
TOTALLY SYMMETRIC SETS

AVNI GUPTA

Abstract. Totally symmetric sets are a construct in group theory first intro-

duced by Kordek and Margalit in [4] to aid in their study of homomorphisms

between braid groups. In this paper, we discuss some interesting properties
of totally symmetric sets. We also construct an upper bound on the totally

symmetric sets of the affine group in R2.
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1. Introduction

Totally symmetric sets are a construct in group theory first introduced by Kordek
and Margalit in [4] to aid in their study of homomorphisms between braid groups.
Since then, totally symmetric sets have been used to study various other groups as
well as in their own right.

Definition 1.1. Let G be a group. Let X ⊆ G have cardinality n. Then X is
totally symmetric if for all σ ∈ Σn and for all xi ∈ X, there exists some gσ ∈ G
such that gσxig

−1
σ = xσ(i).

Informally, X is totally symmetric if all possible permutations of the elements of
X are attainable via conjugation by some element in G. Consider the braid group
G = Bn generated by the half-twists {σ1, · · · , σn−1} on n strands. Then the set
of odd half-twists (or interchangeably, even half-twists) {σ1, σ3, · · · , σm}, where m
is either n − 1 or n − 2 is totally symmetric. Every permutation τ ∈ Σn/2 can be
achieved by conjugation by some σ′

i ∈ Bn/2. Conceptually, this groups together
(slightly under, depending on whether n is odd or even) every pair of strands to
construct Bn/2 from Bn. Then, for σ′

i ∈ Bn/2 and σj ∈ {σ1, · · · , σm} ⊂ Bn,

the conjugation σ′
iσjσ

′−1
i entails grouping the strands, performing the half-twists,

and then ungrouping the strands to give the final permutation (see Figure 1 for a
visualization).

1



2 AVNI GUPTA

Figure 1. A visualization of the conjugation σ′
1σ3σ

′−1
1 = σ1

Totally symmetric sets have two essential properties that make them useful tools
for exploring and classifying homomorphisms. First, collision implies collapse. Sec-
ond, the image of a totally symmetric set under a group homomorphism is always
totally symmetric. Both lemmas originally appear in [4], and are the most impor-
tant properties of totally symmetric sets.

Lemma 1.2. Let f : G → H is a group homomorphism and let X ⊆ G be totally
symmetric. If |X| = n, then |f(X)| = n or 1

Proof. If |f(X)| < n, then there must exist some x1, x2 ∈ X such that f(x1) =
f(x2). Let x3 ∈ X also. Then there exists some g ∈ G such that g conjugates
(x1, x2, x3) to (x1, x3, x2). We then have

f(x1x
−1
3 ) = f(gx1x

−1
2 g−1) = f(g)f(x1x

−1
2 )f(g)−1 = e.

Therefore, f(x1) = f(x3), so |f(X)| = 1. □

Lemma 1.3. If f : G → H is a group homomorphism and X ⊆ G is totally
symmetric, then f(X) is totally symmetric.

Proof. Let |X| = n and σ ∈ Σn. Then from Lemma 1.2, |f(X)| = n or 1. If
|f(X)| = 1, then f(X) is trivially totally symmetric. If |f(X)| = n, let xi ∈ X.
Since X is totally symmetric, there exists gσ ∈ G such that gσxig

−1
σ = xσ(i).

Thus, f(gσxig
−1
σ ) = f(gσ)f(x)if(gσ)

−1 = f(xσ(i)) = f(x)σ(i). Any permutation of
{f(xi)} ∈ f(X) can thus be achieved via conjugation, so f(X) is totally symmetric.

□

By taking a totally symmetric set in G and classifying its image in H under the
group homomorphism f : G → H, we are thus able to study f . See [1] and [4] for
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more on how these properties have been used to classify homomorphisms on the
braid group.

2. Totally Symmetric Sets in Isom(R2)

We first classify the maximal totally symmetric set of translations in Isom(R2).
Let g ∈ Isom(R2). Then g is of the form A · Tu, where A ∈ O(n) and Tu is a
translation. Let Tx be any translation. Then

gTug
−1 = ATuTxT−uA

−1 = ATxA
−1 = TA(x),

since any two translations commute.

