
MAPPING CLASS GROUPS THROUGH A KALEIDOSCOPE

AKASH GANGULY

ABSTRACT. The mapping class group of a surface is the group of homeomor-
phisms of the surface up to homotopy. In this paper we provide a brief intro-
duction to the theory and explore connections along the way.
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1. INTRODUCTION

The study of symmetry is ubiquitous in mathematics. Given a mathematical
object X , a symmetry can be described as a function f : X → X that preserves a
certain structure on X . If X carries multiple structures, we can study all of these
symmetries in unison, or restrict to as few as we choose. In this way, a richer un-
derstanding of all types of symmetries ofX leads to a richer overall understanding
of X .

The objects whose symmetries we will investigate in this paper are orientable
surfaces, or 2-dimensional manifolds with a continuous assignment of orientation
for each tangent space. One natural kind of symmetry of an oriented surface is
an orientation-preserving homeomorphism of our surface: a continuous bijection with
continuous inverse that preserves the orientation on tangent spaces. The collec-
tion of all orientation-preserving homeomorphisms of a surface S form a group,
denoted Homeo+(S). This group is large – it is always uncountable. One way to
see this is by noting that for any two points x and y on a surface, there is always
an orientation-preserving homeomorphism that takes x to y. One could visualize
this as pushing the point x to point y, and dragging along any part of the surface
with it. Elements of the mapping class group of a surface S, denoted Mod(S), are
defined to be orientation-preserving homeomorphisms up to homotopy; Mod(S)

is a quotient of Homeo+(S). Taking this quotient allows us to compute and work
more concretely with Mod(S). We can study the action on S via curves, compute
the isomorphism types for Mod(S) for some surfaces, and even show that Mod(S)
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is finitely generated (see Section 3). The mapping class group Mod(S) is our pro-
tagonist in this paper.

In studying Mod(S), we will interact with many different areas of mathematics:
geometric group theory, algebraic topology, and hyperbolic geometry, to name a
few. This paper is divided into two sections. The first part of each section is dedi-
cated to proving a certain result or giving a detailed outline of a construction. The
latter parts, titled excursions, are intended to be “peeks through the kaleidoscope”.
There, we showcase a few applications of the theory developed just before, albeit
with less detail. The word “excursion” will almost certainly be reductive in many
cases.

Almost all of the material is taken from A Primer on Mapping Class Groups by
Farb and Margalit [2]. In exchange for being concise, a lot of very interesting
mathematics must be omitted. We encourage the interested reader to read the
corresponding sections of Farb and Margalit [2] themselves.

2. PRELIMINARIES & FIRST EXAMPLES

In this section, we define the mapping class group Mod(S) and compute a few
examples. As we will see, one can gain a lot of information about Mod(S) via the
action on simple closed curves lying in S. In the process, we also introduce impor-
tant techniques we will repeatedly use to study this action, such as the change of
coordinates principle, and the notion of geometric intersection number.

We begin by ironing out once and for all the class of surfaces (2-dimensional
real manifolds) we will consider in this paper, starting with a fundamental result:

Theorem 2.1 (Classification of surfaces).
Any closed, connected, orientable surface is homeomorphic to the connected sum of a 2-
dimensional sphere with g ≥ 0 tori. Any compact, connected, orientable surface can be
obtained by removing b ≥ 0 open discs from a closed surface.

For a proof of this theorem, see Thomassen [5]. We may also consider the sur-
faces obtained by puncturing compact, connected, orientable surfaces. These are
obtained by removing n points from the interior of S.

Notation 2.2. We will abbreviate a surface S with genus g, b boundary compo-
nents, and n punctures as Sbg,n. If the surface has no boundary, we typically su-
press b and just write Sg,n.

FIGURE 1. A surface homeomorphic to S1
2,0.

