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Abstract. New developments in non-equilibrium thermodynamics have ap-

plications to questions in evolutionary biology. One of these developing ideas

involves the occasional tendency for a biological structure to reset its develop-
ment in order to save time and maximize entropy, called dynamic instability.

Here we extensively analyze dynamic instability in a toy model of protein fold-

ing. This process could help create less diversity within a population such that
mutated, advantageous traits spread more easily. In this paper, mathematical

methods are used to create and explore possible models of dynamic instabil-

ity, and how it modifies the impact of mutations on the evolvability of certain
traits or structures.
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1. Biophysical Motivation

In evolutionary biology, there have long been open questions about the exact
processes by which complex structures come about. Every necessary protein has
many dozens of inter-working components such that, if even a single one were lost,
it would drastically hinder the overall function. How could something like this,
where having only most (but not all) of the parts is worthless, evolve organically?
Even if an organism is able to manifest part of the folding through mutations, the
half-folded-protein would not benefit the organism in any way, and so it would be
no more likely to pass on its genes to offspring than any other individual of its same
species that also lacks the completed correct protein.

Alternatively, if an organism already has the information to create said protein,
but not necessarily the information on how to create it well, the same problem
arises. If some components are correct and others are not, then the execution on
the folding may suffer significantly. With just a few interchanged amino acids a
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protein will fold completely differently. Even if there was a mutation that would fix
one component of the structure, if all the other components were wrong it would
have almost no impact on the fitness of that particular protein within its host
organism.

The status quo could change, however, if some amount of instability was intro-
duced to the protein’s development. Imagine that some foldings of the protein took
longer to complete than others, and that if a long enough time threshold had passed
without a finished structure, the development would reset to the beginning, so that
every choice becomes available again.

How could this reset infrastructure have come about? In some biological pro-
cesses, the time taken to assemble a structure is an attribute (just as the actual
function of the structure is) that natural selection may act on. This is seen to be
true for kinetic proofreading, where some trade-off of increased error rate is made
to lower the time taken to complete the process [2]. The reason for the trade-off is
quite intuitive: if the proofreading takes too much time, it slows the growth of the
organism, which is disadvantageous for it evolutionarily. This same act of selection
would have to occur for reset mechanisms to take hold in the folding of proteins:
cutting off pathways that have too much time cost.

The presence (or possibility) of a reset mechanism is an assumption of all models
analyzed here. The groundwork for this reset, or “dynamic instability,” has been
researched in [1]. This paper proposes the existence of a multi-component structure
whose creation involves a time cost to its host organism, which could motivate the
presence of dynamic instability. The physics behind this reset are complex, occur-
ring via non-equilibrium dynamics, but it can be witnessed in micro-tubules: they
self-assemble, but participate in occasional large-scale-disassembly. The authors
of [1] noticed a correlation between slow-to-complete structures and disordered1

structures, that correlation being the latter identity causing the former, and they
conjectured that selecting for fast completion times would simultaneously select
for ordered structures. The paper concluded that resets could be advantageous
in eliminating time costs if two conditions were met: first that the time cost of
the slow trajectories must be very large, and second that the probability of taking
those trajectories must be quite small. These conditions are required such that,
on average, resetting slow-built structures is more beneficial than allowing them to
complete.

Our analysis continues the focus on a multi-component structure, but looks to
the consequences of the reset mechanism on the evolutionary process, and how
it amplifies the impact of otherwise insignificant mutations. Further, we make
assumptions about the fitness of different foldings such that the conclusions of [1]
are not necessarily applicable here.

2. One-Correct-Structure Model

In this section, we explore various generalizations of one concept: a structure
with a single correct development, and many incorrect developments. We then
investigate how changing the probability of achieving the correct development im-
pacts the fitness and evolvability of that structure.

1Here “order” just means adherence to a specific design of the structure, i.e. with high order
there is little variation in the assembly of the components.



NON-EQUILIBRIUM IMPACTS ON EVOLVABILITY 3

2.1. 2-Step Toy Model. Imagine a gene as if it guides an organism to choosing
one of n possible options, only 1 of which could possibly lead to future survival and
reproduction. If an organism has k different genes Gi, then any of nk paths may

be taken by an organism, but where
∏k

i=1 Pi is the probability of the single correct
path being taken. In this subsection we will work with k = 2.

Assumptions 2.1. This toy model of protein folding is both similar and distinct
from the other models we will mention. Its simplicity and effectiveness at demon-
strating the way reset infrastructure modifies the impacts of resets makes it very
useful to explore. The simplicity comes from the toy-protein we are analyzing,
which is constructed from only two decision points, each with n options. This
model’s physicality relies on a number of assumptions:

• Our protein folding process is determined by just 2 genes: G1 and G2.
Each gene has n possible ways to carry out its function, only one of which
is correct. This gives us n2 possible outcomes, only one of which is correct.
These two genes are each given some probability of doing their respective
step of the process correctly, P1 and P2.

• The fitness of the protein folding is determined entirely by the probability
that the correct folding is reached, which requires that both genes make
the correct decision.

• A mutation to the ith gene changes the probability that the ith step of the
folding process is done correctly: a mutation to Gi changes Pi.

• In absence of resets: the correct folding always finishes at time εt ≪ 1,
whereas incorrect foldings take some time according to the Gaussian dis-
tribution in Figure 1b to finish. This presumed correlation between “fast”
and “correct” foldings is an exaggerated application of the results from [1].

• Some proportion S of the n2 − 1 incorrect paths will be reset to the begin-
ning, where both genes will then be able to make new decisions, indepen-
dently of the decisions they made previously.

• The best mutation for a protein (and its host organism) is that which
maximizes the change in fitness caused by the mutation, or ∆[mut]iF .

