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Abstract. This paper gives an introductory overview of the applications of

algorithmic complexity theory to classical geometric measure theory problems
using a recent point-to-set principle, which gives an algorithmic characteriza-

tion of Hausdorff dimension. We introduce the notions of Kolmogorov com-

plexity in Euclidean space and effective dimension, prove the point-to-set prin-
ciple, as well as a lower bound on the effective dimension of points on a line,

and use these results to provide alternate proofs of the Kakeya problem in the

plane and a special case of the Furstenberg set conjecture.
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1. Introduction

Hausdorff dimension is one of the most important tools in geometric measure
theory, especially for the study of fractal sets. However, it is often very difficult to
compute. This paper provides an introduction from a geometric perspective to the
concepts, proof, and some applications of a recent point-to-set principle due to J.
Lutz and N. Lutz in [1], which gives an alternate method for proving lower bounds
on Hausdorff dimension using the effective dimension of points in Rn. Throughout
the paper, we assume basic knowledge of Hausdorff dimension, but no background
in complexity theory.

In Section 2, we give an intuitive introduction to the Kolmogorov complexity of
finite strings and how this idea can extend into Euclidean space, as well as defining
the effective dimension of a point x ∈ Rn. In Section 3, we introduce oracles and
prove the point-to-set principle, which characterizes the Hausdorff dimension of a
set E ⊂ Rn as follows:

dimH(E) = min
A⊂N

sup
x∈E

dimA(x).
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In Section 4, we provide a geometric interpretation of a result due to N. Lutz and
D. M. Stull in [2], which proves a lower bound on the effective dimension of points
(x, ax+b) ∈ R2 in terms of the dimensions of a, b, and x. Finally, we use this result
in Section 5, in conjunction with the point-to-set principle, to provide straightfor-
ward algorithmic proofs that Kakeya sets in R2 are two-dimensional and that (α, β)
-Furstenberg sets in the plane have dimension greater than α+min{α, β}, a result
first shown in [2] which contributed to the recent resolution of the Furstenberg set
conjecture in R2 in [4]. Through these applications, we seek to demonstrate the
power of algorithmic methods in geometric measure theory.

2. Kolmogorov Complexity and Effective Dimension

Let {0, 1}∗ denote the set of finite binary strings. Given a string σ ∈ {0, 1}∗,
how “hard” is it to compute σ? Kolmogorov complexity quantifies the difficulty of
this computation using Turing machines.

Definition 2.1. Fix U to be a universal Turing machine (to avoid tedious details,
think of a computer equipped with any common coding language). Define the
Kolmogorov complexity of σ as follows:

K(σ) = inf{ℓ(β) such that β ∈ {0, 1}∗ and U(β) = σ},
where ℓ(β) is the length of the string β.

Intuitively, the Kolmogorov complexity of σ is the shortest input one can give a
computer program such that it will return σ. For a formal treatment of complexity
theory, see [8].

Example 2.1. Let σ = 1010...10, where 10 is repeated sixty-four times. For a
computer to output σ, we only need to tell it to repeat the string “10” sixty-four
times, so a sufficient input would be the number 64 in binary, followed by the string
“10”. This input is just 8 bits long, so that K(σ) = 8, which is much smaller than
the length of σ.

However, if σ is more or less “random”, then K(σ) is going to be close to the
length of σ, meaning that there is no shortcut to computing σ, and the best one
can do is input σ itself into the computer and tell it to simply output the input.

This brings us to the following definitions, which extend the ideas of Kolmogorov
complexity into Euclidean space.

Definition 2.2. Given x ∈ Rn and r ∈ N, the Kolmogorov complexity of x at
precision r is

Kr(x) = inf{K(σ) : σ ∈ B2−r (x) ∩Qn}.
If x is a real number, one can think of Kr(x) as the complexity of the finite string
obtained by cutting off the infinite binary expansion of x at r digits.

Definition 2.3. The effective dimension (also called the algorithmic dimension,
or simply dimension) of a point x ∈ Rn is

dim(x) = lim inf
r→∞

Kr(x)

r
.

Effective dimension measures the difficulty of computing an element of Rn in
an asymptotic way. It follows directly from the definition that, for any x ∈ Rn,
0 ≤ dim(x) ≤ n, but more is true:
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Lemma 2.4. For any real number α ∈ [0, n], there are uncountably many x ∈ Rn

with dim(x) = α.

This statement was first proven in [7], and is very important for any proof involv-
ing effective dimension because it allows us to choose points with any dimension
we want, particularly “totally random” points, or those with effective dimension n.

Example 2.2. dim(0) = 0, since to compute r digits of 0 we only need to tell the
computer to repeat the digit 0 r times, which takes around log r bits of information
because we only need to tell it the number r in binary (note that all logarithms

in this paper are base 2). Therefore, dim(0) = lim infr→∞
log r
r = 0. Similarly,

dim(q) = 0 if q is rational, since the binary expansion of q eventually repeats.

There exists a larger class of elements of Rn with effective dimension 0 than just
the rationals, which are called computable [9]. However, we are not as concerned
with the dimension of individual points in Rn, only that we can always find points
of any dimension.