A set containing a single translation is trivially totally symmetric, since only one
permutation exists, and it is realized via conjugation by the identity element.

Lemma 2.1. Let a⃗ ̸= b⃗ have the same magnitude. Then a set of two translations
{Ta, Tb} is totally symmetric.

Proof. We can conjugate {Ta, Tb} to {Tk·e1 , Tz} where k is a constant. Then let
A be the matrix representing the reflection across the bisector between the two
translations. We then have TA(k·e1) = Tz and TA(z) = Tk·e1 , so any set of two
translations is totally symmetric. □

Lemma 2.2. If a set of three translations of equal magnitude {Ta, Tb, Tc} is totally

symmetric, then {a⃗, b⃗, c⃗} form the axes of a regular triangle centered at the origin.

Proof. We can conjugate {Ta, Tb, Tc} to {Tk·e1 , Tz, Tw} where k is a constant. If
this set is totally symmetric, we should be able to fix any one of the translations
while swapping the other two.

First fix Tk·e1 while swapping Tz and Tw. Let A · Tv ∈ Isom(R2) be an element
that swaps Tz and Tw. For A(k · e⃗1) = k · e⃗1, we have(

a b
c d

)(
k
0

)
=

(
ak
ck

)
=

(
k
0

)
.

We must then have A =

(
1 b
0 d

)
. Then for Az⃗ = w⃗, we have(

1 b
0 d

)(
z1
z2

)
=

(
z1 + bz2

dz2

)
=

(
w1

w2

)
.

Similarly, we get

(
w1 + bw2

dw2

)
=

(
z1
z2

)
using the equation Aw⃗ = z⃗. Then, solving

for b and d gives b = 0 and d = ±1, so A =

(
1 0
0 ±1

)
.

Now consider Az⃗ = w⃗. We have(
1 0
0 ±1

)(
z1
z2

)
=

(
z1
±z2

)
=

(
w1

w2

)
.

Since z⃗ and w⃗ are distinct, we know that

(
z1
z2

)
=

(
w1

−w2

)
.
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Figure 2. Relative positions of a set of three totally symmetric
translation vectors.

Now fix Tw and swap Tk·e1 and Tz. For A(k · e⃗1) = z⃗ and Az⃗ = k · e⃗1, we must

have A =

(
z1 z1 − 1

z1
z2 −z1

)
. Then Aw⃗ = w⃗ in combination with the relation found

above gives us

(
z1 z1 − 1

z1
z2 −z1

)(
z1
−z2

)
=

(
z1
−z2

)
. Solving the resulting equations,

z21 − z2(z1 −
1

z1
) = z1

2z1z2 = −z2

gives us z1 = − 1
2 . Then, since the magnitudes of both z⃗ and w⃗ are 1, we have

z⃗ =

(
− 1

2
z2

)
and w⃗ =

(
− 1

2
−z2

)
. Using the Pythagorean Theorem gives z2 =

√
3
2 .

Therefore, there is only one set of three totally symmetric translations, consisting
of translations along the axes of an equilateral triangle. □

Theorem 2.3. The largest totally symmetric set of translations in Isom(R2) has
cardinality 3

Proof. From Lemmas 2.1 and 2.2, we know that sets of translations with cardinality
2 or 3 can be totally symmetric in Isom(R2).

There cannot be a larger totally symmetric set of translations in R2. If we add
a fourth vector, for instance, we find by similar calculation that three of the four
translation vectors must have the same x-component. However, as mentioned in
Lemma 2.1, swapping two translations requires reflecting over their bisector. In
the three-vector case, the translation vectors are spaced such that the bisector of
any pair of vectors lies on the same line as the remaining vector (see Figure 2). As
such, reflection fixes that third vector.

Adding a fourth vector with the same x-component results in a bisector that
does not lie on the line containing the remaining vector. Therefore, reflecting over
this bisector results in an entirely new configuration of translations, rather than a
permutation of the existing configuration (see Figure 3 for an example).

