
AN INTRODUCTION TO THE RING OF FRACTIONS

DILLON GRANNIS

Abstract. I construct the ring of fractions in a slightly different manner

from the standard method. Typically, the ring of fractions is constructed as

the equivalence classes of certain formal fractions. This can be done at two
levels of generality. I present the standard equivalence relation for the less

general version and piggyback off of it to handle the more general case. I hope

that some may find this modified approach to the ring of fractions and my
explanation of its “minimality” to be intuitive.
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Conventions
R will always be a commutative ring with identity. All ring homomorphisms will
preserve identity. I use the term extension for injective ring homomorphisms.

1. Introduction

In a ring R, it can be convenient to have multiplicative inverses. For example, if
a−1 exists, then a has the cancellation property: ab = ac implies b = c. (We simply
multiply both sides by a−1.) But often we can cancel a even if a−1 doesn’t exist.
It’s allowed in fact exactly when a is regular (not a zero-divisor). That’s because
multiplication by a is linear and thus injective if and only if it has trivial kernel.
And by definition, its kernel is trivial exactly when a is regular. In this case, we can
cancel a from both sides of an equation as if multiplying by a−1 although a need
not actually have an inverse. It turns out, furthermore, that there is a larger ring in
which a is a unit. Suppose on the other hand that a is a zero divisor. No extension
can turn a zero divisor into a unit. But we can still find a (necessarily non-injective)
ring homomorphism under which a is mapped to a unit. More generally, for any
multiplicatively closed set of elements S, there is a “unique” “minimal” ring in
which S becomes units. It is called the ring of fractions.
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2. Ring of Fractions as an Extension

The most fundamental example of the ring of fractions is the construction of the
rationals.

Construction 2.1. Taking for granted the construction of Z, we consider the
fractions with integer entries and non-zero denominator. We let Q denote the
equivalence classes of these fractions under the equivalence relation

a

b
∼ c

d
if ad = bc.

Multiplication is defined component wise:
a

b
∗ c

d
=

ac

bd
.

Addition is defined by finding common denominator and then adding the numera-
tors:

a

b
+

c

d
=

ad+ bc

bd
.

The rationals are then the ring (Q,+, ∗). This process can naturally be generalized:

Definition 2.2. A set will be called regular – this is my terminology – if all its
elements are regular.

Definition 2.3. A set is multiplicatively closed if it is closed under finite products
(including the empty product, so it contains 1).

For the rest of this section, S ⊂ R will be multiplicatively closed and regular.
Now we proceed exactly as we did for the rationals except we use R for set of allowed
numerators and S for denominators. We denote the equivalence classes by S−1R
and call (S−1R,+, ∗) the “ring of fractions”. It comes with a natural embedding
which I denote by fS : R → S−1R, given by fS(r) =

r
1 .

Exercise 2.1. Show that (S−1R,+, ∗) is well defined. This requires showing that
∼ is an equivalence relation, that +, ∗ are well defined on the equivalence classes
and that (S−1R,+, ∗) satisfies the ring axioms. Furthermore show that fS is an
embedding and that for all s ∈ S, 1

s = fS(s)
−1. The construction of the rationals

then follows as a special case by taking R = Z and S = Z \ {0}.

Now I’ll argue that fS : R → S−1R is ‘minimal’. But what does it mean for
a homomorphism to minimal? Minimal means ‘doing’ as little as possible. The
larger the kernel, the more ‘information’ destroyed. If the size of the kernel is fixed,
then the larger the codomain, the more ‘information’ created. Isomorphisms are
therefore minimal homomorphisms; no information is created or destroyed. One
way to make this notion precise is through factoring. We say that g : A → C
factors through f : A → B if there exists g′ : B → C such that g = g′ ◦ f (where
all 3 maps are homomorphisms). In other words, there exists a g′ such that the
following diagram commutes:

A
f //

g
��

B

g′

��
C

(A diagram is said to commute when all paths which start at the same node and
end at the same node are equal. In this paper, where all diagrams have rings for
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nodes and ring homomorphisms for edges, two paths are said to be equal when the
ring homomorphisms produced by composing all homomorphisms along each path
are the same. So the diagram above commutes if and only if g = g′ ◦ f .)
If g′ is unique, we say g factors uniquely through f and call g′ the induced map. If we
have a collection of homomorphisms H who all have domain R, we could call some
f ∈ H minimal if all other homomorphisms in H uniquely factor through it. This
forces both the kernel and codomain to be small as desired. First, the existence of a
factoring of g through f implies that ker g contains ker f . Thus f has the smallest
kernel in H. Second, the uniqueness of such factorings precludes the possibility
that the codomain of f contains “extra stuff” unrelated to f(R). For example if
h is the natural inclusion into R[X], then no g would factor uniquely through it
because X could be sent anywhere (by the universal property of polynomial rings).
Under this notion, isomorphisms are minimal among all homomorphisms because
every homomorphism factors uniquely through them. And in that same sense fS
is minimal among homomorphisms turning S into units:

Theorem 2.4. Every other ring homomorphism sending S to units factors uniquely
through fS. In other words, suppose that g : R → R′ is a homomorphism sending S
to units. Then there’s a unique ring homomorphism g′ completing the commutative
diagram:

R
fS //

g
""

S−1R

g′

��
R′

Furthermore g′ is given by g′(ab ) = g(a)g(b)−1.

Proof. a
b = a

1 (
b
1 )

−1 = f(a)f(b)−1 by Exercise 2.1. If the desired g′ exists, we

must therefore have g′(ab ) = g(a)g(b)−1. But from this alone I claim g′ is well
defined, which is to say that this formula for g′ agrees on all fractions in the same
equivalence class:

a

b
=

c

d
∈ S−1R =⇒ ad = bc =⇒ g(a)g(d) = g(b)g(c)

since g is a ring homomorphism. And,

b, d ∈ S =⇒ g(b), g(d) are units, so we get g(a)g(b)−1 = g(c)g(d)−1,

as desired. Thus g′ is well defined.
Now we show that g′ is a homomorphism, which follows from algebraic manipula-
tions:
Additivity:

g′(
a

b
+

c

d
) = g′(

ad+ bc

bd
) = g(ad+ bc)g(bd)−1

= [g(a)g(d) + g(b)g(c)]g(b)−1g(d)−1 = g(a)g(b)−1 + g(c)g(d)−1

= g′(
a

b
) + g′(

c

d
).

Multiplicativity:

g′(
a

b
∗ c

d
) = g′(

ac

bd
) = g(ac)g(bd)−1 = g(a)g(c)g(b)−1g(d)−1 = g′(

a

b
) ∗ g′( c

d
)

as desired. Thus g′ is a homomorphism, completing the proof. □
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This theorem is the justification that the ring of fractions is minimal. In the next
chapter, I will give a generalization of this theorem and another theorem justifying
the “uniqueness” of the ring of fractions.

Remark 2.5. Let R be integral domain. Then S := R \ {0} is multiplicatively
closed and regular. S−1R is a field because (ab )

−1 = b
a for every a

b ∈ S−1R. It is
called the field of fractions of R.

Remark 2.6. If S consists entirely of units, then the extension fS : R → S−1R
is trivial (by which I mean an isomorphism). We already know fS is injective by
Exercise 2.1. Observing that a

b = fS(ab
−1) for any a

b ∈ S−1R shows surjectivity.
If, on the other hand, the extension is an isomorphism, then S must consist entirely
of units since an isomorphism can’t change unit status.
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3. General Ring of Fractions

In this section, we still require that S is multiplicatively closed but drop the
condition that it is regular. This generalization costs us the injectivity of fS since a
zero divisor can’t become regular under an extension. But there’s still a “unique”
“minimal” ring homomorphism sending S to units.

Definition 3.1. I call a, b ∈ R co-zero divisors if ab = 0 (even if a or b is zero).
This is my term.

From now on, let BS := {k ∈ R|∃s ∈ S s.t. ks = 0} – a.k.a all co-zero divisors
of the elements of S.

Lemma 3.2. Suppose f : R → R′ is a homomorphism under which S becomes
regular. Then f sends BS to 0.

Proof.

k ∈ BS =⇒ 0 = ks for some s ∈ S =⇒ 0 = f(ks) = f(k)f(s) =⇒ f(k) = 0,

since f(s) is regular in R′. □

Remark 3.3. It immediately follows that if S contains a zero divisor, any ring
homomorphism sending all s ∈ S to units is non-injective.

But, if we quotient out the co-zero divisors, S becomes regular and remains
multiplicatively closed:

Lemma 3.4. BS is an ideal. Let πS : S → R/BS be the natural projection. Then
πS(S) is regular and multiplicatively closed.

Proof.
BS is an ideal:

Closed under addition:

a, b ∈ BS =⇒ ax = by = 0 for some x, y ∈ S

=⇒ (a+ b)xy = 0 with xy ∈ S since S is multiplicatively closed

=⇒ a+ b ∈ BS .