3. The Point to Set Principle

In this section, we will introduce and prove the central theorem of [1], which
relates the Hausdorff dimension of a set E ⊂ Rn (a global property) to the effective
dimensions of points in E (a pointwise property).

The key to the point to set principle involves slightly modified versions of the
definitions in the previous section, where our Turing machine now has access to an
oracle, which can be thought of as some arbitrary countable information that “costs
nothing” to compute. Without irrelevant details, an oracle is a subset A ⊂ N, where
at each computational step, our Turing machine can ask whether a number it has
computed is in the set A and receive a yes or no answer in only one computational
step. For us, an oracle can drastically shorten the necessary input to compute a
certain string by providing extra information that we then don’t need to include
in the input. Importantly, oracles can sometimes lower the dimension of points in
Rn. We will use the following relativized definitions:

Definition 3.1. Let σ ∈ {0, 1}∗ and A ⊂ N be any oracle. The Kolmogorov
complexity of σ relative to A is

KA(σ) = inf{ℓ(β) such that β ∈ {0, 1}∗ and UA(β) = σ},

where the superscript UA means that the Turing machine U has access to the oracle
A.

Definition 3.2. Similarly, given x ∈ Rn and r ∈ N, the Kolmogorov complexity of
x at precision r relative to the oracle A is

KA
r (x) = inf{KA(σ) : σ ∈ B2−r (x) ∩Qn}.

Definition 3.3. Finally, the dimension relative to the oracle A of a point x ∈ Rn

is

dimA(x) = lim inf
r→∞

KA
r (x)

r
.

If the oracle set A encodes the countable binary expansion of a real number b ∈ R,
we may also write dimb(x) to denote the same thing as dimA(x).
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Example 3.1. To see how oracles can drastically lower the dimension of points,
let x ∈ R be totally random, and let A encode the binary expansion of x. Then
dimA(x) = 0, while dim(x) = 1, since at each precision r, we only need to tell the
computer to read off r digits from A, requiring only log r bits.

Even though an oracle can lower the dimension of certain points, Lemma 2.4 still
holds relative to any oracle, so that no matter what the oracle A is, we can always
find uncountably many points that are totally random relative to A [1]. These
random points depend on A, but they always exist.

The point-to-set principle concerns the Hausdorff dimension of sets in Rn, so let
us briefly state the relevant definitions, following Falconer’s text [3].

Definition 3.4. Let E ⊂ Rn and let {Ui} be a countable (or finite) collection of
sets. We say {Ui} is a δ-cover of E if E ⊂

⋃∞
i=1 Ui and for each i ∈ N, |Ui| < δ,

where |Ui| := sup{|x− y| : x, y ∈ Ui} is the diameter of Ui.

Definition 3.5. Let E ⊂ Rn, s ≥ 0, and δ > 0. Define

H s
δ (E) = inf

{ ∞∑
i=1

|Ui|s
}

where the infimum is taken over all countable δ-covers of E. Letting δ tend to 0,
define the s-dimensional Hausdorff measure of E to be

H s(E) = lim
δ→0

H s
δ (E)

In fact, H s(E) is a measure on Rn for any s, and H n(E) is equal to n-
dimensional Lebesgue measure up to a constant multiple depending only on n.

For a given E ⊂ Rn, if for some s we have H s(E) < ∞, then for every t >
s, H t(E) = 0, so that as soon as E has finite s-dimensional measure, it will
immediately have 0 t-dimensional measure for any t > s. Thus, for each E there
exists a unique s where the Hausdorff measure of E “jumps” from ∞ to 0. This
value of s is called the Hausdorff dimension of E.

Definition 3.6. Formally, the Hausdorff dimension of a set E ⊂ Rn is

dimH(E) = inf{s : H s(E) = 0} = sup{s : H s(E) = ∞}.

Now we can state the following theorem, due to J. Lutz and N. Lutz in [1].

Theorem 3.7 (Point-to-set Principle). For any E ⊂ Rn,

dimH(E) = min
A⊂N

sup
x∈E

dimA(x)(3.8)

Importantly, the right hand side of this equation is not an infimum, but a mini-
mum, which means that there exists some oracle A ⊂ N such that

dimH(E) = sup
x∈E

dimA(x).

If A is such a minimizing oracle, we call A the Hausdorff oracle for E. In fact, there
are infinitely many Hausdorff oracles for each set E, since any oracle B containing
a Hausdorff oracle A also contains information of A, so it cannot increase the
complexity of points in E.
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Example 3.2. Suppose E = {x} is a singleton set. Then, letting A encode the

binary expansion of x, we find that dimA(x) = 0, so that dimH(E) = 0, as expected.
Similarly, we can see that the dimension of a countable set is 0, since we can encode
the information of every point in a single oracle.

