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Abstract. In this paper, we analyze some of the random fractals obtained from Brownian motion. In

particular, we turn to the notion of Hausdorff dimension which provides us with almost sure dimensions
of these sets. We first outline relevant Brownian motion results that describe its almost sure behavior,

taking a special interest in theorems related to planar Brownian motion. The main section of our paper
examines a set of points known as α-cone points, or points when a planar Brownian motion stays within

a cone with angle α with a vertex along its path. We prove that α-cone points exist only when α ≥ π

and that for such α the dimension of α-cone points is almost surely 2− 2π
α
.
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1. Introduction

Brownian motion is a random continuous function originally intended to model the random movements
of particles and therefore has many different applications to many fields including the sciences and
economics. For instance, in biology, Brownian motion may be used to calculate the average exit time of
a particle from a domain with a reflecting boundary except for a small opening, known as the narrow
escape problem. On the other hand, in finance, it may model the fluctuations of stock prices.

The scaling invariance property of Brownian motion is useful when looking at sets obtained from the
sample paths of Brownian motion, implying that the Brownian motion has similar geometric structures
regardless of scale and can therefore be seen as a random fractal. We may therefore use tools from fractal
geometry, part of geometric measure theory, to analyze these sets.

In this paper, we analyze some of the sets obtained from sample paths of Brownian motion by viewing
them as random fractals. We assume that the reader has familiarity with real analysis and measure-
theoretic probability. We also assume familiarity with basic properties of Brownian motion and stochastic
calculus as seen in [2] or [4].

Using the Markov property and the strong Markov property of Brownian motion, we first look at some
of their applications that will become relevant in later sections of the paper. We then develop Hausdorff
measure and Hausdorff dimension, which is the main tool from geometric measure theory we will use to
analyze the fractal nature of sets obtained from the sample paths of Brownian motion. Then, we begin
to look at the specific case of planar Brownian motion and some of its typical behaviors, or those events
that occur almost surely. For example, we prove Spitzer’s Law, Theorem 4.13, to build a foundation
for understanding an example of an exceptional set arising from the sample paths of planar Brownian
motion. When we say exceptional here, we mean a set comprised of points with a certain property in
which a fixed point along the sample path almost surely doesn’t have this property. From here, we turn
to the main section of our paper which analyzes such a family of exceptional sets arising from planar
Brownian motion known as α-cone points for α ∈ (0, 2π) through the lens of Hausdorff dimension. We
prove a theorem by Steven Evans, Theorem 5.16, that α-cone points exist only when α ≥ π. Moreover,
for such α, the Hausdorff dimension of these points is almost surely 2 − 2π

α . We end the paper with a
few applications of this theorem to the convex hull of a planar Brownian motion and the intersection of
a planar Brownian motion with a line.
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2. Applications of the Markov and Strong Markov Properties

This section will cover some theorems in Brownian motion that will become relevant in our discussion
later on. We begin by introducing the reflection principle, a useful tool in studying Brownian motion.

Theorem 2.1. Let T be a stopping time and {B(t) : t ≥ 0} be a standard linear Brownian motion.
Then, the process {B′(t) : t ≥ 0} defined by

B′(t) = B(t)χt≤T + (2B(T )−B(t))χt≥T ,

known as a reflected Brownian motion, is also a standard linear Brownian motion.

Proof. For finite T , the strong Markov property implies that {B(t+T )−B(T ) : t ≥ 0} and {−(B(t+T )−
B(T )) : t ≥ 0} are Brownian motions. Moreover, both are independent of {B(t) : 0 ≤ t ≤ T}. Therefore,
the processes B(t)χt≤T +(B(t+T )−B(T )+B(T ))χt≥T and B(t)χt≤T +(−B(t+T )+B(T )+B(T ))χt>T

have the same distribution. This implies the theorem as the first processes is {B(t) : t ≥ 0} and the
second is {B′(t) : t ≥ 0} and because the concatenation we performed made a new continuous and
measurable path. □

The reflection principle can be used to analyze the maximum process of a standard linear Brownian
motion {B(t) : t ≥ 0}, or the process {M(t) : t ≥ 0} defined by M(t) = supu∈[0,t] B(u), as we do in this
next theorem.

Theorem 2.2. Let a > 0. Then, for a standard linear Brownian motion {B(t) : t ≥ 0},
P{M(t) > a} = 2P{B(t) > a} = P{|B(t)| > a}.

Proof. Let T = inf{t ≥ 0 : B(t) = a} and consider the Brownian motion {B′(t) : t ≥ 0} reflected at T .
We note that the event {M(t) > a} = {B(t) > a} ∪ {M(t) > a,B(t) ≤ a} and that this is a disjoint
union of events. The event {M(t) > a,B(t) ≤ a} = {B′(t) ≥ a} by definition. The reflection principle
completes the proof. □

The maximum process is one of several processes we can define derive from Brownian motion. Before
we introduce another process, we need to first define a couple of terms.

Definition 2.3. A function p : [0,∞)×Rd×B → R where B is the Borel sigma algebra over Rd is called
a Markov transition kernel if the following conditions hold.

(1) For all A ∈ B, p(·, ·, A) is a measurable function of (t, x).
(2) For all t ≥ 0 and x ∈ Rd, p(t, x, ·) is a Borel probability measure on Rd. The integral of a function

f with respect to this measure is written as∫
f(y)p(t, x, dy).

(3) For all A ∈ B, x ∈ Rd, and t, s > 0, we have that∫
Rd

p(t, y, A)p(s, x, dy) = p(t+ s, x,A).

Definition 2.4. A Markov process is an adapted process {X(t) : t ≥ 0} with respect to a filtration
(F(t) : t ≥ 0) and transition kernel p if for all t ≥ s ≥ 0 and for every Borel set A ⊂ Rd,

P{X(t) ∈ A|F(s)} = p(t− s,X(s), A).

Loosely speaking, p(t, x,A) is the probability that our process takes a value in A at time t given that
the process starts at the point x.

Example 2.5. The Markov transition kernel of a d-dimensional Brownian motion is notated by proba-
bility measures µ(t, x, ·) and has a density function

f(t, x, y) =
1

(2πt)
d
2

exp

(
−|x− y|2

2t

)
.

As an example of how the Markov transition kernel can be used to analyze Brownian motion, we go
back to looking at the maximum process of a standard linear Brownian motion and define a new process
using the maximum and the Brownian motion itself.

Theorem 2.6. Consider the maximum process {M(t) : t ≥ 0} of a standard linear Brownian motion
{B(t) : t ≥ 0}. Then, the process {Y (t) : t ≥ 0} defined by Y (t) = M(t)−B(t) has the same distribution
as a reflected Brownian motion.
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Proof. Fix s > 0. We will consider the two processes defined for t ≥ 0: B′(t) = B(s + t) − B(s) and
M ′(t) = maxu∈[0,t] B

′(u). Note that if we define F+(s) =
⋂

t>s σ(B(u) : 0 ≤ u ≤ t), then Y (s) is

measurable with respect to F+(s), so to show the conclusion, it suffices to show that Y (s + t) has the
same distribution as |Y (s) + B′(t)| conditional on F+(s). This directly implies that {Y (t) : t ≥ 0}
is a Markov process with the same Markov transition kernel as a reflected Brownian motion, therefore
implying that their finite dimensional distributions agree.

First, we have that for t ≥ 0,

M(s+ t) = max(M(s), (B(s) +M ′(t)))

so we may rewrite

Y (s+ t) = max(M(s), (B(s) +M ′(t)))− (B(s) +B′(t)) = max(Y (s),M ′(t))−B′(t).

This implies that it suffices to show that for all y ≥ 0, max(y,M ′(t))−B′(t)) has the same distribution
as |y +B′(t)|. Fix y, a ≥ 0 and define

P1 = P{y −B′(t) > a} = P{y +B′(t) > a}
where the equality comes from the fact that {B′(t) : t ≥ 0} has the same distribution as {−B′(t) : t ≥ 0}.
We also define

P2 = P{y −B′(t) ≤ a,M ′(t)−B′(t) > a}
so P{max(y,M ′(t) − B′(t)) > a} = P1 + P2. We also define the process {W (u) : 0 ≤ u ≤ t} by
W (u) = B′(t− u)−B′(t), which upon computation can be seen to be a Brownian motion for 0 ≤ u ≤ t.
Let MW (t) = maxu∈[0,t] W (u), so MW (t) = M ′(t)−B′(t). Note as well that W (t) = −B′(t) so

P2 = P{y +W (t) ≤ a,MW (t) > a}.
Applying the reflection principle to the first time W (u) hits a gives us another Brownian motion W ∗ and
we may rewrite

P2 = P{W ∗(t) ≥ a+ y} = P{y +B′(t) ≤ −a}
because {W ∗(t) : t ≥ 0} has the same distribution as {B′(t) : t ≥ 0}. Thus, given that B′(t) has a
continuous distribution, we get that

P1 + P2 = P{|y +B′(t)| > a}.
We’ve therefore proven that for all y ≥ 0, max(y,M ′(t))−B′(t)) has the same distribution as |y+B′(t)|,
completing our proof. □

This next theorem describes a process known as the stable subordinator of index 1
2 .

Theorem 2.7. For all a ≥ 0, define stopping times

Ta = inf{t ≥ 0 : B(t) = a}.
Then, {Ta : a ≥ 0} is an increasing Markov process with a transition kernel given by the densities

p(a, t, s) =
a√

2π(s− t)3
exp

(
− a2

2(s− t)

)
χ{s > t}.

Proof. Fix a ≥ b ≥ 0. Note that for all t ≥ 0,

{Ta − Tb = t} = {B(Tb+s)−B(Tb) < a− b for s < t,B(Tb + t)−B(Tb) = a− b}.
By the strong Markov property, this event is independent of {Td : d ≤ b}, therefore implying that the
process {Ta : a ≥ 0} has the Markov property. On the other hand, by the reflection principle and the
prior results in this section,

P{Ta−Tb ≤ t} = P{Ta−b ≤ t} = P{max
s∈[0,t]

B(s) ≥ a−b} = 2P{B(t) ≥ a−b} = 2

∫ ∞

a−b

1√
2πt

exp

(
−x2

2t

)
dx.

