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Abstract. This paper is intended to be an undergraduate-accessible intro-
duction to the following classic examples of dynamical systems: rotations and
expanding maps on S1, shift maps on infinite sequences, quadratic maps, and
the horseshoe map. We will investigate what happens over time when we it-
erate these transformations. We assume the reader knows point-set topology,
and has taken an introductory measure theory class. The goal is to introduce
different properties of dynamical systems and notions of equivalence, and use
them to compare our examples.

First, we provide relevant background on measure theory and probability.
Then we define rotations and expanding maps on S1. We dedicate an entire
section to defining the shift map and the space of infinite sequences. Then we
look at examples of measure-preserving transformations and measure-theoretic
isomorphism. We define ergodicity and mixing, which are ways of classifying
how points get distributed in a dynamical system. We conclude the paper
with a section on symbolic dynamics, which is the process of analyzing trans-
formations by relating them to shift maps. Specifically, we will use symbolic
dynamics to easily find periodic points of quadratic maps and the horseshoe
map.
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Introduction

A dynamical system is a transformation T : X Ñ X. We want to study what
happens to X (which we call a phase space) when we apply T over and over again.
For notation, we use Tn to mean T ˝ T ˝ ¨ ¨ ¨ ˝ T . Think of each application of T as
a step forward in time. For instance, if x P X, then T 3pxq represents where x is at
time 3. Also, for a set A Ď X, we think of the pre-image T´1pAq as A one unit in
the past.

When studying what happens to a dynamical system over time, there are some
natural questions to ask. We may wonder what the fixed points are, the points
x P X such that T pxq “ x. Similarly, the periodic points are the points x P X
such that there exists n P N with Tnpxq “ x. Another question is what are the
invariant sets, the sets Λ such that T´1pΛq “ Λ. For example, the set of all periodic
points of T is an invariant set. Furthermore, if we put a probability measure on
our dynamical system, then we can ask what probabilistically happens to the phase
space. In this paper, we will investigate examples of dynamical systems that have
interesting answers to each of these questions.

1. Preliminaries and Notation

1.1. Measure Theory. This paper assumes the reader has had a formal introduc-
tion to measure theory. This section is meant to be a review of key definitions. The
content in this section is from [8], [9], [12], and [17].

Notation 1.1. Let f and g be measurable transformations. We say f and g are
equal almost everywhere if the set tx | fpxq ‰ gpxqu has measure 0. Throughout
this paper, we will write f “ g a.e. to mean f and g are equal almost everywhere.

We also have a notion of "almost everywhere" for set equality. Define the sym-
metric difference of sets A and B (denoted A∆B) to be pAzBq Y pBzAq. We say
A and B are equal mod 0 if the measure of A∆B is 0.

Definition 1.2. A σ-algebra on a set X is a collection B of subsets of X such that
(1) H P B,
(2) if B P B, then Bc P B, and
(3) if B1, B2, ¨ ¨ ¨ P B, then

Ť8

n“1 Bn P B.
We call pX,Bq a measurable space.

Example 1.3. For any set X, the power set 2X is a σ-algebra.

Example 1.4. The set of all Lebesgue measurable sets in R is a σ-algebra.

Definition 1.5. Let F be a collection of subsets of X. Then σpFq, the σ-algebra
generated by F , is the intersection of all σ-algebras that have F as a subset. Thus,
σpFq is the smallest σ-algebra that has F as a subset.

Example 1.6. The Borel σ-algebra is the σ-algebra generated by the open sets of
R.

Definition 1.7. Let B be a σ-algebra on X. We say µ : B Ñ r0,8s is a measure
if

(1) µpHq “ 0, and
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(2) for pairwise disjoint B1, B2 ¨ ¨ ¨ P B, we have

µp

8
ď

k“1

Bkq “

8
ÿ

k“1

µpBkq.

We call pX,B, µq a measure space.

Example 1.8. The Lebesgue measure on R is a measure.

Example 1.9. On a σ-algebra B, the counting measure c : B Ñ r0, 1s is defined
as

cpBq :“

#

|B| if B is finite
8 if B infinite.

Example 1.10. Given a measurable transformation f : pX,A q Ñ pY,Bq with
measure µ on pX,A q, we define the pushforward measure f˚pµq on pY,Bq by

f˚pµqpBq :“ µpf´1pBqq.

We are often in a position where we want to study a measure µ on a σ-algebra
B, but we don’t understand what all the sets in B look like. However, we can
usually find a family of well-understood sets F such that σpFq “ B. The following
definitions and theorem will outline the circumstances in which we can apply what
we know about µ on F to all of B.

Definition 1.11. A semi-algebra on a set X is a collection S of subsets of X such
that

(1) H P S,
(2) for all S1, S2 P S, S1 X S2 P S,
(3) for all S P S, Sc is a finite disjoint union of sets in S.

Example 1.12. Let I denote the collection of all intervals (bounded or unbounded)
in R. Then I Y tHu is a semi-algebra.

Definition 1.13. Let S be a semi-algebra on X. We say µ : S Ñ r0,8s is a
pre-measure if

(1) µpHq “ 0,
(2) for pairwise disjoint S1, . . . , Sn P S such that

Ťn
k“1 Sk P S, we have

µp

n
ď

k“1

Skq “

n
ÿ

k“1

µpSkq.

The definition of a pre-measure is basically the same as the definition of a mea-
sure, except it is adjusted to make sense for semi-algebras rather than σ-algebras,
because the pre-measure definition allows for the domain to not be closed under
unions. A measure restricted to a semi-algebra is a pre-measure.

Example 1.14. The length function for intervals (where an interval from a to b
has length b ´ a and an unbounded interval has length 8) is a pre-measure on
pR, I Y tHuq.

Definition 1.15. Say µ is a pre-measure (or measure) on a semi-algebra (or σ-
algebra) S. Then µ is σ-finite if there exists S1, S2 ¨ ¨ ¨ P S such that X “

Ť8

k“1 Sk

and µpSkq ă 8.
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Example 1.16. The counting measure in Example 1.9 on pr0, 1s, 2r0,1sq is not σ-
finite.

Example 1.17. The length function for intervals in Example 1.14 is σ-finite.

Theorem 1.18. (Carathéodory Extension Theorem). Let S be a semi-algebra, and
µ be a σ-finite pre-measure on pX,Sq. Then µ extends uniquely to a measure on
σpSq.

Proof. See [12]. □

Example 1.19. The length function for intervals in Example 1.14 extends to the
Lebesgue measure on the Borel σ-algebra of R.

1.2. Probability Language. Although we won’t always use probability terms in
this paper, understanding how certain definitions are interpreted in probability can
help motivate and demystify concepts in dynamics.

Definition 1.20. A probability space is a triple pX,B, µq, where X is a space, B
is a σ-algebra of X, and µ is a measure on pX,Bq such that µpXq “ 1. We call µ
a probability measure.

Example 1.21. Because we identify S1 with R{Z, we can consider S1 with the
normalized Lebesgue measure on r0, 1q. Call this the circular Lebesgue measure,
denoted ℓc. Let Bc be the Borel σ-algebra on S1. Then pS1,Bc, ℓcq is a probability
space. Unless otherwise specified, we will consider S1 with pS1,Bc, ℓcq.