Beyond the simple cases of singletons and countable sets, one might wonder how
the point-to-set principle can hold if dimH(E) is invariant under rotation, transla-
tion, and rescaling, while the right hand side of (3.8) seems intimately connected
with the particular points that make up E. For example, what happens if we trans-
late E by a “random” point, that is, x ∈ Rn with dim(x) = n? Since one point
is just countable information, we can simply add the information of this point to
the minimizing oracle, so that our computer can calculate points in the translated
version of E just as well as in the original, since it has access to arbitrarily good
approximations of the translation for free. Part of the power of using oracles is that
we can always add more countable information to them. Rotation and rescaling
can be dealt with in a similar way, so that the minimum in (3.8) is in fact invariant
under all these transformations.

Proof of Point-to-Set Principle. The proof proceeds in two parts. First, we will
show that for all oracles A ⊂ N, supx∈E dimA(x) ≥ dimH(E). Then, we will
construct the Hausdorff oracle for E, showing that there exists some oracle A for
which this inequality is, in fact, an equality.

For the first part, let E ⊂ Rn, let d = dimH(E), and let A ⊂ N be any oracle.

Then, let d′ = supx∈E dimA(x). We would like to show that d′ ≥ d.

Our definition of d′ tells us that for all x ∈ E, dimA(x) ≤ d′, or in other words

lim inf
r→∞

KA
r (x)

r
≤ d′,

that is, for all x ∈ E there are infinitely many r such that KA
r (x) ≤ d′r. By the

definition of Kolmogorov complexity, this means that for each x and r there is a
finite binary string σx,r such that ℓ(σx,r) ≤ d′r and

x ∈ B2−r (UA(σx,r)).

Now, let

Br = {B2−r (q) : q ∈ Q and K(q) ≤ d′r}.
How many balls are in the collection Br? Well, #Br should be the same as the
number of rationals q such that K(q) ≤ d′r, which cannot exceed the number of
binary strings of length less than or equal to d′r. This is because each input to a
universal Turing machine uniquely determines an output, so no two q can have the
same minimal input. Therefore, #Br ≤ 2d

′r+1, which is the number of strings of
length less than d′r.

Now, since UA(σx,r) is a rational point with complexity less than d′r,

B2−r (UA(σx,r) ∈ Br,

so that each x is in a ball contained in the collection Br for infinitely many r.
Letting

Wi =

∞⋃
r=i

Br,
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we obtain a sequence of countable covers of E, and for any δ > 0, if i is large enough
such that 2−i < δ, then Wi will be a δ-cover of E.

Now, suppose for contradiction that d′ < d, and let s ∈ (d′, d). For a sufficiently
large i,

H s
δ (E) ≤

∑
B∈Wi

|B|s

=

∞∑
r=i

∑
B∈Br

|B|s

≤
∞∑
r=i

2d
′r+1∑
1

(2−r)s

=
∞∑
r=i

2r(d
′−s)+1,

which converges because d′ − s < 0. Because this sum converges, as δ → 0, that is,
as i → ∞, the sum goes to 0, so that H s(E) = 0. But this contradicts the fact
that d = dimH(E), since s < d. Therefore, d′ ≥ d, so for all A ⊂ N,

sup
x∈E

dimA(x) ≥ dimH(E).

For the second part of the proof, we want to construct the Hausdorff oracle, or the
oracle that realizes the above inequality. Again, let d = dimH(E), and let s ∈ Q
and s > d. This means H s(E) = 0, so for a small enough δ, we have H s

δ (E) < 1.
Now, pick t ∈ N such that 2−t < δ. Then there exists a cover {Ui}t,s of E with

∞∑
i=1

|U t,s
i |s ≤ 1,(3.9)

and |U t,s
i | < 2−t for all i ∈ N. This gives a countable sequence of covers which we

will encode in the minimizing oracle, A.
Specifically, A will encode, for each U t,s

i , the information of i, t, s, one rational

point q ∈ U t,s
i , and a rational approximation r of |U t,s

i |. Now, suppose x ∈ E,

meaning x ∈ U t,s
i for some i. To compute x up to precision r relative to A, we only

need to specify which U t,s
i it is in, and ensure that |U t,s

i | is around 2−r.

Supposing 2−(r+1) ≤ |U t,s
i | ≤ 2−r, (3.9) tells us that there are at most 2(r+1)s

such |U t,s
i |, so that to specify one of them requires at most (r+1)s bits. Therefore,

KA
r (x) ≤ (r + 1)s+O(log r),

where the error term comes from technical details about Turing machines which we
have omitted. Therefore, for every x ∈ E,

dimA(x) = lim inf
r→∞

KA
r (x)

r
≤ lim inf

r→∞

(r + 1)s

r
+

O log r

r
≤ s,

so that for each rational s > d,

sup
x∈E

dimA(x) ≤ s,

implying that supx∈E dimA(x) = d. □
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The following corollary demonstrates an important application of the point-to-
set principle, which allows us to prove lower bounds for dimH(E), typically a much
more difficult task than proving upper bounds.

Corollary 3.10. Let E ⊂ Rn and α ∈ R. If for every oracle A ⊂ N and every
ε > 0, there is a point x ∈ E such that dimA(x) ≥ α − ε, then dimH(E) ≥ α. In
particular, we only need to find such an x when A is a Hausdorff oracle for E.

