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Abstract. Optimization techniques like gradient descent seek to find the ex-
trema of their objective functions, just like water pools at the bottom of your

hands. This expositional paper will detail the process of constructing gradient

descent algorithms, starting with basic Hamiltonian Mechanics. Additionally,
the paper will cover a selection of related proofs and lemmas, as well as the

concept of a symplectic flow.
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1. Introduction

Academic research on pursuit of faster and more efficient optimization algorithms
has become a key part of modern applied math and computer science research.
This focus is largely motivated by the increasing importance of these methods in
the tuning of machine learning and neural network models.

One of the classic examples of an ”accelerated” gradient descent algorithm is
Nesterov’s Accelerated Gradient Descent which has been proven to approach the
minima faster than regular gradient descent [1]. It achieves this ”acceleration” by
incorporating a ”momentum” term which preserves some information from previ-
ous steps, whereas gradient descent only considers the gradient. This mimics the
movement of real physical objects and raises questions about the relationship be-
tween physical mechanics and computational optimization. This paper will focus
on a similar momentum based descent method, the classical momentum method.

This paper will start with a consideration of Hamiltonian Mechanics and pro-
ceed to construct both classical momentum as well as traditional gradient descent.
The first section will provide an brief introduction to Hamiltonian Mechanics and
its applications for those unfamiliar. The next section will consider numerical inte-
gration methods native to Hamiltonian Mechanics and the final section will cover
the motivation for the modifications to these methods which yield the methods of
descent.
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2. Hamiltonian Mechanics

Hamiltonian Mechanics is a method of quantifying and solving questions related
to physical systems. Each object is defined by two d-dimensional vectors, p for
momentum and x for position. It was preceded and built on the back of Lagrangian
Mechanics, but knowledge of either is not necessary to understand this paper.

Definition 2.1. A Hamiltonian is the sum of the total energy of a system. Let m

be the mass of the object. With f(x) for potential function and V = p2

2m for kinetic
function, we take

H
def
= f(x) + V

Additionally, the movement of an object in this system is governed by the fol-
lowing set of differential equations.

Definition 2.2. Hamilton’s equations dictate that,

dx

dt
=

∂H

∂p
and

dp

dt
= −∂H

∂x

These are the two main definitions that describe Hamiltonian Mechanics and an
object obeying these rules is said to follow a ”Hamiltonian Flow”.

Definition 2.3. Let x0 and p0 be the initial position and momentum vectors. Let
t be time and let Hamiltonian Flow be defined as follows.

(x, p)
def
= Ft(x0, p0)

Since the Hamiltonian is supposed to be the sum of energy in a system, it should
also remain constant all along this flow, which we will prove below.

Lemma 2.4. The Hamiltonian is a constant such that,

dH

dt
= 0

Proof. By the chain rule,

dH

dt
=

∂H

∂p

dp

dt
+

∂H

∂x

dx

dt

Then, applying Definition 2.2 yields the following,

dH

dt
=

∂H

∂p
· −∂H

∂x
+

∂H

∂x
· ∂H
∂p

= 0

□

With this established, it follows that that simply following a Hamiltonian flow
will not usually yield a minima. Since energy is conserved, when f(x) is minimized,
V will be maximized. As such the object will not remain at the minima, and instead
will continue to move. So, in order to find a minima, we must modify the flow to
be able to descend energy levels. One way of doing this, is by breaking the flow up
into steps. Then, the algorithm for following the flow, called Hamiltonian descent,
looks like this.

(xk, pk) = Ft(xk−1, pk−1)(2.5)
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We can make this descend energy levels by scaling the momentum term or removing
it entirely. Let 0 ≤ µ ≤ 1. This new equation will eliminate energy and descend.

(xk, pk) = Ft(xk−1, µpk−1)(2.6)

Lemma 2.7. The value of potentials yielded by Hamiltonian descent are non-
increasing.

f(xk) ≤ f(xk−1)

Proof. For each natural number k, by the definition of the Hamiltonian,

f(xk−1) = H(xk−1, 0)

Also, because energy is conserved along the Hamiltonian Flow,

H(xk−1, 0) = H(xk, pk)

H(xk, pk) = f(xk) +
p2k
2m

Since m is mass, m ≥ 0. Hence,
p2
k

2m ≥ 0. Consequently,

f(xk) = f(xk−1)−
p2k
2m

≤ f(xk−1)

□

It is important to note that the step-size t is best kept small as following the
flow for long enough without removing the momentum term can result in a cycle.
Additionally, another issue arises when we try and implement this algorithm. In
general, there is no way to find the exact flow F . As such, we will have rely on
numerical approximations for this flow.

