
A PROOF OF STIEFEL’S PARALLELIZABILITY THEOREM

WILLIAM HOUSTON

Abstract. This paper gives a proof of Stiefel’s parallelizability theorem, which

states that all compact, orientable 3-manifolds are parallelizable. In doing so,

Stiefel-Whitney classes, Steenrod squaring operations, Wu classes, and some
basics of obstruction theory are introduced. This proof is as outlined in Prob-

lem 12-B of [1], and most of the work leading up to it follows the same text.

Knowledge of basic algebraic topology and manifolds is expected.
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1. Stiefel-Whitney classes and Steenrod operations

We will begin by stating the definition of a vector bundle, and some related
concepts as necessary to state the axioms for Stiefel-Whitney classes.

Definition 1.1. A vector bundle, ξ, is defined over a given base space B, and
also includes the total space E(ξ) and a continuous projection map, π : E → B.
This must also meet the conditions, for any b ∈ B, that π−1(b) (known as the fiber
over b) has the structure of a vector space, and that there is some neighborhood U
around b such that f : U×Rn → π−1(U) (for some nonnegative integer n) produces
an isomorphism of vector spaces (using the structure defined) x 7→ f(u, x) for any
u ∈ U .

Definition 1.2. A trivial bundle is one for which the entire base space B can
be chosen as the neighborhood U in order to meet the second condition described
above.

Definition 1.3. Given a bundle ξ, the induced bundle g∗ξ can be defined over
any space B1, given a map g : B1 → B, to have total space contained within
B1 × E and include all points (b, e) such that g(b) = π(e) (and a projection map
that outputs b).

Definition 1.4. Given two bundles, ξ1 and ξ2, their Cartesian product, ξ1× ξ2,
can be defined to have total space E(ξ1)×E(ξ2) and projection map π1×π2(e1, e2) =

1
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(π1(e1), π2(e2)). Then, taking d : B → B × B to be the diagonal embedding, the
Whitney sum of two bundles over the base space B can be defined, ξ1 ⊕ ξ2 =
d∗(ξ1 × ξ2).

Definition 1.5. Over a given projective space, Pn, we can define the canonical
line bundle, γ1

n, with total space the subset of Pn × Rn+1 including all points
({±x}, v) such that v is a scalar multiple of x (and projecting onto {±x}).

We now have enough to state the axioms defining the Stiefel-Whitney classes
of a vector bundle ξ, which give a sequence of classes of the singular cohomology
groups, with coefficients in Z/2, of the base space.

Axiom 1.6. We define a sequence of Stiefel-Whitney classes, wi(ξ) ∈ Hi(B(ξ);Z/2),
such that w0(ξ) = 1 and wi(ξ) = 0 for i > n, n being the vector dimension of the
bundle fibers.

Axiom 1.7. If f : B(ξ) → B(η) is the restriction to the base spaces of a continu-
ous function on the total spaces that brings fibers isomorphically into fibers, then
wi(ξ) = f∗wi(η) (pullback being in the cohomology sense).

Axiom 1.8. If ξ and η share a base space, then wk(ξ⊕ η) =
∑

(wi(ξ) ⌣ wk−i(η)).
(Going forward, such products will be assumed to be the cup product, ⌣.)

Axiom 1.9. w1(γ
1
1) is nonzero. (In practice, this prevents the theory from being

trivial.)

Going forward, coefficients in Z/2 will be assumed unless otherwise specified.
Before continuing, we will prove the existence of Stiefel-Whitney classes defined

according to these axioms. This requires first to define the Steenrod operations,
which will remain important later on.

Definition 1.10. Acting on a cohomology group Hn(X,Y ), for two spaces X ⊃ Y ,
the Steenrod squaring operations give a sequence of additive homomorphisms
Sqi : Hn(X,Y ) → Hn+i(X,Y ) that meet the following three properties:

Given f : (X,Y ) → (X ′, Y ′), Sqi ◦ f∗ = f∗ ◦ Sqi.
Given a ∈ Hn(X,Y ), Sq0(a) = a, Sqn(a) = a ⌣ a, and Sqi(a) = 0 for i > n.
Given a, b such that a ⌣ b is defined, Sqk(a ⌣ b) =

∑
Sqi(a) ⌣ Sqk−i(b).