Therefore, a set of four translations in R2 cannot be totally symmetric.
□
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Figure 3. An example of attempted permutation of a set of four
translation vectors.

This extends to higher dimensions. By Proposition 6.8 in [3], we find that for
Isom(Rn), the maximal totally symmetric set of translations has cardinality n+ 1
and represents translations of equal magnitude along the axes of the n-simplex (see
section 3.1).

3. Totally Symmetric Sets in Aff(R2)

The affine group Aff(Rn) is the set of all affine transformations in Rn. It is
comprised of maps Rn → Rn such that x 7→ Ax + b where A ∈ GLn(R) and
b ∈ Rn. Elements of Aff(Rn) can be represented as ordered pairs (A, b). Define
p((A, b)) = A. This simply gives the linear transformation component of the map.

Let f : x 7→ Ax + z and g : x 7→ Bx + w. Then g−1 : x 7→ B−1x − B−1w.
Conjugating f by g thus gives

gfg−1 = g(AB−1x−AB−1w + z) = BAB−1x−BAB−1w +Bz + w.

Note that since p is a homomorphism, p(gfg−1) = BAB−1 = p(g)p(f)p(g)−1.

Lemma 3.1. If {(A1, b1), · · · , (Ak, bk)} ⊂ Aff(Rn) is totally symmetric, then
{A1, · · · , Ak} ⊂ GLn(R) is totally symmetric.

Proof. Let σ ∈ Σk. Since {(Ai, bi)} is totally symmetric, there exists a g ∈ Aff(Rn)
such that g(Ai, bi)g

−1 = (Aσ(i), bσ(i)). As noted above, Aσ(i) = p(g(Ai, bi)g
−1) =

p(g)Aip(g)
−1. Thus, there exists an element h = p(g) ∈ GLn(R) such that

hAih
−1 = Aσ(i). □

Totally symmetric sets in GLn(R) have already been classified; we can thus use
this result along with the following results by Caplinger and Salter [3] to aid in our
classification of totally symmetric sets in Aff(Rn)

Theorem 3.2. If {A1, · · · , Ak} ⊂ GLn(R) is totally symmetric, then k ≤ n+ 1.

Theorem 3.3 (Caplinger-Salter). If {A1, · · · , An+1} ⊂ GLn(R) is totally sym-
metric, then it is conjugate to the simplex construction.

3.1. The Simplex Construction. The simplex construction, as defined in [3], is
a totally symmetric set in GLn(R) based on the vertices {v1, · · · , vn+1} ⊂ Rn of
the n-simplex centered on the origin.

Lemma 3.4. Let V be a vector space, and W1,W2 ∈ V be complementary subspaces
of V . Choose unique λ1, λ2 ∈ R \ {0}. Then the map A : V → V defined by
w⃗1 + w⃗2 7→ λ1w⃗1 + λ2w⃗2 is linear and unique, satisfying EA

λ1
= W1 and EA

λ2
= W2.



6 AVNI GUPTA

We can thus construct a set of linear maps {A1, · · · , An+1} by using Lemma 3.4
and the subspaces Wi1=span(vi) and Wi2 = W⊥

i1 .

Lemma 3.5. For a linear map A and a transformation B, EBAB−1

λ = B · EA
λ .

Proof. First let v⃗ ∈ EBAB−1

λ . Then BAB−1v⃗ = λv⃗, so AB−1v⃗ = B−1λv⃗. Let
w⃗ = B−1v⃗. Then Aw⃗ = λw⃗, so w⃗ ∈ EA

λ . Since v⃗ = Bw⃗, we have v⃗ ∈ BEA
λ . Thus,

EBAB−1

λ ⊂ BEA
λ .

Now let v⃗ ∈ B · EA
λ . Then v⃗ = Bw⃗ for some w⃗ such that Aw⃗ = λw⃗. Then

AB−1v⃗ = λB−1v⃗, so BAB−1v⃗ = λv⃗. Therefore, v⃗ ∈ EBAB−1

λ . Thus, BEA
λ ⊂

EBAB−1

λ , so BEA
λ = EBAB−1

λ □

Theorem 3.6. The set {A1, · · · , An+1} generated via the simplex construction is
totally symmetric.