These quantities determine the homeomorphism type of our surface. The Euler
characteristic of a surface Sbg,n is

χ(Sbg.n) =

2∑
i=0

(−1)iβi,
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the alternating sum of the Betti numbers. It turns out that the Euler characteristic
can also be defined purely through the genus, number of boundary components,
and punctures:

χ(Sbg.n) = 2− 2g − (b+ n),

and since homology is homeomorphism invariant, any three of the four quantities
χ(Sbg,n), g, n, and b determine the surface up to homeomorphism. This funda-
mental result is indispensable as it allows for induction. For example, both of the
proofs of finite generation mentioned in Section 3 are a double induction on genus
and the number of punctures.

We now define the mapping class group Mod(S) of a surface S. Let Homeo+(S, ∂S)
be the group of orientation-preserving homeomorphisms that fix the boundary ∂S
pointwise. We can topologize this group with the compact-open topology.

Definition 2.3. The mapping class group Mod(S) of a surface S is defined to be
π0(Homeo+(S, ∂S)). An element of Mod(S) is called a mapping class.

Note that in our definition above, elements of Mod(S) are required to fix the
boundary pointwise, but are allowed to permute the punctures. As this is equiva-
lent to taking the quotient by the connected component of the identity, this turns
Mod(S) into a discrete topological group. Though an element of Mod(S) defines a
class of homeomorphisms, we may abuse notation to sometimes mean a homeo-
morphism representing that class. We remark that there are equivalent definitions:

Mod(S) = π0(Homeo+(S, ∂S))

= Homeo+(S, ∂S)/isotopy

The equivalence of these definitions is nontrivial and relies on a number of re-
sults specific to surfaces that allow one to upgrade homotopies to isotopies. We
refer the reader to Section 1.4 of [2] for a complete discussion.

We begin computing Mod(S) for a few surfaces: the closed disc, the thrice-
punctured sphere, and finally the torus. First we have the closed disc, which will
turn out to be an important example.

Lemma 2.4 (Alexander trick). The group Mod(D2) is trivial.

Proof. Let ϕ be a homeomorphism that fixes the boundary pointwise. After iden-
tifying D2 with the closed unit disc, we define

F (x, t) =

{
(1− t)ϕ( x

1−t ) 0 ≤ |x| < 1− t

x 1− t ≤ x ≤ 1
,

with F (x, 1) = idD2 , the identity map. □

This function constructs an isotopy that undoes any twisting as time goes on.
This proof also holds for the once-punctured disc, as we can choose to center the
puncture at the origin. We can also see that Mod(S0,1) = 1, after identifying the
punctured sphere with R2, which is homeomorphic toD2. Since every homeomor-
phism of the sphere can be chosen to fix a point by post-composing with a map
using the isotopy extension theorem [4], we can apply the previous example to see
that Mod(S2) = 1. The Alexander trick is very useful in more general situations:
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one can cut more complicated surfaces up and then use the Alexander trick. To
compute our next example, S0,3, we introduce two more important concepts.

Definition 2.5. A simple closed curve is an injective embedding S1 → S. A closed
curve is essential if it is not homotopic to a point, a puncture, or a boundary com-
ponent. An arc is an injective embedding I → S.

Understanding how simple closed curves behave under the action of Mod(S)
is important. We will use them to verify the nontriviality of an important class of
elements of Mod(S) called Dehn twists. It turns out that a finite number of Dehn
twists generate Mod(Sg,n) for g ≥ 1 and n ≥ 0; Section 3 is dedicated to proving
this result.

Definition 2.6. Let α be an essential closed curve, and let S be a surface. The
surface S − α is a surface obtained by cutting along α, and comes with a homeo-
morphism h between two of its boundary components such that

(1) (S − α)/(x ∼ h(x)) is homeomorphic to S
(2) the image of the boundary components under the quotient is α

One can define cutting S along an arc analogously.

Theorem 2.7. Let S0,3 denote the thrice-punctured sphere, or alternatively, the sphere
with three marked points. Then Mod(S0,3) ∼= S3, the symmetric group on the three
elements

FIGURE 2. Cutting S0,3 along γ.