We may now assume that “incorrect” paths generally take much more time to
complete than that of the “correct” path, that being εt ≪ 1, and the time taken to
completion for the incorrect paths follows from some nearly-Gaussian distribution.
If we then add a “reset” mechanism that resets at some threshold time, T > εt and
resets some proportion S of incorrect paths, then we can model the fitness F , for a
system of 2 genes G1 and G2, as follows:

Definition 2.2. The fitness, F is defined as according to our current model:

F =

∞∑
m=0

P1P2 × (1− P1P2)
mSm︸ ︷︷ ︸

proportion of paths to be reset on the mth reset


=

P1P2

1− S + SP1P2︸ ︷︷ ︸
probability that folding is correct, given reset proportion S

(2.3)

where F |S=0 = P1P2 as one would expect, given that F is equal to the probability
that the correct outcome is reached and that without any reset function, P1P2 is
that probability.
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nk-1 = 52-1 = 24 “incorrect” paths through tree

(b)

Figure 1. (a) A schematic of the model, where the fitness is equal
to the probability of going down the correct path, which takes time
εt ≪ 1. The n2 − 1 incorrect pathways that do not contribute to
fitness, each take some time as according to a roughly Gaussian
distribution. (b) The distribution of times to completion for in-
correct paths, a nearly-Gaussian distribution with mean 0.5 and
standard deviation 0.1, only defined on [εt,∞), and normalized so
that the integral across the whole domain is unity. The horizontal
axis is the finish time, and the vertical axis is the probability den-
sity function for incorrect pathway finish times (so that the integral
is just the proportion). A normal distribution is chosen because of
our assumption that incorrect finish times should roughly follow a
uni-modal distribution, and the Gaussian is the most reasonable
uni-modal non-singular distribution.
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Definition 2.4. The proportion of incorrect protein foldings that get reset to the
beginning, S, is defined using the distribution in Figure 1b:

S = S(T ) =R

∫ ∞

T

exp

(
− (t− 0.5)2

0.02

)
dt

where R =
1∫∞

εt
exp

(
− (t−0.5)2

0.02

)
dt

(2.5)

and where T is used to parameterize S in terms of our distribution of incorrect
finish times. Now instead of saying that some proportion S of incorrect structures
are reset, we can say that given our distribution of finish times, all the finish times
above the threshold time T are reset.

The times to completion for incorrect paths have been assigned a Gaussian dis-
tribution with mean 0.5 and standard deviation 0.1. A correction was then made to
ensure that S(εt) = 1, keeping with our physical expectation that if the threshold
for a pathway reset was just over t = εt, every incorrect pathway would be reset.
The correct pathway will never be reset because its time taken εt is negligible in
comparison to the threshold time, T . This model, with (2.3), yields an equation
for fitness in terms of T :

F (T, P1, P2) =
P1P2

1 + (P1P2 − 1)R
∫∞
T

exp
(
− (t−0.5)2

0.02

)
dt
.(2.6)

Note that we can take limT→∞ F = P1P2, which is the same as saying that when

S = 0 (no reset), F =
∏k

i=1 Pi where, for our case, k = 2.
We can now consider how an infinitesimal change to one of the genes, and con-

sequently its associated probability, impacts the fitness:

∂F

∂P1
=

P2(1−R
∫∞
T

exp
(
− (t−0.5)2

0.02

)
dt)

(1 + (P1P2 − 1)R
∫∞
T

exp
(
− (t−0.5)2

0.02

)
dt)2

,

∂F

∂P2
=

P1(1−R
∫∞
T

exp
(
− (t−0.5)2

0.02

)
dt)

(1 + (P1P2 − 1)R
∫∞
T

exp
(
− (t−0.5)2

0.02

)
dt)2

.

(2.7)

Definition 2.8. To describe the effect of a mutation that changes one of our genes
Gi and its probability Pi by some ∆Pi = Pmut

i − PWT
i , we can use the notation

of ∆F
∆[mut]i

: where Pmut
i denotes the probability of the correct choice being selected

for the ith gene after mutation, and PWT
i denotes the wild-type (pre-mutation)

probability for the same gene Gi.

∆F

∆[mut]i
= ∆[mut]iF = F (Pmut

i )− F (PWT
i ) =

∫ Pmut
i

PWT
i

∂F

∂Pi
dPi.(2.9)

From (2.6), it is clear that ∆[mut]iF is symmetric in P1, P2.

If we want to know the change due to a mutation with no resets, we simply carry
out limT→∞ ∆[mut]iF . This can be seen in Figure 2, where each graph approaches
some asymptote as T → ∞, which can be compared to the maximum value of
∆[mut]1F attained on the graph. A point of interest is how one could use the 3
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(a)

(b)
(c)

(d)

As T → ∞ , we 
approach the 
no-reset case

Figure 2. This is a graph of ∆F
∆[mut]1

over T , with different values

given to PWT
1 , Pmut

1 , and P2 (which is held constant throughout
the mutation to G1). The values for each curve are as follows:
(a) PWT

1 = 0.00, Pmut
1 = 0.95, P2 = 0.10. (b) PWT

1 = 0.01,
Pmut
1 = 1.00, P2 = 0.01. (c) PWT

1 = 0.30, Pmut
1 = 0.90, P2 = 1.00.

(d) PWT
1 = 0.30, Pmut

1 = 0.70, P2 = 0.30.

parameters (PWT
1 , Pmut

1 , P2) to maximize the ratio of the maximum value on the
curve to the limit as T → ∞ on the curve, which is done in Figure 3. This ratio
physically corresponds to how much resets can amplify a mutation’s impact on an
organism, and so they demonstrate how important resets may be to rapid evolution.

The results of Figure 3 are in line with an intuitive analysis of the model. The
biggest difference between Figure 3a and Figure 3b is the value approached by
∆[mut]1F as T → εt, that being 1 and 0 respectively. In the case of Figure 3a,
the physical meaning of this “initial” value is that the change in fitness, ∆[mut]1F ,
due to the given mutation in a structure where every single incorrect structure is
reset, is 1, traversing the entire domain of F , which is [0, 1]. Before the mutation,
P1 = 0, meaning that the correct pathway is impossible to complete within the
structure, regardless of how common structure resets are, and so F = 0. After
the mutation, P1 = 1, P2 > 0 (no matter how small), and because T → εt,
S → 1, so that all incorrect paths will be reset until they inevitably turn into the
correct pathway, making F = 1. Therefore the mutation to G1 causes a change
in F of 1, or equivalently, ∆[mut]1F = 1. In Figure 3b, the change in fitness after
the mutation, with every incorrect structure being reset, is 0. This is because
P1, P2 > 0, no matter how small, so that the structure will reset until eventually
the correct pathway is chosen, meaning F = 1 both before and after the mutation
when P1 = 1 > 0 still. This means that as T → εt, ∆[mut]1F = 0. The rest
of the curves of both Figure 3a and Figure 3b are nearly identical because the
mutations are very similar, and without significant reset the fitness will be very low
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(a)

(b)