Closed under multiplication by any element in R:

a ∈ BS , r ∈ R =⇒ ax = 0 for some x ∈ S =⇒ (ra)x = 0 =⇒ ra ∈ BS .

Non-empty:

0 ∗ 1 = 0 =⇒ 0 ∈ BS .

Thus BS is an ideal.
πS(S) is regular: Suppose that r̄x̄ = 0 ∈ R/BS for some r ∈ R, x ∈ S. Then
rx = a for some a ∈ BS . a ∈ BS implies there’s some y ∈ S such that ay = 0.
Thus rxy = ay = 0. But then since xy ∈ S, we get that r ∈ BS so r = 0 as desired.
Thus x isn’t a zero divisor for any x ∈ S.
πS(S) is multiplicatively closed: πS(1) = 1 ∈ πS(S). And πS(x), πS(y) ∈ πS(S) =⇒
πS(x)πS(y) = πS(xy) ∈ πS(S). □

Therefore, if we first quotient out the co-zero divisors, we can then apply the
extension constructed in the previous section, producing the following diagram:

R
πS // R/BS

fπS(S) // πS(S)
−1(R/BS).
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We then denote the right most ring by S−1R and call it the ring of fractions. We
denote the composite map by fS , which turns S into units because fπS(S) turns
πS(S) into units.

Remark 3.5. When S is regular, this definition of the ring of fractions agrees with
the one in the previous section. The only difference is an initial quotienting by 0.

Remark 3.6. If we have some homomorphism R → R′ and a ∈ R, we will often
abuse notation by saying “a ∈ R′”, referring to the image of a in R′. In that sense,
for any a ∈ R, s ∈ S we get a ∈ R/BS , s ∈ πS(S) and thus we can say “a

b ∈ S−1R”

to denote πS(a)
πS(s) . Using this notation, we get

a

b
=

c

d
∈ S−1R ⇐⇒ πS(a)

πS(b)
=

πS(c)

πS(d)
⇐⇒ πS(ad− bc) = 0.

This occurs exactly when (ad − bc)s = 0 for some s ∈ S. In fact, this is how the
ring of fractions is usually constructed: the same formal fractions and operations
as I give in Construction 2.1 except with the modified equivalence relation:

a

b
∼ c

d
if (ad− bc)s = 0 for some s ∈ S.

This equivalence relation generalizes to situations were S is non-regular. Of course,
the constructions are equivalent.

Remark 3.7. Since fπS(S) is injective, the kernel of fS is kerπS = BS . Thus fS
is injective exactly when S is regular. Furthermore, its the 0 map when 1 ∈ BS ,
which happens exactly when 0 ∈ S.

We get the following analogue of Theorem 2.4:

Theorem 3.8. The Universal Property of the Ring of Fractions
fS sends S to units. Let g : R → R′ be another map sending S to units. Then
g factors uniquely through fS. Furthermore the induced map is given by g′(ab ) =

g(a)g(b)−1.

Proof.
Recall that fS := fπS(S) ◦ πS . Thus it sends S to units because fπS(S) sends πS(S)
to units by Exercise 2.1.
By Lemma 3.2, ker g contains BS . Hence, by the universal property of the quotient
ring, g factors uniquely through πS . Let ḡ : R/BS → R′ be the induced map (i.e.
g = ḡ ◦ πS). I summarize the situation with the following diagram:

R
πS //

g

))

R/BS

fπS(S) //

ḡ

$$

S−1R

g′

��
R′

We want to show that there is a unique g′ commuting with g. (When I say g′

commutes with g, I mean that the homomorphism produced by composing maps
along a path from R to R′ does not depend on whether the path taken includes g′

or g.) Because πS is surjective and ḡ commutes with g, g′ commutes with g if and
only if it commutes with ḡ. (Check this.) Theorem 2.4 proves that there’s a unique
g′ commuting with ḡ with the formula described. g′ therefore is also the unique
map commuting with g, completing the proof. □
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A universal property is meant to characterize some object completely up to
isomorphism – often by asserting the property of the object which is most helpful.
The above theorem asserts the universal property of the ring of fractions. I now
show that it is truly a universal property, by which I mean that S−1R is the unique
ring (up to isomorphism) possessing this universal property:

Theorem 3.9. Uniqueness of the Ring of Fractions
Let f : R → R′ be a ring homomorphism with the universal property of the ring of
fractions. In other words, the assertions about fS in Theorem 3.8 also apply to f .
Then there is a unique isomorphism f ′ such that the following diagram commutes:

R
fS //

f ""

S−1R

f ′

��
R′

Furthermore, f ′ is given by f ′(ab ) = f(a)f(b)−1.