3. Numerical Integration

We will employ numerical integration to try and approximate the Hamiltonian
flow of our object. Similarly to how a beginner calculus student approximates an
integral with Riemann sums, these methods similarly work with the differential
equations given by Hamilton’s equations to try and approximate this flow.

When using a numerical integrator, it is possible to distort the space in which
you are working. It is essential that the integrator that we select preserves the
qualities of the Hamiltonian System like conservation of energy so that only our
intentionally dampening impacts the results. This means preserving the symplectic
form.

Definition 3.1. Let ξ and η be arbitrary d-dimensional vectors. The symplectic
form ω is given by,

ω(ξ, η) =

d∑
i=1

dξi ∧ dηi

This object represents a generalized concept of area for upper dimensional spaces.
Additionally, there are a series of transformations which preserve this form.
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Definition 3.2. Let A ∈ R2d be an open set. Let J be our symplectic matrix such
that,

J =

[
0 Id

−Id 0

]
where Id is an identity matrix of dimension d. A differentiable transformation
g : A → R2d is a symplectic transformation if the Jacobian matrix g′(x, p) is
symplectic, i.e.

ω(g′(x, p)ξ, g′(x, p)η) = ω(ξ, η)

or

g′(x, p)TJg′(x, p) = J

These transformations will preserve the energy of the system and generally be-
have better due to this property. In fact, the very Hamiltonian Flow we are at-
tempting to approximate is itself a symplectic transformation.

Theorem 3.3. (Poincaré 1899) Let H(x, p) be a twice continuously differen-
tiable function on A ⊂ R2d. For each t, the Hamiltonian Flow Ft is a symplectic
transformation. [2]

Proof. Let zk = (xk, pk). For t = 0, F is the identity map. Hence,

∂F0

∂z0
= 1

Thus, (
∂F0

∂z0

)T

J

(
∂F0

∂z0

)
= J

Note that ∂Ft/∂z0 is a solution of the variational equation d
dtΨ = J−1∇2H(x, p)Ψ.

Hence,

d

dt

∂Ft

∂z0
= J−1∇2H(x, p)

∂Ft

∂z0

Consequently, by the product rule and the previous fact,

d

dt

((
∂Ft

∂z0

)T

J

(
∂Ft

∂z0

))
=

(
d

dt

∂Ft

∂z0

)T

J

(
∂Ft

∂z0

)
+

(
∂Ft

∂z0

)T

J

(
d

dt

∂Ft

∂z0

)
=(

J−1∇2H(x, p)
∂Ft

∂z0

)T

J

(
∂Ft

∂z0

)
+

(
∂Ft

∂z0

)T

J

(
J−1∇2H(x, p)

∂Ft

∂z0

)
Note that JT = −J by the definition of J. Hence, J−TJ = −I. Also, because H is
twice continuously differentiable, for each natural i and j less than or equal to d,

∂2H(z)

∂zi∂zj
=

∂2H(z)

∂zj∂zi
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It follows that (∇2H(x, p))T = ∇2H(x, p). Thus,(
J−1∇2H(x, p)

∂Ft

∂z0

)T

J

(
∂Ft

∂z0

)
+

(
∂Ft

∂z0

)T

J

(
J−1∇2H(x, p)

∂Ft

∂z0

)
=

−
(
∂Ft

∂z0

)T

∇2H(x, p)

(
∂Ft

∂z0

)
+

(
∂Ft

∂z0

)T

∇2H(x, p)

(
∂Ft

∂z0

)
= 0

Since the time derivative of this term is 0, for any selection of t,(
∂Ft

∂z0

)T

J

(
∂Ft

∂z0

)
= J

Thus Ft is a symplectic transformation. □

Knowing that the flow we are attempting to approximate is a symplectic trans-
formation, it seems appropriate to use a numerical integrator that also preserves
the symplectic structure of the space. We will elect to use symplectic Euler.