Example 1.22. Consider the measurable space pt0, . . . , N ´ 1u, 2t0,...,N´1uq. Let
p “ pp0, . . . , pN´1q be a probability vector, i.e.

p0 ` p1 ` ¨ ¨ ¨ ` pN´1 “ 1.

Then, µp : 2t0,...,N´1u Ñ r0, 1s defined by

µppBq “
ÿ

xPB

px

is a probability measure, and pt0, . . . , N ´1u, 2t0,...,N´1u, µpq is a probability space.

Definition 1.23. Let pΩ,A , µq be a probability space, let B be the Borel σ-
algebra, and ℓ be the Lebesgue measure on R.

(1) We call an element of a σ-algebra an event.
(2) We call a measurable function Y : pΩ,A , µq Ñ pR,B, ℓq a random variable.
(3) If Y is a random variable, we call the pushforward measure Y˚pµq the

distribution of Y .

Example 1.24. When reading probability papers, you might see a statement that
looks like this: P pY ă 5q “ 1

2 . Let’s unpack this notation: P is a probability
measure, Y is a random variable (measurable function), and Y ă 5 is shorthand
for ta | Y paq ă 5u, which is an event (measurable set).

Notation 1.25. Although it is common in probability to use X to represent a
random variable, in this paper we will use generally use X to refer to a phase space
(the domain/codomain of a dynamical system). This notation matches [7] and [15].

Definition 1.26. Let pX,B, µq be a probability space. We say two events A,B P B
are independent if

µpA X Bq “ µpAqµpBq.
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What does independence mean intuitively? Let’s use the Lebesgue measure on
r0, 1sˆr0, 1s as an example. Say A and B are independent Borel sets of r0, 1sˆr0, 1s.
So

ℓpA X Bq

ℓpAq
“ ℓpBq.

Now, say that we pick a random point of r0, 1s ˆ r0, 1s. The probability that
the point is in B is ℓpBq, because ℓpBq can be thought of as the fraction of area
of r0, 1s ˆ r0, 1s that is taken up by B. If someone were to give us a hint and tell
us that our point is in A, then we know the probability that the point is in B is
ℓpAXBq

ℓpAq
. This is because ℓpAXBq

ℓpAq
is the fraction of area of A that is taken up by B.

Since ℓpAXBq

ℓpAq
“ ℓpBq, that means the "hint" actually doesn’t change the probability

of our point being in B. We can think of these events as not effecting each other.

Definition 1.27. The expectation of a random variable f : pΩ,A , µq Ñ pR,B, ℓq
is

Epfq :“

ż

fdµ.

For information about the construction of the integral with respect to a measure,
see [12].

1.3. Transformations: Notation and Pocket Examples. Here we will define
the rational rotation, irrational rotation, and expanding map on S1. We will con-
tinually return to these examples of dynamical systems throughout the paper.

Notation 1.28. For a transformation T , we use Tn to mean T ˝ T ˝ ¨ ¨ ¨ ˝ T
looooooomooooooon

n times

.

Notation 1.29. To avoid clutter, we sometimes drop the parenthesis from a func-
tion input. For example, we write T´1A to mean T´1pAq, and Tx to mean T pxq.

Now we introduce some of the "pocket examples" that we will study throughout
the paper. In the following definitions, we identify S1 with R{Z so that points in
S1 can be described as points in r0, 1q.

Definition 1.30. A rotation on S1 is a transformation Rα : S1 Ñ S1 of the form

Rαpxq “ x ` α mod 1,

where α P r0, 1q. See Figure 1. If α is irrational, we say Rα is an irrational
rotation. If α is rational, we say Rα is an rational rotation. We will consider this
transformation on the probability space pS1,Bc, ℓcq from Example 1.21.

Even though the rational and irrational rotation may seem very similar, they
have drastically different properties. For instance, every point of S1 is periodic
under a rational rotation, whereas no points of S1 are periodic under an irrational
rotation. In Section 4, we will show that any set that is invariant under an irrational
rotation has measure 0 or 1, which is not the case for rational rotations.

Definition 1.31. An expanding map on S1 is a transformation Ek : S1 Ñ S1 of
the form

Ekpxq “ kx mod 1,

where k P Z and |k|>1. See Figure 2. We will consider this transformation on the
probability space pS1,Bc, ℓcq from Example 1.21.
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In this paper, we will usually refer to E2, since it is the easiest expanding map
to visualize. In Section 5, we will show that this transformation is mixing, which
means that the phase space gets "mixed up" over time.

(a) r 1
8
, 1
4

s (b) R 1
4

r 1
8
, 1
4

s

Figure 1. Image of r 18 ,
1
4 s under R 1

4
pxq “ x ` 1

4 mod 1.

(a) r 1
8
, 1
4

s (b) E2r 1
8
, 1
4

s

Figure 2. Image of r 18 ,
1
4 s under E2pxq “ 2x mod 1.

2. The Shift Map

In this section, we define our final pocket example, the shift map. This map
takes as input an infinite sequence of digits. It outputs a sequence with the same
digits in the same order, but with the indexing shifted by 1. We will discuss what
periodic points of the shift map look like. Also, we will take a moment to describe
the space of infinite sequences where the shift map lives by putting a topology and
a measure on it. The content of this section loosely follows [7].

Definition 2.1. For N P Ně2, let

ΩN “ tp. . . ω´1, ω0, ω1, . . . q
ˇ

ˇ ωi P t0, 1, . . . , N ´ 1u, i P Zu,

and
ΩR

N “ tpω0, ω1, . . . q
ˇ

ˇ ωi P t0, 1, . . . , N ´ 1u, i P Nu.

We say ΩN is the space of two-sided sequences of N symbols, and ΩR
N is the space

of one-sided sequences of N symbols.

Example 2.2. For example, p. . . 1, 0, 1, 91, 0, 1, 0 . . . q is an element of Ω2. The dot
indicates where the 0th coordinate is.
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Definition 2.3. The shift map σN : ΩN Ñ ΩN on N symbols is defined by

σN p. . . , x´1, 9x0, x1, x2 . . . q :“ p. . . , x0, 9x1, x2, x3 . . . q

where the dot indicates the 0th coordinate. So σN pωq “ ω1, where ω1
i “ ωi`1. The

shift map σR
N : ΩR

N Ñ ΩR
N on N symbols is defined by

σR
N px0, x1, x2 . . . q :“ px1, x2 . . . q.

Note that σN is invertible, and σR
N is not.

Example 2.4. For instance, σR
2 p1, 0, 1, 1, 0, . . . q “ p0, 1, 1, 0, . . . q.

Given a dynamical system T : X Ñ X, a periodic point of period n is a point
x P X such that Tnpxq “ x. Periodic points of period 1 are fixed points. One great
thing about σN and σR

N is that it is very easy to find their periodic points. We start
off with an example of finding all the periodic points of period 3 for σR

2 . These
are the sequences of 0s and 1s such that when we cut off the first three digits, the
sequence is the same. For instance,

σR
N

3
p0, 1, 1, 0, 1, 1, 0, 1, 1 . . . q “ p0, 1, 1, 0, 1, 1, 0, 1, 1 . . . q.