Proof. Our assumption that there is always an x ∈ E with dimA(x) ≥ α−ε implies

that supx∈E dimA(x) ≥ α− ε for all oracles A ⊂ N, so that

dimH(E) = min
A⊂N

sup
x∈E

dimA(x) ≥ α− ε.

Since ε was arbitrary, dimH(E) ≥ α. □

This corollary will allow us to easily derive meaningful statements about Haus-
dorff dimension from the examination of the effective dimension of points relative
to an arbitrary oracle.

4. The Effective Dimension of Points on a Line

The rest of this paper will be dedicated to applying the point-to-set principle
through an exposition of [2], which proves a bound for the effective dimension of
points on lines in R2. Using the point-to-set principle, this bound immediately
leads to bounds on the Hausdorff dimension of Kakeya sets in R2 and generalized
Furstenberg sets in R2, demonstrating how algorithmic methods can be useful for
classical geometric measure theory problems. However, this line result is just one
among many, and the point-to-set principle has also extended Marstrand’s projec-
tion theorem to a much wider class of sets and led to other results involving packing
dimension. For a more thorough summary of the applications of algorithmic meth-
ods in geometric measure theory, see [5].

The bound in [2] uses a concept developed in [1] called conditional Kolmogorov
complexity, which will be summarized in the following definitions.

Definition 4.1. Let σ, τ ∈ {0, 1}∗. The conditional Kolmogorov complexity of σ
given τ is

K(σ|τ) = min{ℓ(β) : U(β, τ) = σ}.

This definition is identical to the definition of Kolmogorov complexity, except
that τ is now allowed as input, so that K(σ) = K(σ|τ), where τ is the empty string.
Basically, we are asking how easy it is to calculate σ once we already know τ .

We can now extend this definition into Euclidean space the same way we did for
Kolmogorov complexity.

Definition 4.2. For x ∈ Rn and q ∈ Qn, let

Kr(x|q) = min{K(p|q) : p ∈ B2−r (x) ∩Qn}

Now, if x ∈ Rn, y ∈ Rm, the conditional Kolmogorov complexity of x at precision r
given y at precision s is

Kr,s(x|y) = max{Kr(x|q) : q ∈ B2−s(y) ∩Qm},

and for shorthand, we write Kr(x|y) to mean Kr,r(x|y).
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These definitions may all be extended to include an oracle in the same way as
in Section 2, where anytime the superscript A appears, it means we are working
relative to the oracle set A.

Definition 4.3. Finally, the conditional dimension of x given y is

dim(x|y) = lim inf
r→∞

Kr(x|y)
r

,

and the conditional dimension of x given y relative to an oracle A ⊂ N is

dimA(x|y) = lim inf
r→∞

KA
r (x|y)
r

.

Note that KA
r,s(x|y) ≤ KA

r (x)+O(1), and therefore dimA(x|y) ≤ dimA(x), since
the additional information of y can only decrease the length of input needed to
calculate x.

One important tool in the study of complexity and effective dimension is called
symmetry of information, and quantifies the intuitive result that computing two
things at the same time is more or less the same as computing the first one, then the
second one given the first one. We present the version of symmetry of information
in Euclidean space from [2].

Lemma 4.4 (Symmetry of Information in Euclidean Space). For all x ∈ Rn,
y ∈ Rm, and r, s ∈ N with r ≥ s,

(i) |Kr(x|y) +Kr(y)−Kr(x, y)| ≤ O(log r) +O(log log ∥y∥)

(ii) |Kr,s(x|x) +Ks(x)−Kr(x)| ≤ O(log r) +O(log log ∥x∥),
and in particular, if A ⊂ N is any oracle set,

dimA(x, y) = dimA(x|y) + dimA(y).

Symmetry of information, as well as the following lemma from [1], which speci-
fies the relationship between conditional complexity and complexity relative to an
oracle, will be useful to us later when working with conditional dimension.

Lemma 4.5. Given x ∈ Rn and y ∈ Rm, there is a constant c, depending only on
m and n, such that

Ky
r (x) ≤ Kr,t(x|y) +K(t) + c,

and in particular, dimy(x) ≤ dim(x|y).

With these definitions, we can present the main result of [2], which makes
progress on the following question: Given a line La,b := {(x, ax+ b) : x ∈ R} ⊂ R2,
what can we say about the dimension of points on this line? In particular, is there
a line whose points all have the same dimension? The following theorem, due to N.
Lutz and D. M. Stull, gives a bound for the dimension of points on a line in terms
of the complexity of its slope, y-intercept, and the first coordinate x.

Theorem 4.6. For any a, b, x ∈ R, and any oracle A ⊂ N,

dimA(x, ax+ b) ≥ dimA(x|a, b) + min{dimA(a, b),dima,b(x)}.

To clarify notation, dimA(x, ax+ b) is the same thing as dimA(z) where z ∈ R2

is the point with coordinates (x, ax+ b), whereas dimA(x|(a, b)) means for each r,
the first r digits of both a and b are given as input. Finally, when the real numbers
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a and b appear in the superscript, it means the oracle set encodes the countable
binary expansions of a and b.