Proof. We sketch the argument, thinking about the punctures as marked points.
Denote the marked points by a, b, and c. The action on {a, b, c} is clearly transitive,
so it suffices to check injectivity. That is, any element of Mod(S0,3) that fixes the
three punctures is homotopic to the identity.
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Let ϕ be a homeomorphism representing such an element. Let γ be an arc con-
necting a and b. Since ϕ fixes the three marked points, it follows that ϕ fixes γ
too (Proposition 2.2 in [2]). We then cut S0,3 along γ to obtain a once-marked disc
as in Figure 2. Since ϕ induces a map on the once-marked disc, and we know
the mapping class group of a once-marked disc is trivial, ϕ induces a homeomor-
phism isotopic to the identity on the once-marked disc. We can then extend the
homotopy to all of S0,3, since ϕ must induce a map that fixes the boundary of the
once-marked disc. For a complete proof see Proposition 2.3 in [2]. □

Even though the proof of this statement is not complete, we hope that the pro-
cedure is clear – by a clever choice of curve or arc, we can cut to reduce to cases
we are more familiar with. We continue with our study of simple closed curves on
surfaces by first defining two more important kinds of curves.

Definition 2.8. A simple closed curve α is nonseparating if S − α is connected. A
simple closed curve β is separating if S − β is not connected.

If S is closed, then a curve β is separating if and only if the class [β] is vanishing
in homology. That is, it bounds some subsurface. The next result is one that is
extremely useful and allows us to prove certain properties simply by drawing out
a picture.

FIGURE 3. Curves and their corresponding cut surfaces. The
green curve is nonseparating, while the orange curve is separat-
ing.

Lemma 2.9 (Change of coordinates principle). Let S be a surface. Let α and β be two
simple closed curves. There is an orientation-preserving homeomorphism ϕ : S → S such
that ϕ(α) = b if and only if the cut surfaces S − α and S − β are homeomorphic.

Proof. If there exists such an orientation-preserving homeomorphism, this extends
to one of cut surfaces after canonically identifying the (possibly disconnected)
boundary components. Now suppose that S − α and S − β are homeomorphic.
Let ψ be such a homeomorphism. The map ψ naturally respects the distinguished
boundary components arising from cutting along α or β, so precomposing and
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postcomposing ψ with the identifications gives the desired homeomorphism. If
ψ was orientation-reversing, we can postcompose again with another orientation-
reversing homeomorphism. □

At once, we have an extremely important corollary: the action of Mod(S) is tran-
sitive on nonseparating curves. This is because any cutting S along any nonsepa-
rating curve will decrease the genus by one, and increase the number of boundary
components by two. Since the number of punctures stays the same, the classifi-
cation of surfaces guarantees that the any two surfaces obtained by cutting along
a nonseparating curve are homeomorphic. The transitivity of this action helps us
prove a key lemma in in Section 3.

The examples of Mod(S) we computed thus far have relied on the Alexander
trick, which is a useful tool in understanding when a mapping class is trivial. The
next few definitions are devoted to building up tools that allow us to verify that a
mapping class is nontrivial.

Definition 2.10. Let a and b be free (unbased) homotopy classes of simple closed
curves. The geometric intersection number i(a, b) is defined to be i(a, b) = min{|α ∩
β| : α ∈ a, β ∈ b}, the minimal number of intersection points taken over all curves
in each class.

Immediately, we can see that i(a, a) = 0, and importantly that i(a, b) > 1 im-
plies that a and b represent distinct classes. A natural worry that arises from this
definition is that one may not know when a number of intersections is minimal.
This next result gives us one solution.

Definition 2.11. Two transverse simple closed curves α and β in a surface S form
a bigon if there is an embedded disc in S whose boundary is the union of an arc of
α and an arc of β, with the arcs intersecting in two points.

FIGURE 4. A bigon.

Lemma 2.12 (Bigon criterion). Let α and β be two transverse simple closed curves in a
surface S. The number of intersection points is minimized if and only if they do not form
a bigon.

