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Abstract. Russo-Seymour-Welsh (RSW) Theory studies the behavior of cross-

ing probabilities in percolation models, focusing on crossings of rectangular
“boxes”. It asserts that a lower bound on the probability of crossing a rec-

tangle of aspect ratio α implies a lower bound on the probability of crossing a
rectangles of larger aspect ratio β. This paper examines RSW theory in both

the discrete and continuum percolation settings, highlighting the distinctions

and challenges when switching between different structural settings.
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1. Introduction

In short, Percolation Theory is the study of properties of randomly generated
subgraphs. These subgraphs are formed by selecting each edge or vertex with a
certain probability p, which determines whether they are included in the random
subgraph.

We consider the following standard model in Percolation Theory, which is the d-
dimensional integer lattice with vertex set Zd and edge set consisting of all vertices
that are Euclidean distance 1 apart. In this section, let Λ denote this graph.

In general, Λ will denote infinite unoriented graphs, while
−→
Λ will denote infinite

oriented graphs. Standard terminology in Percolation Theory refers to vertices and
edges as sites and bonds, respectively.

We consider the following percolation on the infinite graph Λ by fixing p ∈ [0, 1]
and selecting each edge independently with probability p to be open, and otherwise
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with probability 1− p to be closed. The process of selecting the edges to be open is
called bond percolation of strength p on Λ. In contrast, selecting the vertices to be
open is called site percolation of strength p on Λ. For site percolation, we consider
the induced subgraph by the open sites. Let Λb

p and Λs
p denote the open subgraphs

in bond and site percolation, respectively. Note that given a graph Λ, the collection
of all induced random subgraphs by site percolation on Λ is a subset of the random
subgraphs by bond percolation on Λ.

Figure 1. Site Percolation (left) and Bond Percolation (right) on
5×5 lattice grid subset of Z2. On the left, the filled circles represent
the selected vertices. Credit to [1].

Once we have our percolation on Λ, it is natural to ask whether an infinite cluster
of connected vertices exists. More specifically, we have the following motivational
question for our random subgraph.

Question 1.1. When do infinite cluster(s) exist i.e. how does the formulation of
infinite clusters depend on p?

To answer this question, we must first start by formally defining the measure
space and operations on the random subgraph.

Let Ω = {0, 1}E , where E = |E(Λ)|. Ω is the space of all possible outcomes of
subgraphs called configurations of Λ. Let PΛ,p =

∏
µp denote the product proba-

bility measure on Λ with strength parameter p, where µp(1) = p and µp(0) = 1−p.
Here, PΛ,p is the Bernoulli percolation probability measure. We shall ignore events
of probability 0. Let C(x) denote the connected component containing the vertex
x, and |C(x)| := |V (C(x))|, the number of open vertices in the cluster, sometimes
called the size of the cluster. For convenience, let C denote the component con-
taining the origin.

Next, we introduce a fundamental concept in Percolation Theory: the percolation
function, which represents how the probability of an infinite open cluster containing
the origin depends on the fixed probability parameter p ∈ [0, 1]. Formally, let θx(p)
be a probability that an infinite cluster contains x in the random subgraph of Λ.
Since our cluster is infinite, it makes sense to “center” it at a specific vertex, which
we take to be the origin.

Here, we make a few observations.

Lemma 1.1. θx(p) = 0 for every site x or θx(p) > 0 for every site x.

Proof. Let x and y be sites such that they are graph distance n units apart. Then
clearly, θx(p) ≥ pnθx(p). □
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Through Lemma 1.1, it suffices to just observe the value θ0(p), which we ab-
breviate as θ(p) = PΛ,p[|C| = ∞] for the sake of notation convenience. For site
percolation, we select the origin to be open with probability 1. In most cases, our
infinite graph will be Zd, so we omit the graph reference in the subscript of our
probability measure.

Remark 1.2. |C| = ∞ is equivalent to the existence of an infinite self-avoiding
path (SAP) starting at 0 and connected with open edges.

Lemma 1.3. θ(p) is a nondecreasing function of p.

Proof. We use a traditional coupling argument. Let p ≤ p′. Observe that 1{|C| =
∞} is an increasing function of ω = {0, 1}|E| where E is the edge set of our graph,
and Bernoulli distributed. Let {Ue}e∈E be i.i.d random variables uniformly dis-
tributed over [0, 1]. Fix p ∈ [0, 1], and for each e ∈ E, define ηe(p) = 1{Ue < p}.
Then the collection {ηe(p)}e∈E is i.i.d random variables and Bernoulli distributed
with parameter p. Thus, ηe(p) ≤ ηe(p

′). Using monotonicity of expectation, we
have E[ηe(p)] ≤ E[ηe(p′)] and the following:

θ(p) = Ep[1{|C| = ∞}] = E[ηe(p)] ≤ E[ηe(p′)] = Ep′ [1{|C| = ∞}] = θ(p′)

Since both variables have the same probability distribution, these random vari-
ables can be viewed as the same, and thus obtain equivalent expectations. □

Lemma 1.4. θ(p) > 0 if and only if Pp[∃x such that |C(x)| = ∞] = 1 i.e. there
exists an infinite cluster with probability 1.

Proof. Here |C(x)| = ∞ is an event that does not depend on a finite number of edges
being open or closed. Thus, it resides in a tail field, allowing for the application
of Kolmogorov’s Zero-One Law i.e Pp[some C(x) is infinite] = {0, 1}. The proof
follows directly from Lemma 1.1. □

Theorem 1.5. θ(p) is a right continuous function of p on [0, 1]; And θ(p) is con-
tinuous on (pc, 1].

Now, that we have established a few basic properties of θ(p), we motivate the
reason for the critical probability value. Since θ(0) = 0 and θ(1) = 1 and θ(p) is
nondecreasing in p, we would expect a value pc ∈ (0, 1] such that θ(p) becomes
strictly positive for the first time. Formally, let

pc := sup{p | θ(p) = 0} = inf{p | θ(p) > 0}

Remark 1.6. However, not all percolation functions are continuous on [0, 1]. Con-
sider percolation on Z. We have pc = 1, and thus a single jump discontinuity at
p = 1. Its percolation function is still upper semicontinuous. For dimensions d ≥ 2,
it has been proven that pc ∈ (0, 1).

We can define another critical probability for the expected size of the cluster
around the site x.

χx(p) = Ep[|C(x))|]
where Ep is the expectation with respect to Pp. As before, we let χ(p) := χ0(p).
The critical probability for this model is defined as

pT := sup{p | χ(p) < ∞} = inf{p | χ(p) = ∞}
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Figure 2. Graph of a continuous Percolation function. Credit to [2].

The subscript T refers to the mathematician Temperley. Here, pT ≤ pc for any
infinite graph Λ. In Section 3, we will establish the conditions that guarantee
equivalence between the critical percolation probability pc and the threshold related
to the cluster’s expected size pT .