Therefore, by performing the substitution x = t
s (a − b) in the integral, we have the desired transition

kernel densities. □

Planar Brownian motion has an additional Markov process, known as a Cauchy process.

Theorem 2.8. Let {B(t) : t ≥ 0} for B(t) = (B1(t), B2(t))
T be a planar Brownian motion. Consider

vertical lines defined by V (a) = {(x, y) ∈ R2 : x = a} for a ≥ 0 and let T (a) be the first hitting time of
V (a). Then, the process X(a) = B2(T (a)) is a Markov process with Cauchy probability density functions
for each fixed a ≥ 0. A Cauchy probability density function is given by

f(x) =
1

π
· a

a2 + x2
.
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Proof. The Markov property of the Cauchy process is implied from the strong Markov property applied
with the stopping times T (a) and because for all a < b, T (a) < T (b). Note as well that T (a) is independent
of the Brownian motion {B2(s) : s ≥ 0}. Therefore, because of this property and Theorem 2.7, it follows
that the density of B2(T (a)) is∫ ∞

0

1√
2πs

exp

(
−x2

2s

)
a√
2πs3

exp

(
−a2

2s

)
ds.

Making the substitution z = 1
2s (a

2 + x2), this integral is equal to∫ ∞

0

a

π(a2 + x2)
e−zdz =

a

π(a2 + x2)

completing the proof. □

3. Hausdorff Dimension and Initial Brownian Motion Applications

In the next three definitions, we let X be a subset of a metric space equipped with a metric d.

Definition 3.1. The diameter of X, which we denote by |X|, is defined by |X| = supx,y∈X d(x, y).

Definition 3.2. Let s ≥ 0 and δ > 0. We define

Hs
δ(X) = inf

{ ∞∑
n=1

|Ei|s : X ⊂
∞⋃
i=1

Ei, for all i ∈ N |Ei| ≤ δ

}
.

From this, we can define the s-dimensional Hausdorff measure, Hs, of X to be

Hs(X) = lim
δ↓0

Hs
δ(X).

The limit is well-defined because as δ decreases to 0, there are less possible coverings, meaning that
Hs

δ(X) can be viewed as a monotonic function. As is, the s-dimensional Hausdorff measure is an outer
measure but Carathéodory’s extension theorem may be applied to restrict it to a measure. In this paper,
we will work with the measure as is, i.e. as an outer measure.

Definition 3.3. The Hausdorff dimension of X is

dim(X) = inf{s : Hs(X) = 0}.

For example, for any d ∈ N, dim(Rd) = d and the dimension of the standard middle-thirds Cantor set

is log(2)
log(3) . Interested readers may consult chapter 4 of [13] for explicit proofs.

Theorem 3.4. Hausdorff dimension satisfies the countable stability property, meaning that if A1, A2, ...
is a countable sequence of sets with A =

⋃∞
n=1 An, then supn∈N dim(An) = dim(A).

Proof. By monotonocity, dim(A) ≥ dim(An) for all n ∈ N so supn∈N dim(An) ≤ dim(A). We also have
that if s > dim(An) for all n ∈ N, then Hs(An) = 0 for all n ∈ N, meaning that Hs(A) = 0, proving that
supn∈N dim(An) ≥ dim(A). □

From the definition of Hausdorff dimension, oftentimes, it is more clear and straightforward to find an
upper bound on the Hausdorff dimension of a set. Therefore, we will now prove a theorem that gives us
a lower bound on a metric space’s Hausdorff dimension, called the mass distribution principle.

Definition 3.5. Let X be a metric space and let µ be a measure on the Borel sigma algebra on X. We
call µ a mass distribution on X if

0 < µ(X) < ∞.

Theorem 3.6. Let X be a metric space and let s ≥ 0. Assume that µ is a mass distribution on X and
there are constants C > 0 and δ > 0 such that for all closed sets F with |F | ≤ δ we have

µ(F ) ≤ C · |F |s.

Then we have that

Hs(X) ≥ µ(X)

C
> 0

and dim(X) ≥ s.
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Proof. Let E1, E2, ... be a cover of X such that for all n ∈ N, |En| ≤ δ. Consider the closures of each of
these sets; by definition, for all n ∈ N, we have that |En| = |En|. It follows that

0 < µ(X) ≤ µ

( ∞⋃
n=1

En

)
≤ µ

( ∞⋃
n=1

En

)
≤

∞∑
n=1

µ
(
En

)
≤ C

∞∑
n=1

|En|s

so taking the infimum over all possible covers and considering the limit as δ decreases to 0 gives us the
first result. The second result follows from the first result and the definition of Hausdorff dimension. □

We now turn to an application of the mass distribution principle and Theorem 2.6, but first we need
to define one additional term.

Definition 3.7. Let {B(t) : t ≥ 0}, {M(t) : t ≥ 0} and {Y (t) : t ≥ 0} be as in Theorem 2.6. Then, we
say that t ≥ 0 is a record time of {B(t) : t ≥ 0} if Y (t) = M(t)−B(t) = 0.

Lemma 3.8. Let Z be the set of zeroes of a linear Brownian motion. Then, almost surely,

dim(Z ∩ [0, 1]) ≥ 1

2
.

Proof. We use the notation from Definition 3.7. Let R be the set of record times of the Brownian motion.
By Theorem 2.6, as the distribution of record times is the same as the distribution of zeroes for a linear
Brownian motion, it suffices to show that dim(R ∩ [0, 1]) ≥ 1

2 . By definition of a maximum process, the
function f : [0, 1] −→ R defined by f(t) = M(t) is increasing and almost surely continuous. It therefore
induces a measure µ defined by µ(a, b] = M(b)−M(a) which is supported on the Borel subsets of [0, 1],
including R, a closed set almost surely. We also have that almost surely, if α < 1

2 , Brownian motion
is locally α-Hölder continuous. For each such α, there exists some Cα such that almost surely, for all
0 ≤ a ≤ b ≤ 1,

M(b)−M(a) ≤ max
0≤ϵ≤b−a

B(a+ ϵ)−B(a) ≤ Cα(b− a)α.

Therefore, by the mass distribution principle, we have that

dim(R ∩ [0, 1]) ≥ α.

As this holds for all α < 1
2 , dim(R ∩ [0, 1]) ≥ 1

2 . □

In fact, we can also prove the reverse inequality.

Lemma 3.9. Let Z be the set of zeroes of a standard linear Brownian motion. Then, almost surely,

dim(Z ∩ [0, 1]) ≤ 1

2
.

Proof. We again use the same notation as in Definition 3.7. First, we prove that for all x, ϵ > 0,

P{∃t ∈ (x, x+ ϵ) : B(t) = 0} ≤
√

ϵ

x+ ϵ
.

To do so, for all y ∈ R we define f(y) to be the probability that there’s at least one zero in (x, x + ϵ)
given that B(x) = y, and fix x, ϵ > 0. The probability f(y) is equal to the probability that there’s a zero
in (0, ϵ) given that B(0) = y by the Markov property. Therefore, we obtain that

P{∃t ∈ (x, x+ ϵ) : B(t) = 0} =

√
2

πx

∫ ∞

0

f(x)e−
y2

2x dy.

By Theorem 2.2, it may be seen that for y ̸= 0, the probability there’s a zero in (0, t) given that the
Brownian motion starts at y is equal to

|y|√
2π

∫ t

0

z−
3
2 e−

y2

2z dz.

Therefore, plugging this probability in gives us that P{∃t ∈ (x, x+ϵ) : B(t) = 0} = 2
π arccos

(√
x

x+ϵ

)
≤ 1.

The first part of the proof follows from the fact that 0 ≤ x
x+ϵ ≤ 1. Note that the same upper bound

applies for the probability that there’s a zero in the closed interval [x, x+ ϵ] and that we may extend this
result to closed intervals of the form [0, ϵ].

We now fix some n ∈ N and consider the number of intervals of the form [k−1
2n , k

2n ] where k ∈ N and
k ≤ 2n that have a nonempty intersection with Z, which we’ll call Z(n). We may verify that the expected
number of these intervals is at most

2n∑
k=1

1√
k
≤ 4 · 2n

2 .
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We therefore have that for ϵ > 0, by the monotone convergence theorem and the geometric series test,

E

[ ∞∑
n=1

Z(n) ·
(

1

2n

) 1
2+ϵ
]
=

∞∑
n=1

E[Z(n)]

2n(
1
2+ϵ)

≤
∞∑

n=1

4 · 2n
2

2
n
2 · 2nϵ

< ∞.

Therefore, we have that

lim
n→∞

E[Z(n)]

2n(
1
2+ϵ)

= 0

implying that dim(Z ∩ [0, 1]) ≤ 1
2 + ϵ. Sending ϵ to 0 finishes the proof. □

We have therefore proven the following theorem.

Theorem 3.10. Let Z be the set of zeroes of a linear Brownian motion. Then, almost surely,

dim(Z ∩ [0, 1]) =
1

2
.

Another technique for finding the lower bound of the Hausdorff dimension is called the energy method
and is similar to the mass distribution principle.

Definition 3.11. Let µ be a mass distribution on a metric space (X,m) and let α ≥ 0. We define the
α-potential of x ∈ X with respect to µ to be

ϕα(x) =

∫
dµ(y)

m(x, y)α

and the α-energy of µ to be

Iα(µ) =

∫
ϕα(x)dµ(x) =

∫ ∫
dµ(x)dµ(y)

m(x, y)α
.