Figure 3. This is a follow-up graph to Figure 2, with the same
axes and parameters, but with extreme parameter values. These
curves, just like those in Figure 2, only describe physical reality on
T ∈ (εt,∞), because the time threshold for reset cannot be non-
positive. The initial values of the two curves are different due to
very slightly varied parameters, but the overall curves and limT→∞
are nearly identical. (a) PWT

1 = 0.00, Pmut
1 = 1.00, P2 = ϵp ≪ 1

(arbitrarily close to 0). As T → εt, ∆[mut]1F → 1, and as T → ∞,

∆[mut]1F → ϵp. (b) PWT
1 = ϵp, P

mut
1 = 1.00, P2 = ϵp. As

T → εt, ∆[mut]1F → 0, and as T → ∞, ∆[mut]1F → (1 − ϵp)ϵp.
As P2 becomes closer and closer to 0, the maximum of this curve
approaches 1 as it simultaneously approaches T → εt (the curve of
(b) approaches the curve of (a)).

both before and after the mutation, because P2 is very low in both. This extreme
example demonstrates the importance of resets to the fitness of a structure, which
in the mutated states of both Figure 3a and Figure 3b makes the difference between
an F of nearly 1 or of nearly 0.

2.2. M-Steps.

Assumptions 2.10. This M-Step model of protein folding is an extension of the
last toy model with some notable changes. The 2-gene-protein has been changed to
some arbitrary M -gene-protein, while we have also changed the incorrect pathway
finish time distribution from a thin Gaussian to a pure delta function. This model’s
physicality relies on a number of assumptions, all of which will be noted here:

• Our protein folding process is determined by an array of M genes: (G1,
G2, . . . , GM ). These M genes are each given some probability of doing
their respective step of the process correctly, (P1, P2, . . . , PM ). Generally
all Pi = ϵp ≪ 1 unless noted otherwise. Note that ϵp ̸= εt, though they
are both small numbers, one is used to talk about probabilities, and the
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other for finish times. There are nM possible foldings, only one of which is
correct.

• The (time-adjusted!) fitness of the protein folding receives a positive contri-
bution from the probability that the “correct” folding is reached (requires
allM genes to make the correct decision), and a negative contribution from
how much time those correct foldings take to finish. This is a new concept
to be motivated and defined later.

• A mutation to the ith gene changes the probability that the ith step of the
folding process is done correctly. Generally this means changing Pi from
some small ϵp to some larger x.

• In absence of resets: the correct folding finishes at time Mεt, whereas all
incorrect foldings finish at time M . This presumed correlation between
“fast” and “correct” foldings is an exaggerated application of the results
from [1].

• Some proportion S of the nM − 1 incorrect paths will be reset to the be-
ginning, where all genes will then be able to make new decisions, indepen-
dently of the decisions they made previously. Because our incorrect finish
time distribution is a delta function, S will either be 0 or 1.

• The best mutation for a protein (and its host organism) is that which max-
imizes the amplification to time-adjusted fitness caused by the mutation,

also called the evolvability ψb→g
[mut]i

(F) (which we will define later).

Now consider a new model with M genes, Gi, each with some probability of
picking the correct segment of the path from n choices, Pi, keeping with the logic
from the last model. There are now nM total pathways, with 1 correct and nM − 1
incorrect. Each gene may be in 1 of 2 states, b or g (for bad and good), where
P b
i = ϵp (some value arbitrarily close to 0), and where P g

i = x ∈ (ϵp , 1] (for us to
vary). Similarly, we will now be (arbitrarily) defining a new distribution for both
the correct and incorrect pathway completion times, those being delta functions.

Definition 2.11. The distribution of correct times is defined TCor(t) = δ(t−Mεt)
whereMεt ≪ 1 (arbitrarily close to 0); the distribution of incorrect times, TInc(t) =
δ(t−M). Using delta functions is a way to state our deterministic finish times for
correct and incorrect structures with “distributions,” even though only one value
is actually possible within the distribution. These distributions would be followed
for a structure with no reset infrastructure present, i.e. S = 0.

With this more general model, the fitness F is adjusted accordingly (in line with
(2.3):

F =

∞∑
j=0

( ∏
P∈XM

P

)(
1−

∏
P∈XM

P

)j

Sj


=

ϵM−β
p xβ

1− S + S(ϵM−β
p xβ)

=
ϵM−β
p xβ

1 + (ϵM−β
p xβ − 1)

∫∞
T
δ(t−M)dt

(2.12)

where XM = (P1, P2, P3, . . . , PM ) are the probabilities associated with our array of
genes, and β is the number of genes (out of M) in the g state. We can consider the
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effect of a mutation to some Gi such that it transitions from the b state to the g
state:

∆b→g
[mut]i

F = F (T, x, ϵp,M, β + 1)− F (T, x, ϵp,M, β).(2.13)

There are only two cases for this, depending on T:

∆b→g
[mut]i

F =

{
0 Mεt < T < M

(x/ϵp − 1)ϵM−β
p xβ T ≥M

(2.14)

and as we can see, ∆b→g
[mut]i

F = 0 when reset infrastructure is present. This follows

from the findings of Figure 3b for when S = 1. Since every incorrect folding is
reset, every folding will end up correct, regardless of a mutation.

We can now lay the groundwork for the concept of time-adjusted fitness, F . This
provides a more complete picture (than F ) of what is selected for in the organism,
by considering the time taken for the folding process. After all, this consideration
of time is what would have manifested the reset function in the first place.

Definition 2.15. Let ξ̃ be the median of the distribution ξ(t), where the distri-
bution describes a probability density function for correct finish times with a reset
mechanism present. A unit of time for ξ(t) is equal to that taken to complete a
single component of an ultimately incorrect pathway (i.e. the time between gene
“decision points”). This median is useful for evaluating how slow or fast protein
folding takes, on average, given some XM and T .

Definition 2.16. The time-adjusted fitness is defined by the following:

F(T,XM ) ≡ kF − ln
(
ξ̃
)

(2.17)

where k is a proportionality constant (to be assigned later). A logarithmic relation

to ξ̃ is chosen as opposed to any other because it is the most common choice from
literature [1], and generally produces physical results.

If the reset time T is less than the time it would take an incorrect path to
complete, M , then the structure will always finish the correct path given sufficient
resets. Before the correct folding finishes, it must go through the correct pathway
uninterrupted, which will complete many orders of magnitude faster than any incor-

rect pathways, so its time taken is negligible in the calculation of ξ̃ if the structure
reset even a single time. Let

ξ(t) = ϵM−β
p xβ︸ ︷︷ ︸

last path, correct

δ(t−Mεt)︸ ︷︷ ︸
before reset

+


∫ ∞

T

δ(t′ −M)dt′︸ ︷︷ ︸
Does reset occur?