Theorem 1.7 (Uniqueness of Infinite Cluster). If θ(p) > 0, then Pp[the infi-
nite cluster C of the origin is unique] = 1.

Proof. Refer to [2] pages 10 to 13 for full proof by Burton and Keane. □

We conclude the section by having answered the motivational questions about
percolation on Λ = Zd.

2. Probabilistic Tools and Facts

Here, we outline several important theorems and inequalities that are extensively
used in Percolation and Probability Theory. While some statements may not be
directly used in this paper, they are essential in the proof(s) of many related results.

Theorem 2.1 (Kolmogorov’s Zero-One Law). Let (Ω,F ,P) be a probability
space and let A1, . . . , An, . . . ∈ F be a sequence of independent events with tail field
τ . If E ∈ τ , then P[E] = {0, 1}. Alternately, if A1, . . . , An, . . . are independent
events then for event

E ∈
⋂
i=1

σ(Ai+1, Ai+2, . . .)

We have that P[E] = {0, 1}.

Kolmogorov’s Zero-One Law states that certain events either almost surely occur
or almost surely do not occur.

Definition 2.2. Consider a configuration space Ω := {0, 1}|E|, where E is the
edge set of our subgraph. Consider the partial order on Ω given by ω ⪯ ω′ if and
only if ωe ≤ ω′

e for all e ∈ E. ωe = 1 and ωe = 0 implies the edge is open and
closed, respectively. A function f : {0, 1}|E| 7→ R is increasing if ω ⪯ ω′ implies
f(ω) ≤ f(ω′). An event is increasing if its indicator function is increasing.

Example 2.3. Consider the event E = {Λb
p contains at least 50 open edges}. Then

E is an increasing event.
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Lemma 2.4 (Harris-FKG inequality). Let A and B be both increasing or de-
creasing events. Then:

(2.5) Pp[A ∩ B] ≥ Pp[A]Pp[B],
where Pp is the product probability measure associated with Bernoulli percolation.
We also have the following equivalent expression:

Ep[1A1B] ≥ Ep[1A]E[1B]

Remark 2.6. Lemma 2.4 also holds for the probability measure Pp associated with
random Voronoi percolation in R2, when A and B be both increasing or decreasing
black events. This will be expanded on in much more detail in Section 5.

Intuitively, Harris-FKG inequality suggests that the probability of associated
(both increasing or decreasing) events occurring together is higher than the prob-
ability of them occurring independently. When one event occurs, it provides in-
formation about the underlying configuration, making the occurrence of the other
event more probable.

Corollary 2.7 (Nth Root Trick). Let A1, . . . , An be increasing events with equal
probabilities such that P[A1 ∪ . . .∪An] ≥ p. Then for some index j ∈ {1, . . . , n} we
have:

P[Aj ] ≥ 1− (1− p)
1
n

Proof. Let A = A1 ∪ . . . ∪An. Then by the Harris-FKG inequality, we have:∏
i

P[Ac
i ] ≤ P[Ac] = 1− P[A]

which immediately implies:

P[Ac
j ] ≤ (P[Ac])

1
n

for some index j ∈ {1, . . . , n}. Thus, we have:

P[Aj ] ≥ 1− (P[Ac])
1
n ≥ 1− (1− p)

1
n

□

Nth Root Trick implies that given a large collection of similar events whose
union has a high probability, we expect at least one of the events to occur with
high probability.

Proposition 2.8 (First Moment Formula). If X is a non-negative, integer-
valued, random variable, then

P[X > 0] ≤ E[x > 0]

Proof. Let a = 1. Then by Markov’s Inequality:

P[X > 0] ≤ P[X > 1] ≤ E[X > 0]

1
= E[X > 0]

□

Definition 2.9. For A,B ∈ P(S), we define the box operation as:

A □ B =

C ⊂ S

∣∣∣∣∣∣∣
There exist sets Y,Z ∈ S such that

D ∩ Y = C ∩ Y implies D ∈ A, and

D ∩ Z = C ∩ Z implies D ∈ B
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Theorem 2.10 (Van Den Berg–Kesten Inequality).

(2.11) Pp[A □ B] ≤ Pp[A]Pp[B]

The Van Den Berg-Kesten inequality can be interpreted as the partial “converse”
of the Harris-FKG inequality. It is used to prove the exponential decay of zero-
cluster in the subcritical regime. However, the proof of several theorems related to
this exponential decay of zero-cluster in the subcritical regime are omitted but can
be found in [1].

Corollary 2.12. By definition of the box operation,

A □ B ⊂ A ∩ B

3. RSW Theory

Discrete RSWTheory focuses on box crossings of lattice structures often equipped
with Bernoulli percolation. However, before we discuss basic RSW Theory on Z2,
we first introduce percolation on its dual space, (Z2)∗. The dual space of Z2 is
(Z2)∗ = Z2 + ( 12 ,

1
2 ). Notice that every edge of (Z2)∗ crosses exactly one edge of

Z2. We can couple the graph and its dual together by considering each edge e to
be open if and only if the corresponding dual edge e∗ is closed. The following is a
useful lemma that relates strong results of percolation on Z2 with its dual.

Lemma 3.1. |C| < ∞ if and only if there exists a simple cycle in (Z2)∗ surrounding
0 consisting of all open dual edges.

Proof. Consider overlapping Z2 and (Z2)∗. Then we have this “ring” or “wall” of
open dual edges surrounding 0. By our coupling method above, open dual edges
correspond to closed edges. Thus, any cluster of open edges containing the origin
will have a finite size. □

3.1. Discrete Box Crossings. We can now begin RSW Theory on Z2. RSW
Theory is the study of generalizing crossings of a n × n square to crossings of a
ρn× n rectangle for ρ ≥ 1, where n ∈ N. Here, ρ is the aspect ratio, and crossings
are a connected self-avoiding path of open edges from the left to the right side of the
rectangle. This information allows us to determine certain properties of connected
components in our random subgraph, such as exponential decay of the cluster at a
sub-critical probability i.e. p < pc. By generalizing these crossings, we can deduce
information of much larger sections of Z2 by a, significantly smaller, n× n square.

The rectangle R is the subgraph of the induced vertices in [a, b] × [c, d], where
a ≤ b and c ≤ d. Let k = b− a+ 1 and l = d− c+ 1. Then R is a k × l rectangle.
Note that there are kl sites and (k − 1)l + (l − 1)k = 2kl − k − l bonds.

The horizontal dual of R is Rh = [a+ 1
2 , b−

1
2 ]× [c− 1

2 , d+
1
2 ]. Analogously, the

vertical dual of R is Rv = [a− 1
2 , b+

1
2 ]× [c+ 1

2 , d−
1
2 ]. Let H(R) denote the event

that a horizontal (left-to-right) crossing of R occurs and similarly let V (R) denote
the event that a vertical (top-to-bottom) crossing of R occurs. From now on, let R
denote a [0, n]× [0, n] rectangle and R(ρ) denote a [0, ρn]× [0, n] rectangle.