The energy method replaces the condition that the measure of a set is bounded above by a constant
multiplied by a power of its diameter; instead, it uses the idea that if the α-energy of µ is finite, then
the mass is spread so that everywhere the concentration of mass is sufficiently small and therefore may
overcome the integrand’s singularity.

Theorem 3.12. Let α ≥ 0 and let µ be a mass distribution on a metric space (X,m). For every ϵ > 0,
we then have

Hα
ϵ (X) ≥ µ(X)2∫ ∫

m(x,y)<ϵ
dµ(x)dµ(y)
m(x,y)α

meaning that if Iα(µ) < ∞, Hα(X) = ∞ and dim(X) ≥ α.

Proof. Let ϵ, δ > 0 and let {An}∞n=1 be a pairwise disjoint covering of X that have diameters less than ϵ
but also

∞∑
n=1

|An|α ≤ Hα
ϵ (X) + δ.

We then have ∫ ∫
m(x,y)<ϵ

dµ(x)dµ(y)

m(x, y)α
≥

∞∑
n=1

∫ ∫
An×An

dµ(x)dµ(y)

m(x, y)α
≥

∞∑
n=1

µ(An)
2

|An|α
.

In addition, we have that
∞∑

n=1

µ(An) ≥ µ(X).

Therefore, by the Cauchy-Schwarz inequality,

µ(X)2 ≤
∞∑

n=1

|An|α
∞∑

n=1

µ(An)
2

|An|α
≤ (Hα

ϵ (X) + δ)

∫ ∫
m(x,y)<ϵ

dµ(x)dµ(y)

m(x, y)α
.

We can let δ decrease to 0 and divide by the integral to get the desired inequality specific for ϵ. Letting
ϵ decrease to 0, we have that the integral converges to 0 when E[Iα(µ)] is finite, meaning that Hα(X) is
infinite and dim(X) ≥ α. □

The next lemma we prove is known as Frostman’s lemma and can be thought of as a converse to
the mass distribution principle. We only will prove the lemma in the case of compact sets as this is all
we need for this paper, but the same statement holds for all Borel subsets of Rd.

Lemma 3.13. Let X be a compact subset of Rd. Then, the following conditions are equivalent:



RANDOM FRACTALS FROM THE SAMPLE PATHS OF BROWNIAN MOTION 7

(1) Hs(X) > 0.
(2) There exists a probability Borel measure µ supported on X such that for all x ∈ Rd and r > 0,

µ(B(x, r)) ≤ crs for some positive constant c ∈ R, where B(x, r) is the ball around x of radius r.

Proof. (⇐=) We cover X by balls {An}∞n=1, each with radius rn. We then have that

∞∑
n=1

|Ai|s ≥
∞∑

n=1

rsn ≥ 1

c

∞∑
n=1

µ(An) ≥
1

c
µ(X) > 0.

(=⇒) We fix δ > 0 such that Hs
δ(X) > 0. Consider the function g : C(X) −→ R where C(X) is the space

of continuous functions on X as defined here:

g(f) = inf{
∑
i∈I

ci|Ai|s : I is at most countable such that for all i ∈ I,

0 < ci < ∞, Ai ⊂ X, |Ai| < δ,
∑
i∈I

ciχAi
≥ f}.

Observe that by definition, for all f ∈ C(X), g(f) ≥ 0 and g is sublinear. We can therefore use the Hahn-
Banach theorem to extend the linear functional c −→ cg(1) where c ∈ R from the subspace of constant
functions to a linear functional L : C(X) −→ R satisfying L(1) = g(1) and −g(−f) ≤ L(f) ≤ g(f) for all
f ∈ C(X). By the Riesz representation theorem, there exists a Radon measure µ such that L(f) =

∫
fdµ

for all f ∈ C(X). Note that µ(X) = L(χX) = Hs
δ (X) and that for all f ∈ C(X), L(f) ≥ 0, so µ ≥ 0 and

we can therefore normalize it by g(χX) to get a probability measure supported on X. Moreover, we can
also verify that for all x ∈ Rd and r > 0,

µ(B(x, r)) = sup

{∫
fdµ : f ∈ C(X), 0 ≤ f ≤ χB(x,r)

}
≤ sup{g(f) : f ∈ C(X), 0 ≤ f ≤ χB(x,r)} ≤ (2r)s

up to rescaling by a normalization constant, giving the desired inequality. □

We end this section by proving Kaufman’s Dimension Doubling Theorem and two lemmas that
lead up to it, which is useful when looking at the image or preimage of a set under a Brownian motion
and how a set’s dimension is affected. We use the approach from [16].

Lemma 3.14. Let f : X1 −→ X2 be surjective and locally α-Hölder continuous with constant C. Then
for any s ≥ 0,

Hs(X2) ≤ CsHαs(X1)

and thus, dim(X2) ≤ 1
α dim(X1).

Proof. Assume that Hαs(X1) < ∞. Let ϵ, δ > 0. We will cover X1 with countably many sets A1, A2, ...
each with diameter at most δ such that

∞∑
i=1

|Ai|αs ≤ Hαs(X1) + ϵ.

Note as well that X2 is covered by f(A1), f(A2), ... and by definition, |f(Ai)| ≤ C|Ai|s ≤ Cδs for all
i ∈ N. This implies that

∞∑
i=1

|f(Ai)|s ≤ Cs
∞∑
i=1

|Ai|αs ≤ CsHαs(X1) + Csϵ.

Sending ϵ to 0 proves the result for α-Hölder continuous functions and the countable stability of Hausdorff
dimension finishes the proof for locally α-Hölder continuous functions. □

Lemma 3.15. Let {B(t) : t ≥ 0} be a planar Brownian motion. For all n ∈ N, we will let Un(x) ⊂ R2

be an open ball of radius 1
2n centered at x. We define the event

An =

{
∃Un(x) such that #k ∈ N, k ≤ 4n :

[
k − 1

4n
,
k

4n

]
∩B−1(Un(x)) ̸= ∅ ≥ n4

}
.

Then, P{lim supn→∞ An} = 0, meaning only finitely many such events may occur.

Proof. First, we note that for sufficiently large n ∈ N and for t, s ∈ [0, 1] with |t−s| ≤ 1
4n , Lévy’s modulus

of continuity and the triangle inequality imply that for all c > 1,

|B(t)−B(s)| ≤ 2c
√

2 · 4−n log(4n) ≤ 3
√
n2−n.
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So, if U ⊂ R2 with radius 1
2n centered at x ∈ R2 intersects B( k

4n ) for some k ∈ N with k ≤ 4n, and for

all t ∈
[
k−1
4n , k

4n

]
, ∣∣∣∣B( k

4n

)
−B(t)

∣∣∣∣ < 3
√
n2−n + 2−n ≤ 2

√
n

1

2n+1
.

Thus, it suffices to consider the sequence of events

A′
n = {∃ neighborhood U in R2 with radius

2
√
n

2n−1
such that #k ∈ N, k ≤ 4n :

B

(
k

4n

)
∈ B−1(U) ≥ n4}

as An+1 ⊂ A′
n for sufficiently large n ∈ N. Now, let Pn = {k1, ..., kn} consist of n distinct integers in

[1, 4n]. Let P ′
n be the set of all such possible partitions. Without loss of generality, let k1 < k2 < ... < kn.

Then, we have that for some constant c, by definition of the transition kernel, for any i ∈ N with i ≤ n−1,

P
{∣∣∣∣B(ki+1

4n

)
− ki

4n

∣∣∣∣ < 4
√
n

2n

}
= P

{
|B(1)| < 4

√
n√

ki+1 − ki

}
≤ 16cn

ki+1 − ki
.

Thus, the probability this event holds for all i ∈ N with i ≤ n− 1 by independence is at most

(16cn)n−1Πn−1
i=1 (ki+1 − ki)

−1.

Therefore, it may be seen by definition of A′
n that

P{A′
n} ≤ n(

n4

n

) ∑
Pn∈P ′

n

Πn−1
i=1 (ki+1 − ki)

−1.

Upon computation and by Stirling’s formula, it may be seen that for some small (i.e. less than 1) constant
C,

P{A′
n} ≤ Cn · n−n+ 1

2 .

The Borel-Cantelli lemma finishes the proof. □

Theorem 3.16. Let {B(t) : t ≥ 0} be a planar Brownian motion. Then, almost surely, for any set
A ⊂ [0, 1],

dim(B(A)) = 2 dim(A).

In fact, the theorem holds for all dimensions d ≥ 2 and for arbitrary sets A ⊂ [0,∞). Note that
Theorem 3.10 implies that the theorem cannot hold in dimension d = 1.

Proof. We’ve already proven the upper bound in Lemma 3.14, so we just need to prove a lower bound
for all sets with dimension greater than 0.

Lemma 3.15 implies the existence of some large N ∈ N such that for all n ∈ N with n ≥ N and all
neighborhoods U ⊂ R2 with radius 2−n,

P
{
#k ∈ N, k ≤ 4n :

[
k − 1

4n
,
k

4n

]
∩B−1(U) ̸= ∅ ≤ n2d

}
= 1.

Let n ∈ N be such that n ≥ N and let A1, A2, ... be a cover of squares of B(A) where A ⊂ [0, 1] and the
diameter of each square is between 1

2n+1 < |Ai| < 1
2n . Therefore, for each Ai, we may cover B−1(Ai)

with at most n2d intervals of length 1
4n . Now, let 0 < β < α < dim(A), so Hα(A) = ∞. Therefore, there

exists some c, C > 0 such that

0 < c ≤
∞∑
i=1

n4 · 4−αn ≤ C

∞∑
i=1

|Ai|2α ≤ C

∞∑
i=1

|Ai|2β .

This therefore implies that H2β(B(A)) > 0, implying that dim(B(A)) ≥ 2β with probability 1. Sending
β to dim(A) finishes the proof. □
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4. Typical Behaviors of Planar Brownian Motion

Before diving into atypical points on a Brownian curve, we first look at the typical behavior of planar
Brownian motion. It is therefore sometimes more convenient to use complex representation of the plane,
so we can write a planar Brownian motion B(t) = B1(t) + iB2(t) where {B1 : t ≥ 0} and {B2 : t ≥ 0}
are two independent linear Brownian motions. Our approach in this section follows that of [12] and [15].