Proof. Since fS satisfies the universal property of the homomorphism into the
ring of fractions and f sends S to units, it follows immediately from Theorem 3.8
that there is a unique f ′ completing the diagram above which is given by f ′(ab ) =

f(a)f(b)−1. Now we just need to show f ′ is an isomorphism. Observe that the
roles of f and fS are symmetric here. So there is also a (unique) f ′

S such that
fS = f ′

S ◦ f . We can combine these facts into the below commutative diagram:

R
fS //

f ""
fS

��

S−1R

f ′
||

R′

f ′
S||

S−1R

There may appear to be redundancy, since S−1R appears twice. We could collapse
the top right and bottom left nodes into one but then the diagram wouldn’t, a
priori, be commutative. So I’ve chosen to write S−1R twice but I could have just
easily wrote R′ twice – they are still symmetric in this situation. Now omit R′

from the commutative diagram and observe that we have found a way in which fS
factors through itself:

R
fS //

fS

��

S−1R

f ′
S◦f ′

zz
S−1R
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But, by the universal property, fS factors through itself uniquely and therefore
f ′
S ◦ f ′ must be the identity. By symmetry, f ′ ◦ f ′

S is also the identity. This proves
that f ′ is an isomorphism. □

Remark 3.10. Suppose we have an arbitrary subset A ⊂ R and want a minimal
homomorphism on R under which A become units. Let S be the multiplicative
closure of A, a.k.a all finite products of elements in A. Any map sending A to units
will also sends S to units because products of units are also units. Thus any such
map will factor uniquely through fS . Since fS also sends A to units, it is therefore
the “minimal” homomorphism sending A to units.
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4. Applications of the Universal Property

The universal property is meant to characterize an object by its most useful
property. One has to use the details of the construction of an object in order prove
its universal property. But the hope is that, from that point on, you can largely
forget the details of the construction and use the universal property. I provide some
examples where using the universal property simplifies an argument:

Theorem 4.1. Let X = {Xs}s∈S be the set of indeterminates indexed by S and
E = {1− sXs}s∈S. Then R[X]/(E) ∼= S−1R.

Proof.
Let i : R → R[X] be the inclusion and π : R[X] → R[X]/(E) the natural projection.
Then there is a natural homomorphism π ◦ i : R → R[X]/(E), which I will show
has the universal property given in Theorem 3.8.
First, S are sent to units because s has inverse Xs in R[X]/(E). In particular,
1− sXs ∈ E implies sXs = 1 in R[X]/(E).
To show the second part of the universal property, we consider some homomorphism
f : R → R′ sending S to units and show that it factors uniquely through π ◦ i.
Momentarily, I’ll produce maps g and ḡ such that the following diagram commutes:

R
i //

f
))

R[X]
π //

g

%%

R[X]/(E)

ḡ

��
R′

By the universal property of polynomial rings, there is a unique ring homomorphism
g : R[X] → R′ which is f on R and sends Xs to f(s)−1. Since g is f on R, g
commutes with f . Since g sends Xs to f(s)−1, it necessarily kills (E). Thus, by the
universal property of quotient rings, there is a unique homomorphism ḡ commuting
with g as pictured above. Furthermore since g commutes with f , it follows that ḡ
commutes with f . (Check this.) Thus, there exists a factoring of f through π ◦ i
(namely the one given by ḡ). Now I show that it is unique:
Suppose there is a second map ḡ′ : R[X]/(E) → R′ commuting with f in the diagram
above. First, because it commutes with f , it must send s−1 = Xs ∈ R[X]/(E) to
f(s)−1 ∈ R′, which means it commutes with g on X ⊂ R[X]. Second, since g
also commutes with f , ḡ′ must commute with g on R ⊂ R[X]. But, since R,X
generate R[X], ḡ′ must commute with g on all of R[X]. But, as argued earlier, ḡ
is the unique map commuting with g in this way so we must have ḡ′ = ḡ, showing
uniqueness of the factoring.
Thus π ◦ i : R → R[X]/(E) has the universal property, implying R[X]/(E) ∼= S−1R
by Theorem 3.9. □

There is a good intuition for this result. As argued, fS : R → S−1R is the
“minimal” homomorphism sending S to units. R[X]/(E) meets that criteria quite
well: We decide we will denote the inverse of s by Xs. Saying Xs = s−1 is the
same as saying 1 − sXs = 0, which is exactly the information carried in E. Thus,
R[X]/(E) is the ring defined by taking R and appending an element Xs for each
s ∈ S with only the information that it is the inverse of s. It may seem redundant
to add in so many elements. For example, what if s ∈ S already has some inverse
s−1 ∈ R? Well then s−1(1 − sXs) = s−1 −Xs ∈ E, hence Xs = s−1 ∈ R[X]/(E).
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In other words, any redundancy is ultimately quotiented out. This notion of the
ring of fractions is seldom used because the idea of fractions is more intuitive than
appending variables and quotienting like this.