Lemma 3.2. Consider bond percolation on a rectangle R in Z2. Then exactly one
of the events H(R) or V (Rh) holds.
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Proof. We consider the following partial tiling of the overlap of R and Rh. Replace
each vertex in R with degree d with a black-colored 2d−gon. Similarly, for each
vertex in Rh with degree d, replace it with a white-colored 2d−gon. For each edge e
in R, replace it with a black-colored4−gon if e is open, else, replace it with a white-
colored 4−gon. Since d = 4 for each vertex, we have tiling called R′ of octagons
and squares of R and Rh. The states of vertical edges of the left and right side of
R do not affect any horizontal crossings so we color these edges black.

Observe that H(R) occurs if and only if we have a path of black shapes inside
R′ spanning from the left to right of R′. Analogously, V (Rh) holds if and only if
we have a path of white shapes inside R′ spanning from the top to the bottom of
R′.

More formally, let L be the interface graph formed by taking the boundary
(edges) of the octagons and squares that separate the black regions from the white
ones. Let L have the black regions on its right side and the white regions on its left
side. From our construction of the partial tiling, there are only 2 entrance points
and 2 exit points for L at the diagonal spots of the overlap of R and Rh. Since L
does not terminate in the overlap of R and Rh, we have that either H(R) or V (Rh)
occurs. It’s easy to see that given H(R) or V (Rh) the interface graph traces out
the path P such that P is the top-most horizontal crossing or the left-most vertical
crossing, respectively. Figure 3 shows the partial tiling with the interface graph.
Note that the path P that traverses from the left to right of R is the top-most
horizontal crossing. □

This argument can be generalized to the following graphs embedded in Z2. More
can be found in [1] section 3.

Figure 3. Interface graph of percolation in Z2. Credit to [1].

We emphasize the importance of the left-most path for vertical crossings and
the top-most path for horizontal crossings. Let S be a square. If P is a vertical
crossing of S, let {LV(S) = P} be the event that P is the left-most vertical crossing.
Similarly, let {TH(S) = P} be the event that P is the top-most horizontal crossing.
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Observe that V (S) is the disjoint union of events {LV(S) = P}. {LV(S) = P} is
independent of any configuration of bonds to the right of P . Analogously, {TH(S)
= P} is independent of any condition of bonds below P . Knowing the left-most
vertical path of a square allows us to deduce information about potential paths
intersecting it. The following proposition demonstrates this.

Proposition 3.3. Let R be a m × 2n be a rectangle, where m ≥ n. Let X(R) be
the event that there are open paths P1 and P2, such that P1 vertically crosses the
n× n square S, which we take to be nested in the bottom left corner of R, and P2

connects some site on P1 to some site on the right-hand side of R. Then,

Pp[X(R)] ≥ Pp[H(R)]Pp[V (R)]/2

Now, we present some useful inequalities and deductions about crossings of rect-
angles with different aspect ratios.

Corollary 3.4.

(i) If ρ1 ≤ ρ2, we have

Pp[H(R(ρ2))] ≤ Pp[H(R(ρ1))]

.
(ii) If R and R′ are k × l − 1 and k − 1× l rectangles in Z2, respectively, then

Pp[H(R)] + P1−p[V (R′)] = 1

(iii) If R is an n+ 1× n rectangle, then

P 1
2
[(H(R))] =

1

2

(iv) If S is an n× n square, then

P 1
2
[V (S)] = P 1

2
[H(S)] ≥ 1

2
.

Proof.

(i) Every horizontal crossing of R(ρ2) is a crossing of R(ρ1)
(ii) By Lemma 3.2, we have that Pp[H(R)] + Pp[V (Rh)] = 1. V (Rh) can be

defined by the dual graph, so each edge is open with probability 1−p. Since
V (Rh) and V (R′) are both vertical crossings of k − 1× l rectangles, using
the translational invariance of Pp, we deduce Pp[V (Rh)] = P1−p[V (R′)].

(iii) Follows directly from (ii) with p = 1/2.
(iv) Follows from rotational symmetry and (i).

□

We can now begin to understand the relationship between the crossings of squares
and the crossings of rectangles. RSW Theory states that a nonzero probability of a
horizontal square crossing guarantees a nonzero probability of rectangle crossings.
We state the main statement and the strongest result of RSW Theory. Note that,
Pp refers to the Bernoulli percolation measure.

Theorem 3.5 (RSW). Let R and R(ρ) for some ρ ≥ 1 be rectangles. Then for
any n ≥ 1,

Pp[H(R)] > 0 =⇒ Pp[H(R(ρ))] > 0
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For the generalized version, let 0 < ρ1 < ρ2 < ∞ and α > 0 There exists a
constant c1 = c1(ρ1, ρ2, c0) > 0 such that

Pp[H(R(ρ1))] > c0 =⇒ Pp[H(R(ρ2))] > c1

Note that c1 does not depend on the square height n and probability parameter p.

Remark 3.6. For RSW, we mainly consider the case when 0 < ρ1 ≤ 1 < ρ2 or
0 < ρ1 < ρ2 ≤ 1. The other case, namely when 1 < ρ1 < ρ2 < ∞, follows directly
from repeated applications of Harris-FKG inequality and Lemma 3.7.

Lemma 3.7. Let ρ1, ρ2 ≥ 1 Then:

Pp[H(R(ρ1 + ρ2 − 1))] ≥ Pp[H(R(ρ1))]Pp[H(R(ρ2))]Pp[V (R(1))]

Proof. Let R be a (ρ1 + ρ2 − 1)n × n rectangle. We can divide R into 3 smaller
rectangles: R1, a ρ1n×n rectangle; R2, a ρ2n×n rectangle; and S, a n×n square
(rectangle). Overlap R1 and R2 such that S is their intersection. Every horizontal
crossing of R1 and R2 and vertical crossing of S is a crossing of R. By Harris-FKG
inequality, we have

Pp[H(ρ1 + ρ2 − 1)] ≥ Pp[H(ρ1) ∩H(ρ2) ∩ V (R(1))]

≥ Pp[H(ρ1)]Pp[H(ρ2)]Pp[V (R(1))]

Figure 4 displays this observation. □

Figure 4. The concatenation of the horizontal crossings of 2 rect-
angles and a vertical crossing of a square is a crossing of a much
larger rectangle. This technique can be generalized to construct
crossing paths over a large number of similar rectangles. Credit to
[1].

3.2. Discrete Exponential Decay. In this section, we explore the size, measured
through the number of vertices, of the random connected zero-cluster C. Although
Percolation Theory is mainly concerned with the existence of an infinite compo-
nent of the origin, in this section, we will focus on studying subcritical probability
component(s) of the origin.

First, we briefly touch on the growth of C, and characterizing components of
finite size.