We will attempt to provide a geometric interpretation of the proof of Theo-
rem 4.6, due to Lutz and Stull. Much of the literature regarding effective dimension
is written from an information-theoretic perspective, but geometric interpretations
of many of the proofs are possible, and are often more digestible for those coming
from an analysis perspective, rather than a computer science one.

This proof requires several lemmas, the first of which, roughly speaking, provides
sufficient conditions for a point (x, ax+ b) to have complexity close to Kr(x, a, b),
which by symmetry of information is roughly equivalent to Kr(x|a, b) +Kr(a, b).

Lemma 4.7 (Lemma 6 in [2]). Let a, b, x ∈ R, δ > 0 , ε, η ∈ Q+, and r sufficiently
large. Suppose that the following hold:

(i) Kr(a, b) ≤ (η + ε)r
(ii) For all pairs (u, v) such that ux+ v = ax+ b,

Kr(u, v) ≥ (η − ε)r + δ(r − t),

where t is such that ∥(a, b)− (u, v)∥ = 2−t (and r ≥ t).

If conditions (i) and (ii) hold, then for all oracles A ⊂ N,

KA
r (x, ax+ b) ≥ KA

r (a, b, x)− 4ε

δ
r −O(log r).

As an informal explanation, the conclusion of this lemma essentially guarantees
thatKA

r (x, ax+b) is close to the maximum possible, sinceKA
r (a, b, x) ≥ KA

r (x, ax+
b)+O(log r) because the information of a, b, and x is enough to calculate (x, ax+b)
to a similar precision. Condition (i) says that Kr(a, b) is small, while condition (ii)
says that if ux + v = ax + b, the only way for Kr(u, v) to be small is for (u, v) to
be close to (a, b), meaning they determine very similar lines.

Proof. To show

KA
r (x, ax+ b) ≥ KA

r (a, b, x)− 4ε

δ
r −O(log r),(4.8)

we need to show that the information of (x, ax+b) up to precision r, along with 4ε
δ r

more bits of information is enough to know (a, b, x) up to precision r. However, we
really only need to calculate (a, b), since we already know x from the pair (x, ax+b).

Finding (a, b) up to precision r is the same thing as finding out, among all
possible (u, v) such that ux + v = ax + b (of which there are only finitely many
that are unique up to precision r), which one is (a, b). Geometrically, this means
we need (u, v) ∈ Br(a, b). Conditions (i) and (ii) provide the following restrictions
on the possible pairs (u, v):

Because (u, v) ∈ Br(a, b), their first r digits are identical, so

Kr(u, v) = Kr(a, b) ≤ (η + ε)r,

by condition (i). Since ux+ v = ax+ b, by condition (ii),

Kr(u, v) ≥ (η − ε)r + δ(r − t).
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Therefore,

(η − ε)r + δ(r − t) ≤ (η + ε)r

=⇒ r − 2ε

δ
r ≤ t

=⇒ 2−t ≤ 2−r · 2 2ε
δ r.

This means that at most 2
4ε
δ r balls of size 2−r can fit inside a 2−t ball (up to a

constant multiple). These balls of radius 2−r are precisely the candidates for (u, v)
we are seeking, since by definition of t, all our candidates are within 2−t of (a, b).

Now, to find out (a, b) up to precision r, we just need to specify which of these

2
4ε
δ r balls is the one containing (a, b). This takes at most 4ε

δ r bits, because we simply
enumerate the balls, and then tell the computer the number that corresponds to
the ball we want. Therefore, (4.8) holds. □

With this next lemma, we seek to bound the complexity of any (u, v) such that
ux + v = ax + b in terms of the complexity of a, b, and x. We will later use this
bound to show that condition (ii) from the previous lemma is satisfied for any a, b,
and x.

Lemma 4.9 (Lemma 7 in [2]). Let a, b, x ∈ R. Suppose ux+ v = ax+ b, and let t
be such that ∥(a, b)− (u, v)∥ = 2−t. Then for all r ≥ t,

Kr(u, v) ≥ Kt(a, b) +Kr−t,r(x|a, b)−O(log r)

This lemma is presented in a rearranged form which is useful for the final proof,
but it can be summarized geometrically. The equation ux + v = ax + b tells us
that the points (u, v) and (a, b) are on a line with slope x. This means if (u, v) and
(a, b) are very far apart, so that t is small relative to r, knowing (u, v) and (a, b) up
to precision r means we know x to a much higher precision, while if they are very
close, we know much less about x, but knowing (u, v) gives much more information
of (a, b), since t is closer to r.

Proof. Suppose we know (u, v) and (a, b) up to precision r. Since ux+ v = ax+ v,

x =
b− v

u− a
.