Theorem 4.2. Let T ⊂ S−1R be a multiplicative set. Let U be the multiplicative
set generated by S and the preimage of T in R. Then T−1(S−1R) and U−1R are
canonically isomorphic.

Proof. There’s a natural homomorphism fT ◦fS : R → S−1R → T−1(S−1R), which
I will show has the universal property of fU :
First, any element of U is a product of elements in S and T and thus is a product
of units in T−1(S−1R). Hence U become units in T−1(S−1R) as desired.
To show the second part of the universal property, we consider some homomorphism
f : R → R′ sending U to units and show that it factors uniquely through fT ◦
fS . Momentarily, I’ll produce maps f ′ and f ′′ such that the following diagram
commutes:

R
fS //

f

**

S−1R
fT //

f ′

&&

T−1(S−1R)

f ′′

��
R′

Since U become units in R, so do S. Thus, by the universal property of S−1R, we
get a unique map f ′ commuting with f as depicted above. Because it commutes
with f , f ′ must send elements of T to units. (Check this.) So the universal property
of T−1(S−1R) produces a unique f ′′ commuting with f ′ as depicted above. Since
f ′ commutes with f , it must also commute with f . This shows existence of a
factoring.
Now I show it is the unique factoring: If there is another such map g : T−1(S−1R) →
R′ commuting with f , then, since f ′ commutes with f also, they must agree on
the image of R in T−1(S−1R). But because applying a homomorphism respects
products and taking multiplicative inverse, then they must also agree on everything
generated by the image of R in T−1(S−1R) under multiplication and multiplicative
inverse, which is all of T−1(S−1R). Hence g = f ′′, showing uniqueness.
Then we may apply Theorem 3.9 to produce the unique isomorphism commuting
with fU and fT ◦ fS . □

Remark 4.3. A note on canonical isomorphisms:
In general, a map is canonical if it is the “natural” or “standard” map. For example,
when a is an ideal of R, the map R → R/a of x → x + a is called the canonical
projection because this map is a projection and its the obvious and natural map.
fS is the canonical homomorphism from R into S−1R. The map isomorphism
described above in Theorem 4.2 and given explicitly in Exercise 4.1 is also canonical.
A canonical map usually refers to a map which is part of a larger family of maps.
The maps in these two examples fit that description. For example, homomorphisms
into rings of fractions are a family of maps indexed by R and S because each of
these maps is specified by a ring and multiplicative subset. When there would
otherwise be ambiguity, the term canonical is used to single out the map which
is the most pervasive in a given general situation. For example, suppose I said
“let f be the canonical homomorphism from C into its field of fractions”. Since
C is a field, it is its own field of fractions. C has multiple ring homomorphisms
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into itself, most notably the identity and complex conjugation. But, if I say “the
canonical homomorphism into its field of fractions”, I’m referring to the family of
homomorphisms fS : R → S−1R. So the canonical homomorphism would be the
member of this family which corresponds with R = C and S = C \ {0}, a.k.a the
identity as opposed to complex conjugation.

Exercise 4.1. Show that the canonical isomorphism in the direction T−1(S−1R) →
U−1R is given by ϕ(a/bc ) = a

bc . Use the fact that the isomorphism commutes with
fU and fT ◦ fS .
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5. Conclusion

I have provided introductory explanations to fundamental ideas in algebra such
as commutative diagrams, factoring through, universal properties, and canonical
maps. My main goal, however, was to present an alternative construction to the
general ring of fractions as a quotient and then an extension. (I describe the
standard approach in Remark 3.6.) My non-rigorous justification that fS : R →
S−1R is “minimal” is also my own. My exercises and theorems, however, are
quite common. In particular, the universal property of the ring of fractions is
fundamental. With it in mind, you may proceed to other texts without being at a
disadvantage for having seen a different construction, since all constructions of the
ring of fractions are united by sharing the same universal property. On that note, I
omit a great number of properties of the ring of fractions as well as its applications.
I hope my introduction will provide a good ground work that will be helpful while
learning more about it in other texts.
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