Definition 4.1. Consider continuous real-valued stochastic processes {X(t) : t ≥ 0}, and {Y (t) : t ≥ 0}.
Fix t ≥ 0 and let δ(n) be the mesh size of a partition 0 = t0 ≤ t1 ≤ ... ≤ tn = t. Then, we define the
quadratic variation of X to be

⟨X,X⟩t = lim
δ(n)↓0

n∑
i=1

(X(ti)−X(ti−1))
2

and the covariation of X and Y to be

⟨X,Y ⟩t = lim
δ(n)↓0

n∑
i=1

(X(ti)−X(ti−1))(Y (ti)− Y (ti−1)),

where the limits, if they exist, are defined using convergence in probability.

In particular, we can define these processes for linear Brownian motions as it can be shown that the
limits exist. For more discussion on quadratic variation and covariation, interested readers may consult
[15].

Definition 4.2. An adapted stochastic process {X(t) : 0 ≤ t ≤ T} is called a local martingale if there
exist stopping times Tn that almost surely increase to T such that for all n ∈ N, {X(min(t, Tn)) : t ≥ 0}
is a martingale.

Lemma 4.3. Let M(t) be a continuous local martingale. Let 0 ≤ a ≤ b. Then, M is constant on [a, b]
if and only if the quadratic variation of M is constant on [a, b].

Proof. On one hand, we see that if M is constant on [a, b], then by definition its quadratic variation is
constant on [a, b]. On the other hand, for nonnegative q ∈ Q, we may see that N(t) = M(t+ q)−M(q)
is a Ft+q local martingale and the process ⟨N,N⟩t = ⟨M,M⟩t+q − ⟨M,M⟩q is increasing. Then, Tq =
inf{s > 0 : ⟨N,N⟩s > 0} is a stopping time with respect to Ft+q. The optional stopping theorem implies
that for the stopped local martingale NTq ,

⟨NTq , NTq ⟩ = ⟨N,N⟩Tq = ⟨M,M⟩q+Tq
− ⟨M,M⟩q = 0,

which implies that M is almost surely constant on [q, q + Tq]. Therefore, as any constant interval is the
closure of a countable union of such intervals, the proof is finished. □

Local martingales are closely related to the theory of time changes, which we now briefly explore.

Definition 4.4. A time change T is a family {Ts}s≥0 of stopping times such that the maps s → Ts

are almost surely increasing and right-continuous.

Definition 4.5. Let T be a time change. A process X is T-continuous if X is constant on each interval
[Ts−, Ts] where Ts = inf{t : X(t) > s} and Ts− = inf{t : X(t) ≥ s}.

The following theorem is attributed to Lester Dubins and Gideon E. Schwarz, as well as K.E. Dambis,
and is therefore known as the Dubins-Schwarz theorem or the Dambis-Dubins-Schwarz theorem.

Theorem 4.6. Let M(t) be a continuous local martingale such that almost surely, M(0) = 0 and
lim
t→∞

⟨M,M⟩t = ∞. For t ≥ 0, define Tt = inf{s : ⟨M,M⟩s > t}. Then, for all t ≥ 0, B(t) = M(Tt) is a

Brownian motion adapted to the filtration F(Tt)t≥0. Furthermore, M(t) = B(⟨M,M⟩t).
The Brownian motion obtained from this theorem may be referred to as the DDS Brownian motion

of M.

Proof. We define the time change T using the family {Tt}t≥0 of stopping times. So, the proposed filtration
is in fact a filtration and the stopping times in our family are stopping times adapted for the filtration.
We also have that because lim

t→∞
⟨M,M⟩t = ∞ that Tt < ∞ for all t ≥ 0. Lemma 4.3 implies that M is

T -continuous. Thus, it may be seen that B is a continuous local martingale with respect to F(Tt)t≥0

and ⟨B,B⟩t = ⟨M,M⟩Tt
= t. Paul Lévy’s characterization theorem implies that B is a Brownian motion

adapted to F(Tt)t≥0.
For the second part, we may see that B(⟨M,M⟩t) = M(T⟨M,M⟩t) and because of how M is constant

on level stretches of ⟨M,M⟩ it may also be seen that M(T⟨M,M⟩t) = M(t), completing the proof. □



10 AVERY FOX

We now prove an important property of Brownian motion, known as conformal invariance. Recall
that a conformal mapping is a holomorphic map with nonvanishing derivative. This theorem tells us that
under a conformal function, a Brownian motion still remains a Brownian motion.

Theorem 4.7. Consider a complex Brownian motion {B(t) : t ≥ 0} starting at x ∈ C. Let U ⊂ C be
open and containing x, and f : U −→ C be holomorphic. Let TU = inf{t ≥ 0 : B(t) ̸∈ U}. Then, there

exists a complex Brownian motion {B′(t) : t ≥ 0} started at f(B(0)) such that for C(t) =
∫ t

0
|f ′(B(s))|2ds

for all t ∈ [0, Tu),

f(B(t)) = B′(C(t)).

Note that for any point z′ ∈ U , we may see that f is locally tangent to the map z → f(z′)+f ′(z′)(z−z′).

Proof. We break up f = g+ ih, so that g and h are both harmonic on U , and B(t) = B1(t) + iB2(t). By
the multivariable Itô formula, we have

g(B(t)) = g(B(0)) +

∫ t

0

∂g

∂x
B(s)dB1(s) +

∫ t

0

∂g

∂y
B(s)dB2(s)

and

h(B(t)) = h(B(0)) +

∫ t

0

∂h

∂x
B(s)dB1(s) +

∫ t

0

∂h

∂y
B(s)dB2(s)

implying that the processes X(t) = g(B(t)) and Y (t) = h(B(t)) are continuous local martingales on the
stochastic interval [0, Tu). Recalling the Cauchy-Riemann equations and by considering the differentials

of the quadratic variation processes, we can show that ⟨X,X⟩t = ⟨Y, Y ⟩t =
∫ t

0
|f ′(B(s))|2ds = C(t) and

⟨X,Y ⟩t = 0.
Now, for t ≥ 0, let Tt = inf{s ≥ 0 : C(s) > t} and define B′(t) = f(B(Tt)) = g(B(Tt)) + ih(B(Tt)).

By Theorem 4.6, B′(t) is a complex Brownian motion adapted to the filtration (F(Tt))t≥0. Note that for
all t ≥ 0, B′(C(t)) = f(B(TC(t))) and that TC(t) = t, therefore finishing the proof. □

As a corollary, we can prove that a planar Brownian motion almost surely never hits a fixed point.
Sometimes, this property is referred to as polarity.

Corollary 4.8. Let {B(t) : t ≥ 0} be a planar Brownian motion started at x ∈ R2. Let y ∈ R2 such that
y ̸= x. Then,

P{∃t > 0 such that B(t) = y} = 0.

Proof. Again, we will use complex notation. It suffices to prove the case when our Brownian motion
starts at 1 and show that it almost surely won’t cross the origin by symmetry. Let {X(t) : t ≥ 0} be a
complex Brownian motion started at the origin. By Theorem 4.7,

exp(B(t)) = B′(C(t))

where

C(t) =

∫ t

0

exp(2X1(s))ds,

X1 is the real part of X, and {B′(t) : t ≥ 0} is a complex Brownian motion started at 1. Note that
lim
t→∞

C(t) = ∞ almost surely, which implies that almost surely,

{B′(t) : t ≥ 0} = {exp(B(t)) : t ≥ 0}
meaning they have the same paths. But as an exponential function is never equal to 0, it is implied
that {B′(t) : t ≥ 0} almost surely never hits the origin. Replacing {B′(t) : t ≥ 0} with an arbitrary
complex Brownian motion {B(t) : t ≥ 0} starting at 1, which we can do because they’ll have the same
distribution, the conclusion follows. □

This next theorem is the skew-product representation of a planar Brownian motion and is useful
for representing a planar Brownian motion in polar coordinates.

Theorem 4.9. Let {B(t) : t ≥ 0} be a planar Brownian motion such that B(0) = 1. Then, there exist
two independent linear Brownian motions, {X1(t) : t ≥ 0} and {X2(t) : t ≥ 0} such that

B(t) = exp(X1(H(t)) + iX2(H(t)))

for all t ≥ 0, where

H(t) =

∫ t

0

ds

|B(s)|2
= inf

{
u ≥ 0 :

∫ u

0

exp(2X1(s))ds > t

}
.
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Proof. First, note that H(t) is well defined by Corollary 4.8 for all t ≥ 0. Let X(t) = X1(t) + iX2(t)
be a planar Brownian motion started at 0. By Theorem 4.7, there exists a planar Brownian motion
{B′(t) : t ≥ 0} such that

exp(X(t)) = B′(C(t))

where C(t) =
∫ t

0
exp(2X1(s))ds. Let H ′(t) =

∫ t

0
ds

|B′(s)|2 , so H(t) is the inverse of C(t). Therefore, for

t = H(s),

B′(s) = exp(X1(H(s)) + iX2(H(s))),

which is the desired result except for the fact that B′(s) should be replaced by B(s). For all t ≥ 0, we’ll
let st = inf{s ≥ 0 :

∫ s

0
1

|B(u)|du > t}, and define Y1(t) = log |B(st)| and Y2(t) = arg(B(st)). Note that

Theorem 4.7 is equivalent to saying that if we define these three terms for all t ≥ 0, then Y1 and Y2

are independent linear Brownian motions. Moreover, they are deterministic functions of B so their joint
distribution only depends on B. So, it sufficed to start with a planar Brownian motion and show that
the resulting process was also a planar Brownian motion as we previously demonstrated. □

The process H(t) is sometimes referred to as a random clock and is deeply related to winding numbers,
which is the next topic we examine in this paper. In loose terms, the winding number of a point may
be thought of as the number of times a planar Brownian motion winds around itself. We first prove a
lemma that we’ll use in the rest of this section which is sometimes known as Laplace’s Method.