∞∑

k=1

(1− ϵM−β
p xβ)k︸ ︷︷ ︸

incorrect, reset

δ(t− kT )︸ ︷︷ ︸
kth reset

 .

(2.18)

This function for correct-structure-finish-times, when reset occurs at intervals of
T , is composed of delta functions that also occur at intervals of T . For T ≥ M ,

no reset ever occurs, and we have ξ̃ = Mεt, which is not very interesting. To go
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(a)

(b) 

Probability Distribution 
for Correct Structures

# of Resets

Median of 
Distribution

Figure 4. Here we assume T < M . (a) This is a graph of
ϵM−β
p xβ(1− ϵM−β

p xβ)t (over t) for t ∈ R+
0 , with parameters T = 1,

and ϵM−β
p xβ = 10−8. This distribution works as an approximation

for ξ(t) on large scales, as shown in (2.19) and (2.23). (b) The

median of the distribution is in green, to = ξ̃ ≈ 6.93147 · 107 .

further we will assume Mεt ≤ T < M , such that

∫ αT

0

ξ(t)dt = ϵM−β
p xβ

⌊α⌋∑
t=0

(1− ϵM−β
p xβ)t (for α > 0)

= ϵM−β
p xβ

∫ α

0

(1− ϵM−β
p xβ)tdt+ E(α, ϵM−β

p xβ)

(2.19)

∫ ∞

0

ξ(t)dt = ϵM−β
p xβ

∫ ∞

0

(1− ϵM−β
p xβ)tdt+ E(ϵM−β

p xβ) = 1.(2.20)

Where E() is the error incurred by replacing the summation with an integral. We
can write it explicitly as

E(α, ϵM−β
p xβ) =

⌊α⌋∑
t=0

f(t)−
∫ α

0

f(t)dt

= f(0) +

∫ α

0

(t− ⌊t⌋)f ′(t)dt− (α− ⌊α⌋)f(α)

(2.21)

where we have substituted f(t) ≡ ϵM−β
p xβ(1 − ϵM−β

p xβ)t and f ′(t) ≡ df
dt for sim-

plicity. Therefore we can solve

ϵM−β
p xβ

∫ ξ̃/T

0

(1− ϵM−β
p xβ)tdt+ E(T, ϵM−β

p xβ) =
1

2
(2.22)
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for ξ̃:

ξ̃ =

T ln

[
1 +

ln(1−ϵM−β
p xβ)

2ϵM−β
p xβ

]
ln
[
1− ϵM−β

p xβ
]

︸ ︷︷ ︸
≡ ξ̃∗

−ET ; Mεt ≤ T < M(2.23)

where ET ≤ 3
2T , and ET does not depend on ϵM−β

p xβ at all. The only variation

of ET comes from the difference ξ̃∗ − ⌊ξ̃∗⌋, which occurs such that ξ̃ is an integer

multiple of T (otherwise ξ̃ would not be consistent with the definition of ξ(t) from

(2.18)). However, because ξ̃ grows very large for small ϵM−β
p xβ , while ET remains

approximately constant, we see that ET ≪ ξ̃ for ϵM−β
p xβ ≪ 1. Because of this, we

ignore ET , and assume ϵM−β
p xβ ≪ 1 and therefore ξ̃ ≈ ξ̃∗ in all further calculations

for this model.
Knowing that F ∈ [0, 1] and ξ̃ ∈ (0,∞) (ξ̃ ≫ 1 as long as ϵM−β

p xβ ≪ 1), we
must use a proportionality constant in F to ensure that the relative importance
of these two variables is taken into account (and also scaled for their differing co-
domains). This constant could be anything, but we will choose the constant k =
10+ ln(6.93147 ·107), such that the F of the structure in Figure 4 is approximately
equal to 10. This is purely a choice of convenience, though k should be neither
too large (k ≫ 1) nor too small (k < 1) as to heavily impact the physicality of F .
Substituting (2.23) into (2.17), we get

F =


k − ln

T ln

[
1+

ln(1−ϵ
M−β
p xβ)

2ϵ
M−β
p xβ

]
ln[1−ϵM−β

p xβ]

 Mεt ≤ T < M , (ϵM−β
p xβ) ≪ 1

k(ϵM−β
p xβ)− ln(Mεt) T ≥M.

(2.24)

Similarly to ∆b→g
[mut]i

F , we may now use use F to analyze mutation impact.

Definition 2.25. We can define the amplification of F due to a mutation of one Gi

from the b state to the g state, ψb→g
[mut]i

(F), called the evolvability of the structure:

ψb→g
[mut]i

(F) ≡ F(T, x, ϵp,M, β + 1)

F(T, x, ϵp,M, β)

=

1 +
ln(x/ϵp)

k+ln(
ϵ
M−β
p xβ

T ln(2)
)

Mεt ≤ T < M , ϵM−β
p xβ ≪ 1

1 T > M , ϵM−β
p xβ ≪ 1.

(2.26)

We use a ratio for evolvability rather than a difference because when numbers are
plugged in, F values often blow up to become very large. This means that any
mutation may artificially create a large change, when the physical reality does not
match. In (2.26), natural logarithms have been Taylor expanded when appropriate,
though the conditions for expansion are no different than the conditions for which

ξ̃ ≈ ξ̃∗, as has already been taken for granted.
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(b)

T

𝜓(Ƒ)

(a)

(i)

(ii)

T

Ƒ

WT

mut

Discontinuity @ T = M = 2,
𝜓(Ƒ) jumps from ~150 to 1.

Figure 5. (a) and (b) involve the same mutation, with the same
parameters: the genome changes β : 0 → 1. (a) This is a graph of
a pre-mutation, wild-type F(T, 0.3, 0.000001, 2, 0) (i) and the mu-
tated F(T, 0.3, 0.000001, 2, 1) (ii). (b) This is a graph of the ampli-

fication from WT → mut in (a), called the evolvability ψb→g
[mut]i

(F).

M = 2 here, and after T > M , ψb→g
[mut]i

(F) ≈ 1.

Remark 2.27. Under this model, ψb→g
[mut]i

(F) is independent of i, i.e. the impact of

the mutation on evolvability does not depend on which gene is mutated, just that
a gene is mutated.