What error do we get in x from the error of 2−r in u, v, a, and b? Well, b − v has
error around 2−r, so that

∆x ≤ 2−r 1

|u− a|
≈ 2−r

2−t
= 2−(r−t)

We claim |u − a| ≈ 2−t, because if u and a were much closer together than 2−t,
then by the equation ux + v = ax + b, the parameters v and b would also have
to be much closer together than 2−t, but this contradicts our assumption that
2−t = ∥(a, b)− (u, v)∥. Therefore, ∆x ≈ 2−(r−t), which tells us that knowing (a, b)
and (u, v) up to precision r is enough to know x up to precision r − t. Since we
know (a, b) up to precision r already,

Kr−t,r(x, (a, b)) ≤ Kr(a, b, u, v) ≤ Kr(u, v) +Kr,t((a, b)|(a, b)).(4.10)

The second inequality follows because knowing (u, v) up to precision r automatically
tells us (a, b) up to precision t, since (a, b) ∈ B2−t((u, v)), so we only need to
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calculate the rest of (a, b) given the first t digits. Finally, by a direct application of
symmetry of information (Lemma 4.4),

Kr,t((a, b)|(a, b)) = Kr(a, b)−Kt(a, b) +O(log r)(4.11)

and

Kr−t,r(x, (a, b)) = Kr−t,r(x|(a, b)) +Kr(a, b) +O(log r).(4.12)

Rearranging and combining (4.10), (4.11), and (4.12), we get

Kr(u, v) ≥ Kr−t,r(x, (a, b))−Kr,t((a, b)|(a, b))
≥ Kr−t,r(x|(a, b)) +Kr(a, b)−Kr(a, b) +Kt(a, b)−O(log r)

≥ Kt(a, b) +Kr−t,r(x|(a, b))−O(log r),

as desired. □

The final lemma constructs a useful oracle set Dr, which guarantees that con-
ditions (i) and (ii) of Lemma 4.7 are met relative to Dr, while KDr

r (a, b, x) is not
lowered too much. We will eventually use this oracle to prove Theorem 4.6 relative
to any oracle set, by the fact that it is constructed to be more useful than any other
oracle in certain key areas, while being less useful than any other oracle otherwise.

Lemma 4.13 (Lemma 8 in [2]). Let z ∈ Rn and η ∈ Q with 0 ≤ η ≤ dim(z). For
all r ∈ N there is an oracle Dr, (also depending on n, η, and z) such that

(1) For all t ≤ r, KDr
t (z) = min{ηr,Kt(z)}+O(log r)

(2) For all t ∈ N and y ∈ Rm, KDr
t,r (y|z) = Kt,r(y|z)+O(log r) and Kz,Dr

t (y) =
Kz

t (y) +O(log r).

Basically, Dr helps as much as possible in computing z up to any precision less
than r, but doesn’t help compute any other y ̸= z any more than z does.

Proof. Since η ≤ dim(z) = lim infs→∞
Ks(z)

s , there exists at least one t ≤ r such
that Kt−1(z) < ηr. Let t0 be the largest such t, and let Dr encode the digits of z
from t0 to r. Note that this makes Dr a finite oracle.

To show that conclusion (1) holds, if t ≥ t0, then Kt(z) ≥ Kt0(z) = ηr (this
equality obscures some technical details which we skip for brevity; see the appendix
of [2]). In fact,

KDr
t (z) = Kt0(z) +O(log r) = ηr +O(log r)

because we only need to compute the first t0 digits, since the remaining t− t0 digits
are encoded in Dr, information we can access for free.

On the other hand, if t ≤ t0, then Kt(z) ≤ ηr, and so

KDr
t (z) ≥ Kt(z) +O(log r),(4.14)

meaning Dr can’t help too much with the first t digits of z. See the appendix of
[2] for the proof of (4.14).

Skipping over technical details, (2) is true because the information encoded in
Dr is redundant. If we are computing y conditioned on the first r digits of z, we
are already given all of the information of Dr through these digits of z, so

KDr
t,r (y|z) ≥ Kt,r(y|z) +O(log r),
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and equality follows because a priori oracles can only lower complexity. Finally,

Kz,Dr

t (y) = Kz
t (y) +O(log r)

for the same reasons. All of z is already in the oracle set, so we don’t need Dr. □

In the main proof of Theorem 4.6, we will use this oracle, along with Lemma 4.9,
to show that the hypotheses of Lemma 4.7 hold for any a, b, x ∈ R, relative to Dr.
This requires that the complexity of (a, b) be low, while any other pair (u, v) such
that ux+ v = ax+ b has high complexity unless it is very close to (a, b). Once we
have the conclusion of Lemma 4.7, straightforward manipulations yield the desired
bound on dimA(x, ax+ b).