Lemma 4.10. Let t > 0 and f : [0, t] −→ R be continuous. Then,

lim
a↑∞

1

a
ln

∫ t

0

exp(af(u))du = max
x∈[0,t]

f(x).

Proof. Let maxx∈[0,t] f(x) = y and assume that this maximum is achieved at x ∈ [0, t]. Then, we have
that

lim
a↑∞

1

a
ln

∫ t

0

exp(af(u))du ≤ lim
a↑∞

1

a
ln

∫ t

0

exp(a · y)du = y.

On the other hand, letting ϵ > 0, we can find some δ > 0 such that for all z ∈ [0, t] where |x − z| < δ,
f(z) ≥ y − ϵ. We therefore have that

lim
a↑∞

1

a
ln

∫ t

0

exp(af(u))du ≥ lim
a↑∞

1

a
ln

∫
[x− δ

2 ,x+
δ
2 ]∩[0,t]

exp(a(y − ϵ))du = y − ϵ.

Because this holds for all ϵ > 0, it follows that the limit as a approaches ∞ is at least y, so combined
with our prior proof, the conclusion follows. □

When analyzing the random clock H(t), for some applications, we need to be able to control the as-
ymptotic behavior of H(t). As such, we prove the below theorem which is used to prove many asymptotic
results of planar Brownian motion. We already observed a way to express H(t) in terms of part of a
planar Brownian motion in Theorem 4.9, but this theorem helps relate H(t) to the first hitting time of
a level.

Theorem 4.11. Let the processes H(t) and X1(t) be defined as in Theorem 4.9. For all a > 0, define

a Brownian motion Ya(t) =
X1(a

2t)
a . Moreover, fix a level b and let T(a,b) = inf{t ≥ 0 : Ya(t) = b} be its

first hitting time of b. Then, for all ϵ > 0,

lim
t→∞

P
{∣∣∣∣ 4H(t)

(log(t))2
− T( 1

2 log(t),1)

∣∣∣∣ > ϵ

}
= 0.

Proof. Fix ϵ > 0. Without loss of generality, because of scaling, we assume that X1(0) = 0. Note that
for all δ > 0, we have

lim
ϵ↓0

P{T( 1
2 log(t),1+ϵ) − T( 1

2 log(t),1−ϵ) > δ} = lim
ϵ↓0

P{T(1,1+ϵ) − T(1,1−ϵ) > δ} = 0.

Therefore, it suffices to show that

(4.12) lim
t→∞

P
{

4H(t)

(log(t))2
> T( 1

2 log(t),1+ϵ)

}
= lim

t→∞
P
{

4H(t)

(log(t))2
> T( 1

2 log(t),1−ϵ)

}
= 0.

In this proof, we will only prove that

lim
t→∞

P
{

4H(t)

(log(t))2
> T( 1

2 log(t),1+ϵ)

}
= 0,
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as the proof for showing the other part of (4.12) follows similar logic. Throughout this proof, we sometimes
make the substitution a = a(t) = 1

2 log(t). First, we note that{
4H(t)

(log(t))2
> T( 1

2 log(t),1+ϵ)

}
=

{∫ a2T(a,1+ϵ)

0

exp(2X1(u))du < t

}
=

{
1

2a

∫ a2T(a,1+ϵ)

0

exp(2X1(u))du < 1

}
.

We also know that

1

2a
log

∫ a2T(a,1+ϵ)

0

exp(2X1(u))du =
log(a)

a
+

1

2a
log

∫ T(a,1+ϵ)

0

exp(2aYa(u))du

which is equal in distribution to

log(a)

a
+

1

2a
log

∫ T(1,1+ϵ)

0

exp(2aX1(u))du.

By Lemma 4.10, almost surely,

lim
a↑∞

1

2a
log

∫ T(1,1+ϵ)

0

exp(2aX1(u))du = sup
s∈[0,T(1,1+ϵ]

X1(s) = 1 + ϵ.

Therefore, almost surely,

lim
a↑∞

P

{∣∣∣∣∣ log(a)a
+

1

2a
log

∫ T(1,1+ϵ)

0

exp(2aX1(u))du− (1− ϵ)

∣∣∣∣∣ > ϵ

}
= 0

implying the desired equality. □

We now come to the asymptotic law of winding numbers, also known as Spitzer’s Law.

Theorem 4.13. Let the processes H(t) and X2(t) be defined as in Theorem 4.9. For all t ≥ 0, we define
θ(t) = X2(H(t)). Then, for all x ∈ R,

lim
t→∞

P
{

2

log(t)
θ(t) ≤ x

}
=

∫ x

−∞

dy

π(1 + y2)

meaning that the law of 2θ(t)
log(t) converges to the symmetric Cauchy distribution.

First, we note that θ effectively represents the angle of a planar Brownian motion and in its (almost
surely) continuous representation. Hence, this is the reason why we call this theorem the asymptotic law
of winding numbers.

Proof. For a > 0, we define the process {Ya(t) : t ≥ 0} by Ya(t) =
X2(a

2t)
a . Therefore, we have that

θ(t)

a
=

X2(H(t))

a
= Ya

(
H(t)

a2

)
.

By Theorem 4.11, for a = 1
2 log(t), we have

lim
t→∞

P
{∣∣∣∣ 2θ(t)log(t)

− Ya(T(a,1))

∣∣∣∣ > ϵ

}
= 0

where T(a,1) is defined as in Theorem 4.11. Note that Ya(T(a,1)) is a random variable whose law doesn’t
depend on a, so passing to Theorem 2.8 says it has a Cauchy distribution. □

Spitzer’s Law gives us information on the behavior of a Brownian motion within a small period of
time. We assume in this discussion that our planar Brownian motion starts at the origin. Note that in
this case, the definition of θ(t) doesn’t make sense, as this represents the angular component of a planar
Brownian motion. But, by Corollary 4.8 and the Markov property, for every 0 < ϵ < 1, we may consider
the behavior of θ(t) on [ϵ, 1] as ϵ decreases to 0. By the scaling property of Brownian motion, the variation
of θ(t) on [ϵ, 1] is equal in distribution to the variation of θ(t) on [1, 1

ϵ ]. Therefore, Theorem 4.13, the
Markov property, and the Blumenthal zero-one law imply that, informally, almost surely, a Brownian
motion performs an infinite number of windings in both directions around its starting point in any unit
of time. Note that by the Markov property, this idea can be extended to any point along the Brownian
curve.
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5. Cone Points

In the prior section, we described the typical behavior of points along a Brownian curve in the plane.
In this section, we take a closer look at an example of atypical behavior.

First, we consider a brief example to show that there are exceptions to Spitzer’s Law.

Example 5.1. We define
y = min{x : (x, 0) ∈ B[0, 1]}.

Assume for the sake of contradiction that the Brownian motion performs windings around (y, 0). Then,
the Brownian motion must cross a line of the form {(z, 0) : z < y}, which contradicts our definition of y
being the minimum x-value achieved on this slice.

Definition 5.2. Let {B(t) : t ≥ 0} be a planar Brownian motion, α ∈ (0, 2π) and ζ ∈ [0, 2π). We define
the closed cone with angle α and direction ζ as a subset of R2:

W [α, ζ] =
{
rei(θ−ζ) : |θ| ≤ α

2
, r ≥ 0

}
.

The dual of a cone x+W [α, ζ] is the cone x+W [2π − α, ζ + π]. A point x = B(t) for t ∈ [0, 1] is an α
two-sided cone point if there exists some ϵ > 0 and ζ ∈ [0, 2π) such that

B(0, 1) ∩Nϵ(x) ⊂ x+W [α, ζ]

where Nϵ(x) is the ball around x of radius ϵ.

In this definition, we use the notation two-sided cone point, as there is another related topic, one-sided
cone points, which is discussed in more depth in [12], for example. But, we will only look at two-sided
cone points in this paper, so as there’s no confusion, we will now adopt the notation of cone point
when describing such points. Note that cone points are atypical, in the sense that only a finite number
of windings around them can occur by definition.

Given that this behavior is atypical, it is natural to wonder exactly how large this set of points is and
does it depend on the value of α? We will now explore this, following the approaches of [12] and [14].
We begin with proving an upper bound through a series of lemmas.

Definition 5.3. Let {B(t) : t ≥ 0} be a planar Brownian motion. We fix an angle α ∈ (0, 2π) and a
direction ζ ∈ [0, 2π). Let ϵ > 0 and for δ ∈ (0, ϵ), let

Tδ(z) = inf{s ≥ 0 : B(s) ∈ Nδ(z)}
and

Sδ,ϵ(z) = inf{s ≥ T δ
2
(z) : B(s) ̸∈ Nϵ(z)}.

Then, z ∈ Rd is a (δ, ϵ) approximate cone point if

(1) B(0, Tδ(z)) ⊂ z +W [α, ζ]

(2) B(T δ
2
(z), Sδ,ϵ(z)) ⊂ z +W [α, ζ].

One of the most evident aspects that distinguish between approximate cone points and cone points is
that approximate cone points need not lie on the path of the Brownian motion. Throughout the rest of
this section, we fix an angle α and a direction ζ. The first lemma we prove includes a reference to what
is known as the heat equation and a solution of it, so we provide some necessary background on this
before proving the first lemma.

Definition 5.4. Let U ⊂ Rd be either the entire space (Rd) or open and bounded. Let u : (0,∞)×U −→
[0,∞) be twice differentiable. Then, u solves the heat equation with heat dissipation rate V : U −→ R
and initial condition f : U −→ [0,∞) on U if

(1) lim
x→y,t↓0

u(t, x) = f(y) for y ∈ U

(2) lim
x→y,t→a

u(t, x) = 0 for y ∈ ∂U

(3) ∂tu(t, x) =
1
2∆xu(t, x) + V (x)u(t, x) on (0,∞)× U where ∆x is the Laplacian in the x variable.