In Figure 5, a particular parameter regime of F and ψb→g
[mut]i

(F) are graphed

over T , and the latter is then graphed over an even larger domain of values. The
physical meaning of the amplification value changes depending on the value of
the F that was mutated. Figure 5 has very straightforward graphs, in regards
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xT

Discontinuity 
@ T = M = 3

Figure 6. This figure consists of a graph of the amplification due

to mutation, ψb→g
[mut]i

(F), with the mutation taking β : 0 → 1, where

ϵp = 0.001, and M=3, giving ψb→g
[mut]i

[F(T, x, 0.001, 3, 0)]. In Figure

2, Figure 3, and Figure 5, T has been varied on one axis, as it is
here, but in this figure we have added the probability associated
with genes in the g state, that being x ∈ (0, 1], which is on a second
axis. This means the x-axis is constrained to only (ϵp, 1], and so
those are the only x-values depicted on the graph. F > 0 on the
entire rectangle input pictured.

to both F and ψb→g
[mut]i

(F), which remain positive throughout T < M . Here the

largest amplification occurs as T → M−. This is a consequence of our considering
of median time: resets become more costly to time-adjusted fitness the closer the
reset time T gets toM , meaning that there is now an even bigger benefit to needing
fewer resets in order to achieve the median correct completion than before. This
decrease in resets needed is achieved by the mutation that increases the probability
of picking the correct pathway after each reset. This is not a trivial discovery, and
one can see it in the analytical expression in (2.26), by tracking the dependence on
T in the Mεt ≤ T < M case.

In Figure 5b, the curve of ψb→g
[mut]i

(F) is approximately equal to 1 when T >

M , which is actually independent of parameter regime. No matter the values

plugged into ψb→g
[mut]i

(F), it would return 1 for T > M . This is because the median

completion times of the no reset case, ξ̃, are so low that its natural log dominates
over F , regardless of the specific parameters or mutations. As long as the wild-
type F |T>M = (ϵM−β

p xβ) ≪ 1, and the mutated F |T>M = (ϵM−β−1
p xβ+1) ≪ 1,

the mutation is not significant enough to cause any large change in F , meaning

ψb→g
[mut]i

(F) ≈ 1. This shows the importance of resets to the impact of mutations on
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an organism’s fitness. Under our model, a lack of reset means that any individual
mutation is too insignificant for the environment to select for it.

In Figure 6, both T and x are varied on the same graph, and their impact on

ψb→g
[mut]i

[F(T, x, 0.001, 3, 0)] is observed. Varying x has a somewhat consistent impact

on ψb→g
[mut]i

(F) values when Mεt ≤ T < M , i.e. when reset occurs in the structure.

In this regime, increasing x increases ψb→g
[mut]i

(F). This makes physical sense because

increasing x while holding ϵp constant (as we are) means that the mutation of a
gene that changes its probability ϵp → x is more significant of a change, and so will

cause a larger amplification, ψb→g
[mut]i

(F). Here as well, the pattern of [larger T ] →
[larger ψb→g

[mut]i
(F)] holds for Mεt ≤ T < M .

2.3. Path-Dependent Time.

Assumptions 2.28. This M-Step model of protein folding with path dependence,
is an extension of the the standard M-Step model with some notable changes. We
have completely reconstructed finish times, making them dependent on the path
taken along the tree in Figure 7, resulting in an incorrect finish time distribution
composed of delta functions at every integer value from 1 to M . This model’s
physicality relies on a number of assumptions, all of which will be noted here:

• Our protein folding process is still determined by an array of M genes: (G1,
G2, . . . , GM ). These M genes are each given some probability of doing
their respective step of the process correctly, (P1, P2, . . . , PM ). Generally
all Pi = ϵp ≪ 1 unless noted otherwise. This gives us nM possible foldings,
only one of which is correct. This is identical to that of the last model.

• The time-adjusted fitness of the protein folding receives a positive contribu-
tion from the probability that the “correct” folding is reached (requires all
M genes to make the correct decision), and a negative contribution from
how much time those correct foldings take to finish. This is identical to
that of the last model.

• A mutation to the ith gene changes the probability that the ith step of the
folding process is done correctly. Generally this means changing Pi from
some small ϵp to some larger x. This is identical to that of the last model,
though the placement of i now has importance (see next bullet-point) where
it did not in any previous model.

• In absence of resets: the correct folding finishes at time Mεt, whereas the
incorrect foldings finish at times proportional to the number of incorrect
steps done in the folding process. A distribution for incorrect finish times
would include delta functions at every integer value from 1 to M , as elabo-
rated on in Figure 7. This time-dependence is the only change made from
the last model, though it has wide-ranging impacts. The presumed corre-
lation between “fast” and “correct” foldings is an exaggerated application
of the results from [1].

• Some proportion S of the nM −1 incorrect paths will be reset to the begin-
ning, where all genes will then be able to make new decisions, independent
of the decisions they made previous. This S depends on our incorrect finish
time distribution, and so S(T ) will resemble a step function with M steps
(whereas the previous model had only 1).
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• The best mutation for a protein (and its host organism) is that which max-
imizes the amplification to time-adjusted fitness caused by the mutation,

also called the evolvability ψb→g
[mut]i

(F). This is identical to that of the last

model.

Up until now, we have only considered TInc distributions with a single peak, i.e.
all incorrect paths were assigned a finish time from the same distribution (either a
delta function or Gaussian) no matter the path taken through the tree.

Now, if the model was changed such that it accounted for the path taken through
the genes, rather than just the destination, it would add an additional level of
complexity to the finish times of incorrect paths. This model is initiated in Figure
7. Now, the order along the tree (i.e. when each gene makes its choice, either
correct or incorrect) is important when it was not before. If all but one gene makes
the correct choice, the structure could finish at t = 1, t = M or at integer values
between, depending on where in the order the incorrect choice was picked by a
gene. Without reset, the distribution of correct times, TCor(t) will look identical to
that of the last model, but the new TInc(t) will contain delta functions (of varying
“area”) at intervals of 1.

