MEASURE THEORY, STOCHASTIC CALCULUS, AND THE
BLACK-SCHOLES-MERTON MODEL

AGUSTIN ESTEVA

ABSTRACT. This expository paper develops the theory behind stochastic calcu-
lus, placing special emphasis on the measure-theoretic “risk-neutral” derivation
of the Black-Scholes-Merton equation. Along the way, this paper will explore
the topics of the Radon-Nikodym derivative, Brownian motion, the stochas-
tic integral, the It6-Doeblin formula, and Girsanov’s theorem. Basic measure
theory and probability theory knowledge is assumed, along with calculus and
some differential equations.
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Kiyosi It6, despite Japanese paper shortages, having to mimeograph work, and
publishing his papers in American journals, was able to introduce calculus to the
world of random (stochastic) processes when he published his 1944 paper, Stochastic

Integral [1]. In it, he introduced the Ito integral,

(1.1) I(t) = /Ot A,dB,,
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where B; is a continuous random motion. Seven years later, he established the
foundations of stochastic differential calculus by publishing his change of variables
formula in [2]. The formula is given by

(1.2)

d(p(t, Xt) =
2 y2
o; X,
Dp(t, Xo) + mXoDuip(t, Xo) + -
where X; is a geometric Brownian motion satisfying the stochastic differential equa-
tion,

amgp(t, Xt) dt + O'tXtaa:(p(t, Xt)dBt

(13) {dXt = mtXtdt + O'tXtdBt

X(0) = 0.

In 1940, on the other side of the war, a 25-year old Wolfgang Doeblin dies in
battle, burning his math notes as a last stand against the Nazis. Paul Lévy com-
pared this Frenchman to the likes of Gaolois and Able, but his name was forgotten
to history until his Pli (a mathematical black box used in wartime) was opened in
2000. The Pli revealed that 2 years before It6 published his first papers on sto-
chastic differential equations, Doeblin’s notes contained his own change of variables
formula,

2

X? _
L (‘3m<p(Xt, t) dt + d(S(Ht),

o
do(Xe,t) = | Opp(Xt,t) + mX:0p0( Xy, t) + 5

where §(u) is a Brownian motion and H; = fot [0(Xs, 5)000(Xs, 5)]> ds. Doeblin,
depressed by the war, wrote that he was happy during the hours he spent develop-
ing his theory of stochastic analysis, which would go unnoticed for 60 years. [3]

The goal of this paper is to understand the importance of their work by taking
a measure-theretic approach to stochastic analysis and deriving the Ito-Doeblin
formula along with its most important financial application, the Black-Scholes-
Merton equation. First, however, we begin by recalling definitions for stochastic
processes, proving some basic probability results, and introducing Martingales and
conditional expectation via Radon-Nikodym derivatives.

1.1. Definitions. Louis Bachalier’s doctoral thesis, The Theory of Speculation
(1900), was the first attempt to use mathematics to model finances. In it, he
made use of Brownian motion, or continuous random motion. The following defi-
nitions are introduced in order to understand what Brownian motion is, and more
generally, what random processes are, and how they can be used to model the
markets.

Definition 1.4. A probability space (2, F,P) is a triple where Q) is an arbitrary
set, F is a g—algebra of {2 containing events, and P is a probability measure on
(€, F).

IThe difference between (1.2) and Deoblin’s formula was later explained by Diibins-Shwarz
and Dambis in 1965 with their representation of continuous martingales.
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For the rest of the paper, it is understood, but not always stated, that we are
always acting within a probability space.

Definition 1.5. A stochastic process is a sequence of random variables in a prob-
ability space.

Definition 1.6. A filtration {F;}ier of (Q, F), where T is the time index set, is a
sequence of o—algebras, F; C F such that if s < t, then Fs C F;.

It is convenient to think of a filtration as an increasing sequence of the informa-
tion contained in the random variables. Thus, F contains all the information that
could possibly be known in the probability space.

Remark 1.7. Let {X;}ieT be a stochastic process. We say that the natural filtra-
tion of X; is the sigma algebra generated by X;. That is,

]:t - U(Xl,X27...,Xt).

Definition 1.8. We say a process {X;}ier is adapted to a filtration {F;}rer if X;
is J;—measurable for each .

Definition 1.9. A random variable T : Q@ — T U {co} is called a random time. A
random time is defined as a stopping time (with respect to the filtration {F;}ier)
if
{IT<t}={w:T(w) <t} € F
One can think of a stopping time as a random time 7" such that the event that
T has occurred before time t is known by time t¢.

The next example gives an instance of these definitions with a simple scenario.