Definition 3.8. An animal is a finite connected subgraph of Zd containing the
origin. Let A be an animal. Let n and m denote the number of vertices and edges
contained in A, respectively. Let b denote the number of edges on the boundary of
A i.e. one vertex is in A and the other isn’t. Let An,m,b be the set of all animals
with n vertices, m edges, and b boundary edges; and let an,m,b = |An,m,b|.
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If C is a finite-sized connected subgraph and contains the origin, then C is an
random animal. Since the number of vertices is finite, we can choose each edge
independently with probability p. Thus, we have

Pp[C = A] = pm(1− p)b

for all A ∈ A, the set of all animals on Zd. Altogether, the probability that C is of
size n is

Pp[|C| = n] =
∑
m,b

an,m,bp
m(1− p)b

This probability helps us deduce an upper bound on the number of animals of n
vertices, m edges, and b boundary edges.

Lemma 3.9. For fixed n ≥ 1:∑
m,b

an,m,b ≤
(
27

4

)dn

Proof. For fixed n ≥ 1, we have an,m,b ̸= 0 if 1 ≤ b ≤ 2dn and n− 1 ≤ m ≤ dn. It
suffices to only consider these conditions in finding an upper bound on the number
of animals. ∑

m,b

an,m,bp
dn(1− p)2dn ≤

∑
m,b

an,m,bp
m(1− p)b ≤ 1

Since our summation is independent of p ∈ [0, 1],∑
m,b

an,m,b ≤
(
(p(1− p)2

)−dn

we have the minimizer p∗ = 1/3 for
(
(p(1− p)2

)−dn
, and thus∑

m,b

an,m,b ≤
(

4

27

)−dn

=

(
27

4

)dn

□

Now, we resume the discussion about the size of the subcritical probability com-
ponent(s) of the origin. For the rest of the following section, we will consider the

site percolation on an infinite-oriented graph
−→
Λ . This model extends to oriented

bond and unoriented site bond percolation through the transformation of graphs
and equivalence of certain percolation measures.

For convenience, let Ps−→
Λ ,p

be abbreviated as Pp. The out-subgraph of
−→
Λ centered

at site x denoted
−→
Λ+

x contains all sites and bonds reachable by (oriented) paths

from x. Two sites x and y are called out-like if
−→
Λ+

x and
−→
Λ+

y are isomorphic as
rooted oriented graphs. The out-class [x] is the equivalence class under the out-like

relation containing x. Let C−→
Λ

denote the out-class graph of
−→
Λ , whose vertices are

these equivalence classes [x]. [x] and [y] are connected by an oriented edge if and

only if there are sites x′ ∈ [x] and y′ ∈ [y] such that
−−→
x′y′ ∈ E(

−→
Λ). Suppose there is

y′ ∈ [y] such that
−→
xy′ is an edge of Λ. Then there exists an (oriented) edge from [x]

directed to [y] in C−→
Λ
. Note that connectivity in C−→

Λ
allows for loops. An oriented

graph is strongly connected if, for every site x and y, there is an oriented path P from

x to y. Similarly, as in its unoriented case, we can define C(x), θx(p), psc(
−→
Λ ;x)).



RUSSO-SEYMOUR-WELSH THEORY FOR PERCOLATION MODELS 11

Example 3.10. Consider
−→
Z2 with each vertical edge directed North and each

horizontal edge directed East. The out-class graph, C−→
Z2 , consists of only one vertex

with a loop.

Fix a site x and n ≥ 1. Let S+
n (x) be the sphere of radius n centered at x, that

is, S+
n (x) = {y ∈ V (

−→
Λ) | d(x, y) = n}, where d(·, ·) is the graph distance between

sites. Let Bn(x) =
⋃n

i=0 S
+
i (x), be the ball of radius n centered at x. Let {x n−→} be

the event there is an open self-avoiding path from x to some site y ∈ S+
n (x). And

Rn(x) be the event there is an open path from an out-neighbor of x to some site

in S+
n (x) i.e. Rn(x) = {x+ n−→}. Observe that Rn(x) is independent of the state of

x and {x n−→} = {x is open} ∩ Rn(x). Lastly, let r(C(x)) denote the radius of the
open out-cluster of x i.e. r(C(x)) = sup{n | C(x) ∩ S+

n (x) ̸= ϕ}. It is important
to remember that these definitions, although not explicitly notated, all rely on the
percolation probability p.

Lemma 3.11. Let
−→
Λ be a locally finite multi-graph with C−→

Λ
strongly connected.

Then there exist psc(
−→
Λ), psT (

−→
Λ) > 0 such that

psc(
−→
Λ ;x) = psc(

−→
Λ)

psT (
−→
Λ ;x) = psT (

−→
Λ)

for all sites x.

Proof. Let x and y be sites of
−→
Λ . Since, C−→

Λ
is strongly connected, there is an

oriented path from [x] to [y]. Consequently, there is also a path P from x to some
y′ ∈ [y]. It follows that θx(p) ≥ p|P |θy′(p) = p|P |θy(p) and χx(p) ≥ p|P |χy′(p) =

p|P |χy(p). Thus, θ(x) > 0 or θ(x) = 0 for all sites x, and analogously, χx(p) < ∞
or χx(p) = ∞ for all sites x. psc(

−→
Λ ;x) and psT (

−→
Λ ;x) are independent on their center

site x. □

Lemma 3.11 serves as a generalization of Lemma 1.1 for oriented graphs by ex-
tending the equality of percolation functions across all sites to their respective crit-
ical probabilities. From this point forward, we will omit the site x when expressing
the critical probability of the percolation function. As one might intuitively expect,
isomorphic subgraphs behave identically under Bernoulli percolation, sharing the
same critical probabilities.

With the prerequisite material established, we can now begin examining the
exponential decay of various characteristics of C. The following series of statements
will build up to the desired exponential decay of the size, the number of (open)
vertices, of C. First, we start by observing the occurrence of an out-path of length
n for a site x as n → ∞.

Lemma 3.12. Let x be a site of
−→
Λ , a locally finite oriented multi-graph with

C−→
Λ

finite and strongly connected, and let p ∈ (0, 1). Then p < psc(
−→
Λ) implies

sup
x∈V (

−→
Λ)

Ps
p[Rn(x)] → 0 as n → ∞.

Proof. It’s clear that for every site x, Ps
p[Rn(x)] → 0 as n → ∞. However,

Ps
p[Rn(x)] depends only on the out-class [x] of x. Finitely many out-classes guar-

antees sup
x∈V (

−→
Λ)

Ps
p[Rn(x)] = max[x]∈C−→

Λ
Ps
p[Rn(x)] → 0 as n → ∞. □
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Note that the following statements will stress the necessity and implications of
C−→

Λ
being finite. If our graph is too “large” (contains infinitely many non-isomorphic

subgraphs), then the characterization of any sort of decay becomes inconclusive.

Theorem 3.13 (Hammersley’s Result). Let
−→
Λ be a locally finite multi-graph

with C−→
Λ

finite and strongly connected. Let p < psT (
−→
Λ). Then there exists α > 0

such that

Ps
p[{x

n−→}] ≤ exp(−αn)

Since {x n−→} ⊂ {|C(x)| ≥ n}, the previous theorem can be strengthened to
tackle the size of C(x) instead of the (oriented) path of length n.