Proof. We omit the full proof for space. The result relies on the following lemma:
if transverse simple closed curves α and β do not form any bigons, then in the
universal cover of S, any pair of lifts of α and β intersect in at most one point. By
assuming χ(S) ≤ 0, we know that the universal cover of S must be homeomorphic
to R2 by the uniformization theorem. From there, we can use the Jordan curve
theorem and the Brouwer fixed point theorem to finish the proof of the lemma. The
proof of the theorem uses the classification of the isometry group of the hyperbolic
plane. See Lemma 1.8 and Proposition 1.7 in [2]. □
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We end the section by stating an important classical result: the mapping class
group of the torus, which turns out to be the modular group: SL2(Z). Based on
this result, Fricke called the mapping class group the extended modular group,
hence the notation Mod(S) chosen by Farb and Margalit [2].

Theorem 2.13. Let T 2 be the torus. Then there exists an isomorphism ϕ : Mod(T 2) →
SL2(Z).

Proof. After choosing a representative, an element ϕ ∈ Mod(T 2) is a homeomorhism
of T 2, so it induces an automorphism on homology. This gives us a map Mod(T 2) →
GL2(Z). Via an explicit calculation of algebraic intersection numbers on a torus
(see Section 1.2.3 in [2]) we get a map into SL2(Z). We can then argue bijectivity of
this map through covering space theory. For full proofs, see Theorem 7.2 in [6] or
Theorem 2.5 in [2]. □

This result serves as the base case for the inductive proof of finite generation of

Mod(S) for general surfaces. It can be shown that A =

(
1 1
0 1

)
and B =

(
1 0
−1 1

)
generate SL2(Z), and after fixing a basis on R2, we can visualize ϕ(A) and ϕ(B)
on the torus. We label two important curves on the torus in FIGURE: the green
meridian curve and the red longitudinal one. It is easiest to visualize ϕ(A) and
ϕ(B) through the action on these curves. Up to a choice of basis, ϕ(A) twists the a
portion of the green curve around the orange curve once, as is shown in FIGURE.
Similarly, ϕ(B) twists the a portion of the orange curve around the green curve in
FIGURE.

The two elements ϕ(A) and ϕ(B) are examples of a more general kind of map-
ping class called a Dehn twist, which we formally define in Section 3. As mentioned
earlier,A andB generate SL2(Z), so we get the remarkable fact that ϕ(A) and ϕ(B)
generate Mod(T 2).

2.1. Excursions. We touch on algebraic intersection numbers, symplectic repre-
sentations, and the Torelli group, and then discuss a more powerful version of the
Alexander trick, called the Alexander method.

Algebraic intersection number and symplectic representations. Instead of count-
ing the number of unsigned intersection points through the geometric intersection
number, we can do a signed count.

Definition 2.14. Let α and β be a pair of transverse, oriented, simple closed curves
in S. The algebraic intersection number is the sum of the indices of the intersection
points of α and β.

This definition makes sense for homology classes of closed curves, and thus
gives a skew-symmetric alternating bilinear form on H1(Sg;Z). Now, we also
know that there is a map ψ : Mod(Sg) → Aut(H1(Sg;Z)) ∼= GL2g(Z), as home-
omorphisms induce automorphisms on homology. It is not so bad to show that
the map is well-defined. What is more interesting is that the image of ψ must land
in SL2g(Z), as the homeomorphism must be orientation-preserving and preserve
H1(Sg;Z) in H1(Sg;R). Since algebraic intersection number is also homeomor-
phism invariant, it means that the image ψ(Mod(Sg)) actually lies in Sp2g(Z), the
group of integral symplectic matrices of dimension 2g. The map ψ : Mod(Sg) →
Sp2g(Z) is called the symplectic representation of the mapping class group.
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It can be shown that this representation is surjective, and should be thought of
as a first linear approximation of the mapping class group. This representation has
a large, infinite-index kernel I(Sg) called the Torelli group. Many basic properties
are still unknown for the Torelli group, such as finite presentability. It is still an
active area of research today. We direct the interested reader to Chapter 6 in [2].