Example 1.10. Suppose we throw a fair coin three times, then the sample space
is

O={HHH,HHT,HTH,HTT,TTT,TTH, THT,THH}.
The first toss divides 2 by the events which start with either a head, A, or tail,
Ar. Thus,

F1={Q,0, Ay, Ar}.

Note that 2 and @ are included in order for F; to be a valid o—algebra; both of
these sets are redundant information at this point, as a toss (which already excludes
half of {2’s options) has already been made.

The second toss divides Ay into two sets, those whose second toss is tails, Ay,
and those who’s second toss is heads, Agyy. Similarly, we can create Ay and
Arpg. However, for this to be a valid o—algebra, we must take complements and
unions,

Fo={0,0, A, Ar, Agn, Agr, Ari, Arr, A% Asrs AT, Arrs
Agrg UArg, Agg U Arr, Agr U Arr, Agr U Arm}.

Then since all the information will be known for the third coin toss, F3 = F, which
contains 28 elements. Suppose w = wiwaws is the sequence of coin flips of an event
in 2, where w,, is the outcome of the nth toss. Let

X — 1, (,Uj:H
T, w =T
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Thus, P{X; = 1} = P{X; = —1} = 1. Define the stochastic process M, by

M, = En:Xj.
j=1

Since JF,, contains information up to the sequence of n tosses, we see that M, is
adapted to {F,}2_;.

The following two famous lemmas are given in order to give a taste for measure
theoretic proofs, and also to refer back to for later use.

Lemma 1.11. (Chebyshev’s Inequality) If 1 < p < oo, then for any A > 0, we have

that

P{X|> A} < “X| J,

Proof. Define A := {w € Q; | X (w)| > A}, then

E[| X|?] :/ |X|deP’2/ |X|deP>2)\p/ dP = \PP{A}.
Q A A

For the Borel-Cantelli lemma, we first need a definition.

Definition 1.12. Suppose we have (Q, F,P) as our probability space, {A,} a
sequence of events where A, € F for all n. We define (A,, i.0), or A,, infinitely
often, by

Ay i0.) = m U A; = {w € Q|w belongs to infinitely many A, }.

Lemma 1.13. (Borel-Cantelli) Let {A,} be a sequence of events. If Z]P’{An} <
n=1

oo, then P{(A,, i.0.)} = 0.

oo
Proof. Since (A, i.0.) C U A;, we have that

i=n

P{(A, i0)} < nh—>nolo P{U A} < nleréOZP{Ai},

n
where, as n — oo, we have that lim Z]P’{Ai} — 0 (a.s.). O
1.2. The Radon-Nikodym Theorem. We state and prove the Radon-Nikodym
Theorem (Theorem 1.17) in order to be able to define conditional expectation later
on, and thus be able to introduce martingales and Brownian motion. First, we
must introduce a few definitions.

Definition 1.14. A measure v is said to be absolutely continuous with respect to
a measure p if whenever u(E) = 0, then v(E) = 0. We write this as v < p.

Definition 1.15. Let (Q,F,u), (2, F,v) be two measure spaces. We say that u
and v are mutually singular, denoted by p L v, if there exists some A € Q such
that u(A) = 0 and v(A°) = 0.
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We state a lemma which will allows us to prove the Radon-Nikodym Theorem,
the proof of which is simple using the Hahn decomposition theorem.

Lemma 1.16. Let u and v be finite positive measures on a measurable space (X, F).
FEither u L v or else there exists € > 0 and G € F such that u(G) > 0 and G is a
positive set for v — ep.

Theorem 1.17. (Radon-Nikodym) Suppose y1 and v are measures on (Q, F) with
v <& [ such that

Q= JAn  with  p(An),v(A,) <oo V.
n=1

Then there exists a p—integrable non-negative function f which is measurable with
respect to F such that for every A € F,

V(A) = /A fdu.

Moreover, f is unique almost everywhere with respect to p.

The function f is called the Radon-Nikodym derivative of v with respect to
and is written dv = fdu.

Proof. We give the proof in [4] and begin by defining f. Let
A = {g measurable|g > 0,/ gdp <v(A),A e F}.
A

Since A is bounded above by some v(A) and 0 € A, we let L := sup{ [ gdu | g € A.}
Let g, € A for all n with [ g,,du — L, then define h,, = max{gi, ..., g,}. We claim
that h, € A by induction and prove the n = 2 case. Let B := {x | g1(z) > ¢2(2)},

so then
/hgd,u:/ hgdﬂ—F/ hgdu
A ANB ANBe

= / qrdp —I—/ ga2djt
ANB ANBe
<v(ANB)+v(AnB°

=v(A).

And thus hs € A. Because g > 0, then h,, is increasing up to some f, where by the
monotone convergence theorem,

/gndué/hndﬂﬁ/fduél/(/l)-
A A A

Because this holds for all n, then [ fdu = L. Define a positive measure by

AA)=v(A) - /Afdu.