Proof of Theorem 4.6. Let a, b, x ∈ R and ε ∈ Q+. Let A ⊂ N, and let

η ∈ Q ∩ [0,dimA(a, b)] ∩ [0,dima,b(x)),

with δ := dima,b(x) − η > 0 (we choose η and δ this way to artificially achieve
the minimum term in the final inequality). For each r ∈ N, let Dr be the oracle
described in Lemma 4.13, with z = (a, b). By conclusion (1) of the lemma,

KDr
r (a, b) = min{ηr,Kr(a, b)}+O(log r)

≤ (η + ε)r

for every large enough r, so that condition (i) of Lemma 4.7 is satisfied relative to
Dr. To show that condition (ii) is also satisfied, let u, v ∈ R such that ux+v = ax+b,
and let t be such that 2−t = ∥(a, b)− (u, v)∥. We want to show

KDr
r (u, v) ≥ (η − ε)r + δ(r − t).(4.15)

Again, this statement geometrically means that if (u, v) is not close to (a, b), then
it has high complexity. Now, by Lemma 4.9, relativized to Dr,

KDr
r (u, v) ≥ KDr

t (a, b) +KDr
r−t,r(x|(a, b))−O(log r),

and by Lemma 4.5 and the properties of Dr from Lemma 4.13,

KDr
r (u, v) ≥ min{ηr,Kt(a, b)}+Kr−t,r(x|(a, b))−O(log r)

≥ min{ηr,Kt(a, b)}+Ka,b
r−t(x)−O(log r)

= min{ηr, dim(a, b) · t− o(t)}+ dima,b(x)(r − t)− o(r).

Finally, by our choice of η and δ,

KDr
r (u, v) ≥ min{ηr, ηt− o(t)}+ (η + δ)(r − t)− o(r)

= ηt− o(t) + ηr − ηt+ δ(r − t)− o(r)

= ηr − o(r) + δ(r − t)

≥ (η − ε)r + δ(r − t)

for every sufficiently large r. Since condition (ii) is now satisfied, the conclusion of
Lemma 4.7 holds for any oracle, so that

KA
r (x, ax+ b) ≥ KA,Dr

r (x, ax+ b) ≥ KA,Dr
r (a, b, x)− 4ε

δ
r −O(log r).
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By symmetry of information and Lemma 4.13,

KA,Dr
r (a, b, x) = KA,Dr

r (x|(a, b)) +KA,Dr
r ((a, b))−O(log r)

= KA
r (x|(a, b)) + ηr −O(log r),

so that

KA
r (x, ax+ b)

r
≥ KA

r (x|(a, b))
r

+
ηr

r
− 4εr

δr
− O(log r)

r
.

Now, taking liminfs yields

dimA(x, ax+ b) ≥ dimA(x|(a, b)) + η − 4ε

δ
,(4.16)

and since ε was arbitrary and (4.16) is true for any η ∈ Q ∩ [0,dimA(a, b)] ∩
[0,dima,b(x)), we have

dimA(x, ax+ b) ≥ dimA(x|(a, b)) + min{dimA(a, b),dima,b(x)}.
□

5. Applications in Geometric Measure Theory

Theorem 4.6 provides a short proof of the Kakeya problem in R2 via the point-to-
set principle. The Kakeya problem concerns the dimension of a Kakeya set, which
is a set in Rn containing a unit line segment in every direction. It has been known
since 1928 that Kakeya sets exist of arbitrarily small measure, and in fact, there
are multiple constructions of null sets that contain a line segment in every direction
[10]. In the plane, Kakeya sets were shown to have Hausdorff dimension 2 by Davies
in 1971, but for n ≥ 3, the dimension of Kakeya sets in Rn is unknown [6]. The
following conjecture, however, is widely believed to be true, and has implications
across analysis.

Conjecture 5.1 (Kakeya Conjecture). If K ⊂ Rn contains a line segment in every
direction, then dimH(K) = n.

For more details on the full conjecture and its implications, see [10]. In [1], J.
Lutz and N. Lutz provide a new information-theoretic proof of the Kakeya problem
in R2 using conditional dimension. However, we will use Theorem 4.6 to show the
same result. The following lemma will be necessary.

Lemma 5.2. For any oracle A ⊂ N, x ∈ Rn and y ∈ Rm,

dimA(x, y) ≥ dimA(x).

Proof. By a relativized version of symmetry of information,

dimA(x, y) = dimA(x|y) + dimA(y).

Now, we claim that for any r ∈ N,
KA

r (x|y) +KA
r (y) ≥ KA

r (x).

This is true because the input length on the left hand side is sufficient to compute
x up to precision r. We simply first use KA

r (y) bits of input to compute y, then
KA(x|y) more bits to compute x given y. Now, taking liminfs yields

dimA(x|y) + dimA(y) ≥ dimA(x),

so that dimA(x, y) ≥ dimA(x). □
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As a corollary to Theorem 4.6, we now present the following proof that Kakeya
sets in R2 have dimension 2.

Corollary 5.3 (Kakeya conjecture with n = 2 ). If K ⊂ R2 contains a line segment
in every direction, then dimH(K) = 2.