The Alexander method. The Alexander method bootstraps the idea used in the
Alexander trick to be applicable in a more general setting. That is, we reduce the
complexity of a certain orientation-preserving homeomorphism by arguing that it
is determined by its action on certain curves and arcs.

Theorem 2.15 (Alexander method.). Let S be a compact surface possibly with marked
points, and let ϕ ∈ Homeo+(S, ∂S). Let γ1, . . . , γn be a collection of essential simple
closed curves and simple proper arcs in S with the following properties.

(1) The γi are in pairwise minimal position.
(2) The γi are pairwise nonisotopic.
(3) For distinct i, j, k, at least one of γi ∩ γj , γi ∩ γk, γk ∩ γj is empty.

Now, if there is a permutation σ of {1, . . . , n} so that ϕ(γi) is isotopic to γσ(i) relative
to ∂S for each i, then ϕ(

⋃
γi) is isotopic to

⋃
γi relative to ∂S.

If we take
⋃
γi as a graph Γ in S, with vertices being the intersection points and the

endpoints of arcs, then the composition of ϕ with this isotopy gives an automorphism ϕ∗
of Γ.

Suppose further that {γi} fills S. If ϕ∗ fixes each vertex and each edge with orientations,
then ϕ is isotopic to the identity. Otherwise, ϕ has a nontrivial power isotopic to the
identity.

For a proof of the theorem, see Section 2.8 in [2]. Though lengthy to state, this
theorem is incredibly useful. It is used to show that for g ≥ 3, the center of the
mapping class group Z(Mod(Sg)) = 1 is trivial. It can also be used in tandem
with the bigon criterion (and finite presentability) to show that the mapping class
group has solvable word problem. We direct the interested reader to Chapter 3 in
[2].

3. FINITE GENERATION

In this section, we prove that Mod(Sg,n) is finitely generated by Dehn twists
about nonseparating curves for g ≥ 1 and n ≥ 0, a cornerstone result. There
are two proofs of this result in [2], and they both follow a similar recipe. Both
proofs use double induction on the genus and number of punctures. To attack the
inductive step on the genus, we use a lemma that has a geometric group theoretic
flavor. For the inductive step on the punctures, we use a versatile result called the
Birman exact sequence, which relates Mod(S) and π1(S).

We have seen examples of Dehn twists in the example of the torus above. We
formally define them here.

Definition 3.1. Let α be a simple oriented closed curve in S. Let N be a regular
neighborhood of α. Let A = S1 × [0, 1] denote the annulus. Let T : A → A
be defined as T (θ, t) = (θ + 2πt, t). Choose ϕ to be an orientation-preserving
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homeomorphism ϕ : A→ N . Define

Tα(x) =

{
ϕ ◦ T ◦ ϕ−1(x) ifx ∈ N

x if x /∈ N.

The map Tα is called the Dehn twist about α.

FIGURE 5. The image of a curve under a Dehn twist.

Now that we have defined Dehn twists, we check that they are nontrivial map-
ping classes. The proof utilizes the machinery developed above. We first use the
change of coordinates principle to greatly simplify the curves about which we
twist. Then, by calculating their geometric intersection number we notice that a
curve b intersects its image Tα(b) once, which then implies the Dehn twist was
indeed nontrivial (see 6).

Lemma 3.2. Let α be a simple oriented closed curve in S that is not homotopic to a
puncture or point on S. Then Tα is a nontrivial element of Mod(S).

Proof. Since α can either be separating or nonseparating, there are two cases to
check. Suppose α is separating. Then, applying the change of coordinates princi-
ple, we can find a simple closed curve β as in Figure 6 with i(a, b) = 1. We can then
check using the bigon criterion that i(b, Tα(b)) = 1, which means that the curves b
and Tα(b) are distinct.