Proof. Let σ ∈ Σn+1, and let B ∈ O(n) be an orthogonal transformation such
that B(vi) = B(vσ(i)). Such a transformation must exist, because {v1, · · · , vn+1}
is totally symmetric. By construction, Ai are diagonalizable. We then know by

Lemma 3.5 that EBAiB
−1

λ1
= BEAi

λ1
= B · span(vi) = span(vσ(i)). Then since B is

orthogonality-preserving, EBAiB
−1

λ2
= span(vσ(i))

⊥. Then because all Ai are unique

by construction, we have BAiB
−1 = Aσ(i). □

3.2. Upper Bounds on Totally Symmetric Sets in Aff(R2).

Consider the set {(A1, b1), (A2, b2), · · · , (Ak, bk)} ⊂ Aff(R2) and assume that it is
totally symmetric. Then by Lemma 3.1, {Ai} is totally symmetric. We have three
possible cases:

(1) If all A1, · · · , Ak are distinct, then since {Ai} is totally symmetric, k ≤ n+1
by Theorem 3.2 [3].

(2) By collision-implies-collapse (Lemma 1.3), if all Ai are not distinct, they
must be equal.
(a) If A = I, then we have a set of translations. As proven in Section 2,

k ≤ n+ 1.
(b) If all Ai are equal and not the identity, then we will show that k < n+1.

By the Jordan Decomposition Theorem, all n × n matrices can be reduced to
the Jordan Canonical Form. In the case of 2 × 2 matrices, this is either the form(
m 0
0 n

)
or

(
n 1
0 n

)
. We will show that the largest possible totally symmetric set

in either case has cardinality 2.

Lemma 3.7. Let A ∈ GL2(R). Any set of two affine transformations {(A, b1), (A, b2)}
in R2 is totally symmetric.

Proof. First conjugate A to its Jordan Canonical Form. Without loss of generality,
we will continue to use A, b1, and b2 to refer to the conjugated versions of these
values.



TOTALLY SYMMETRIC SETS 7

Consider the case of A =

(
m 0
0 n

)
. Since all A are the same, we know that

BAB−1 = A, so B must commute with A. We know that the set of matrices that

commute with A are all diagonal. Thus, B has the form

(
x 0
0 y

)
.

Now we want to choose w⃗ such that −BAB−1w⃗+Bb1+w⃗ = (I−A)w⃗+Bb1 = b2,
swapping b1 and b2. We have

(I −A)w⃗ +Bb⃗1 =

((
1 0
0 1

)
−
(
m 0
0 n

))(
w1

w2

)
+

(
x 0
0 y

)(
b11
b12

)
=

(
1−m 0

0 1− n

)(
w1

w2

)
+

(
b11x
b12y

)
=

(
(1−m)w1 + b11x
(1− n)w2 + b12y

)
=

(
b21
b22

)
.

Then

(
w1

w2

)
=

( 1
1−m (b21 − b11x)
1

1−n (b22 − b12y)

)
. Therefore, any set {(A, b1), (A, b2)} for A =(

m 0
0 n

)
is totally symmetric.

Now consider A =

(
n 1
0 n

)
. Here, commuting matrices have the form B =(

x y
0 x

)
.

Now we want to choose w⃗ such that −BAB−1w⃗+Bb1 + w⃗ = (I −A)w⃗+Bb1 = b2,
swapping b1 and b2. We have

(I −A)w⃗ +Bb⃗1 =

((
1 0
0 1

)
−
(
n 1
0 n

))(
w1

w2

)
+

(
x y
0 x

)(
b11
b12

)
=

(
1− n −1
0 1− n

)(
w1

w2

)
+

(
b11x+ b12y

b12x

)
=

(
(1− n)w1 − w2 + b11x+ b12y

(1− n)w2 + b12x

)
=

(
b21
b22

)
.