Theorem 3.14 (Discrete Exponential Decay). Let
−→
Λ be a locally finite multi-

graph with C−→
Λ

finite and strongly connected. Let p < psT (
−→
Λ). Then there exists an

α > 0 such that

Ps
p[|C(x)| ≥ n] ≤ exp(−αn)

for all sites x and n ≥ 1.

The property in Theorem 3.14 is referred to as the exponential decay of zero-
cluster in a subcritical probability model when p < psT . This decay reflects the
rapid change of the cluster’s probability of occurrence and the magnitude of its size
near critical probabilities. It also describes the localization of C and exemplifies
the absence of connections (open paths) to “∞”, the vertices at an infinite distance
away from the origin.

Note, this result holds for all p < psT ≤ psc. However, conditioning on the
magnitude of growth of the sphere of radius n, we can achieve equality between psT
and psc, as proven by Menshikov. As mentioned previously, pT ≤ pc holds for any

infinite graph
−→
Λ .

Theorem 3.15 (Menshikov’s Theorem). Let
−→
Λ be a locally finite multi-graph

with C−→
Λ

finite and strongly connected. If there exists C > 0 such that |S+
n (x)| ≤

exp
(

Cn
log(n3)

)
for every site x and n ≥ 1, we have

psc(
−→
Λ) = psT (

−→
Λ)

Altogether, we achieve the desired result of exponential decay of the zero-cluster
in a subcritical probability model when p < psc.

4. Continuum Percolation Models

In this section, we transition from discrete percolation to continuum percolation
models by examining both the Gilbert disc model and the Voronoi model. While
these models extend many results, arguments, and conceptual ideas from their
discrete settings, they also introduce new challenges. Such challenges arise from
the complexity of continuous spaces.

4.1. Gilbert Disc Model. Fix λ > 0. Let {Xi,j |(i, j) ∈ Z2} be independent
random variables, each with mean λ, that is for k ∈ N,

P[Xi,j = k] = e−λλ
k

k!
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Let Ci,j be the unit square (side length 1) with its bottom left vertex at (i, j) ∈ Z2.
Formally, Ci,j = {(x, y) ∈ R2 | i ≤ x ≤ i+ 1, j ≤ y ≤ j + 1}.

For every square Ci,j , select Xi,j points independently and uniformly from the
square, and let Pλ =

⋃
i,j Xi,j . Let us write µλ(U) for the number of points of Pλ

in a bounded Borel set U . Pλ is called homogeneous Poisson process of intensity λ
and satisfies the following properties:

(i) If U1, . . . , Un are pairwise disjoint bounded Borel sets, then the random
variables µλ(U1), . . . , µλ(Un) are independent.

(ii) For every bounded Borel set U , the random variable µλ(U) is a Poisson
random variable with mean λm(U), where m(U) is the Lebesgue measure
of U .

The purpose of defining Pλ is to create a “uniform” collection of points in R2.
Points in Pλ are “well-distributed”, not appearing in noticeable or distinct patterns.
More specifically, with probability 1, Pλ has no limit points and any Borel set of
measure 0 contains no points of Pλ. We shall strengthen this by assuming that
Pλ ∩ B = ϕ for all measure zero sets B. With this distribution of points, we can
define the Gilbert disc model.

Fix r, λ > 0. Let Gr,λ be the Gilbert disc model of radius r and density λ with the
vertex set Pλ. Sites x and y are connected by an unoriented edge if their Euclidean
distance is at most r. The standard Gilbert disc model is abbreviated as Gr = Gr,λ,
where λ = 1. If x ∈ Pλ, then the (graph) degree of x is Poisson-distributed
with mean πr2λ. We also write G(a) = Gr,λ to emphasize the dependence on the
connection area a = πr2λ, in which we can freely adjust λ and r, provided a = πr2λ
stays constant.

Figure 5. The random graph G(a) can represent an infinite com-
munication network where two transceivers can communicate if
they are at most r apart. Credit to [1].

Bernoulli percolation on the Gilbert disc model is analogous to the original lattice
case. We can define site and bond percolation analogously on Gr. For clarity, fix p ∈
[0, 1]. Selecting edges to be open with probability p is called bond percolation, while
selecting vertices to open is called site percolation. As before, for site percolation,
we consider the induced subgraph by the open sites. For more terminology and
definitions, G(a) percolates if there exists an infinite open component. Let θ(a) =
θ(r, λ) be the probability that the component containing the origin is infinite. Since
Poisson point processes are translational invariant, we shall condition that the origin
lies inside Pλ.

It’s easy to see that θ(0) = 0 and θ(a) = 1 as a → ∞. Since θ(a) is nondecreasing
in a, there exists a critical area ac ∈ (0,∞) such that θ(a) = 0 for all a < ac and
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θ(a) > 0 for all a > ac. Again, as in the discrete case, the value of θ(ac) is
inconclusive i.e. we cannot determine with certainty that θ(ac) = 0 or θ(ac) > 0.

The results from discrete percolation are easily applied to the Gilbert disc model.

Theorem 4.1. For the standard Let ac be the critical area for the Gilbert disc
model G(a) with Then,

2.184 ≤ ac ≤ 10.588

Theorem 4.2. In the Gilbert model G(a) = Gr,λ, there is almost surely at most
one infinite component.

Theorem 4.3. Let a = πr2λ < ac, where ac is the critical area of G(a) and
|C(G(a))| denote the number of points in the component of the origin in G(a).
Then there exist an α > 0 such that

P[|C(G(a)| ≥ n] ≤ exp(−αn)

and aT = ac, where aT = inf{a | E[G(a)] = ∞}.

The Gilbert disc model serves as the our first example for defining percolation
in a continuous space, serving as a set-up and introduction for the Voronoi model
in the next section.

4.2. Voronoi Model. Let P = Pλ ⊂ Rd be the Poisson point process of intensity
1. For every x ∈ P, let Vx be the closed Voronoi cell of x, defined as

Vx = Vx(P) = {y ∈ Rd | d(x, y) ≤ d(z, y) for all z ∈ P}

That is, the Voronoi (pronounced Vo-ro-noi) cell of x is the set of all points closer
to x than to any other point in P. Two Voronoi cells are adjacent if they share a
(d− 1)-dimensional face.

Let V (P) = {Vx | x ∈ P} be the Voronoi tessellation of Rd with respect to P.
V = V (P) is the random Voronoi tessellation of Rd. V (P) defines a graph GP with
vertex set P and x, y ∈ P are joined by an unoriented edge if their Voronoi cells
Vx and Vy are adjacent. V (Pλ) can be analyzed and interpreted through both a
graph-theoretical and geometric approach.

Figure 6. Translating between graph-theoretical and geometric
interpretations of Voronoi diagram. Credit to [11].