The separating case is similar. By again using the change of coordinates prin-
ciple, one can take the separating curve to be slicing the surface between two
genera. One can then select a curve b that goes through the genera, so we have
i(a, b) = 2. Then, we can again draw out Tα(b) and use the bigon criterion to check
that i(b, Tα(b)) = 4. □

Of the two proofs of finite generation in [2], one constructs aK(π, 1)-space with
a finite 2-skeleton, which allows us to jump to finite presentability. The other,
which is outlined in this paper, allows us to directly check if Dehn twists about a
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FIGURE 6. Dehn twist about a nonseparating curve

given set of curves in our surface S generate Mod(S). See the excursions section
below for descriptions of explicit sets of generators.

Next, we prove the Birman exact sequence, which involves two maps. Let the
pair (S, x) denote the surface S with a marked point x which lies in the interior of
S. There is a map F : Mod(S, x) → Mod(S) by forgetting that x was marked. This
map is naturally surjective, and it turns out that the kernel of F is exactly π1(S, x),
the fundamental group of S with basepoint x.

To help motivate this result, we discuss the map P : π1(S, x) → Mod(S), de-
scriptively named the push map. A loop a is a map a : [0, 1] → S. We can think
about this as an isotopy of points, and again by the isotopy extension theorem, this
can be extended to an ambient isotopy of the whole surface S. Since a loop has the
property that a(0) = a(1),taking the ambient isotopy at t = 1 gives a homeomor-
phism ϕ of S. Taking the isotopy class of ϕ, we are left with a mapping class. In
this way, a loop based at x can be thought of as the trail left behind x as it moves
around on our surface S. It is important to note that this informal discussion does
not give a well-defined map. We would want homotopic loops to give isotopic
homeomorphisms, and to make sure that this does not depend on the choice of
ambient isotopy.

Before proceeding to the proof of the Birman exact sequence, it is helpful to have
a more concrete visual image of the image of a homotopy class of loops under the
push map.
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FIGURE 7. The image of a push map realized as Dehn twists.

Lemma 3.3. Let α be a simple loop in a surface S representing an element of π1(S). Then
P([α]) = TaT

−1
b , the product of two Dehn twists. Here a and b are isotopy classes of the

boundary of the regular neighborhood about α (see 7).

For a more complete discussion, see Section 4.2.2 in [2]. In addition to providing
useful visual intuition, this result is also used in the proof of finite generation when
inducting on the number of punctures, as we want to lift elements of the kernel to
products of Dehn twists.

Lemma 3.4 (Birman exact sequence). Let S be a surface with χ(S) < 0 possibly with
punctures or boundary. Let (S, x) be the surface obtained by marking a point x in the
interior of S. The following sequence is exact.

1 → π1(S, x)
P−→ Mod(S, x)

F−→ Mod(S) → 1

Proof. We claim there is a fiber bundle Homeo+(S)
E−→ S with fiber Homeo+(S, x),

the subgroup fixing x pointwise, with the map E being the evaluation at x. To
verify this, we must show that for any neighborhood U of S, there is some home-
omorphism from U ×Homeo+(S, x) to E−1(U).

Let V be a neighborhood of x homeomorphic to a disc. Since for any two points
x and y on S, we can find a homeomorphism taking x to y, we choose v ∈ V
without loss of generality. Given a point v ∈ V , we can find some ϕv with ϕv(x) =
u. This assignment gives us a homeomorphism U × Homeo+(S, x) → E−1(V ) via
(v, ψ) 7→ ϕv ◦ ψ. The inverse of this map is ψ 7→ (ψ(x), ϕ−1

ψ(x) ◦ ψ).
Now, the relevant part of the associated long exact sequence in homotopy groups

is

π1(Homeo+(S)) → π1(S) → π0(Homeo+(S, x)) → π0(Homeo+(S)) → π0(S).

It is a result of Hamstrom [3] that π1(Homeo+(S)) = 1 in this case (see Theorem
1.14 in [2] for a precise statement), and since S is connected, π0(S) = 1, so we are
finished. The maps in the long exact sequence are exactly those described above.
For a proof of the long exact sequence of homotopy groups arising from a fiber
bundle, see Section 4.2 in [1]. □
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The main result of the section is actually slightly stronger than previously men-
tioned. We will prove that the pure mapping class group of a surface Sg,n with g ≥ 1
and n ≥ 0 is generated by finitely many Dehn twists about nonseparating curves.