Then

(
w1

w2

)
=

( 1
1−n (b21 − b11x− b12y) +

1
(1−n)2 (b22 − b12x)

1
1−n (b22 − b12x)

)
. Therefore, any

set {(A, b1), (A, b2)} for A =

(
n 1
0 n

)
is totally symmetric. □

Lemma 3.8. Let A ∈ GL2(R). Any set of three affine transformations {(A, b1), (A, b2), (A, b3)}
in R2 where A ̸= I cannot be totally symmetric.

Proof. First conjugate A to its Jordan Canonical Form. For simplicity’s sake, we
will continue to use A, b1, b2, and b3 to refer to the conjugated versions of these
values.
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Consider the case of A =

(
m 0
0 n

)
such that A ̸= I. As above, B has the form(

x 0
0 y

)
. We want to choose w⃗ to swap b⃗1 and b⃗2 while fixing b⃗3. Fixing b⃗3 means

that

(I −A)w⃗ +Bb⃗3 =

((
1 0
0 1

)
−
(
m 0
0 n

))(
w1

w2

)
+

(
x 0
0 y

)(
b31
b32

)
=

(
1−m 0

0 1− n

)(
w1

w2

)
+

(
b31x
b32y

)
=

(
(1−m)w1 + b31x
(1− n)w2 + b32y

)
=

(
b31
b32

)
.

Then w⃗ =

( 1
1−m (b31 − b31x)
1

1−n (b32 − b32y)

)
.

Then swapping b⃗1 and b⃗2 gives

(I −A)w⃗ +Bb⃗1 =

(
1−m 0

0 1− n

)( 1
1−m (b31 − b31x)
1

1−n (b32 − b32y)

)
+

(
b11x
b12y

)
=

(
b31 − b31x+ b11x
b32 − b32y + b12y

)
=

(
b21
b22

)

Now fix b⃗1 and swap b⃗2 and b⃗3. By similar calculation, we get w⃗ =

( 1
1−m (b11 − b11x)
1

1−n (b12 − b12y)

)
and

(
b11 − b11x+ b21x
b12 − b12y + b22y

)
=

(
b31
b32

)
. Combining the resulting equations with those

from the previous calculations allows us to substitute for b21, giving

b11 − b11x+ b21x = b31

b11 − b11x+ b31 − b31x
2 + b11x

2 = b31

b11x
2 − b11x+ b11 = b31x

2 − b31x+ b31

b11 = b31.

Similar calculations give b12 = b32, so b⃗1 = b⃗3. Thus, the set can have cardinality
at most 2.
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Now consider the case of A =

(
n 1
0 n

)
. As above, B has the form

(
x y
0 x

)
. We

want to choose w⃗ to swap b⃗1 and b⃗2 while fixing b⃗3. Fixing b⃗3 means that

(I −A)w⃗ +Bb⃗3 =

((
1 0
0 1

)
−

(
n 1
0 n

))(
w1

w2

)
+

(
x y
0 x

)(
b31
b32

)
=

(
1− n −1
0 1− n

)(
w1

w2

)
+

(
b31x+ b32y

b32x

)
=

(
(1− n)w1 − w2 + b31x+ b32y

(1− n)w2 + b32x

)
=

(
b31
b32

)
.

Then w⃗ =

( 1
1−n (b31 − b31x− b32y) +

1
(1−n)2 (b32 − b32x)

1
1−n (b32 − b32x)

)
.

Then swapping b⃗1 and b⃗2 gives

(I −A)w⃗ +Bb⃗1 =

(
1− n −1
0 1− n

)( 1
1−n (b31 − b31x− b32y) +

1
(1−n)2 (b32 − b32x)

1
1−n (b32 − b32x)

)
+

(
b11x+ b12y

b12x

)
=

(
b31 − b31x− b32y + b11x+ b12y

b32 − b32x+ b12x

)
=

(
b21
b22

)
Now fix b⃗1 and swap b⃗2 and b⃗3. By similar calculation, we find

w⃗ =

( 1
1−n (b11 − b11x− b12y) +

1
(1−n)2 (b12 − b12x)

1
1−n (b12 − b12x)

)
and (

b11 − b11x− b12y + b21x+ b22y
b12 − b12y + b22y

)
=

(
b31
b32

)
.