The periodic points of period 3 are therefore all the sequences that repeat their
first 3 coordinates forever. So there is one periodic point for each 3-digit string of
0s and 1s that we can form. Therefore, there are 23 periodic points. By the same
reasoning, we get that there are Nn periodic points of period n for σR

N and σN .
Now we will define a topology on ΩN and ΩR

N .

Definition 2.5. A cylinder set of ΩN is a set of the form
8

ź

i“´8

Ai

where Ai Ď t0, . . . , N ´ 1u, and Ai “ t0, . . . , N ´ 1u for all but finitely many i. A
cylinder set of ΩR

N is defined in the same way, except the product indexing starts
at 0.

Example 2.6. The set

¨ ¨ ¨ ˆ t0, 1u ˆ t0, 1u ˆ t0u ˆ t0, 1u ˆ t0, 1u ˆ . . .

is a cylinder set of Ω2.

The topology we use on ΩN and ΩR
N is the one generated by cylinder sets. This

topology is the same as the product topology on t0, . . . , N ´ 1u with the discrete
topology. Also, this topology is metrizable with the distance function

dλpω, ω1q “

8
ÿ

´8

|ωn ´ ω1
n|

λ|n|
.

With this metric, points that share more middle coordinates in common are closer
together. For more information about this metric, see [7].

Proposition 2.7. The transformations σN and σR
N are continuous.

Proof. We will show σN is continuous. Because cylinder sets of ΩN form a basis for
the topology on ΩN , we only need to check that the pre-image of any cylinder set
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is open. Let A “
ś8

i“´8 Ai be a cylinder set of ΩN , meaning Ai “ t0, . . . , N ´ 1u

for all but finitely many indices. Then,

σ´1
N pAq “

8
ź

i“´8

Ai´1.

Note Ai´1 “ t0, . . . , N´1u for all but finitely many indices. So σ´1
N pAq is a cylinder

set and is therefore open. Thus σN is continuous. The proof for continuity of σR
N

follows by the same argument. □

Now we will discuss the topological structure of ΩN and ΩR
N .

Definition 2.8. A Cantor space is a space that is homeomorphic to the middle
thirds Cantor set, i.e. a space that is metrizable, compact, totally disconnected,
and perfect (closed and has no isolated points).

Proposition 2.9. The spaces ΩN and ΩR
N are Cantor spaces.

Proof. We already know that ΩN is metrizable. We will show that ΩN is compact,
perfect, and totally disconnected.

(1) By Tychonoff’s theorem, ΩN is compact because it is the product of com-
pact sets with the product topology.

(2) We will show that ΩN is perfect. Let x P ΩN , and say
ś8

i“´8 Ai contains
x. There exists i0 P Z such that Ai0 “ t0, . . . , N ´ 1u. Let y be equal
to x, except let yi0 have a different value than xi0 . Therefore, x ‰ y and
y P

ś8

i“´8 Ai. So every point in ΩN is a limit point. Since ΩN is the
universal space, it is closed. Therefore, ΩN is perfect.

(3) Finally, we will show that ΩN is totally disconnected. Let x, y P ΩN such
that x ‰ y. There exists n such that xn ‰ yn. So x P

ś8

i“´8 Bi, where
Bi “ t0, . . . , N ´ 1u for all i ‰ n, and Bn “ txnu. Note

ś8

i“´8 Bi is open.
Also, y P p

ś8

i“´8 Biq
c, which is also open. Therefore, x and y cannot be

in the same connected component. Thus ΩN is totally disconnected.
The same argument holds for ΩR

N . □

We end this section by constructing the product measure on (ΩN ,B8q, where
B8 is the σ-algebra generated by the set of cylinder sets of ΩN .

Proposition 2.10. Let C denote the set of cylinder sets of ΩN as well as H and
ΩN . Then C is a semi-algebra.

Proof. First, C contains H. Also, the intersection of two cylinder sets is a cylinder
set. Now we show that the compliment of a set C P C is a disjoint finite union of
elements of C. If C “ H or ΩN , then the compliment is a single element of C. If
C ‰ H and C ‰ ΩN , then C is a cylinder set, and we can write C as

C “ . . . X ˆ X ˆ C1 ˆ ¨ ¨ ¨ ˆ Cn ˆ X ˆ X ˆ . . . ,

Where X “ t0, . . . , N ´ 1u. We can express Cc as a disjoint finite union of cylinder
sets of the form

. . . X ˆ X ˆ C 1
1 ˆ ¨ ¨ ¨ ˆ C 1

n ˆ X ˆ X ˆ . . .

where C 1
i is either Ci or Cc

i . For example, the compliment of

¨ ¨ ¨ ˆ X ˆ C1 ˆ C2 ˆ X ˆ . . .



CLASSIC EXAMPLES IN DYNAMICAL SYSTEMS 9

can be expressed as the union of

¨ ¨ ¨ ˆ X ˆ Cc
1 ˆ C2 ˆ X ˆ . . . ,

¨ ¨ ¨ ˆ X ˆ C1 ˆ Cc
2 ˆ X ˆ . . . ,

and
¨ ¨ ¨ ˆ X ˆ Cc

1 ˆ Cc
2 ˆ X ˆ . . .

□

Now we will construct the product measure on (ΩN ,B8q. To do so, we will
construct a pre-measure on pΩN , Cq, and then use the Carathéodory Extension
Theorem (see Theorem 1.18) to obtain a measure on pΩN ,B8q. Let p be the prob-
ability vector p 1

N , . . . , 1
N q, and µ :“ µp be the probability measure on pt0, . . . , N ´

1u, 2t0,...,N´1uq described in Example 1.22. Define the pre-measure ν8 : C Ñ r0, 1s

by

ν8p

8
ź

i“´8

Aiq “

8
ź

i“´8

µpAiq.

Since Ai “ t0, . . . , N ´ 1u for all but finitely many i, that means µpAiq “ 1 for
all but finitely many i. Therefore,

ś8

i“´8 µpAiq is always a finite product, and
ν8 is σ-finite. By the Carathéodory Extension Theorem, ν8 extends uniquely to a
measure µ8 on σpCq “ B8. Also, by construction, pΩN ,B8, µ8q is a probability
space. The construction for the product measure µR

8 on pΩR
N ,BR

8q, where BR
8 is

the σ-algebra generated by the set of cylinder sets of ΩR
N , follows the same steps.

3. Measure Preserving Transformations

When studying dynamical systems, our guiding question is, "what happens to
the phase space over time?" By putting a probability measure on the phase space,
we can talk about what is probable to happen to points or sets in our dynamical
system. When studying dynamical systems on probability spaces, we want to look
at transformations that preserve the measure-theoretic structure of the space (just
like how we study continuous functions on topological spaces, and linear transfor-
mation on vector spaces). As such, we narrow our discussion to measure-preserving
transformations. In this section, we show that our pocket examples are measure-
preserving, and introduce a notion of what it means for two dynamical systems to
be "equivalent" in the measure-theoretic sense. The definitions and theorems in
this section follow [15].