Given the Poisson point process, V (P) can be constructed using half-planes.
Fix x, y ∈ P. Let h(x, y) denote the perpendicular bisector of the line segment xy,
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including all the points on the part that contains x. Then the closed Voronoi cell
of x can be expressed as the following:

Vx =
⋂

y∈P\{x}

h(x, y)

By this alternate definition, it’s easy to see that each Voronoi cell is convex
because it is the intersection of convex sets. And for any k-dimensional face of Vx,
there are exactly d+1− k Voronoi cells Vz containing it. This can be shown using
reverse induction.

Since edges of V (P) are (d−1)-dimensional and vertices are (d−2)-dimensional,
each vertex has degree 3, and each edge bisects 2 Voronoi cells.

We begin by describing some basic properties of Voronoi cells and tessellations.

Proposition 4.4.

(i) V (P) is connected and its edges are all line segments or half lines.
(ii) Suppose |Pλ| = n then the number of vertices, faces and edges in V (P) are

all O(n).
(iii) Each Voronoi cell is a convex d-dimensional polytope with finitely many

(d− 1) faces.

Proof.

(i) By the construction of each Voronoi cell, the edges are all straight lines.
Suppose there exists an edge e in V (P) that is a full line (infinite in both
directions). This edge is a perpendicular bisector of two Voronoi cells Vx

and Vy. Let z ∈ P. By our Poisson point process, z is not co-linear to x
and y in Rd, and thus h(z, y) intersects e at a point z0 ∈ Rd. However,
the part of e contained inside h(z, y) cannot lie on the boundary of Vy i.e.
e ∩ int(h(z, y)) ̸= ϕ.

If V (P) is not connected, there would be some infinite Voronoi cell Vx,
dividing the plane. By the convexity of cells, Vx would be a vertical segment
bounded by parallel lines. However, all edges in V P are line segments or
half lines.

(ii) Adding a vertex q∞ at “infinity” makes V (Pλ) a planar graph. By con-
struction of the Voronoi tessellation, |F | = n. Since each vertex has degree
3, 2E ≥ 3(V +1). By Euler’s Formula, we have (V +1)+E−F = 2. Thus,
V + 1 ≤ 2(n− 2) and E ≤ 3n− 6.

(iii) It was established earlier that each Voronoi cell Vx is a d-dimensional convex
structure. It suffices to show that Vx is bounded. Suppose, for the sake
of contradiction, that Vx is unbounded i.e. there exists {yn}n∈N such that
Bn(x) only contains one point of P, namely x itself. However, P[µ(Bn(x)) =

1] = e(−πn2)(πn2) → 0 as n → ∞. Thus, Vx is a convex d-dimensional
polytope with finitely many (d− 1) faces.

□

As established in the previous section, points of Pλ don’t reside in measure 0
sets. Therefore, no more than 2 points in Pλ are co-linear and no more than 3
points are co-circular.

Lemma 4.5.
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(i) q is a vertex of V (P) if and only if the largest circle with its interior con-
taining no points of P, denoted CP(q), contains exactly three points in P
on its boundary.

(ii) A point p is on an edge of V (P) if and only if the largest circle with its
interior containing no points of P, denoted CP(q), contains at least two
points in P on its boundary.

Proof. The proof follows directly from the fact that each vertex has degree 3 and
that every edge in V (P) is a perpendicular bisector of two Voronoi cells. □

The Delaunay graph is the dual of the V (P). Since each vertex of V (P) has
degree 3, each face of the Delaunay graph is a triangle, and consequently, this
graph is referred to as the Delaunay Triangulation. The graph GP is exactly the
Delaunay Triangulation of V(P).

Figure 7. Voronoi Tessellation of R2 (dashed lines) and its De-
launay Triangulation (solid lines). Credit to [5].

The fundamental concepts from percolation in discrete models naturally extend
to the continuum case. To start, consider cell or face percolation of the random
Voronoi tessellation V with respect to the Poisson point process P of intensity 1.
Fix p ∈ [0, 1]. For each x ∈ P, Vx is open with probability p, independent of other
cells. This formulation is equivalent to site percolation on GP .

Let P+ and P− be points in P that have been selected to be open and closed,
respectively. Then, P+ and P− are disjoint and their union is P. And, for x ∈ P,
x ∈ P+ with probability p, independent of any other points of P. Let PV(P),Rd,p =

Pp be the probability measure associated to (P+,P−) with respect to the Voronoi
tessellation on Rd. Pp is defined on Ω consisting of configurations ω = (X+, X−),
where X+ and X− are disjoint discrete subsets of Rd. As in the discrete case, we
shall ignore events of probability 0. The Voronoi percolation measure is invariant
under translation, π/2-rotations, and horizontal reflections.

We approach percolation on V through a geometric perspective. For each x ∈
P+, color the associated Voronoi cell Vx black, and for each x ∈ P−, color the
associated Voronoi cell Vx white. We say that a point z ∈ Rd is black if it lies in
a black cell, white otherwise. Note that this definition allows for some points in
Rd to be colored both black and white, namely points on the boundary of Voronoi
cells or the edges of V .
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The open cluster of x ∈ P is the maximal connected subgraph of open sites in
GP . Equivalently, the black cluster is the maximal connected set of black points
in Rd. Let z0 ∈ P be the point such that the origin is inside Vz0 . Let CG

0 denote
the open cluster of the origin in GP , and C0 denote the black cluster of the origin.
We assume z0 is open, otherwise CG

0 = C0 = ϕ. Given the definition of the black
cluster, it is not meaningful to consider |C0| = ∞, since each open Voronoi cell
already contains an uncountable number of black points. Instead, we focus on the
unboundedness of C0. Let θ(p) = Pp[|C0| = ∞] = Pp[C

G
0 is unbounded] be the

Voronoi percolation function. As in the discrete version, we observe the occurrence
of the associated critical probabilities pc and pT .

Kolmogorov’s Zero-One Law guarantees that Pp[∃x ∈ P such that |CG
0 (x)| =

∞] = {0, 1} for any p. An event E defined with respect to the Poisson point
process (P+,P−) is called black increasing if E is preserved under the addition of
black points or the removal of white points. More formally, for every configuration
ω1 = (X+

1 , X−
1 ) ∈ E and for every configuration ω2 = (X+

2 , X−
2 ) such that X+

1 ⊂
X+

2 and X+
1 ⊃ X+

2 , we have ω2 = (X+
2 , X−

2 ) ∈ E. Again, as in the discrete case,
we have the following analogous continuum theorems.

Theorem 4.6. For any λ > 0 and p ∈ (0, 1). There is almost surely at most one
infinite open cluster in GP .

Theorem 4.7. For random Voronoi percolation in the plane, the critical probability
pc =

1
2 .