Combining the resulting equations with those from the previous calculations allows
us to substitute for b21 and b22, giving

b11 − b11x− b12y + b21x+ b22y = b31

b11 − b11x− b12y + b22y = b31 − b21x

b11 − b11x− b12y + b32y − b32xy + b12xy = b31 − b31x+ b31x
2 + b32xy − b11x

2 − b12xy

b11 − b11x+ b11x
2 − b12y + 2b12xy = b31 − b31x+ b31x

2 − b32y + 2b32xy

b11 = b31

Similar calculations give b12 = b32, so b⃗1 = b⃗3. Thus, the set can have cardinality
at most 2.

Thus, a set of three affine transformations in R2 with the same, non-identity
matrix component cannot be totally symmetric. □
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3.3. Bound Sharpness.

Consider the totally symmetric set {(A1, b1), (A2, b2), · · · , (Ak, bk)} ⊂ Aff(R2). We
have found that in all cases, k ≤ n+1. We now want to classify the cases in which
k = n+ 1. When k = n+ 1, we know that either

(1) all Ai = I. In this case, we have a set of translations along the axes of a
regular triangle as per Section 2. Or,

(2) all Ai are distinct. In this case, we know both that {Ai} ⊂ GL2(R) is
totally symmetric (Lemma 3.1) and that {Ai} is in the simplex construc-
tion (Theorem 3.3). But how does this construction translate to the affine
group?

There exists a homomorphism f : Aff(Rn) → GLn+1(R) by (A, b) 7→
(
A b⃗
0 1

)
,

where A is an n× n matrix and b is a n× 1 vector. We thus know that Aff(Rn) ⊂
GLn+1(R) under this homomorphism. Using Theorem 3.2, we find that if X ⊂
Aff(Rn) ⊂ GLn+1(R) is totally symmetric, then |X| ≤ n+ 2.

In the case of Aff(R2), then, we have X ⊂ Aff(R2) ⊂ GL3(R) and |X| ≤
n+2 = 4. From Theorem 3.3, we know that if |X| = 4, it must be in the 4-simplex
configuration. However, can a 4-simplex exist in Aff(R2)?

Lemma 3.9. The eigenvalues of the block matrix G =

(
A B
0 D

)
are the combined

eigenvalues of A and D.

Proof. Let λ be an eigenvalue of G. Then det(K − λI) = 0. We know that

det(G− λI) = det

((
A B
0 D

)
− λI

)
= det

(
A− λI B

0 D − λI

)
= det(A− λI) · det(D − λI).

Therefore, if det(G− λI) = 0, we must have either det(A− λI) = 0 or det(D −
λI) = 0. Thus, λ is an eigenvalue of either A or D.

Now let λ be an eigenvalue of A. Since we know that det(A− λI) = 0, we must
have det(G− λI) = 0 from above. The same holds for eigenvalues of D. Thus, the
eigenvalues of G are the combined eigenvalues of A and D. □

Lemma 3.10. Aff(Rn) does not contain an n+ 2-simplex

Proof. Assume thatX ⊂ Aff(Rn) is totally symmetric, in the simplex configuration,

and |X| = n+ 2. Define a function f : Aff(Rn) → GLn(R) by

(
A b⃗
0 1

)
7→ A.

Then |f(x)| is either n + 2 or 1 by collision-implies-collapse. Since f(X) must
be totally symmetric, we have |f(X)| ≤ n+ 1 by Theorem 3.2. Thus, |f(X)| = 1,

so all A are identical. We thus have X =

{(
A b⃗i
0 1

)}
.

From Lemma 3.9, we know that all x ∈ X have the same eigenvalues: those
of A and 1. Notably, the transformations composing in the simplex construction
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are unique, and thus have different eigenvalues. Therefore, X cannot be an n+ 2-
simplex. □

We therefore know that Aff(R2) cannot contain a 4-simplex. Thus, any totally
symmetric set X ⊂ Aff(R2) has cardinality less than or equal to 3.
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