Definition 3.1. Let pX,A, µq and pY,B, νq be two probability spaces. Then we
say a transformation T : X Ñ Y is

(1) measure-preserving if it is measurable and µpT´1pBqq “ νpBq for all B P B,
and

(2) an invertible measure-preserving transformation if it is a measure-preserving
bijection with a measure-preserving inverse.

Example 3.2. The identity function on any probability space is always an invert-
ible measure-preserving transformation.

Example 3.3. The map fpxq “ x2 on r0, 1s with the Lebesgue measure and Borel
σ-algebra is not measure-preserving. This is because f´1r0, 1

4 s “ r0, 1
2 s, and r0, 1

4 s

does not have the same Lebesgue measure as r0, 1
2 s.
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Before we discuss more examples of maps that are measure-preserving, we will
prove a theorem that provides a method for showing that a map is measure-
preserving when we don’t have a good idea of what sets in the σ-algebra look
like.

Theorem 3.4. Let pX,A , µq and pY,B, νq be two probability spaces, and T : X Ñ

Y be a measurable transformation. Say S be a semi-algebra such that σpSq “ B.
Then T is measure-preserving if and only if

(3.5) µpT´1Sq “ νpSq for all S P S.

Proof. We will follow the proof from [14]. First, we will show that (3.5) implies that
T is measure-preserving. Assume that (3.5) holds. Then, the pushforward measure
of µ, T˚pµq (see Example 1.10) is equivalent to ν on S. Since µ is a probability
measure, so is T˚pµq, and thus both T˚pµq and ν are σ-finite. By Carathéodory
Extension Theorem (1.18), T˚pµq must also be equivalent to ν on B. Therefore,
for all B P B,

νpBq “ T˚pµqpBq “ µpT´1Bq,

and thus T is measure-preserving. The reverse implication is immediate. □

Example 3.6. Consider a rotation Rα on pS1,Bc, ℓcq (refer to Definition 1.30).
The Borel sets of S1 can be generated by the semi-algebra of arcs (open, closed, or
neither). By Theorem 3.4, since Rα preserves arc-length, Rα is measure preserving.

Example 3.7. Consider the expanding map E2pxq “ 2x mod 1 on pS1,Bc, ℓcq.
Just as in Example 3.6, the fact that

(3.8) ℓcpE´1
2 Aq “ ℓcpAq for any arc A

ensures that E2 is measure preserving. See Figure 3 for an example demonstrating
how (3.8) holds. Also, any expanding map Ek on S1 (not just E2) is measure-
preserving.

(a) r0, 1
4

s (b) E´1
2 r0, 1

4
s (c) E´2

2 r0, 1
4

s

Figure 3. Example preimages under E2pxq “ 2x mod 1.

Remark 3.9. For a Borel set B of S1, it is not generally the case that ℓcpEkpBqq “

ℓcpBq. For example, ℓcpr0, 1
4 sq “ 1

4 , but ℓcpE2r0, 1
4 sq “ 1

2 .

Example 3.10. The map σN on pΩN ,B8, µ8q is measure-preserving. Let A “
ś8

i“´8 Ai be a cylinder set. So

µ8pAq “

8
ź

i“´8

µpAiq.
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Also,

µ8pσ´1
N Aq “ µ8p

8
ź

i“´8

Ai´1q “

8
ź

i“´8

µpAiq.

Therefore, µ8pAq “ µ8pσ´1
N Aq. Since the set of cylinder sets of ΩN union tH,ΩNu

is a semi-algebra that generates B8, by Theorem 3.4, σN is measure preserving.

Example 3.11. The map σR
N on pΩR

N ,BR
8, µR

8q is measure-preserving. Let A “

A1 ˆ A2 ˆ . . . be a cylinder set. So

µR
8pAq “ µpA1q ¨ µpA2q ¨ . . . .

Also,
σR
N

´1
A “ t0, . . . , N ´ 1u ˆ A1 ˆ A2 ˆ . . . .

So
µR

8pσR
N

´1
Aq “ µpt0, . . . , N ´ 1uq ¨ µpA1q ¨ µpA2q . . . .

Because µpt0, . . . , N ´ 1uq “ 1, then

µR
8pAq “ µR

8pσR
N

´1
Aq.

Since the set of cylinder sets of ΩR
N is the semi-algebra that generates BR

8, by
Theorem 3.4, σR

N is measure preserving.

We now provide a notion of what it means for two measure-preserving transfor-
mations to be equivalent in the measure-theoretic sense.

Definition 3.12. Let T : pX,A , µq Ñ pX,A , µq and S : pY,B, νq Ñ pY,B, νq

be measure-preserving transformations. We say T and S are measure-theoretically
isomorphic is there exists X 1 P A and Y 1 P B and R : X 1 Ñ Y 1 such that

(1) µpX 1q “ 1 and νpY 1q “ 1,
(2) T pX 1q Ď X 1 and SpY 1q Ď Y 1,
(3) R is bijective,
(4) R is an invertible measure-preserving transformation, and
(5) S ˝ R “ R ˝ T|X1 .

This notion of measure-theoretic equivalence is useful, because measure-theoretically
isomorphic transformations have the same measure-theoretic properties. This means
that given two measure-theoretically isomorphic transformations, we only need to
study one in order to learn about the other. We can also conclude that two trans-
formations are not measure-theoretically isomorphic if they do not have the same
measure-theoretic properties.

Example 3.13. The map σR
2 on pΩR

2 ,B
R
8, µR

8q is measure-theoretically isomorphic
to the map E2pxq “ 2x mod 1 on pS1,Bc, ℓcq. The following is a sketch of a proof.
Let X 1 be r0, 1q ´ Γ, where Γ is the set of points in r0, 1q that have multiple
representations in binary. Since Γ is countable, it has measure 0. Given a point
x P X 1 with binary representation 0.x0x1x2 . . . , define

Rpxq :“ px0, x1, . . . q,

and let Y 1 “ RpX 1q. To show that R is measure-preserving, use Theorem 3.4 with
the semi-algebra of cylinder sets. Note, this proof can be generalized to show that
any expanding map EN is measure-theoretically isomorphic to σR

N .
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This result is really useful. We can now visualize the behavior of one-sided
shifts by looking at expanding maps. Also, we can analyze expanding maps by
studying one-sided shifts, which have a much simpler definition. In the next couple
of sections, we will define ergodicity and mixing. These are properties of measure-
preserving transformations that describe how points get distributed throughout the
phase space. They are also invariants of measure-theoretic isomorphism. Therefore,
we can show that expanding maps are ergodic and mixing by showing that one-
sided shifts are ergodic and mixing. Also, we can show that two maps are not
measure-theoretically isomorphic simply by showing that one is mixing or ergodic,
and the other isn’t (rather than somehow checking that no isomorphisms exist).

4. Ergodicity

In this section, we define what an ergodic transformation is, and show which of
our pocket examples are ergodic. We state Birkhoff’s Ergodic Theorem and discuss
what it means intuitively. We also prove that ergodicity is an invariant of measure-
theoretic isomorphism. The content of this section is from [15], [8], [11], [4], and
[13].