We must now also work to define the Thom isomorphism. Note that E0 and F0

refer to the nonzero subsets of total space E and any given fiber F = π−1(b).

Definition 1.11. The fundamental cohomology class is the unique class u ∈
Hn(E,E0) such that for each fiber F , it restricts as u|(F, F0) ∈ Hn(F, F0) to the
unique nonzero class.

It can be proved as a theorem (for example in chapter 10 of [1]) that u exists
and x 7→ x ⌣ u defines an isomorphism.

Definition 1.12. The Thom isomorphism ϕ : Hk(B) → Hk+n(E,E0) is defined
such that ϕ(a) = π∗(a) ⌣ u.

We can now define the Stifel-Whitney classes by wi(ξ) = ϕ−1Sqiϕ(1), with
1 ∈ H0(B) and by showing that this definition meets the given axioms, will have
proven their existence by construction.

Lemma 1.13. This definition of wi satisfies Axiom 1.6.
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Proof. We see by following which cohomology group the output of each function is
in that wi ∈ Hi(B). The other points of the axiom follow from the second property
required of Sqi. □

Lemma 1.14. This definition of wi satisfies Axiom 1.7.

Proof. If f : E → E′ brings fibers isomorphically into fibers, it must induce a map
g : (E,E0) → (E′, E′

0). Then, if u
′ is the fundamental cohomology class of (E,E′),

g∗(u′) = u by uniqueness. We then see that g∗ ◦ ϕ′ = ϕ ◦ f∗ (when considering
the restriction of f to the base space), which applying the first property required
of Sqi, gives f∗wi(ξ

′) = wi(ξ). □

Lemma 1.15. This definition of wi satisfies Axiom 1.8.

Proof. Consider a Cartesian product of bundles, ξ′′ = ξ × ξ′. Given their funda-
mental cohomology classes, we can take u×u′ ∈ Hn+m(E×E′, E×E′

0 ∪E0 ×E′).
It follows from the definition then that u × u′ = u′′, and then we can relate the
Thom isomorphisms, ϕ′′(a× b) = ϕ(a)× ϕ(b). This gives

ϕ′′(wi(ξ
′′)) = Sqi(u′′) =

∑
j

Sqj(u)× Sqi−j(u′) =
∑
j

ϕ(wj(ξ))× ϕ′(wi−j(ξ
′)) =

∑
j

ϕ′′(wj(ξ)× wi−j).

Then, applying (ϕ′′)−1 gives wi(ξ
′′) =

∑
j wj(ξ) × wi−j(ξ), which becomes the

formula required by the axiom after the pullback of the diagonal embedding. □

Lemma 1.16. This definition of wi satisfies Axiom 1.9.

Proof. Considering the vectors of length ≤ 1 in the total space of γ1
1 , these form a

Mobius stripM , with boundary ∂M a circle. Since these are deformation retracts of
E and E0 respectively, H

∗(M,∂M) ∼= H∗(E,E0). Since RP 2−D2 is homeomorphic
to M , by the excision theorem,

H∗(M,∂M) ∼= H∗(RP 2, D2) ∼= H∗(R).

Then, u ∈ H1(E,E0), which is obviously nonzero, must correspond under the com-
position of isomorphisms to the generator a ∈ H1(RP 2). Then Sq1(u) corresponds
to Sq1(a) = a ⌣ a, which is nonzero because it is the generator of H2(RP 2).
Applying the inverse of the Thom isomorphism gives that w1(γ

1
1) is nonzero. □

2. Wu classes

We will now begin considering characteristic classes in relation to manifolds. A
simple definition begins this.