TCor(t) = δ(t−Mεt),(2.29)

TInc(t) =
1

1−
∏

P∈XM
(P )︸ ︷︷ ︸

normalizes
∫∞
Mεt

TInc dt=1

M∑
j=1

 (1− Pj)︸ ︷︷ ︸
Gj incorrect


j−1∏
i=0

Pi︸ ︷︷ ︸
all Gi correct

 δ(t−M − 1 + j)︸ ︷︷ ︸
M + 1 − j incorrect steps



(2.30)

with P0 ≡ 1. The 1
1−

∏
P∈XM

(P ) factor out front of (2.30) is to scale it such that∫∞
0

TCor(t)dt =
∫∞
0

TInc(t)dt = 1, communicating that both represent all possible
correct and incorrect finish times, respectively. If we now account for the possibility
of reset infrastructure with some threshold time T , then our distribution of correct
finish times is given by

ξ(t) =

δ(t−Mεt)︸ ︷︷ ︸
before reset

+

∞∑
h=1

1−
∏

P∈XM

P

h (∫ ∞

T

TInc(t
′)dt′

)h

︸ ︷︷ ︸
incorrect, gets reset h times

δ(t− hT )︸ ︷︷ ︸
hth reset


∏

P∈XM

P.

︸ ︷︷ ︸
last path correct

(2.31)

The “path dependence” of (2.31) is hidden in
∫∞
T

TInc(t′)dt′, where TInc’s depen-
dence on the order of probabilities, Pi ∈ XM , is related in (2.30). We can again
approximate this distribution with one easier to work with:

∫ αT

0

ξ(t)dt =

 ∏
P∈XM

P

∫ α

0

1−
∏

P∈XM

P

t (∫ ∞

T

TInc(η)dη

)t

dt+ E(XM ).(2.32)

Where E() is once again the error of the integral on the right side of (2.32) (its
value is analogous to that in (2.21)), and will be used to find the error in our

approximation of ξ̃ . The integral
∫∞
0
ξ(t)dt = F , as does the right hand side of
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t = Mεt 

…

…

…

…

t = (M-1)εt + 1 ≈ 1

t = 2εt + (M-2) ≈ M-2

t = εt + (M-1) ≈ M-1

t = M

nM - 1 incorrect paths

1 correct path

Figure 7. This figure is a schematic of a model with M genes
(for a total of nM possible structures, with the schematic depicting
n = 3), but varying finish times for incorrect structures. The finish
times are now dependent on the path taken to finish, rather than
just the binary correct/incorrect identity associated with the finish.
If the incorrect structure is on the correct path for any number of
legs out of the total M, then the finish time will be faster because
all legs of the correct path take time εt ≪ 1, whereas all legs off
the correct path take time 1.

(2.32) for α→ ∞. Knowing that, we can now write:

( ∏
P∈XM

P

)∫ ξ̃/T

0

(
1−

∏
P∈XM

P

)t(∫ ∞

T

TInc(η) dη
)t

dt+ E(T ,XM ) =
1

2
F.

(2.33)
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From here we can solve for this model’s ξ̃, as was done in (2.23):

ξ̃ =

T ln

[
1 + F

ln
([

1−
∏

P∈XM
P
]
[
∫ ∞
T

TInc(η) dη]
)

2
(∏

P∈XM
P
) ]

ln
[(
1−

∏
P∈XM

P
) (∫∞

T
TInc(η) dη

)]︸ ︷︷ ︸
= ξ̃∗

−ET ; Mεt ≤ T < M,(2.34)

where again, ET ≤ 3
2T , and its exact value depends on ξ̃∗ − ⌊ξ̃∗⌋. ET becomes

insignificant compared to ξ̃ as
[(
1−

∏
P∈XM

P
) (∫∞

T
TInc(η) dη

)]
→ 1; not because

ET shrinks, but because ξ̃ grows to be ≫ ET . Further,
(∏

P∈XM
P
)
= (ϵM−β

p xβ),

though TInc(t) is dependent on the order of items within the list of probabilities,
XM , so the more explicit notation of

(∏
P∈XM

P
)
has been opted for everywhere.

The standard fitness, F , can be found using the same logic as in (2.3) and (2.12):

F =

∏
P∈XM

P

1−
(
1−

∏
P∈XM

P
) ∫∞

T
TInc(t)dt

.(2.35)

But what about F and ψb→g
[mut]i

(F) ? How are those different under this new model?

We compute:

F =
k
∏

P∈XM
P

1−
(
1−

∏
P∈XM

P
) ∫∞

T
TInc(t)dt

− ln


T ln

[
1 + F

ln
([

1−
∏

P∈XM
P
]
[
∫∞
T TInc(η)dη]

)
2
(∏

P∈XM
P
)

]
ln

[(
1−

∏
P∈XM

P
) (∫∞

T
TInc(η)dη

)]


=
k
∏

P∈XM
P

1−
(
1−

∏
P∈XM

P
) ∫∞

T
TInc(t)dt

− ln


T ln

[
1 +

ln
([

1−
∏

P∈XM
P
]
[
∫∞
T TInc(η)dη]

)
2−2

(
1−

∏
P∈XM

P
) ∫∞

T TInc(t)dt

]
ln

[(
1−

∏
P∈XM

P
) (∫∞

T
TInc(η)dη

)]
 .

(2.36)

If XM = (ϵp, . . . , ϵp), then X
i
M = (ϵp, . . . , x, . . . , ϵp) is the list of probabilities with

a mutation on Gi. Using this we can rewrite (2.26) for our current model:

ψb→g
[mut]i

(F) =
F(T,Xi

M )

F(T,XM )
.(2.37)

Remark 2.38. In Remark 2.27 we found that the standard M-Step model resulted

in a ψb→g
[mut]i

(F) that was independent of i. Under this model, we find that is no

longer the case: ψb→g
[mut]i

(F) can be dependent on i, i.e. the impact of the mutation

on evolvability may depend on which gene is mutated.

Because of the complexity of computing ψb→g
[mut]i

(F), it is more interesting to

analyze the relationships between all the variables than to actually find an analytical

expression of the evolvability ψb→g
[mut]i

(F) as a function of T .
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Note: The distributions overlap significantly, thereby 
mixing the colors.
Green + Orange + Pink + Blue → Dark Brown
Green + Orange + Pink             → Brown
Pink + Blue                               → Purple

Figure 8. This figure demonstrates how, under some reset cases,
certain mutations are more beneficial to the evolvability of a struc-
ture than others. The histograms show the differences in distribu-
tions between the unmutated X3 = (ϵp, ϵp, ϵp), and the mutated
X1

3 , X
2
3 , and X3

3 . In each mutation, ϵp = 0.1 and x = 0.5 for
x/ϵp = 5. The histograms model the finish times of the correct
structures for their respective Xi

M and T values. If a histogram is
shifted left such that it is thin and tall, it will have a lower me-
dian time than a histogram of comparative total area that is more
widely distributed; if it is instead distributed the same but has a
larger area, it will have a higher proportion of correct finishes (F ).
We show the specific case of T = 1.5, as it depicts these differences
of mutation impact most cleanly. In this reset case there are two
different impacts a reset can have. For both X1

3 and X2
3 , the mu-

tation just changes the median time of the distribution by a factor
of 1/5, but not the actual amount of correct finishes (the total area
of the histogram). This means that these two distributions overlap
almost entirely (and thereby mixing their histogram colors). For
X3

3 , the mutation does not change the timing of the distribution,
but does increase the proportion of correct finishes by a factor of
5.