Using this, we now prove the following lemma, which will aid us in proving the probability that a point
is a (δ, ϵ) approximate cone point. When proving an upper bound on the Hausdorff dimension of cone
points, the relationship between cone points and approximate cone points will be explored.

Lemma 5.5. There exist positive constants c < C such that for all δ > 0, the following properties hold.

(1) For all z ∈ R2, P{B(0, Tδ(z)) ⊂ z +W [α, ζ]} ≤ C( δ
|z| )

π
α .
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(2) For all z ∈ R2 such that 0 ∈ z +W [α2 , ζ], P{B(0, Tδ(z)) ⊂ z +W [α, ζ]} ≥ c( δ
|z| )

π
α .

Note that we may consider the two intervals [0, Tδ(z)] and [T δ
2
(z), 1] separately by the strong Markov

property.

Proof. We can rewrite z = |z|eiθ in order to apply the skew-product representation to the Brownian
motion {z −B(t) : t ≥ 0} so that we may write

B(t) = z −R(t) exp(iθ(t))

for all t ≥ 0, R(t) = exp(W1(H(t)) and θ(t) = W2(H(t)) where {W1(t) : t ≥ 0} and {W2(t) : t ≥ 0} are
two independent linear Brownian motions started at log(|z|), respective to θ, and a strictly increasing
time change {H(t) : t ≥ 0} depending on {W1(t) : t ≥ 0}. Using the previously defined notation related
to approximate cone points, we can see that inf{s ≥ 0 : R(s) ≤ δ} = Tδ(z) and that H(Tδ(z)) = inf{u ≥
0 : W1(u) ≤ log(δ)}. Therefore,

{B(0, Tδ(z)) ⊂ z +W [α, ζ]} =
{
|W2(u) + π − ζ| ≤ α

2
for all u ∈ [0, H(Tδ(z)]

}
.

The latter event here is the event that a linear Brownian motion started in θ stays within the interval
[ζ−π− α

2 , ζ−π+ α
2 ] up until H(Tδ(z)). By a separation of variables approach, we may yield the following

solution of the heat equation for domain (0, a):

u(t, x) =
4

π

∞∑
n=0

1

2n+ 1
exp

(
− (2n+ 1)2π2

2a2
t

)
sin

(
(2n+ 1)πx

a

)
.

We may also show that for any linear Brownian motion {B′(t) : t ≥ 0} and for any σ > 0, {exp(σB(t)−
σ2t
2 ) : t ≥ 0} is a martingale, which may be used in conjunction with the optional stopping theorem to

show that if we have a, λ > 0 and Aa = inf{t ≥ 0 : B′(t) = a}, then

E[e−λAa : B′(0) = 0] = e−a
√
2λ.

Combining these remarks,

P{|W2(u) + π − ζ|} ≤ α

2
for all u ∈ [0, H(Tδ(z))]

=

∞∑
k=0

4

(2k + 1)π
sin

(
(2k + 1)π(α2 + ζ − π − θ)

α

)
E
[
exp(− (2k + 1)2π2

2α2
H(Tδ(z)))

]

=

∞∑
k=0

4

(2k + 1)π
sin

(
(2k + 1)π(α2 + ζ − π − θ)

α

)(
δ

|z|

)(2k+1) π
α

.

The upper bound from the lemma follows directly from this final equality if |z| ≤ 2δ and otherwise, an
upper bound may be given by (

δ

|z|

) π
α

∞∑
k=0

4

(2k + 1)π
2−2k π

α .

On the other hand, if δ
|z| is bounded from below, then Brownian scaling can give us a lower bound of the

desired form. Otherwise, by the assumption that 0 ∈ z +W [α2 , ζ], |θ+ π − ζ| ≤ α
4 the sin term for k = 0

is bounded below by sin(π4 ). Therefore, a lower bound may be given by(
δ

|z|

) π
α

[
4

π
sin
(π
4

)
−

∞∑
k=1

4

(2k + 1)π

(
δ

|z|

)2k π
α

]
which is bounded away from zero for small δ

|z| . □

By similar logic to the proof of Lemma 5.5, we may also prove the below lemma, which is omitted in
this paper due to the similarity. Throughout the rest of this section, we will use the notation

S(t)
ϵ (z) = inf{s > t : B(s) ̸∈ Nϵ(z)}.

Lemma 5.6. There are constants C > c > 0 such that for all δ ∈ (0, ϵ) the following properties hold.

(1) For all x, z ∈ R2 with |x− z| = δ
2 , P{B(0, S

(0)
ϵ (z)) ⊂ z +W [α, ζ] : B(0) = x} ≤ C( δϵ )

π
α .

(2) For all x, z ∈ R2 with |x − z| = δ
2 and x − z ∈ W [α2 , ζ], P{B(0, S

(0)
ϵ (z)) ⊂ z +W [α, ζ] : B(0) =

x} ≥ c( δϵ )
π
α .
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We are now in a position to prove an upper bound on the probability that a point is a (δ, ϵ) approximate
cone point.

Lemma 5.7. There is a constant C0 > 0 such that for any z ∈ R2,

P{z is a (δ, ϵ) approximate cone point} ≤ C0|z|−
π
α ϵ−

π
α δ

2π
α .

Proof. We apply the strong Markov property with the stopping time T δ
2
(z) to get that the probability of

this event is at least

E[[χB(0,Tδ(z))⊂z+W [α,ζ]]P{B(0, S(0)
ϵ (z)) ⊂ z +W [α, ζ] : B(0) = T δ

2
(z)}] ≤ C2

(
δ

|z|

) π
α
(
δ

ϵ

) π
α

by Lemma 5.5 and Lemma 5.6. Therefore, by selecting C0 = C2, the conclusion follows. □

Before returning to cone points, we will now prove the Hausdorff dimension of approximate cone points.

Lemma 5.8. Let M(α, ζ, ϵ) be the set of all (δ, ϵ) approximate cone points in R2 for all δ > 0. Then,
almost surely,

(1) if α ∈ (0, π) then M(α, ζ, ϵ) = ∅.
(2) if α ∈ [π, 2π) then dim (M(α, ζ, ϵ)) ≤ 2− 2π

α .

Proof. First, we note that z ∈ M(α, ζ, ϵ) if and only if there is some t > 0 such that z = B(t) and

B(0, t) ⊂ z + W [α, ζ]. We also note that B(t, S
(t)
ϵ (z)) ⊂ z + W [α, ζ]. Let A be a compact cube of

unit side length that doesn’t contain the origin. Note that it suffices to show that M(α, ζ, ϵ) ∩ A = ∅ if
α ∈ (0 ∈ π) and that dim(M(α, ζ, ϵ))∩A ≤ 2− 2π

α for α ∈ (π, 2π). Consider a half-open dyadic subcube

of A with side lengths 1
2k

for some k ∈ N, D ∈ Dk, where Dk is the family of all cubes of the form

x+Π2
i=1[

ki

2k
, ki+1

2k
) and k1, k2 ∈ {0, 1, ..., 2k − 1}. Let D ⊂ D∗ be a concentric ball around D with radius

(1 +
√
2)2−k. Throughout the rest of the proof, we will use the notation x = x(D) to define the focal

point of D where x is chosen so that

(1) if α < π, the tip of the cone x+W [α, ζ] has boundary halflines tangent to D∗,
(2) or if α > π, x is the point on the cone whose dual has boundary halflines tangent to D∗.

It may be shown that for all ϵ > 0 and α ∈ [0, 2π), there is some k0 ∈ N such that for all k ∈ N with
k ≥ k0, D ∈ Dk, and y ∈ D, N ϵ

2
(x) ⊂ Nϵ(y) and y +W [α, ζ] ⊂ x+W [α, ζ]. We can also find constants

0 < c1 < C1 such that

(1) NC12−k(y) ⊂ NC2
12

−k(x),

(2) Nc1C12−k(x) ⊂ N 1
2C12−k(y),

(3) and |x− y| < c1C12
−k.

Therefore, if we choose k sufficiently large and if D ∈ Dk contains a (C12
−k, ϵ) approximate cone point,

then the focal point of D must satisfy

(1) B(0, TC2
12

−k(x)) ⊂ x+W [α, ζ]

(2) and B(Tc1C12−k(x), Sc1C12−k, ϵ2
(x)) ⊂ x+W [α, ζ].

We may use similar logic to Lemma 5.7 to find a positive constant C2 such that

P{D contains a (C12
−k, ϵ) approximate cone point} ≤ C2|x|−

π
α ϵ−

π
α 2−k 2π

α .

Let k1 ∈ N such that k1 ≥ k0 and that |x(D)| is bounded away from zero for all D ∈ Dk for k ≥ k1 and
k ∈ N. Then, we may find a positive constant C3 such that for all k ∈ N with k ≥ k1,

P{D contains a (C12
−k, ϵ) approximate cone point} ≤ C32

−k 2π
α .

We may therefore finish the proof of the first statement. For α ∈ (0, π),

P{M(α, ζ, ϵ) ̸= ∅} ≤
∑

D∈Dk

P{D contains a (C12
−k, ϵ) approximate cone point} ≤ C32

2k2−k 2π
α

which converges to 0 as k approaches ∞. On the other hand, if α ∈ (π, 2π), we can cover M(α, ζ, ϵ) ∩A
with the collection of subcubes D ∈ Dk that contain a (C12

−k, ϵ) approximate cone point. Let γ > 2− 2π
α .
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Then, computing the γ dimensional Hausdorff measure of this set, we get that

E

[ ∑
D∈Dk

2−kγ+ 1
2γχD contains a (C12−k,ϵ) approximate cone point

]
≤ 2

γ
2

∑
D∈Dk

2−kγP{D contains a (C12
−k, ϵ) approximate cone point}

≤ C32
k(2− 2π

α −γ)

which goes to 0 as k goes to ∞, proving the other part of the lemma. □

Observe that the result of this lemma is very similar to the desired result regarding the upper bound
of the Hausdorff dimension of α-cone points. We now relate our discussion of approximate cone points
to cone points and in doing so prove the desired upper bound.