Definition 2.1. Over a smooth manifold M , we can define the tangent bundle,
τM , with total space including all points (x, v) where x ∈ M and v is tangent
to M at x and projection map π(x, v) = x. If τM is trivial, then M is called
parallelizable.

Now we must build the concept of an orientation.

Definition 2.2. Given a point x ∈ M for some manifold M , a local orientation,
µx, is a choice of generator of Hn(M,M − x;Z).
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Definition 2.3. An orientation on M assigns to each x ∈ M a local orientation
µx in a ”continuous” fashion, that is, such that for each compact neighborhood N ,
there is a class µN ∈ Hn(M,M − N ;Z) whose image under the isomorphism into
Hn(M,M − x;Z) is µx for every x ∈ N .

If M is compact, it follows that we can take µM defined as such. Then we define
µ = µM to be the fundamental homology class.

Then, using ⟨⟩ to represent evaluation, i.e. the Kronecker index, we can consider
a sequence of cohomology classes vk ∈ Hk(M) such that ⟨vk ⌣ x,µ⟩ = ⟨Sqk(x), µ⟩
for every x ∈ Hn−k(M). These vk represent the Wu classes of a manifold M . We
can observe that vk must be zero whenever k > n− k.

Both the existence and uniqueness of such classes and the theorem below derive
from the following formulation of the Poincare Duality Theorem.

Theorem 2.4. Given a basis b1, . . . , dr of H∗(M), there is a corresponding dual
basis b∗1, . . . , b

∗
r such that ⟨bi ⌣ b∗j , µ⟩ = 1 for i = j and is zero otherwise.

Theorem 2.5. The Stiefel-Whitney class of a manifold’s tangent bundle can be
derived from its Wu classes:

wk =
∑

Sqi(vk−i)

Some more work will be needed to build up to the proof of this theorem.
First, see that a tangent bundle τM can be associated with the normal bundle

of the diagonal embedding of M in M ×M by (x, v) 7→ ((x, x), (v,−v)). From this
we can define a fundamental cohomology class

u′ ∈ Hn(M ×M,M ×M −∆M).

Definition 2.6. The diagonal cohomology class, u′′ ∈ Hn(M × M), is the
restriction of u′, defined above, under Hn(M ×M,M ×M −∆M) → Hn(M ×M).

Given we are working with coefficients in Z/2, which is a field, we have that
H∗(X × Y ) ∼= H∗(X)⊗H∗(Y ), which lets us easily define a new operation.

Definition 2.7. The slant product is a map / : Hp+q(X×Y )⊗Hq(Y ) → Hp(X)
such that (a× b)/β = a⟨b, β⟩.

Lemma 2.8. Given a compact manifold, its (well-defined) fundamental homology
class µ can be related to the diagonal cohomology class u′′ by u′′/µ = 1 ∈ H0(M).

Proof. For a given x ∈ M , consider a homomorphism Hn(M ×M) → Hn(x×M)
and note that it will take u′′ to 1×f∗

x(u
′′), where fx(y) = (x, y) gives an embedding

of M into x ×M . This is then mapped into H0(x) by /µ, and the output of this
map will be the restriction to x of u′′/µ.

Specifically, (1×f∗
x(u

′′))/µ = ⟨f∗
x(u

′′), µ⟩, and the Kronecker index must evaluate
to 1 based on how u′′ is defined from u′. Then, since the restriction of u′′/µ to
H0(x) is 1 for every x ∈ M , u′′/µ must itself be 1. □

Lemma 2.9. For M compact and smooth, the Stiefel-Whitney classes of τM can
be calculated wi = Sqi(u′′)/µ.

Proof. Recalling the formula used to prove the existence of SW classes, see that
π∗(wi) ⌣ u = Sqi(u), for u ∈ Hn(E,E0) being the fundamental cohomology
class. Considering the isomorphism H∗(E,E0) ∼= H∗(M ×M,M ×M −∆M), and
subsequently the restriction toHn(M×M), it then follows Sqi(u′′) = (wi×1) ⌣ u′′.
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Applying /µ to both sides and using the linearity of the slant product gives
Sqi(u′′)/µ = wi ⌣ (u′′/µ). Applying the above lemma to the second part of the
cup product, it follows that Sqi(u′′) = wi. □

We have now done enough to offer a proof of Theorem 2.5.