Definition 4.1. Let T be a measure-preserving transformation on the probability
space pX,B, µq. We say T is ergodic if for all A P B such that T´1pAq “ A,
µpAq “ 0 or 1.

Example 4.2. Consider a probability space pX,B, µq where µ : B Ñ t0, 1u. Any
transformation on pX,B, µq is ergodic.

Before we talk about other examples and non-examples of ergodic transforma-
tions, we will introduce some equivalent definitions that we can use in proofs.

Theorem 4.3. Let T be a measure-preserving transformation on the probability
space pX,B, µq. The following are equivalent:

(1) T is ergodic
(2) For all A P B such that µppT´1Aq∆Aq “ 0, µpAq “ 0 or 1.
(3) If f : X Ñ C is measurable and f ˝ T “ f a.e., then f is constant a.e.

Proof. In this paper, we use the fact that (3) ñ (1) much more than the other
implications. As such, we will prove (3) ñ (1), and omit the rest (see [11] for the
full proof). Assume that if f : X Ñ C is a measurable function and f ˝ T “ f
a.e., then f is constant a.e. We will now show T is ergodic. Say A P B such that
T´1A “ A. Let 1A be the characteristic function of A, which is measurable. Also,
since T´1A “ A,

1A ˝ T “ 1A.

By assumption, 1A must be constant a.e. If 1A is 1 a.e., then µpAq “ 1. If 1A is 0
a.e., then µpAq “ 0. Because 1A only takes on values 0 or 1, that means µpAq “ 0
or 1. Thus, T is ergodic.

□

Proposition 4.4. In (3), we can replace f ˝T “ f a.e. with f ˝T “ f , and instead
of measurable f we can consider f P L2pµq.

Proof. See [15]. □
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Example 4.5. The rational rotation on pS1,Bc, ℓcq is not ergodic. To prove this,
it is helpful to represent the unit circle as

S1 “ tz P C | |z| “ 1u.

With this representation of S1, we can write a rational rotation as Rpxq “ ax,
where a is a root of unity. Since a is a root of unity, there exists k such that ak “ 1.
Let f : S1 Ñ C be defined by fpxq “ xk. We know f is measurable. Also,

pf ˝ Rqpxq “ fpaxq “ paxqk “ akxk “ xk “ fpxq

for all x P S1. However, f is not constant a.e. Therefore, R is not ergodic.

Example 4.6. The irrational rotation on pS1,Bc, ℓcq is ergodic. Again, represent
the unit circle as

S1 “ tz P C | |z| “ 1u.

An irrational rotation is a map of the form Rpxq “ ax, where a is not a root of
unity. For this proof, we will use a theorem about Fourier series called Carlson’s
Theorem: if f : S1 Ñ C is in L2pµq, then

fpxq “

8
ÿ

n“´8

cnx
n a.e.

Also, the coefficients cn are unique. For more information about this theorem and
Fourier series in general, see [13]. Now, let Rpxq “ ax be an irrational rotation, so
a is not a root of unity. Assume f P L2pµq such that f ˝ R “ f . Let

ř8

´8 cnx
n be

the Fourier series for f . Then, for all x P S1,

fpxq “ pf ˝ Rqpxq

“ fpaxq

“

8
ÿ

n“´8

cnpaxqn

“

8
ÿ

n“´8

pcna
nqxn a.e.

So
ř8

n´8pcna
nqxn is also a Fourier series for f . Since coefficients are unique,

cna
n “ cn. So cna

n ´ cn “ 0 and thus cnpan ´ 1q “ 0. Because a is not a root of
unity, an ´ 1 ‰ 0, and thus cn “ 0 for all n ‰ 0. Therefore,

fpxq “ c0x
0 “ c0 a.e.

Since f is constant a.e., that means R is ergodic.

Example 4.7. The map σN on pΩN ,B8, µ8q is ergodic. We will follow the proof
from [4]. Note that for all B,C P B8,

|µ8pBq ´ µ8pCq| ď µ8pB∆Cq.

See [18] for a proof. Say A P B8 such that σ´1
N A “ A. We will prove that

µ8pAq “ 0 or 1 by showing that µ8pAq “ µ8pAq2. Let ϵ ą 0. Since B8 is
generated by the semi-algebra of cylinder sets, there exists a finite union of cylinder
sets A0 such that

µ8pA∆A0q ă
ϵ

4
.
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Therefore,

(4.8) |µ8pAq ´ µ8pA0q| ă
ϵ

4
.

Because A0 is a finite union of cylinder sets, its measure only depends on finitely
many coordinates (see the end of Section 2 to review the definition of the product
measure). So there exists n P N such that the measure of σ´n

N A0 depends on entirely
different coordinates than A0 does. Therefore,

µ8pA0 X σ´n
N A0q “ µ8pA0qµ8pσ´n

N A0q.

Because σN is measure-preserving, µ8pσ´n
N A0q “ µ8pA0q and thus

(4.9) µ8pA0 X σ´n
N A0q “ µ8pA0q2.

Also, since σ´1
N A “ A,

µ8pA∆σ´1
N A0q “ µ8pσ´1

N A∆σ´1
N A0q(4.10)

“ µ8pσ´1
N pA∆A0qq

“ µ8pA∆A0q

ă
ϵ

4
.

Note that
A∆pA0 X σ´1

N A0q Ď pA∆A0q Y pA∆σ´1
N A0q.

So by (4.9) and (4.10),

|µ8pAq ´ µ8pA0 X σ´1
N A0q| ď µ8pA0 X σ´1

N A0q(4.11)

ď µ8ppA∆A0q Y pA∆σ´1
N A0qq

ď µ8pA∆A0q ` µ8pA∆σ´1
N A0q

ă
ϵ

4
`

ϵ

4

“
ϵ

2
.

So

|µ8pAq ´ µ8pAq2| ď |µ8pAq ´ µ8pA0 X σ´1
N A0q|

` |µ8pA0 X σ´1
N A0q ´ µ8pAq2|

ă
ϵ

2
` |µ8pA0 X σ´1

N A0q ´ µ8pAq2| by (4.11)

“
ϵ

2
` |µ8pA0q2 ´ µ8pAq2| by (4.9)

“
ϵ

2
` |µ8pA0qpµ8pA0q ´ µ8pAqq

` µ8pAqpµ8pA0q ´ µ8pAqq|

ď
ϵ

2
` µ8pA0q|µ8pA0q ´ µ8pAq|

` µ8pAq|µ8pA0q ´ µ8pAq|

ď
ϵ

2
` |µ8pA0q ´ µ8pAq| ` |µ8pA0q ´ µ8pAq|(4.12)

ă ϵ by (4.8).
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Note (4.12) is because µ8 is a probability measure, and thus µ8pAq ď 1 and
µ8pA0q ď 1. Because ϵ is arbitrary, we have shown that µ8pAq “ µ8pAq2, and
thus µ8pAq “ 0 or 1. Therefore, σN is ergodic.