Proof. K containing a line segment in every direction means that for every a ∈ R,
K contains a line segment with slope a. Given an oracle A ⊂ N, we want to find
a, b, x ∈ R such that the point (x, ax+ b) ∈ K and dimA(x, ax+ b) = 2. If we found
such a point for every oracle, then by Corollary 3.10 to the point-to-set principle,
we would have dimH(K) ≥ 2, and therefore dimH(K) = 2

Given an oracle A ⊂ N, let a ∈ R be such that dimA(a) = 1. K contains a
line segment with slope a, so let b be the y-intercept of this line segment, and let
(xL, yL) and (xR, yR) be the left and right endpoints, respectively. We want to
choose x so that the following hold:

(i) dimA(x|(a, b)) = 1

(ii) dima,b(x) = 1

(iii) dimA(a, b) ≥ 1

By the fact that relative to any given oracle, almost every x ∈ R is random, we can
choose x ∈ [xL, xR] such that dimA,a,b(x) = 1. With this choice of x,

dima,b(x) ≥ dimA,a,b(x) = 1,

and by Lemma 4.5,

dimA(x|a, b) ≥ dimA,a,b(x) = 1,

so that (i) and (ii) hold. Condition (iii) follows from Lemma 5.2, since

dimA(a, b) ≥ dimA(a) = 1.

Finally, by Theorem 4.6 and our choices of a, b, and x,

dimA(x, ax+ b) ≥ dimA(x|a, b) + min{dimA(a, b),dima,b(x)}
≥ 1 + 1 = 2,

so by the point-to-set principle, dimH(K) = 2. □

This proof illustrates the power of the point-to-set principle and Theorem 4.6.
All we had to do was choose a random slope a and a random coordinate x, and the
fact that random points are so abundant and that K contains lines of every slope
guaranteed that we could choose these random points such that (x, ax+ b) ∈ K.

Theorem 4.6 gives insight into another closely related classical geometric mea-
sure theory problem: the Furstenberg set conjecture, which has recently been fully
resolved in the plane by K. Ren and H. Wang in [4]. The Furstenberg set conjecture
concerns the Hausdorff dimension of a generalization of a Kakeya set, where instead
of a line in every direction, our set contains an α-dimensional subset of a line in a
β-dimensional subset of directions.

Definition 5.4. E ⊂ R2 is an (α, β)-Furstenberg set (and we write E ∈ Fα,β) if
there exists J ⊂ S1 such that dimH(J) ≥ β and for each e ∈ J there is a line ℓe in
the direction e such that dimH(E ∩ ℓe) ≥ α.
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Note that Kakeya sets are in Fα,β for any α, β ≤ 1, and in particular are a special
type of (1, 1)-Furstenberg sets. Like the Kakeya conjecture, the Furstenberg set
conjecture asks about a lower bound on the Hausdorff dimension of sets in Fα,β .

Theorem 5.5 (Furstenberg set conjecture). If E ∈ Fα,β, then

dimH(E) ≥ min

{
α+ β,

3α+ β

2
, β + 1

}
.

This theorem was proven in [4] using classical methods, but following [2], we can
very straightforwardly prove the α+β term in the bound for the case 0 ≤ β ≤ α ≤ 1
using a similar strategy as in our proof of the Kakeya problem in the plane.

Theorem 5.6 (Theorem 12 in [2]). Let α, β ∈ (0, 1]. If E ∈ Fα,β, then

dimH(E) ≥ α+min{α, β}.
In particular, if 0 ≤ β ≤ α ≤ 1, then dimH(E) ≥ α+ β.

Proof. By the definition of Fα,β , there exists some J ⊂ S1 with dimH(J) ≥ β and
dimH(E ∩ ℓe) ≥ α for every e ∈ J . Let M = {tan(e) : e ∈ J} be the set of slopes
of the lines in the directions in J . We claim that dimH(J) = dimH(M), since the
tangent map is locally bi-Lipschitz. Let A be the Hausdorff oracle for E, so that

dimH(E) = sup
x∈E

dimA(x).

By the point-to-set principle for M ,

dimH(M) ≤ sup
a∈M

dimA(a),

so that given ε > 0, there exists some a ∈ M such that dimA(a) ≥ β − ε. Now, let
b be such that dimH(E ∩ La,b) ≥ α. By Lemma 5.2,

dimA(a, b) ≥ dimA(a) ≥ β − ε.

Now we will use the point-to-set principle for E ∩ La,b. This tells us that there is

some x ∈ R such that (x, ax+b) ∈ E∩La,b and dimA,a,b(x) ≥ α−ε. By Lemma 4.5,

dimA(x|a, b) ≥ dimA,a,b(x) ≥ α− ε,

and by basic properties of oracles,

dima,b(x) ≥ dimA,a,b(x) ≥ α− ε,

so that by Theorem 4.6,

dimA(x, ax+ b) ≥ α− ε+min{β − ε, α− ε}
= α+min{β, α} − 2ε.

Since ε was arbitrary, we are done by Corollary 3.10. □

In the above proof, we straightforwardly applied the point-to-set principle, il-
lustrating the fact that whenever you have a bound on Hausdorff dimension, the
point-to-set principle gives significant information about the effective dimension
of points, which, after some effort understanding the structure of effective dimen-
sion, as in the work of Theorem 4.6, can immediately be translated into bounds on
Hausdorff dimension via the point-to-set principle.

Continued study of the effective dimension of points on lines or other geomet-
ric structures, especially extended into higher dimensions, could give insight into
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important problems in geometric measure theory, such as the Kakeya problem and
Furstenberg conjecture, which remain unsolved in higher dimensions.
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