Proof. By choosing a basis and corresponding dual basis of H∗(M), as in Theorem
2.4, we can derive, for any cohomology class x,

x =
∑

bj⟨x ⌣ b∗j , µ⟩.

Then,

vm =
∑

bj⟨Sqm(b∗j ), µ⟩.
Then, we look at the formula given in the theorem to see∑
Sqi(vk−i) =

∑
(
∑

Sqi(bj)⟨Sqk−i(b∗j ), µ⟩) =
∑

(
∑

(Sqi(bj)× Sqk−i(b∗j ))/µ).

We can eliminate i from the sum by using the third property required in Definition
1.10, and j by considering the construction of the diagonal cohomology class to
simplify this to

Sqk(u′′)/µ,

which equals wk by Lemma 2.9. □

3. Obstruction theory

In order to continue, we will address some of the basics of obstruction theory.
Loosely speaking, this involves the procedure of extending continuous maps defined
on CW complexes to higher dimensions.

(This theory will thus be useful here because smooth compact manifolds can be
given the structure of CW complexes.)

Definition 3.1. A Stiefel manifold, Vk(Rn), is defined as all linearly independent
k-frames in Rn, that is, all k-tuples of linearly independent vectors, considered as
a subset of the Cartesian product of k copies of Rn.

Definition 3.2. Given a bundle, ξ, we can define the associated Stiefel manifold
bundle, Vk(ξ), with total space including all points (x, (v1, . . . , vk)), that is, all
points in the base space with k-frames in their respective fibers. Fibers in this new
bundle are thus Stiefel manifolds.

Definition 3.3. A cross-section of a bundle is a continuous map from its base
space into its total space that takes each point into a point in its respective fiber.
It is nowhere zero if in every fiber, it maps to a nonzero vector.

Note that a cross-section of a Stiefel manifold bundle is, in fact, a k-tuple of
linearly independent cross-sections of the original bundle. Note also that it is
simple to construct a cross-section of Vk(ξ) over the (n − k)-skeleton of B. It is
the question of extending this cross-section to higher dimensions that allows the
definition of obstruction classes, as in [2].

Definition 3.4. First defining j = n − k + 1, we define a primary obstruction
class, oj(ξ) ∈ Hj(B;πn−k(Vk(Rn))) (n still representing the dimension of a fiber),
such that Vk(ξ) has a cross-section of the (n− k+1)-skeleton of B if and only if oj
is zero.
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Before stating a theorem describing these classes, I will provide a couple of
definitions necessary to its proof.

Definition 3.5. An infinite Grassmann manifold, Gn, is the manifold con-
structed from the set of n-dimensional subspaces of R∞, which is the set of infinite
sequences of real numbers with all but finitely many elements zero.

Definition 3.6. A universal bundle, γn, is constructed over Gn to have total
space including all pairs of elements in Gn (which are subspaces), and points in
that subspace.

It is an important fact that for any bundle ξ over a paracompact base space
(such as a CW complex), there is a continuous map from ξ into γn that brings
fibers isomorphically into fibers (see chapter 5 in [1]).

Theorem 3.7. If we reduce the coefficients of the obstruction class into Z/2, using
some homomorphism h (which may be an isomorphism if j is even and less than
n), then the induced class, h∗oj(ξ) ∈ Hj(B;Z/2), equals the Stiefel-Whitney class,
wj(ξ).

Proof. As shown in chapter 7 of [1], H∗(Gn) is a polynomial algebra generated by
the Stiefel-Whitney classes of γn, and thus we can write

h∗oj(γ
n) = fj(w1(γ

n), . . . , wn(γ
n)),

for a polynomial fj .
Then, using the relation of γn to any bundle ξ over a CW complex, Axiom 1.7,

and Theorem 35.7 in [2], we state

h∗oj(ξ) = fj(w1(ξ), . . . , wn(ξ)).