Definition 3.5. The pure mapping class group PMod(Sg,n) is the subgroup of the
Mod(Sg,n) that fixes all punctures individually.

It is important that the Birman exact sequence still holds for the pure mapping
class group – the proof is almost identical.

Next, we prove the aforementioned lemma that uses fundamental ideas from
geometric group theory to aid us in inducting on the genus. This result urges us
to construct such a complex for Mod(S), which we do below.

Lemma 3.6. Suppose that a groupG acts by simplicial automorphisms on a connected, 1-
dimensional simplicial complexX . Suppose further thatG acts transitively on the vertices
of X and that it also acts transitively on pairs of vertices of X that are connected by an
edge. Let v, w be two adjacent vertices and let h ∈ G such that h(w) = v. Then G is
generated by h and StabG(v), the stabilizer of v in G.

Proof. Let H denote the subgroup generated by h and Stabg(v). Let g ∈ G be
arbitrary. Since X is connected, there is a path of vertices v = v0, v1, . . . , vn =
g(v). Since the action of G is transitive on vertices, there is some gi ∈ G such
that gi(v) = vi. We can take g0 to be the identity. Now, we show that gi+1 ∈ H
by induction. Consider the edge (vi, vi+1) = (gi(v), gi+1(v)). If we multiply by
g−1
i , we get the edge (v, g−1

1 gi+1(v)). By transitivity on edges, there is some r ∈ G

such that (rv, rg−1
1 gi+1(v)) = (v, w). This shows that r ∈ StabG(v), and so r ∈ H .

By assumption, we have that h(w) = v, so hrg−1
1 gi+1(v) = v. This shows that

hrg−1
1 gi+1 ∈ StabG(v), and since h,r, and g−1

i are in H , so is gi+1. □

Definition 3.7. Let N̂ (Sg,n) denote the 1-dimensional simplicial complex defined
with vertices corresponding to isotopy classes of nonseparating simple closed curves
in Sg,n. Two vertices a and b are connected by an edge if i(a, b) = 1.

Lemma 3.8. If g ≥ 2 and n ≥ 0, then N̂ (Sg,n) is connected.

Proof. This relies on the connectedness of another similarly constructed simplicial
complex, called the curve complex. The curve complex is defined identically to
N̂ (Sg,n), except that two vertices are joined by an edge if their geometric inter-
section number is 0. For a proof of the connectedness of the curve complex, see
Section 4.1 in [2].

If we assume connectedness of the curve complex, we get a path of vertices
a = p0, p1, . . . , pn = b with i(pi, pi+1) = 0. By the change of coordinates principle,
we can find a nonseparating curve di such that i(pi, di) = 1 = i(pi, di+1). The path
a = p0, d0, p1, d1, . . . , dn−1, pn = b then gives us the desired connecting path in
N̂ (Sg,n). □

We can visualize the curves di as the orange curves in Figure 8. Now that we
have constructed a complex, we check that the action of Mod(S) complies with the
previous lemma.

Lemma 3.9. Let g ≥ 2 and n ≥ 0. The action of Mod(Sg,n) on N̂ (Sg,n) satisfies the
assumptions in Lemma 3.6.
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FIGURE 8. Linking the curves.

Proof. By Lemma 3.8, we have that N̂ (Sg,n) is connected. The change of coordi-
nates principle says that given two pairs of isotopy classes of curves (a, b) and
(a′, b′), with i(a, b) = 1 = i(a′, b′), there is some orientation-preserving homeor-
morphism ϕ such that ϕ(a) = a′ and ϕ(a′) = b′. That is, ϕ represents a class in
Mod(Sg,n) such that ϕ((a, b)) = (a′, b′). Thus, the action is transitive. □

Finally, we state a lemma that elucidates the kernel of a map between the map-
ping class groups of a surface S and the corresponding cut surface S − a. When
combined with our earlier lemma, this result will allow us to complete the induc-
tive step on the genus.