Figure 8 reveals the behavior unique to this model in particular: different re-
sponses from the model depending on which gene is mutated, and what the reset
condition is. In cases where some incorrect structures are reset and some are not,
the ratio of the mutated probability to the unmutated probability, x/ϵp, can show
up differently depending on which gene is mutated. The ratio represents either that
with which the proportion of correct finishes increases, or the inverse of that with
which the median time of the distribution decreases. If the mutation in question
acts on a gene which, if it was the first to make the wrong “decision,” would result
in a reset structure that would start again at the base of the decision tree, the
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mutation would help to minimize resets by decreasing this likelihood, and there-
fore reducing the median time to completion for correct structures. If, however,
the mutation acts on a gene which, if it was the first to make the wrong decision,
would result in an un-reset, incorrect structure, then the mutation would not be
minimizing resets, but rather minimizing incorrect structures. The mutation would
do this by increasing the chance that if a structure made it to that decision point,
wholly correct in its past decisions, it would continue being correct, when the al-
ternative is finishing incorrectly. This results in an increase in the probability of
correct structures proportional to the increase in probability from the mutation.

To recap: depending on whether an incorrect decision by a gene could result
in a reset, or a finished, incorrect structure, a mutation to that gene that changes
its probability from ϵp → x either changes the median time by a factor of ϵp/x or
changes the proportion/chance of correct structures by a factor of x/ϵp, respectively.
Now the question becomes: under our current model, which mutation results in a
bigger evolvability? If we return to the definition of evolvability and that of time-
adjusted fitness from (2.26) and (2.17) respectively, one can see evolvability has a
linear relationship with the post-mutation F , but a logarithmic relationship with

the post-mutation ξ̃. Therefore a change in F will almost always have a larger

impact than a proportional change in ξ̃ . The evolvability of X3
3 is greater than

that of both X1
3 and X2

3 in Figure 8. This stratification of different mutations
only occurs under this model, where finish times for incorrect structures can vary
depending on the “path” taken through the decision tree, and not the previous
model, where the times did not vary.

3. Another Approach: Fitness Distribution

Assumptions 3.1. This M-Step model of protein folding is an entirely different
approach to the question compared to previous models. We have now scrapped
the “correct” path concept. Every pathway exists on a range of fitness (density)
values from 0 to 1. Paths are no longer strictly correct or incorrect, but somewhere
in the middle. Our goal is to find out if reset affects the impact of mutations the
same way as in the other models, even though we removed the mode by which the
impact has occurred. This model’s physicality relies on a number of assumptions,
all of which will be noted here:

• Our protein folding process is determined by an array of M genes: (G1, G2,
. . . , GM ). These M genes are each given some probability of doing their
respective step of the process in a way that keeps the folding on the fastest
path, (P1, P2, . . . , PM ). Generally all Pi = ϵp = 1/n ≪ 1 unless noted
otherwise (ϵp was just an arbitrarily small number in previous models, but
here we have given it physical meaning).

• The fitness of the folding has returned to the original definition, no longer
depending on time. It is again defined by the expected fitness value, but now
considering all of our possible paths. Each path is assigned some arbitrary
value fi ∈ [0, 1], and each is weighted by the probability that the path is
taken. We add up all of these contributions, and receive our fitness. We
choose not to use time-dependent fitness for simplicity, as to not muddle
our results.

• A mutation to the ith gene changes the probability that the ith step con-
tinues along the fastest path, which leads to the fitness value, fnM . Only
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looking at mutations that improve the probability of the fastest path (as
opposed to any other path) is an arbitrary choice, but one that proves
useful.

• In absence of resets: the path corresponding to the arbitrary fitness value
fnM is the fastest, with all other nM − 1 paths taking some longer time
to finish, according to some unknown but arbitrary distribution. This dis-
tribution could be a near-Gaussian like in our 2-Step model, or a delta
function, or anything else: we choose not to parameterize S in terms of T
for simplicity here (in contrast to our previous models).

• In this model we are still paying attention to the fastest path, like in pre-
vious models, yet we do not assume it has the highest fitness value (nor
do we label it “correct”). This is an attempt to generalize the results of
previous models.

• Some proportion S of the nM −1 other paths will be reset to the beginning,
where all genes will then be able to make new decisions, independently of
the decisions they made previously. This is identical to that of previous
models.

• The best mutation for a protein (and its host organism) is that which
maximizes the change in fitness caused by the mutation, or ∆[mut]iF . This
is identical to our 2-Step model.

One aspect of these past models holds back the physicality of our results: the
“correct” and “incorrect” structure developments. We can get rid of this, and in-
stead randomize how advantageous every path is, according to some distribution.
However, to best analyze the consequences of this, we will go back to only consid-

ering F and ∆b→g
[mut]i

F rather than F and ψb→g
[mut]i

(F). But first we must be more

precise about the model: there are still nM different possible structures, but now
each one will randomly receive a fitness score from an unknown probability dis-
tribution on [0, 1]. We will still keep track of only 1 of these nM endpoints, but
we will not know the fitness score assigned to it, which will be denoted fnM . The
fitness scores of all other endpoints are denoted f1, f2, . . . , fnM−1. The average of
this array of fitness scores will be denoted favg.