From this, we observe that the polynomial expression must have dimension j ≤ n,
and thus based on the dimensions of the wi, we can rewrite

fj(w1, . . . , wj) = f ′(w1, . . . , wj−1) + λwj ,

with λ ∈ Z/2. We first will show that the polynomial f ′ = 0.
Define a bundle η = γj−1⊕ϵn−j+1, and see it is obvious that Vn−j+1 has a cross-

section over the j-skeleton, so oj(η) must be zero. It also follows from construction
that wj(η) = 0 and wi(η) = wi(γ

j−1) for i < j. Thus, it must hold that

f ′(w1(γ
j−1), . . . , wj−1(γ

j−1)) = 0,

and since these classes are independent, f ′ = 0. It remains only to prove that
λ = 1.

Now, restrict γn to denote a new bundle χ = γj
1 ⊕ ϵn−j over Gj(Rj+1) ∼= RP j .

The isomorphism follows from the correspondence between j-planes and normal
lines, and then γj

1 can be described by antipodal points on Sj paired with vectors
in the plane(s) tangent to the sphere at those points.

This bundle has a cross section that is nonzero over all but one point by taking
the part of any other vector normal to a given vector. If we choose this point in
the interior of a j-cell of RP j , then we have a cross-section of the (j − 1)-skeleton
and a way to assign to the j-cell a generator of πn−k(Vk(Rn)). By theorem 25.6 in

[2], this group is either Z or Z/2, and thus nonzero. Thus, h∗oj(γ
j
1) is nonzero, and

so λ must also be nonzero, and the proof follows. □
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4. Orientable bundles

The main result of this section will require an important construction known as
a Gysin sequence.

Lemma 4.1. Given a bundle ξ, where π0 : E0 → B is the restriction of π to the
nonzero subset of E, there must exist an exact sequence

· · · → Hj−n(B)
⌣wn−−−→ Hj(B)

π∗
0−→ Hj(E0) → Hj−n+1(B) → · · · .

Proof. The exactness axiom of cohomology gives the sequence

· · · → Hj(E,E0) → Hj(E) → Hj(E0)
δ−→ Hj+1(E,E0) → · · · .

Then, using the isomorphism ⌣ u, we can replace Hj(E,E0) with Hj−n(E).
This gives the exact sequence

· · · → Hj−n(E)
g−→ Hj(E) → Hj(E0) → Hj−n+1(E) → · · · ,

where g represents a cup product with the restriction of u to E.
Now, note that there is an isomorphism betweenH∗(E) andH∗(B). This takes u

to wn(ξ) by the Thom isomorphism, as in Definition 1.12, which yields the required
exact sequence. □

A 2-fold cover B̃ → B is one such that each point of B has a neighborhood with
an inverse image that is two disjoint copies of itself. Given such, we can generate a
line bundle, η, over B by considering B̃×R and associating (b, t) and (b′,−t) given
b, b′ distinct points that map to the same point in B.

Since B̃ is a deformation retract of E0, it follows from the above lemma that
there must be an exact sequence

· · · → Hj−1(B)
⌣w1−−−→ Hj(B) → Hj(B̃) → Hj(B) → · · · .

Now, we can begin to discuss those vectors bundles to which we can give an
orientation.

Definition 4.2. An orientation of a vector bundle, ξ, requires giving an orienta-
tion to every fiber such that for any b ∈ B, there is a neighborhood U such that the
the function constructed by the condition of local triviality is orientation-preserving
when restricted to each b′ ∈ U .

Now, denote by G̃n a Grassmann manifold of oriented n-planes, which provides
a 2-fold cover of Gn, since a plane has two possible orientations. Then, we can
denote an oriented universal bundle, γ̃n. For any oriented bundle ξ, the map
ξ → γn produces a unique map into γ̃n that preserves orientation.