Theorem 5.9. Let {B(t) : 0 ≤ t ≤ 1} be a planar Brownian motion. Almost surely, α-cone points exist
for α ≥ π and don’t exist for α < π. For α ∈ [π, 2π),

dim{x ∈ R2 : x is an α cone point} ≤ 2− 2π

α
.

Proof. Let δ > 0 and let z ∈ R2 be an α-cone point. Then, we may find a rational number q ∈ [0, 1),
choose ζ ∈ [0, 2π) such that ζ is rational, and rational ϵ > 0 such that for some t ∈ (q, 1), z = B(t) and

(1) B(q, t) ⊂ z +W [α+ δ, ζ]

(2) B(t, S
(t)
ϵ (z)) ⊂ z +W [α+ δ, ζ].

First, we consider when α < π. By Lemma 5.8, the set is empty under any choice of rationals if α+δ < π,
so by choosing δ small enough, this would ensure there are no α-cone points with probability 1. On the
other hand, if α ≥ π, by Lemma 5.8 and the countable stability of Hausdorff dimension, almost surely,
there’s an upper bound of 2− 2π

α+δ for the upper bound of α-cone points, so the second conclusion follows
from the fact that δ is arbitrary. □

We’ll now prove a lower bound, again using a series of lemmas and theorems. Similar to our proof
of the upper bound, our approach requires us to find a link between cone points and approximate cone
points. Moreover, we will use a cover of our set similar to that in Theorem 3.10, in the sense of looking at
nested sequences of sets. This is the motivation behind the main step of our proof, Theorem 5.12. The
theorem itself isn’t specific to cone points and approximate cone points, but gives us some conditions
for which the intersection of such a nested sequence and any closed subset of a cube have at least a
certain Hausdorff dimension with positive probability. Our proof finishes by relating this theorem to
the Hausdorff dimension of approximate cone points and then using Blumenthal’s zero-one law to help
connect this result to the Hausdorff dimension of cone points. First, we prove a lemma which is used in
the proof of our key step.

Lemma 5.10. Let µ be a probability measure on Rd such that there exists some C, λ > 0 where for all
x ∈ Rd and r > 0, µ(Nr(x)) ≤ Crλ. Then, for all β ∈ (0, λ), there exists some C1 > 0 such that for all
x ∈ Rd and r > 0, ∫

Nr(x)

|x− y|−βµ(dy) ≤ C1r
−λ−β ,

in particular implying that ∫ ∫
|x− y|−βdµ(x)dµ(y) < ∞.

Proof. Fix x ∈ Rd and r > 0. By Fubini’s theorem, we have that∫
Nr(x)

|x− y|−βµ(dy) =

∫ ∞

0

µ{y ∈ Nr(x) : |x− y|−β > s}ds

≤
∫ ∞

r−β

µ(N
s
− 1

β
(x))ds+ Crλ−β

≤ C

∫ ∞

r−β

s−
λ
β ds+ Crλ−β

so evaluating the improper integral implies the first part of the lemma. We also obtain the inequality∫ ∫
|x− y|−βdµ(x)dµ(y) ≤

∫
dµ(x)

∫
N1(x)

|x− y|−βdµ(x) + 1 ≤ C1 + 1 < ∞.
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implying the second part of the lemma. □

We now prove the theorem which is at the heart of showing the lower bound of the Hausdorff dimension
of the set of α-cone points, but we first need to introduce one more relevant definition.

Definition 5.11. The distance between two subsets of Rd X and Y , denoted dist(X,Y ), is defined as

dist(X,Y ) = inf{|x− y| : x ∈ X, y ∈ Y }.

Theorem 5.12. Fix some x ∈ Rd and consider the cube x+[0, 1)d. Let Dk be the family of all cubes of the
form x+Π2

i=1[
ki

2k
, ki+1

2k
) and k1, k2 ∈ {0, 1, ..., 2k − 1}. Also, define D =

⋃∞
k=1 Dk. Moreover, let {Z(I) :

I ∈ D} be a collection of random variables each taking values in {0, 1} and A =
⋂∞

k=1

⋃
I∈Dk,Z(I)=1 I.

Assume that for all I, J ∈ D with I ⊂ J that if Z(I) = 1, then Z(J) = 1. Furthermore, assume that
there exist positive constants γ, c, C such that

(1) c|I|γ ≤ E[Z(I)] ≤ C|I|γ for all I ∈ D

(2) and E[Z(I)Z(J)] ≤ C|I|2γdist(I, J)−γ for all I, J ∈ Dk with dist(I, J) > 0 and k ≥ 1.

Then, if λ > γ, for any closed subset of the cube B such that Hλ(B) > 0, there is some p > 0 such that

P{dim(A ∩B) ≥ λ− γ} ≥ p.

Proof. Fix some λ > γ and some closed subset B of the cube with Hλ(B) > 0. It suffices to show that
there exists some p > 0 such that for all β ∈ (0, λ − γ) that the event there is some positive measure µ
on A∩B such that its β energy Iβ(µ) < ∞ has probability of at least p of occurring. This is because we
can then apply the energy method to show that dim(A ∩B) is at least β.

First, by Frostman’s lemma, there is some Borel probability measure ν on B and a positive constant
C1 such that if D ⊂ Rd is a Borel set, ν(D) ≤ C1|D|λ. For all n ∈ N, we will define

An =
⋃

I∈Dn,Z(I)=1

I.

Then, for n ∈ N, we can define a Borel measure µn supported on B defined as

µn(D) = 2nγν(D ∩An).

Condition 1 implies that

E[µn(An)] = 2nγ
∑
I∈Dn

ν(I)E[Z(I)] ≥ cd
γ
2

∑
I∈Dn

ν(I) = cd
γ
2 .

Recall that for every cube I there are 3d cubes J with dist(I, J) = 0. This coupled with condition 2
implies that

E[µn(An)
2] = 22nγ

∑
I∈Dn

∑
J∈Dn

E[Z(I)Z(J)]ν(I)ν(J)

≤ Cdγ
∑
I∈Dn

∑
J∈Dn:dist(I,J)>0

dist(I, J)−γν(I)ν(J)

+ C13
d
√
d
λ
22nγ−nλ

∑
I∈Dn

E[Z(I)]ν(I).

We also have that for all x ∈ I and y ∈ J such that dist(I, J) > 0, |x − y| ≤ (1 + 2
√
d)dist(I, J).

Consequently, we know that

E[µn(An)
2] ≤ C((1 + 2

√
d)d)γ

∫ ∫
|x− y|−γdν(x)dν(y) + C3d

√
d
λ
d

γ
2 = C2 < ∞

where finiteness comes from Lemma 5.10.
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Now, we fix β ∈ (0, λ− γ). Again because of Lemma 5.10 which gives us a constant C3 from the first

statement and the fact that dist(I, J)−γ ≤ (3
√
d)γ |x− y|−γ for x ∈ I and y ∈ J , we get that

E[Iβ(µn)] = 22nγ
∑

I,J∈Dn

E[Z(I)Z(J)]

∫
I

dν(x)

∫
J

dν(y)|x− y|−β

≤ Cdγ
∑
I∈Dn

∑
J∈Dn:dist(I,J)>0

dist(I, J)−γ

∫
I

dν(x)

∫
J

dν(y)|x− y|−β

+ Cd
γ
2 2nγ

∑
I∈Dn

∑
J∈Dn:dist(I,J)=0

∫
I

dν(x)

∫
J

dν(y)|x− y|−β

≤ C4 + CC3d
γ
2 2nγ(3

√
d2−n)λ−β

∑
I∈Dn

ν(I)

≤ C4 + CC3d
γ
2 (3

√
d)λ−β .

This calculation therefore implies that E[Iβ(µn)] is uniformly bounded in n, so there’s some k(β) such
that E[Iβ ] ≤ k(β). So, we may find l(β) > 0 such that

P{Iβ(µn) ≥ l(β)} ≤ k(β)

l(β)
≤ c2

8C2
.

We recall the Paley-Zygmund inequality from measure-theoretic probability: if X is a non-negative

random variable with E[X2] < ∞, then for any t ≥ 0, P{X > t} ≥ E[X−t]2

E[X2] (a proof may be found in

section 2 of chapter 6 in [2]). This implies that

P
{
µn(An) >

c

2

}
≥ P

{
µn(An) >

1

2
E[µn(An)]

}
≥ 1

4

E[µn(An)]
2

E[µn(An)2]
≥ c

4C2

meaning that

P
{
µn(An) >

c

2
, Iβ(µn) < l(β)

}
≥ p =

c2

8C2
.

By Fatou’s lemma, we have that

P
{
µn(An) >

c

2
, Iβ(µn) < l(β) infinitely often

}
≥ lim inf

n→∞
P
{
µn(An) >

c

2
, Iβ(µn) < l(β)

}
≥ p.

We end the proof by choosing a subsequence where µn converges to a measure µ, which ensures that
µ is supported by A and the µ measure of our cube is at least c

2 . Therefore, for all ϵ > 0, along the
subsequence,∫ ∫

|x−y|>ϵ

|x− y|−βdµ(x)dµ(y) = lim

∫ ∫
|x−y|>ϵ

|x− y|−βdµn(x)dµn(y) ≤ lim Iβ(µn) ≤ l(β)

so taking the limit as ϵ decreases to 0 gives us the desired conclusion that Iβ(µ) ≤ l(β). □

Throughout the next two proofs, we fix an angle α ∈ (π, 2π) and a cube A = x0 + [0, 1]2 ⊂ W [α2 , 0] so
that A doesn’t contain the origin. We will consider the classes D and Dk of compact dyadic subcubes,
where Dk is the family of all cubes of the form x+Π2

i=1[
k
2k
, ki+1

2k
] and k1, k2 ∈ {0, 1, ..., 2k − 1} and D is

the union of all compact dyadic subcubes in A, for side lengths equal to 1
2k

for some k ∈ N ∪ {0}. Let
R > 2 such that A ⊂ NR

2
(0) and for all k ∈ N, we define

rk = R−
k∑

j=1

(
1

2

)j

.

