for E, and let B be an oracle. By
Remark 5.3, the join (A,B) is a Hausdorff oracle for E. Let ϵ > 0, and let C be an
oracle. Let x ∈ E such that

dimA,(B,C)(x) ≥ dimH(E)− ϵ

and also, for almost every r,

KA,(B,C)
r (x) ≥ KA

r (x)− ϵr

which are both possible by Remark 5.3 and the fact that A is a Hausdorff optimal
oracle.
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For large enough r, it is true that

K(A,B),C
r (x) = KA,(B,C)

r (x).

Since

KA,(B,C)
r (x) ≥ KA

r (x)− ϵr

≥ KA,B
r − ϵr

then
K(A,B),C

r (x) ≥ KA,B
r − ϵr,

which holds for any arbitrary oracle C. Therefore, (A,B) is also a Hausdorff optimal
oracle for E.

□

It is also possible to define optimal packing oracles, which have broadly similar
properties as optimal Hausdorff oracles.

Definition 8.4. [1] Let E ⊆ Rn and let A ⊆ N be a packing oracle for E. Then
A is a optimal packing oracle for E if, for every oracle B and ϵ > 0, there exists a
point x ∈ E with DimA,B(x) ≥ dimp(E)− ϵ and, for almost every r ∈ N,

KA,B
r (x) ≥ KA

r (x)− ϵr.

The packing optimal equivalents of Proposition 8.2 and Lemma 8.3 also both
hold.

Proposition 8.5. [1] Let E ⊆ Rn have positive packing dimension, and let A be
an oracle. Then A is a packing optimal oracle for E if and only if A is a packing
oracle and, for every B ⊆ N and ϵ > 0,

dimp(N(A,B, ϵ)) = dimp(E).

Lemma 8.6. [1] Let E ⊆ Rn. Let A be a packing optimal oracle for E. Then for
any oracle B ⊆ N, the join (A,B) is a packing optimal oracle for E.

Remark 8.7. These additional qualities of optimal oracles and sets with optimal
oracles are presented and proven in [1].

(1) Let F ⊆ E. If dimH(F ) = dimH(E) and E has optimal Hausdorff oracles,
then F has optimal Hausdorff oracles. If dimp(F ) = dimp(E) and E has
optimal packing oracles, then F has optimal packing oracles.

(2) Let {Ei}i∈N be a sequence of sets such that E =
⋃

i Ei. If each Ei has
optimal Hausdorff oracles, then E has optimal Hausdorff oracles. If each
Ei has optimal packing oracles, then E has optimal packing oracles.

(3) Let F such that dimH(F ) = dimp(F ). Then, for a set E ⊆ Rn, the set
E×F has optimal Hausdorff oracles if and only if E has optimal Hausdorff
oracles.

The following are some sufficient conditions for a set having optimal oracles.

(1) If E ⊆ Rn is analytic, it has optimal Hausdorff oracles and optimal packing
oracles.

(2) If E is such that dimH(E) = dimp(E), then it has optimal Hausdorff oracles
and optimal packing oracles.

(3) Assume the Axiom of Determinacy. Then every set has optimal Hausdorff
oracles.
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Not every set has optimal Hausdorff oracles or optimal packing oracles [1]. As-
suming the axiom of choice (AC) and the continuum hypothesis (CH), for s ∈ (0, 1),
it is possible to construct a set E ⊆ R with Hausdorff dimension s such that E does
not have optimal Hausdorff oracles. It is also possible to extend this construction
to make sets E ⊆ Rn with Hausdorff dimension s ∈ (0, n) that do not have optimal
Hausdorff oracles. Similarly, it is possible to construct a set E, under the assump-
tions of AC and CH, such that, for 0 < s1 < s2 ≤ 1, the set has dimH(E) = s1 and
dimp(E) = s2 and E does not have optimal Hausdorff oracles or optimal packing
oracles.

The above propositions and lemmas present notable features of sets with opti-
mal oracles. We will now consider a major motivation for using the property of
possessing optimal oracles: the extension of Marstrand’s projection theorem.

Theorem 8.8 (Marstrand’s projection theorem for sets with optimal oracles). [1]
Let E ⊆ R2 be a set with optimal Hausdorff oracles. For θ ∈ [0, π], let projθ(E)
indicate the projection of E onto the line that makes angle θ with the origin. Then
for almost every θ ∈ [0, π],

dimH(projθ(E)) = min{dimH(E), 1}.

Beyond Marstrand’s projection theorem and the results that have already been
achieved using these methods, optimal oracles and the Point to Set Principle have
significant potential for augmenting classical results on fractal dimensions.

Acknowledgments

I would like to thank my mentor, Iqra Altaf, for guiding me to helpful texts on
fractal dimensions, for introducing me to the Point to Set Principle and algorithmic
information, for suggestions about the direction of this paper, and for answering my
questions. I want to express my gratitude to Professor Peter May for the REU, and
for the opportunity to write this paper and attend talks on fascinating subjects.

References

[1] D. M. Stull. Optimal oracles for point-to-set principles. Symposium on Theoretical Aspects of

Computer Science, 2021. ArXiv, 2021, https://arxiv.org/pdf/2101.11152.

[2] D. M. Stull. Pinned distance sets using effective dimension. ArXiv, 2022,
https://arxiv.org/pdf/2207.12501.

[3] Jack H. Lutz and Neil Lutz. Algorithmic information, plane Kakeya sets, and con-

ditional dimension. ACM Trans. Comput. Theory, 10(2):Art. 7, 22 pages, 2018.
https://dl.acm.org/doi/pdf/10.1145/3201783.

[4] Jack H. Lutz and Neil Lutz. Lines missing every random point. Electron. Colloquium Comput.
Complex. TR14, 2014. ArXiv, 2014, https://arxiv.org/pdf/1401.3063.

[5] Kenneth J. Falconer. The Geometry of Fractal Sets. Cambridge University Press, 1985.

doi:10.1017/cbo9780511623738.
[6] Neil Lutz and D. M. Stull. Bounding the dimension of points on a line. Inf. Comput., 275

(2016): 104601. ArXiv, 2017, https://arxiv.org/pdf/1612.00143.

[7] Neil Lutz and D. M. Stull. Projection theorems using effective dimension. Inf. Comput., 297
(2017): 105137. ArXiv, 2021, https://arxiv.org/pdf/1711.02124.

[8] Neil Lutz. Fractal intersections and products via algorithmic dimension. In 42nd International

Symposium on Mathematical Foundations of Computer Science (MFCS 2017), 2017. ArXiv,
2021, https://arxiv.org/pdf/1612.01659.
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