If every leg of every path had an equal ϵp ≡ 1/n probability of being chosen
at every decision point, then every one of the nM endpoints would have the same
ϵMp = 1/nM probability of organically being chosen. We can then tally the total
fitness of our structure (before any mutations occur):

F = ϵMp f1 + ϵMp f2 + · · ·+ ϵMp fnM−1 + ϵMp fnM

= (1− ϵMp )favg + ϵMp fnM .
(3.2)

If we then mutated one of the genes Gi along the path that we are tracking, such
that its probability of continuing (if possible) along the fnM path, Pi, changes from
ϵp → x, then we would also have to account for the decreased probabilities for the
other n− 1 options given to that Gi:

2

∆b→g
[mut]i

F = (x− ϵp)ϵ
M−1
p (fnM − favg).(3.3)

What happens now if we were to re-introduce some reset infrastructure, not
assuming anything about the distribution of finish times except that our specific

2See Appendix for more information.



NON-EQUILIBRIUM IMPACTS ON EVOLVABILITY 21

Sh
ort

 tim
e =

 M
ε t

Some time distribution, 

all times > Mεt

nM total paths

F = favg

1 path; fnM

A schematic of the new 
model, with n = 5, and M = 2

Figure 9. This is a schematic of the model with randomized fit-
ness values assigned to every endpoint. The fitness of the structure
is given by the average fitness of all of the endpoints, because the
outcome is probabilistic and not deterministic. One of these paths
is the fastest to complete comparative to the other nM − 1 paths,
and the fitness assigned to its completion is labeled fnM . Without
mutations, we say every decision, and therefore every endpoint, is
equally probable.

pathway, the one with fnM , finishes the fastest? If we use some S ∈ [0, 1] to
represent the proportion of structures (not including the fastest one) that are reset,
then the wild-type fitness would look like this:

F =

 ϵMp
1− S + SϵMp︸ ︷︷ ︸

proportion with fnM

 fnM + favg

1−
ϵMp

1− S + SϵMp︸ ︷︷ ︸
all other paths

+ ES(3.4)

where the error ES only becomes nonzero as S grows arbitrarily close to 1 (though
ES = 0 at S = 1). This is because, as S → 1, the group of non-resetting paths may
be too small to approximate their average with favg . In other words: our sample
size becomes too low to assume the sample mean is the same as the population
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Advantageous Mutation Example.

ΔF(M, n, x, 𝜇, fnM, favg, S)

= ΔF(4, 10, 1.0, 2, 0.77, 0.5, S)

Disadvantageous Mutation Example.

ΔF(M, n, x, 𝜇, fnM, favg, S)

= ΔF(4, 10, 1.0, 2, 0.23, 0.5, S)

(a)

(b)

Figure 10. This figure contains 2 plots with the analytic
function from (3.5) (ignoring the error term) matched up
against 7 data points from simulations of the model, at S =
{0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99, 1.0}. (a) fnM = 0.77. The muta-

tion is beneficial because fnM > favg, and therefore ∆b→g
[mut]i

F > 0

everywhere. This value increases as S increases. (b) fnM = 0.23.

This mutation is not beneficial so ∆b→g
[mut]i

F < 0 everywhere, though

it further decreases as S increases. This means that a larger reset
presence increases the impact of our mutation, regardless of its ad-
vantageousness or lack thereof.



NON-EQUILIBRIUM IMPACTS ON EVOLVABILITY 23

mean, favg . We can now find ∆b→g
[mut]i

F when considering resets:

∆b→g
[mut]i

F =

(
xϵM−1

p

1− S + SxϵM−1
p

−
ϵMp

1− S + SϵMp

)
(fnM − favg) + ES(3.5)

=
(x− ϵp)ϵ

M−1
p (fnM − favg)

1− S
+ ES + ExϵM−1

p
(3.6)

where the ES term has the same conditions as that in (3.5), and the ExϵM−1
p

term

goes to zero for very small xϵM−1
p . Collectively, to make a condition for both errors

simultaneously, we can state that for 1 − S ≫ xϵM−1
p ; ES + ExϵM−1

p
→ 0. Then

(3.6) can be generalized to any list of probabilities XM , even those that have β > 0,
as long as our error condition is met:

∆b→g
[mut]i

F ≈
(x− ϵp)ϵ

M−β−1
p xβ(fnM − favg)

1− S
; (1− S) ≫ ϵM−β

p xβ .(3.7)

In Figure 10, one can see how the presence of reset makes a mutation more im-
pactful to the evolvability of an organism and its genome, if the mutation increases
the likelihood of a faster pathway being taken. The reset works to amplify the
impact of the mutation, regardless of whether that impact is positive or negative.
This is more general than our previous findings, because we don’t assume our fast
path to be “better” than the others, and we still achieve the same result regard-
ing resetting’s relationship with mutations. We now see how a bad mutation can
critically lower an organism’s evolvability to the extent that their genome may be
selected against, which is the fundamental thesis of evolutionary biology.

Appendix

This is an elaboration on a statement made regarding calculating the fitness in
the fitness distribution model, whose description is laid out in Assumptions 3.1.

In the case of a mutation to some Gi that changes its corresponding Pi from
ϵp → x, that increased probability must come at the expense of the probabilities
of the other paths available to Gi. Because of this, each endpoint descending from
the mutated point on the tree now has an altered probability of being landed on.
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We can write the mutated fitness, Fmut:

Fmut =

(
ϵp −

x− ϵp
n− 1

)
ϵM−1
p f1 + · · ·+

(
ϵp −

x− ϵp
n− 1

)
ϵM−1
p fnM+1−i−1︸ ︷︷ ︸

mutation decreases probability of all other endpoints downstream

+ ϵMp fnM+1−i + · · ·+ ϵMp fnM−1︸ ︷︷ ︸
paths unaffected by mutation (not downstream)

+ xϵM−1
p fnM︸ ︷︷ ︸
our path

=

 nM+1−i − 1

nM︸ ︷︷ ︸
=(nM+1−i−1)ϵMp

− (x− ϵp)ϵ
M−1
p︸ ︷︷ ︸

change in probability

 × favg︸︷︷︸
assuming

f1+···+f
nM+1−i−1

nM+1−i−1
=favg

+

nM − nM+1−i

nM︸ ︷︷ ︸
=1−ϵMp nM+1−i

× favg︸︷︷︸
assuming

f
nM+1−i+···+f

nM

nM−nM+1−i =favg

+xϵM−1
p × fnM

=
(
1− xϵM−1

p

)
favg + xϵM−1

p fnM .

(4.1)

This result would be expected if one just used the logic of (3.2) without careful con-
sideration of how a mutation may affect tree paths (and their endpoints) differently
depending on their placement.

The result (3.3) follows immediately from subtracting (3.2) from this (4.1), as

∆b→g
[mut]i

F was defined in (2.9).
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