Proof. The full proof is the main result of [12]. □

Analyzing the properties of random Voronoi percolation proves to be more chal-
lenging than percolation on a lattice or the Gilbert disc model. For example, if
x, y ∈ Rd, the event {x is black} and {y is black} are not independent, as x and y
might lie in the same open Voronoi cell. Let LV (R) denote the left-most vertical
crossing of rectangle R, which is obtained through the interface graph through R.
Then the event {LV(R) = P} is not independent of points in (P+,P−) located to
the right of P . Given LV (R), we can infer information about the distribution of
(P+,P−) in small ϵ-neighborhoods around points p ∈ P . Independence in Voronoi
tessellations holds when points are arbitrarily far apart.

To address this problem, we confine events to a localized region R ensuring that
(P+,P−) when restricted to R remains unaffected by (P+,P−) outside of R. The
following lemma, while intuitive, provides an example of such a restriction.

Proposition 4.8. Fix ρ, s ≥ 1. Let Rs(ρ) ⊂ R2 be a ρs × s rectangle. Let r =

2
√
log(s) and let Fr(Rs(ρ)) be the event that every Br(x), x ∈ Rs(ρ) contains at

least one point of P. Then Fr(Rs(ρ)) occurs with probability 1 as s → ∞. Moreover,
if E(Rs(ρ)) is an arbitrary event defined by the color of points in Rs(ρ), then
E(Rs(ρ)) ∩ Fr(Rs(ρ)) depends only on the points P restricted to Br(Rs(ρ)).

Proof. Cover Rs(ρ) with finitely (dependent on s) many squares, Si, of length r/2.
The probability that Si contains no points of P is 1/s2 i.e. P[µ(Si) = 0] = 1/s2 → 0
as s → ∞. Thus, every Si contains a point of P with probability 1 as s → ∞, which
is exactly the event Fr(Rs(ρ)).

The second statement follows directly, as Fr(Rs(ρ)) depends only on P restricted
to Br(Rs(ρ)). □
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5. Continuum RSW Theory

With all the relevant material now introduced, we can proceed with the discus-
sion of Continuum RSW Theory. In Section 3, our focus was on box crossings within
a fixed lattice structure. We now shift to analyzing these crossings in continuous
structures and spaces.

5.1. RSW Theory on Voronoi Tessellations. To start, we introduce familiar
concepts from classical RSW theory on lattice structures. Throughout this section,
we will consider Voronoi percolation on the plane, R2. RSW Theory breaks down in
dimensions d ≥ 3 for several reasons. There is no concrete correspondence between
“left-to-right” and “top-to-bottom” crossings. Additionally, many of the discrete
RSW results rely heavily on the self-dual nature of Z2.

Let R = [a, b]× [c, d] be the a rectangle in R2. A horizontal black crossing of R
is a continuous path P from {a} × [c, d] to {b} × [c, d] such that every point p ∈ P
is black. Let Hb(R) denote this event. Let Hw(R) denote the event of a horizontal
white crossing. Similarly, we can define Vb(R) and Vw(r) for vertical black crossings
and vertical white crossings, respectively. Using an equivalent graph-theoretical,
a horizontal open crossing is a path P = q1, . . . , qn of open vertices such that
Vq1 intersects the left-hand side of R and Vqn intersects the right-hand side of R,
with neighboring vertices qi and qi+1 (partially or fully) meeting inside of R for
i ∈ {1, . . . , n− 1}. The next few statements will be the continuous analog of basic
facts from discrete RSW Theory.

Lemma 5.1. Consider random Voronoi percolation V on a rectangle R in R2.
Then exactly one of the events Hb(R) or Vw(R) holds.

Proof. The proof is essentially the same as Lemma 3.2. For clarity, let I be the
interface graph i.e. the set of all points that are colored both black and white, that
is, residing on the boundary of Voronoi cells. Referring to Figure 8, the tessellation
V with the interface graph I admits to 2 entrance points and 2 exit points. It is
clear that both Hb(R) and Vw(R) cannot occur. □

Figure 8. Interface graph for Voronoi Tessellation of the plane.
For this configuration, the square admits a vertical white crossing.
Credit to [1].
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Corollary 5.2. Fix h > 0. Let S = [x, x+h]× [y+ y+h] be a square in R2. Then

P 1
2
[Hb(S)] =

1

2

Proof. Let p = 1/2. From Lemma 5.1, we have Pp[Hb(R)] + Pp[Vw(R)] = 1. The
result follows from the rotational symmetry of the Poisson process P1−p[Vb(R)] =
P1−p[Hb(R)], and Pp[Vw(R)] = P1−p[Vb(R)]. □

Figure 9. Example of a horizontal black crossing of the rectangle
R in a random Voronoi tessellation of the plane. It is interesting to
observe that there are either 0 or ∞ horizontal or vertical crossings
of any rectangle. Credit to [1].

Fix s ∈ R>0. Let fp(ρ, s) = Pp[Hb([0, ρs]× [0, s])] be the probability (associated
with the Voronoi percolation measure) that a ρs×s rectangle has a black horizontal
crossing.

Let Bs = [−s, s]2 ⊂ R2, and let As,2s = B2s \ Bs, be a square annulus of inner
radius s and outer radius 2s. Lastly, let As,2s denote the event of a black circuit
contained in the square annulus As,2s. For simplicity, As,2s will be abbreviated as
As. The following proposition is a generalization of Lemma 3.7 using the repeated
intersection of squares technique applied to the Voronoi percolation measure. Both
results are an immediate consequence of Harris-FKG inequality.

Proposition 5.3.

(i) fp(1 + ik, s) ≥ fp(1 + k, s)ifp(1, s)
i−1 for any k > 0 and i ≥ 1.

(ii) fp(2, s) ≥ P[As].

Proof.

(i) Consider partitioning (1+ik)s×s rectangle into imany (1+k)s×s rectangles
with i−1 nested s×s squares. Any event consisting of a horizontal crossing
of every (1+ ik)s× s rectangle and a vertical crossing of every s× s square
induces a horizontal crossing of (1 + ik)s× s rectangle.

(ii) Any black circuit around As,2s will have to horizontally pass through a
2s× s rectangle or vertically pass through a s× 2s rectangle.

□

We are now prepared to state (and prove some of) the main results of RSW
Theory for random Voronoi percolation.
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Theorem 5.4 (Continuum RSW). Fix ρ > 0 and let p ∈ (0, 1). If lim infs→∞ fp(1, s) >
0, then lim sups→∞ fp(ρ, s) > 0.

The following theorem is a weaker version of the discrete version RSW as it fails
due to the lack of independence between Voronoi cells. Furthermore, Continuum
RSW requires a lower bound across infinitely many scales s. This only ensures
crossing probabilities for larger ρs× s rectangles at arbitrary large scales, but not
necessarily all scales of s.

Lemma 5.5. There exist the following constants and sequence of scales: c0 >
0, C > 4, and {si}i≥1 such that for all i ≥ 1,

(i) 4si ≤ si+1 ≤ Csi
(ii) Pp[Asi ] ≥ c0.