Observe that this quantity is always at least R
2 by our choice of R. For a subcube I ∈ Dk with center

z, we will define Z(I) = 1 if z is a (2−k, rk) approximate cone point with direction π and otherwise,
Z(I) = 0. Note that by definition of rk, we have that if I ⊂ J and Z(I) = 1, then Z(J) = 1. Therefore,
we’ve set up a connection between the terminology in Theorem 5.12 and approximate cone points that
we can begin to use to derive a lower bound.

Lemma 5.13. There exist positive, finite constants c1 < C1 such that for any cube I ∈ D,

c1|I|
2π
α ≤ P{Z(I) = 1} ≤ C1|I|

2π
α .
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Proof. Lemma 5.7 implies the existence of the upper bound here. On the other hand, we note that if
z ∈ A and δ > 0, then

inf
|x−z|=δ

P
{
B(T δ

2
(z)) ∈ z +W

[α
2
, π
]
: B(0) = x

}
= inf

|x|=1
P
{
B(T 1

2
(0)) ∈ W

[α
2
, π
]
: B(0) = x

}
> 0.

We will let this constant be equal to c0. Therefore, if I ∈ Dk and z is the center of I, for δ = 2−k, by
Lemma 5.5 and Lemma 5.6,

P{Z(I) = 1}
≥ E[(χB(0,Tδ(z))⊂z+W [α,π])E[(χB(T δ

2
(z))∈z+W [α2 ,π])

× P{B(0, S0
rk
(z)) ⊂ z +W [α, π] : B(0) = B(Tδ(z))} : B(0) = B(Tδ(z))]]

≥ c0c
2δ

2π
α (R|z|)− π

α

for some constant c > 0. Because |z| is bounded away from infinity, a lower bound follows. □

Lemma 5.14. There is a positive, finite constant C1 such that for any subcubes I, J ∈ Dk for k ∈ N,

E[Z(I)Z(J)] ≤ C1|I|
4π
α dist(I, J)−

2π
α .

Proof. Fix subcubes I and J and let their centers be zI and zJ , respectively. Let z = |zI − zJ | and
δ = 2−k. The first case we must consider is when z > 2δ. By the strong Markov property, Lemma 5.5,
Lemma 5.6, we have that

E[Z(I)Z(J)χT δ
2
(zI)<T δ

2
(zJ )]

≤ E[(χB(0,Tδ(zI))⊂zI+W [α,π])E[(χB(0,S
(0)
z
2

(zI))⊂zI+W [α,π]
)

× E[(χB(0,Tδ(zJ ))∈zJ+W [α,π])P{B(0, S(0)
rk

(zJ)) ⊂ zJ +W [α, π] : B(0) = B(T δ
2
(zJ))} : B(0) = B(T z

2
(zJ))]

: B(0) = B(T δ
2
(zI))]]

≤ C4

(
δ

|zI |

) π
α
(
δ

z

) 2π
α
(
2δ

R

) π
α

≤ C1

2
|I| 4πα dist(I, J)−

2π
α

for C1 = 2
π
α+1(max(C4, 1)). Otherwise, we have that z ≤ 2δ. In this case, we have that

E[Z(I)Z(J)χT δ
2
(zI)<T δ

2
(zJ )]

≤ E[(χB(0,Tδ(zI))⊂zI+W [α,π]))P{B(0, S(0)
rk

(zJ)) ⊂ zJ +W [α, π] : B(0) = B(T δ
2
(zJ))}]

≤ C2(
δ

|zI |
)

π
α (

2δ

R
)

π
α

≤ C1

2
|I| 4πα dist(I, J)−

2π
α .

Note that similar logic holds to produce the same upper bound estimate when we reverse the roles of I
and J , so the conclusion follows by adding the two estimates. □

We can now finish proving the lower bound, as we have the necessary tools to apply Theorem 5.12 in
the prior two lemmas.

Theorem 5.15. Let {B(t) : 0 ≤ t ≤ 1} be a planar Brownian motion. Almost surely, for α ∈ [π, 2π),

dim{x ∈ R2 : x is an α cone point} ≥ 2− 2π

α
.

Proof. The lower bound holds by definition if α = π. Otherwise, if we define A′ to be the set in Theorem
5.12 that is obtained from our choice of {Z(I) : I ∈ C}, then we can see that A′ ⊂ A” where

A” = {B(t) : t > 0, B(0, S
(t)
R
2

(B(t))) ⊂ B(t) +W [α, π]}.

By Theorem 5.12, dim(A”) ≥ 2− 2π
α with positive probability. Now, let δ ∈ (0, 1

2 ) and r > 0. We define

an increasing sequence of stopping times {t(δ)n }n∈N such that t
(δ)
1 = 0 and for k ∈ N \ {1},

t
(δ)
k = S

(t
(δ)
k−1)

δR (B(t
(δ)
k−1)).
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Note that if we now define for k ∈ N \ {1},

A
(δ)
k = {B(t) : t

(δ)
k−1 ≤ t ≤ t

(δ)
k , B(t

(δ)
k−1, S

(t)
R
2

(B(t))) ⊂ B(t) +W [α, π]},

then A” ⊂
⋃∞

k=1 A
(δ)
k . Let β < 2 − 2π

α . As the events {dim(A
(δ)
k ) ≥ β} have the same probability, the

probability cannot be zero for otherwise there would be a contradiction on the previously found dimension

of the lower bound of A”. So, there exists some positive p
(δ)
R such that

P{dim(B(t) : 0 ≤ t ≤ S
(0)
δr (0), B(0, S

(0)
R
2

(0)) ⊂ B(t) +W [α, π]) ≥ β} ≥ p
(δ)
R .

A scaling argument can then be applied to show that p
(δ)
R doesn’t depend on R, meaning that by Blu-

menthal’s zero-one law, p
(δ)
R = 1 for all δ > 0 and R > 0. Letting β increase to 2− 2π

α implies that almost
surely,

dim{B(t) : 0 ≤ t ≤ S
(0)
δR (0), B(0, S

(0)
R
2

(0)) ⊂ B(t) +W [α, π]} ≥ 2− 2π

α
.

This holds for any δ > 0 and R > 0, so by choosing R > 0 and δ > 0 such that S
(0)
R
2

(0) > 1 and

S
(0)
δR (0) < 1, we may finish the proof. □

In summary, we proved the following in this section, known as an example of a Hausdorff dimension
spectrum.

Theorem 5.16. Let {B(t) : 0 ≤ t ≤ 1} be a planar Brownian motion. Almost surely, α cone points exist
for α ≥ π and don’t exist for α < π. For α ∈ [π, 2π),

dim{x ∈ R2 : x is an α cone point} = 2− 2π

α
.

6. Further Directions

We end the paper with a brief look at some of the directions studies of the dimensions of cone points
lead to, beginning with applications to the convex hull of a planar Brownian motion and then to a line’s
intersection with a planar Brownian motion.

Theorem 6.1. Let {B(t) : 0 ≤ t ≤ 1} be a planar Brownian motion. Then, almost surely, its convex
hull H has a differentiable boundary.

Proof. It suffices to show that for all x ∈ ∂H that there doesn’t exist a cone with vertex x and opening
α < π that contains H. This is because we may see that the supporting hyperplanes are unique at all
x ∈ ∂H which implies the conclusion. We have by Spitzer’s theorem that B(0) and B(1) almost surely
don’t have this property. For other points x ∈ ∂H, if these have the property, then we must have that
x = B(t) for some t ∈ (0, 1) and that t is an α-cone point, a contradiction to Theorem 5.16, proving the
result. □

Theorem 6.2. Let {B(t) : 0 ≤ t ≤ 1} be a planar Brownian motion. Then, its convex hull H has no
isolated extreme points and if E denotes the set of extreme points, dim(E) = 0.

Proof. As extreme points of convex hulls of continuous curves belong to the curve itself, we have by
Theorem 5.16 that as E is contained in the set of all π-cone points that dim(E) = 0. On the other hand,
the Krein-Milman theorem implies that if x is an isolated extreme point, then H is the convex hull of
{x} ∪ (H \Nϵ(x)) for some ϵ > 0. This implies H has a corner at x, contradicting Theorem 6.1. □

Finally, we turn to the first intersection of a line with a Brownian motion.

Theorem 6.3. For y ∈ R, let Ly = {x + iy : x ∈ R} and let x(y) = sup{x : x + iy ∈ B[0, 1]} where
sup ∅ = −∞. Then, almost surely, for almost every y ∈ R with respect to Lebesgue measure, x(y) = −∞
or for all θ > 0

{x(y) + iy + reiu : r > 0, |u| < θ} ∩B[0, 1] ̸= ∅.
Visually, x(y) + iy is the first hitting point of the restriction of the Brownian motion to [0, 1] of a

particle coming from infinity on the line Ly. The result tells us that this point, if it exists, usually isn’t
a cone point. While the proof is omitted here, a similar result holds for all directions.

Proof. By Theorem 5.16, for all θ > 0, the dimension of all cone points with angle 2π − θ is less than 1
almost surely. So, the dimension of its projection of x+ iy onto y is less than 1 almost surely making its
Lebesgue measure 0 almost surely. We can therefore take a sequence of angles {θn}∞n=1 decreasing to 0.
It follows that the Lebesgue measure of the unions of such projections is 0 almost surely, implying the
theorem. □
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