Definition 3.4. Let ∆t be the step-size and let k be the number of iterations.
Symplectic Euler is an algorithm that updates as follows.

xk+1 = xk +∆t(pk+1)(3.5)

pk+1 = pk −∆t
∂H

∂xk
(3.6)

4. Gradient Descent

Before proceeding, note the definitions for the two methods of descent that we
wish to produce.

Definition 4.1. Let h be a non-negative real number representing the step-size.
Traditional gradient descent is defined as follows.

xk+1 = xk + h∇f(xk)

Definition 4.2. Let h be a non-negative real number representing the step-size.
Classical momentum is defined as follows.

xk+1 = xk + pk+1

pk+1 = γpk − h∇f(xk)

Now that the form of integration and the concept of dampening the momentum
has been established, we can modify the symplectic Euler method by adding the µ
just as we did in (2.6). Further, note that ∂H

∂x = ∇f . Implementing these changes
to symplectic Euler yields the following.

xk+1 = xk +∆t(pk+1)

pk+1 = µpk −∆t∇f(xk)

In the case that µ = 0, this formula yields exactly gradient descent.

xk+1 = xk −∆t2∇f(xk)(4.3)

Note that we must change from h to ∆t to check if they are actually equivalent.
However, since both are independent variables, we can replace then with the rela-
tion.

∆t2
def
= h(4.4)
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Additionally, we can replace µ and ∆t with γ as follows to make the algorithm take
the form of classical momentum.

µ∆t
def
= γ(4.5)

Changing the variables of the Euler method yields the following.

xk+1 = xk +∆t(pk+1)

pk+1 =
γ

∆t
pk −∆t∇f(xk)

This can be rewritten as exactly classical momentum.

xk+1 = xk + pk+1

pk+1 = γpk − h∇f(xk)

5. Example

To conclude this paper, we will illustrate the differences between numerical in-
tegrators and descent methods by applying them to a few physical problems. The
first of which is that a spring. First we will define the potential function as follows.

f(x)
def
=

1

2
kx2(5.1)

This is the traditional notation for a spring potential. The variable k is a positive
real number that depends on the strength of the spring. Given this, the symplectic
Euler method, classical momentum and gradient descent can all be implemented
on the system. In accordance with (4.4), ∆t has been replaced with h.

Symplectic Euler

xk+1 = xk + pk+1

pk+1 =
√
hpk − h(kx)

Classical Momentum Descent

xk+1 = xk + pk+1

pk+1 = µ
√
hpk − h(kx)

Gradient Descent

xk+1 = xk + pk+1

pk+1 = −h(kx)

Note that each of these algorithms are identical, excepting the coefficient on the
pk term. Further, both the symplectic Euler method and regular gradient descent
are special cases of the classical momentum descent method. Intuitively, we expect
that the Euler method will return an approximately harmonic oscillation while the
descent methods will minimize the potential function. We can test this by writing
a simple Python program to plot the progress of the two methods. First we must



EXPOSITION ON THE CONNECTIONS BETWEEN DESCENT METHODS AND HAMILTONIAN MECHANICS7

choose values for the various constants.

k = 1

x0 = 1

p0 = 0

∆t2 = h = .5

γ = .5

Performing the calculations yields the following plots, which illustrate how the Euler
method conserves energy while the descent method seeks expressly to eliminate it
in search of a minima. For classical momentum, we can calculate the µ value with
the relation given by (4.5). µ = .5√

.5
=

√
.5

Figure 1. Numerical Integrators on a Spring

Since µ is the dampening coefficient, the values align with the behavior visible
on the graph.

The use of integrators with values other than 1 for µ may be of use in the
modeling of physical systems where natural forces like friction dampen and dissipate
energy. This graph illustrates how the methods of abstract functional minimization
can be traced back to methods of modeling the physical world. As such, it begs
the question of which other real world phenomena might inspire innovations in
the sphere of more abstract optimization. There exists research that examine the
implementation of concepts of relativity into descent methods as well as examining
the concept of symplectic flows in the context of descent methods. [3]. Lastly, it is
worth examining other methods of Numerical Integration to see how they fit into
this connection with descent methods.
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