Theorem 4.3. If a vector bundle ξ over a paracompact base space is orientable,
then w1(ξ) = 0.

Proof. It will be sufficient here to show that w1(γ̃
n) = 0, based on the map that is

known to exist from ξ.
As previously described, there must exist an exact sequence

· · · → Hj−1(Gn)
⌣w1(η)−−−−−→ Hj(Gn) → Hj(G̃n) → Hj(Gn) → · · · ,

where η is the line bundle associated with the 2-fold covering. Suppose w1(η) = 0.
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Then, we consider the exact sequence

0 → H0(Gn) → H0(G̃n) → H0(Gn)
⌣w1(η)−−−−−→ · · · ,

and since the rightmost arrow here is a zero map, H0(G̃n) ∼= H0(Gn) ⊕ H0(Gn).

This would imply that G̃n is not continuous, which is not true, so w1(η) is nonzero.
Since η is a bundle over Gn, and H∗(Gn) is generated by the Stiefel-Whitney

classes of γn, it follows by dimension that w1(η) = w1(γ
n). Then, since the image of

⌣ w1(γ
n) is in the kernel of all maps into H∗(G̃n), we can conclude that w1(γ̃

n) =
0. □

5. Proof of theorem

At this point we will state the main result of this paper.

Theorem 5.1. Let M be any orientable, compact 3-manifold. Then, M is paral-
lelizable.

First, note that if M is orientable, then τM is also orientable. Specifically, the
definition of orientation for τM is equivalent to assigning a preferred generator to
Hn(DMx, DMx− 0) in the same ”continuous” fashion seen in Definition 2.3. Since
Hn(DMx, DMx−0) is isomorphic toHn(M,M−x), the equivalence of the existence
of the two orientations follows smoothly.

We will continue by synthesizing much of what has been already proven to prove
a lemma.

Lemma 5.2. Given such an orientable, compact 3-manifold M , w2(τM ) = 0.

Proof. We know from Theorem 2.5 that

w2 =
∑

Sqi(v2−i).

Applying Definition 1.10, note that

Sq0(v2) = v2, Sq
1(v1) = v1 ⌣ v1, Sq

2(v0) = 0.

Moreover, v2 must be zero because it derives from Sq2 acting on elements of
H1(M), which means that w2 = v1 ⌣ v1. We can also reason that w1 = Sq0(v1) =
v1 (since Sq1(v0) = 0).

Now, since τM is orientable, it follows from Theorem 4.3 that w1 = 0, so v1 = 0,
and thus w2 = v1 ⌣ v1 = 0. □

I will now give a proof of Theorem 5.1, and thus conclude the paper.

Proof. By Theorem 3.7, since w2 is zero and h is a homomorphism, the obstruction
class o2(τM ) is zero. This means, by Definition 3.4, that the obvious cross section
of V2(τM ) over the 1-skeleton of M can be extended over the 2-skeleton.

Then, we have another obstruction class, o3(τM ) ∈ H3(M ;π2(V2(R3))), that
relates to the extension of this section over the 3-skeleton of M (i.e. all of M).
However, π2(V2(R3)) ∼= π2(SO(3)) = 0 (following from that SO(3) is diffeomorphic
to RP 3). Therefore, this new obstruction class must also be zero, so there exists a
cross section of V2(τM ) over all of M .

There then exist two linearly independent cross-sections of τM , and so τM =
ϵ2 ⊕ λ for a trivial 2-dimensional sub-bundle ϵ2, since the cross-section maps can
be used for the triviality condition. Note that for any trivial bundle, wi = 0 for
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i > 0, since a map can be constructed into a bundle over a single point. Thus,
w1(τM ) = w1(ϵ

2)+w1(λ) = w1(λ) = 0, since τM is orientable. Then, repeating the
obstruction theoretic approach above shows that λ must also be a trivial bundle.
Since τM is the Whitney sum of two trivial bundles, it is trivial itself.

Then, since M has a trivial tangent bundle, it is parallelizable, and the proof is
complete. □
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