Example 4.13. Note that σR
N on pΩR

N ,BR
8, µR

8q is ergodic by the same argument.

Now that we have seen some examples, we can talk about what ergodic intuitively
means. We will do so by discussing Birkhoff’s Ergodic Theorem.

Theorem 4.14. (Birkhoff’s Ergodic Theorem) Let T be an ergodic transformation
on pX,B, µq. Then for any f P L1pµq,

(4.15) lim
nÑ8

1

n

n´1
ÿ

j“0

f ˝ T j “

ż

X

fdµ a.e. and in L1pµq.

Proof. See [8]
□

Let’s unpack this theorem. Think of
ş

X
fdµ as the average value of f on X. For

a point x, think of pf ˝ T jqpxq as sampling the value of f at the point that x is
at time j. So 1

n

řn´1
j“0 pf ˝ T jqpxq is the average of n sampled values of f , where

each sample is taken at a point that x visits. The theorem states that if we pick
an x P X at random, then with probability 1,

lim
nÑ8

1

n

n´1
ÿ

j“0

pf ˝ T jqpxq “

ż

X

fdµ.

So over time, x samples values of f by traveling all over X in an evenly distributed
manner, such that the average of the sampled values approaches the average value
of f on X. If this is not the case, and x spends a disproportionate amount of time
visiting and sampling from a subset A of X, then the average would be closer to
ş

A
fdµ than

ş

X
fdµ. Simply put, Birkhoff’s Ergodic Theorem can be interpreted

as "the time average is equal to the space average."
Note that Birkhoff’s Ergodic Theorem does not hold if T is not ergodic. Say T is

not ergodic. There exists A P B such that T´1A “ A and 0 ă µpAq ă 1. Consider
1A, the characteristic function of A. Then, since T´1A “ A, we know

1A “ 1A ˝ T “ 1A ˝ T 2 “ . . .

Therefore,

lim
nÑ8

1

n

n´1
ÿ

j“0

1A ˝ T j “ 1A,

and Birkhoff’s Ergodic Theorem doesn’t hold [8]. Using this intuition, we can
think of ergodicity as meaning that almost all points have a forward orbit that is
distributed evenly throughout X.

Now we will show that ergodicity is an invariant of measure-theoretic isomor-
phism. We will use this fact to prove that expanding maps on pS1,Bc, ℓcq are
ergodic, and to show that the rational rotation and irrational rotation are not
measure-theoretically isomorphic.

Theorem 4.16. Let T : pX,A , µq Ñ pX,A , µq and S : pY,B, νq Ñ pY,B, νq be
measure-theoretically isomorphic. Then T is ergodic if and only if S is ergodic.
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Proof. We will prove an equivalent statement, that T is not ergodic if and only if
S is not ergodic. Since T and S are measure-theoretically isomorphic, there exists
X 1 P A , Y 1 P B, and R : X 1 Ñ Y 1 such that all the conditions listed in Definition
3.12 are met. Assume that S is not ergodic. So there exists B P B such that
0 ă νpBq ă 1 and S´1B “ B. Let B1 “ Y 1 X B. Because νpY 1q “ 1, we know
νpB1q “ νpBq. One can check that S´1

|Y 1B
1 “ B1. We know R´1B1 P A . Also,

because S ˝ R “ R ˝ T|X1 ,

T´1pR´1Bq “ R´1pS´1
|Y 1B

1q “ R´1B1.

Therefore, R´1B1 is T -invariant. Also, since R is measure-preserving

µpR´1B1q “ νpB1q “ νpBq.

Since 0 ă νpBq ă 1, then 0 ă µpR´1B1q ă 1. Therefore, T is not ergodic.
Because measure-theoretic isomorphism is reflexive, the reverse implication follows
by duality. □

Example 4.17. By Theorem 4.16, the irrational rotation and rational rotation on
pS1,Bc, ℓcq are not measure-theoretically isomorphic, because the irrational rota-
tion is ergodic, and the rational rotation is not.

Example 4.18. Recall from Example 3.13 that the expanding map EN on pS1,Bc, ℓcq

is measure-theoretically isomorphic to σR
N on pΩR

N ,BR
8, µR

8q. By Theorem 4.16,
since σR

N is ergodic, so is EN . To see a direct proof that E2 is ergodic, see [13].

5. Mixing

Ergodicity is an interesting invariant, but it doesn’t indicate at all whether a
transformation "mixes up" the phase space (we saw that the irrational rotation,
which is an isometry, is ergodic). In this section, we talk about mixing, which is an
invariant that indicates whether a phase space gets scrambled up over time. The
definitions and theorems in this section follow [15].

Definition 5.1. Let pX,B, µq be a probability space, and T : X Ñ X be a
measure-preserving transformation. We say T is (strong) mixing if for all A,B P B,

lim
nÑ8

µpT´nA X Bq “ µpAqµpBq.

Notice that this definition looks similar to the definition of independence (see
Definition 1.26). Think of T´nA as being what A looked like n units in the past.
So a transformation being mixing means that for all A,B P B, B and the "infinite
past" of A are independent.

Example 5.2. Consider the probability space pX,B, µq where µ : B Ñ t0, 1u.
The identity function on t0, 1u is mixing. This is because

lim
nÑ8

µpid´nA X Bq “ µpA X Bq.

If µpAq or µpBq is 0, then µpA X Bq “ 0 “ µpAqµpBq. If both µpAq “ µpBq “ 1,
then A and B are equal mod 0 to the whole space, and µpAXBq “ 1 “ µpAqµpBq.

This example goes against our intuition of what "mixing" should mean, but is
included to highlight the importance of the measure that we consider on the phase
space.
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Theorem 5.3. If a measure-preserving transformation is mixing, then it is ergodic.

Proof. Let T be a mixing transformation on pX,B, µq. Say A P B such that
T´1A “ A. Since T is mixing,

lim
nÑ8

µpT´nA X Aq “ µpAqµpAq.

Also, since T´1A “ A, then T´nA “ A for all n P N. So

lim
nÑ8

µpT´nA X Aq “ lim
nÑ8

µpA X Aq “ µpAq.

Therefore, µpAqµpAq “ µpAq. Thus µpAq “ 0 or 1, and T is ergodic. □

Example 5.4. Because the rational rotation on pS1,Bc, ℓcq is not ergodic, it is
not mixing.

We showed that mixing implies ergodic. However, it is not the case that ergodic
implies mixing. The following two examples are transformations that are ergodic
but not mixing.

Example 5.5. Consider the probability space pt0, 1u, 2t0,1u, µpq where p “ p0, 1q

(see Example 1.22). Then T : t0, 1u Ñ t0, 1u defined by T p0q “ 1 and T p1q “ 0
is ergodic, but not mixing. We know T is ergodic because the only invariant set is
t0, 1u. However, it is not mixing because for A “ t0u and B “ t1u, the limit

lim
nÑ8

µpT´nA X Bq

does not exist.