The previous lemma plays a key role in the proof of the following Theorem, an
upgraded, stronger, version of Continuum RSW. The full proof of the lemma can
be found in [3], Lemma 3.3.

Theorem 5.6 (Stronger Continuum RSW). Let p ∈ (0, 1). If infs≥1 fp(1, s) >
0, then for every ρ > 1, we have infs≥1 fp(ρ, s) > 0.

Proof. Fix ρ > 1. Since infs≥1 fp(1, s) > 0, we have a c1 > 0 such that fp(1, s) ≥ c1
for all scales s. Let c1 > 0 and {si}i≥1 as there were in Lemma 5.5. Thus,

inf
s≥1

Pp[As] ≥ inf
i≥1

Pp[Asi ] ≥ c0

An application of both items in Proposition 5.3 yields the following inequality. Note
that, ρ > 1, guarantees that ⌈ρ⌉ ≥ 2.

fp(ρ, s) ≥ fp(⌈ρ⌉, s)
= fp(1 + (⌈ρ⌉ − 1), s)

≥ fp(2, s)
⌈ρ⌉−1fp(1, s)

⌈ρ⌉−2

≥
(
Pp[As]

)⌈ρ⌉−1
c
⌈ρ⌉−2
1

≥ c
⌈ρ⌉−1
0 c

⌈ρ⌉−2
1

Since this lower bound of fp(ρ, s) is independent of the scale s, infs≥1 fp(ρ, s) >
0. □

Stronger Continuum RSW asserts that for every ϵ > 0, if the probability of a
horizontal square crossing is non-zero, then the probability of horizontal (1+ϵ)s×s
rectangle crossing is also nonzero. Intuitively, this states that information from
square crossings can be easily extended to slightly (or much) larger rectangles, and
relates to earlier discussions about how a square can “encode” crossing information
for much larger rectangles.

Theorem 5.7 (Box Crossing Probability). Fix p ∈ (0, 1). For any ρ > 0, there
exists c = c(ρ) > 0 such that for any s ≥ 1, we have

c ≤ fp(ρ, s) ≤ 1− c

Box Crossing Probability gives a nonzero probability of a horizontal black cross-
ing of a ρs × s rectangle. The upper bound, provides a uniform bound strictly
less than 1, which can be used to demonstrates convergence to zero for certain
associated crossing events together with the Harris-FKG inequality.
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Finishing the discussion of nonzero events, we now shift our focus toward exam-
ining high-probability events. More specifically, if a horizontal crossing of an s× s
square occurs almost surely, one might expect that a horizontal crossing of a ρs× s
rectangle either occurs almost surely or at least have a nonzero probability. This
expectation draws from concepts in RSW Theory, which suggest that events on a
square can provide information about much larger aspect ratio rectangles in the
plane.

Theorem 5.8 (High Probability Continuum RSW). Let p ∈ (0, 1). If lims→∞ fp(1, s) =
1, then for all ρ > 1, we have lims→∞ fp(ρ, s) = 1.

Proof. Fix ϵ > 0, p ∈ (0, 1), and ρ > 1. Let Hs(a, b) denote the event that there is
a black horizontal crossing from the left side of Bs/2 to {s/2} × [a, b].

By Stronger Continuum RSW, there exists a constant c > 0 such that Pp[As] ≥ c
for all scales s. A consequence of Proposition 4.8 is the existence of some η > 0
such that

Pp[Aηs,s/4] ≥ 1− ϵ

for large s.
Consider Bs/2. We subdivide the vertical segment of length s into ⌈ 1

2η ⌉ segments

of length 2ηs. Given the crossing probability fp(1, s), a black path will intersect
one of the 2ηs-length segments on the right side. Thus, by the Nth Root Trick,
there exists a ys ∈ [−s/2, s/2] such that

Pp[Hs(ys − ηs, ys + ηs)] ≥ 1− (1− fp(1, s))
⌈ 1
2η ⌉

Now, we define the following three black increasing events.

(i) Let E1 be the event that there is a black path from left to {s/2} × [ys −
ηs, ys + ηs] in Bs/2.

(ii) Let E2 be the event that there is a black path from {s/2}× [ys−ηs, ys+ηs]
to right in (s, 0) +Bs/2.

(iii) Let E3 be event of a black circuit in (s/2, ys) +Aηs,s/4.

By overlapping the events E1, E2, and E3, we observe that the intersection of
these events induces a left-to-right crossing of [−s/2, 3s/2]×[−s/2, s] or [−s/2, 3s/2]×
[−s, s/2]. The choice is dependent on where the value ys lies on the vertical segment
{s/2} × [−s/2, s/2]. Applying the Harris-FKG inequality, we obtain the following
relationship for all large s.

fp(4/3, 3s/2) ≥ Pp[E1 ∩ E2 ∩ E3] ≥ Pp[E1]Pp[E2]Pp[E3]

Combining inequalities we have that,

fp(4/3, 3s/2) ≥
(
1− (1− fp(1, s))

⌈ 1
2η ⌉

)2

(1− ϵ)

And taking the infimum over s ≥ 1, we derive

lim inf
s→∞

fp(4/3, s) ≥ (1− ϵ)

Thus, fp(4/3, s) → 1 as s → ∞. The rest of the proof is similar to the computations
in Theorem 5.6. As before, note the fixed value of ρ > 1 guarantees that ⌈ρ⌉ ≥ 2.

fp(ρ, s) ≥ fp(⌈ρ⌉, s)
= fp(1 + 3(⌈ρ⌉ − 1)(3/3), s)

≥ fp(4/3, s)
3(⌈ρ⌉−1)fp(1, s)

3(⌈ρ⌉−1)−1
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The desired result is obtained by taking the limit inferior of the inequality as s →
∞. □

5.2. Continuum Exponential Decay. We now shift our focus towards the “size”
of the infinite cluster C in random Voronoi percolation in the plane. Since we cannot
define the size by counting the number of black points in C, we instead characterize
it geometrically through its radius or area. Alternatively, we can count the number
of open sites in its graph structure GP . Thus, we have the following adapted contin-
uum statement of Discrete Exponential Decay. Pp denotes the Voronoi percolation
measure.

Theorem 5.9 (Continuum Exponential Decay). Let |C| denote the radius
of C, the area of C, or the number of open Voronoi cells in C. Then for any
p < pc = 1/2, there exists a constant c = c(p) such that

Pp[|C| ≥ n] ≤ e−c(p)n

for every n ≥ 1.

It’s important to realize that the continuum version has fewer restrictions com-
pared to Discrete Exponential Decay. We also have the continuum analog of Men-
shikov’s Theorem, which asserts that the critical probability for the percolation
function coincides with the threshold probability for the expectation that the size
of the zero-cluster is infinite. For random Voronoi percolation Theorem 4.7 estab-
lishes that the critical probability pc and the threshold probability pT are both
equal to 1/2.

More interesting connections between the exponential decay of the zero cluster,
box-crossing probabilities, and RSW (both discrete and continuum) can be found
in [7].
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