Lemma 3.10. Let a be an isotopy class of essential simple closed curves. There is a well
defined homomorphism

ζ : StabMod(S)(a) → Mod(S − a)

with kernel 〈Ta〉, where S − α is the surface obtained by cutting S along α.

Proof. We omit this proof for space as it relies on a number of results involving
explicit calculations with Dehn twists. For a proof see Section 3.6 in [2]. □

With that, we are finally ready to state and prove the main result of the section.

Theorem 3.11. Let Sg,n be a surface with g ≥ 1 and n ≥ 0. The group PMod(Sg,n) is
finitely generated by Dehn twists about nonseparating simple closed curves.

Proof. We induct on the number of punctures and the genus. We have already seen
that S1,0 = T 2 and S1,1 have mapping class groups that are finitely generated by
Dehn twists about nonseparating simple closed curves.

First, we induct on the number of punctures. Assume that n ≥ 1, since we
have already verified the case of S1,1, the once-punctured torus. With this extra
assumption, we calculate to see that χ(Sg.n) < 0, so the Birman exact sequence
holds. Assume that PMod(Sg,n) is finitely generated and consider PMod(Sg,n+1).
Applying Lemma 3.4, we have that the map F : PMod(Sg,n+1) → PMod(Sg.n) is
surjective with kernel π1(Sg,n). By assumption, PMod(Sg,n) is finitely generated,
and by surjectivity, we can choose a lift of each of the generators of PMod(Sg,n). It
remains to show that we can generate π1(Sg,n) by Dehn twists about nonseparat-
ing simple closed curves. Using the classificiation of surfaces, it can be shown that
π1(Sg,n) is finitely generated by simple nonseparating loops. By Lemma 3.3, each
of these can be written in terms of Dehn twists about nonseparating simple closed
curves. Thus, we get a finite generating set for PMod(Sg,n+1) by taking the Dehn
twists corresponding to the generators of π(Sg,n), and by lifting each generator of
PMod(Sg,n).
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Next, we induct on genus. Assume PMod(Sg−1) is finitely generated by Dehn
twists about nonseparating simple closed curves and consider PMod(Sg). The
cases of g = 0 and g = 1 have been taken care of, so we can assume that g ≥ 2,
which means that Lemma 3.9 holds. As in the proof of Lemma 3.9, let a and b
be two isotopy classes of nonseparating simple closed curves with i(a, b) = 1.
Since TbTa(b) = a, we get that Mod(Sg) is generated by Ta, Tb, and StabMod(Sg)(a).
Thus, it suffices to show that StabMod(Sg)(a), hereby denoted by Stab(a), is finitely
generated by Dehn twists about nonseparating simple closed curves. Let a⃗ be
a endowed with a chosen orientation. It suffices to show that Stab(⃗a) is finitely
generated as TbT 2

aTb switches the orientation of a⃗. By Lemma 3.10, we get that
PMod(Sg−a) ∼= Stab(⃗a)/〈Ta〉, but Sg−a is homeomorphic to a surface with genus
one less than Sg , so by the inductive hypothesis, we have that PMod(Sg − a) is
finitely generated by Dehn twists about nonseparating simple closed curves. Since
this map is naturally surjective, by lifting as we did before, we get that Stab(⃗a) is
finitely generated by Dehn twists about nonseparating simple closed curves. □

3.1. Excursions. More with Dehn twists. There is a lot that can be done with
Dehn twists. For instance, they are used in understanding the induced maps on
mapping class groups given an inclusion of surfaces. In fact it is possible to totally
classify all possible relations between two Dehn twists. See Section 3.4 in [2].

Humphries’ generators. In 1979, Humphries proved that 2g + 1 curves suffice to
generate Mod(Sg). Using the aforementioned symplectic representation one can
show that this result is sharp in that no fewer curves suffice. For more information
see Chapters 4 and 6 in [2].

FIGURE 9. The 2g + 1 Humphries generators.
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