Example 5.6. The irrational rotation R on pS1,Bc, ℓcq is not mixing. We will
provide a sketch of proof. Consider two small intervals A,B P Bc. We can use the
fact that the irrational rotation is ergodic to show that R´nA will be disjoint from
B for infinitely many values of n (intuitively, this is because a point in A will visit
all over S1 in an evenly distributed way). Therefore, the limit does not exist or is
0, which is not equal to ℓcpAqℓcpBq.

By the last two examples, ergodic does not imply mixing. Now we will show
more examples of mixing transformations.

Example 5.7. The map σN on pΩN ,B8, µ8q is mixing. To prove this, we only
need to check that for two cylinder sets A and B,

lim
nÑ8

µ8pT´nA X Bq “ µ8pAqµ8pBq.

This is because B8 is the σ-algebra generated by cylinder sets (in general, we need
only check sets in a semi-algebra to check mixing; see [15]). So, let A “

ś8

n“´8 Ai

and B “
ś8

n“´8 Bi be cylinder sets of ΩN . For notation, let X “ t0, . . . , N ´ 1u.
There exist a1, a2 P Z such that when i R ra1, a2s, then Ai “ X. Similarly, there
exist b1, b2 P Z such that when i R ra1, a2s, then Bi “ X. So there exists n0 such
that when n ě n0, T´nA X B is of the form

¨ ¨ ¨ ˆX ˆBb1 ˆBb1`1 ˆ ¨ ¨ ¨ ˆBb2 ˆX ˆ ¨ ¨ ¨ ˆX ˆAa1
ˆAa1`1 ˆ ¨ ¨ ¨ ˆAa2

ˆX ˆ . . .

Therefore, when n ě n0,

µ8pT´nA X Bq “ µpBb1qµpBb1`1q . . . µpBb2qµpAa1qµpAa1`1q . . . µpAa2q

“ µ8pBqµ8pAq.
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Therefore,

lim
nÑ8

µ8pT´nA X Bq “ µ8pAqµ8pBq,

and T is mixing.

Example 5.8. Note that σR
N on pΩR

N ,BR
8, µR

8q is mixing by the same argument.

Theorem 5.9. Say T : pX,A , µq Ñ pX,A , µq and S : pY,B, νq Ñ pY,B, νq are
measure-theoretically isomorphic. Then T is mixing if and only if S is mixing.

Proof. See chapter 2 of [15]. □

Example 5.10. Recall from Example 3.13 that the expanding map EN on pS1,Bc, ℓcq

is measure-theoretically isomorphic to σR
N on pΩR

N ,BR
8, µR

8q. By Theorem 5.9, since
σR
N is mixing, so is EN .

So we have learned that rotations of the circle are not mixing, but expand-
ing maps on the circle are. This matches our expectation, because rotations are
isometries, and so all the points stay in the same place relative to each other. On
the other hand, the points of an expanding map on S1 can move away from each
other or towards each other depending on their location, and the phase space gets
scrambled up over time.

6. Symbolic Dynamics

Earlier, we showed that E2pxq “ 2x mod 1 is measure-theoretically isomorphic to
the shift map σR

2 . Then, when we proved that σR
2 is ergodic and mixing, we instantly

got that E2 is ergodic and mixing. This process of analyzing transformations by
using shift maps is an entire field of dynamics, called symbolic dynamics. In this
section, we define topological conjugacy, which is a topological notion of equivalent
transformations. Then we use symbolic dynamics to identify the periodic points of
two classic examples: the quadratic map and the horseshoe map. The content in
this section follows [7], [5], [2], and [16].

Definition 6.1. Two continuous maps f : X Ñ X and g : Y Ñ Y are topologically
conjugate if there exists a homeomorphism h : X Ñ Y with

f “ h´1 ˝ g ˝ h.

We call h a topological conjugacy.

Recall from linear algebra that two matrices A and B represent the same linear
function (with respect to different bases) if and only if there exists an invertible
matrix P such that A “ PBP´1. A change of basis is an example of a topological
conjugacy. In fact, we can think of topological conjugacy as a nonlinear change of
basis.

Theorem 6.2. Say h : X Ñ Y is a topological conjugacy between f : X Ñ X and
g : Y Ñ Y . If x P X is a periodic point of f with period n, then hpxq is a periodic
point of g with period n. Similarly, if y P Y is a periodic point of g, then h´1pxq is
a periodic point of f .



CLASSIC EXAMPLES IN DYNAMICAL SYSTEMS 19

Proof. Say x P X such that fnpxq “ x. Since h is a topological conjugacy, f “

h´1 ˝ g ˝ h. Therefore

x “ fnpxq

“ ph´1 ˝ g ˝ hq ˝ ph´1 ˝ g ˝ hq ˝ ¨ ¨ ¨ ˝ ph´1 ˝ g ˝ hq
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

n times

pxq

“ ph´1 ˝ gn ˝ hqpxq.

So x “ h´1pgnphpxqqq, and thus hpxq “ gnphpxqq. We have thus proven that hpxq

is a periodic point of g with period n. The proof of the second statement follows
by the same argument, as h´1 : Y Ñ X is also a topological conjugacy. □

Topological conjugacy also preserves topological properties of transformations,
like topological transitivity and topological mixing, which you can read more about
in chapter 1 of [7].

Example 6.3. An irrational rotation and a rational rotation on S1 are not topo-
logically conjugate, since every point in S1 is periodic under a rational rotation,
whereas no points in S1 are periodic under an irrational rotation.

6.1. Quadratic Maps. In this subsection, we investigate the quadratic map fλ :
R Ñ R defined by

fλpxq “ λxp1 ´ xq,

where λ ą 2`
?
5. The content in this subsection loosely follows [7]. For a discussion

about the quadratic map for other values of λ, see [2].
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Figure 4. fλpxq when λ “ 4.3

Our goal for this section is to identify the periodic points of fλ. A naïve approach
would be to set fn

λ pxq “ x and solve. However, with each one-step increase in n,
the degree of the polynomial doubles. Once we reach degree 5 or above, there is
no closed form for calculating roots, and we are basically lost. We know what the
number of roots is, but we don’t know how many of them are imaginary or are
double roots. Instead, we will show that fλ (when restricted to a set of interest) is
topologically conjugate to σR

N . Then we can apply everything we know about the
periodic points of σR

N to fλ.
We know that if a point is periodic, then its orbit is bounded. Our first step

in identifying the periodic points of fλ is to rule out the points with unbounded
orbits.

Proposition 6.4. Let x P p´8, 0q Y p1,8q. Then fn
λ pxq Ñ ´8.
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Proof. Say x ă 0. Then 1 ´ x ą 1. Multiply both sides by λx (and flip the
inequality) to get λxp1 ´ xq ă λx. Since λ ą 1, then λx ă x. Therefore,

λxp1 ´ xq ă x.

So tfn
λ pxqu is a decreasing sequence. Say for a contradiction that fn

λ pxq converges
to some p. Then fn`1

λ pxq Ñ fλppq ă p. However, this is a contradiction, because
fn`1
λ pxq must converge to the same point as fn

λ pxq. Therefore, fn
λ pxq Ñ ´8. Now

assume x ą 1. By what we just showed, since fn
λ pxq ă 0, then fn`1

λ pxq Ñ ´8.
Therefore, fn

λ pxq Ñ ´8. □

If at any time a point gets mapped out of r0, 1s, it will go to negative infinity.
So we know that the points with bounded orbits are the points x such that fnpxq P

r0, 1s, or equivalently x P f´nr0, 1s, for all n P N. We can express the set of all such
points as

Λ “

8
č

n“0

f´n
λ r0, 1s.

Figure 5 shows f´1r0, 1s and f´2r0, 1s. With each intersection, a "middle third"
is removed, and the length of the intervals decreases exponentially. The set Λ is
therefore a Cantor space.
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(a) f´1
λ r0, 1s
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(b) f´2
λ r0, 1s

Figure 5

Note that λ is an invariant set, i.e. f´1
λ Λ “ Λ. Now we can continue our search

for periodic points by just looking at fλ restricted to Λ. Because Λ and ΩR
2 are

both Cantor spaces, it is reasonable that there would be a topological conjugacy h
between fλ|Λ

and σR
2 . We will now construct h : Λ Ñ ΩR

2 . Let

∆0 “

«

0,
1

2
´

c

1

4
´

1

λ

ff

and ∆1 “

«

1

2
`

c

1

4
´

1

λ
, 1

ff

.

See Figure 6. We define h by hpxq “ ω, where ωn “ 0 if fn
λ pxq P ∆0, and

ωn “ 1 if fn
λ pxq P ∆1. We call h the itinerary sequence of x, because it describes

the "itinerary" of where x will travel over time. This function h is well-defined
because ∆0 and ∆1 are disjoint.

Now we will show h is a bijection. The set ∆0 is the preimage of the set of
sequences that have a 0 in the 0th coordinate, and the set ∆1 is the preimage of
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∆0 ∆1

Figure 6. ∆0 and ∆1

the set of sequences that have a 1 in the 0th coordinate. Let ∆i0i1 be the preimage
of all sequences that have i0 in the 0th coordinate and i1 in the 1st coordinate.
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∆00 ∆01 ∆11 ∆10

Figure 7. ∆00,∆01,∆11, and ∆10

With each coordinate that is specified, the preimage corresponds to an exponen-
tially smaller segment. Because these segments become a Cantor space, specifying
all coordinates corresponds to exactly one point. Therefore, the pre-image of any
point in ΩR

2 is exactly one point in Λ. Thus, h is a bijection. Also, φλ “ h´1˝σR
2 ˝h.

Let x P Λ, and fn
λ pxq P ∆in , where tinu is a sequence in t0, 1u. So fλpxq is a point

such that fn
λ pfpxqq “ fn`1

λ pxq P ∆in`1 . On the other hand, hpxq “ pi0, i1, i2 . . . q,
so σR

2 phpxqq “ pi1, i2 . . . q, and thus ph´1 ˝ σR
2 ˝ hqpxq is the point in Λ such that

fn
λ pph´1 ˝ σR

2 ˝ hqpxqq P ∆in`1 . Therefore, φλ “ h´1 ˝ σR
2 ˝ h. Finally, h is a home-

omorphism. We will not prove this, because the proof of Theorem 6.2 doesn’t use
the fact that the conjugacy is a homeomorphism. See [7] for a proof. Therefore, h
is a topological conjugacy. So if x is a periodic point of σR

2 , we know h´1pxq is a
periodic point of fλ.

Therefore, we can apply all of our knowledge about the periodic points of σN
2 to

fλ. For instance, we know that fλ has 27 periodic points of period 7.

6.2. The Horseshoe Map. We can think of the horseshoe map as being the 2-
dimensional analogue of the quadratic map. In this subsection, we will briefly
summarize how the same process of symbolic dynamics outlined in Section 6.1 can
be executed for the horseshoe, but with σN instead of σR

N . For more details on this
process, see [16] and [5].

The horseshoe map T is a map on the unit square Q “ r0, 1s ˆ r0, 1s that first
stretches it vertically, then folds it into a horseshoe. See Figure 8.
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Figure 8. The Horseshoe Map

Just like how we ignored the points that leave r0, 1s in the quadratic map, in this
map we ignore the points that leave the unit square. For each n P N, TnpQq X Q
is a bunch of vertical rectangles (see Figure 9, or go to [10] to see an excellent
animation).

(a) T pQq (b) T 2
pQq (c) T 3

pQq

(d) T 4
pQq (e) T 5

pQq

Figure 9. Images of Q under T from [10]

The set
Ş8

n“0 T
npQq looks like C ˆ r0, 1s, where C is the middle thirds Cantor

set. If x P
Ş8

n“0 T
npQq, then T´nx P Q for all n P N. So

Ş8

n“0 T
npQq is the

set of points that will stay in Q under all backwards iterates of T . On the other
hand, for each n P N, T´npQq XQ looks like a bunch of horizontal rectangles. Also,
Ş8

n“0 T
´npQq looks like r0, 1s ˆ C, and is the set of all points that remain in Q

under all forwards iterates of T . The set of all points that stay in Q throughout
forward and backwards time is the intersection of these two sets,

Λ “

˜

8
č

n“0

TnpQq

¸

X

˜

8
č

n“0

T´npQq

¸

“

8
č

n“´8

TnpQq.

Note
Ş8

n“´8 TnpQq looks like C ˆC, which is a Cantor space! Compare Figure
10 with Figure 11.
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Figure 10. T 5pQq and T´5pQq, from [10].

Figure 11. Construction of C ˆ C, from [3].

Now we will define the topological conjugacy h : Λ Ñ Ω2 between T|Λ and σ2.
Let V0 be the left vertical rectangle of T pQq X Q, and V1 be the right vertical
rectangle of T pQq X Q. Let H0 “ T´1V0 and H1 “ T´1V1.

H0

H1

T V0 V1

Figure 12. The sets H0, H1, V0, and V1.

Define h to be the itinerary map using H0 and H1. So hpxq “ ω, where ωn “ 0
if Tnpxq P H0 and ωn “ 1 if Tnpxq P H1. For a proof that h is a topological
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conjugacy, refer to [16]. Now we know that the periodic points of T look like the
periodic points of σ2.

7. Conclusion

We learned that rotations, expanding maps, and shift maps are measure-preserving.
We defined measure-theoretic isomorphism, and showed that an expanding map EN

is measure-theoretically isomorphic to the shift map σR
N on N symbols. Then we

talked about ergodicity and mixing, which are invariants of measure-theoretic iso-
morphism that describe how points get distributed throughout the phase space.
If a transformation is mixing, then it is ergodic. The rational rotation is not er-
godic, and therefore not mixing. The irrational rotation is ergodic, but not mixing.
Thus, ergodic does not imply mixing, and the irrational rotation is not measure-
theoretically isomorphic to the rational rotation. Shift maps are mixing, and since
expanding maps are measure-theoretically isomorphic to shift maps, expanding
maps are also mixing. Lastly, we talked about how to use symbolic dynamics to
find periodic points of quadratic maps and the horseshoe map. Because shift maps
are well-understood, we can immediately learn a lot about a map simply by showing
that it is topologically conjugate to a shift map.
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