Assume, for the sake of contradiction, that A is not absolutely singular to u. By
Lemma 1.15, there exists some € > 0 and G € F such that u(G) > 0 and G is a
positive set for A — eu. Thus,

v(A) — /Afdu =AA) > AMANG) > eu(ANG) = /Adlc;du,
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where 1¢ is the indicator function for G. Thus, since v(A) > [,(f + elg)dp, we
have that (f + elg) € A. However, since

/ (f+elg)du=1L +/ elgdu > L,
A A

then L # sup{ [ gdu | g € A}, which is a contradiction.
Thus, there exists some E € F such that pu(E) = 0 and A(E€) = 0, where, since
v < u, v(E) = 0. Because A is a positive measure, we must write

ME) =v(E) —/ fdu=0.
E
Thus, v(A) = [, fdu for all A € F. The rest of the proof can be found in [4]. O

Example 1.18. Let (22, F,P) be a probability space, and suppose @ is a probability
measure with @) < P, then the Radon-Nikodym derivative

dQ
X=—
dP

is a nonnegative random variable with E[X] = 1 satisfying
QB -EleX] = QE)- [ xav
E

Definition 1.19. Suppose (2, F,P) is a probability space and G C F. We define
the conditional expectation of X given G as

E[X|g] = 22

Remark 1.20. We provide the Radon-Nikodym derivative definition of conditional
expectation in order to be able to show its existence, which is not immediate by its
usual definition. It takes little work to show that this definition satisfies the usual
definition of conditional expectation: E[X|G] is G—measurable random variable;
and for all G € G, [,E[X|G]dP = [, XdP. Another useful aspect of the Radon-
Nikodym conditional expectation is that it is unique.

Proposition 1.21. Let X,Y be random variables and G be a o—algebra.
If a,b are constants, then ElaX + bY] = aE[X] + VE[Y].

If Y is G measurable, then E[Y|G] =Y.

IfY is independent of G, then E[Y|G] = E[Y].

(Tower Property) If G C F, then E[E[Y|F]|G] = E[Y|G].

1.3. Martingales. Consider a fair gambling game. The expected winnings in fu-
ture games is $0, regardless of the games already played. Mathematically, if our
winnings are denoted by M;, then if m < n, we can express this as

E[M,, — M| Fn] =0 or E[M,|Fn] = Mp,.
We call fair games like this martingales.

Definition 1.22. Let T = N. We say that a real-valued stochastic process { M, }neT
is a (discrete) martingale with respect the filtration {F,, }ner if
) E[|M,|] < oo for each n;

(1
(2) {Mp}ner is adapted to {F, }ner;
(3) M,, = E[M,|F,,] for all m < n.
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We shall later see that Brownian motion is a martingale, and thus provide these
next two theorems to outline some important properties of martingales.

Theorem 1.23. (Doob’s Optional Stopping Theorem) Let {F, }ner be a filtration
on F and M, be a martingale with respect to {F,}. If T is a stopping time bounded
above by some integer K, then E[M,] = E[My].

The stopping theorem tells us that there is no beating a fair game. Intuitively, it
says that on average, a gambler leaves a fair game with the same amount of money
as when he started.

Definition 1.24. Suppose A1, As,... is an adaptable sequence with respect to
{Futnen, and E[A2] < oo for all n. We define the discrete stochastic integral as

(1.25) Zo =3 Aj(M; — Mjy).
j=1

We can think of A; as a betting strategy on the Drunkard’s walk, in which we
have some bet predicting whether the interval M; — M;_; will go up or down.
Thus, the discrete stochastic integral describes the winnings in our game. We give
without proof the following properties.

Proposition 1.26. The discrete stochastic integral described in (1.25) satisfies the
following:
(1) (Martingale Property) the integral Z,, is a martingale with respect to {F,};
(2) (Linearity) suppose A, and ©,, are adaptable sequences with a,b real num-
bers, then

n

Z QA +b® Mj*l):aZAJ(MJ_Mjfl)—i_bz(_)j(MJ_Mj*l)v
j=1 j=1

(3) (Isometry)

n

zn: (M — M;_1)| = > E[A;]?
= =

This next theorem provides insight into the behaviors of martingales motion in
the long term.

Theorem 1.27. (Martingale Convergence Theorem) Suppose M, is a martingale
with respect to {Fptner and there exists a constant C' < oo such that E[|M,|] < C
for all n. Then there exists a random variable Mo, such that with probability one,

lim M, = M4

n—roo
We give the beautiful proof for discrete martingales by Greg Lawler in [7].
Proof. Let My, My, ... be amartingale with respect to its natural filtration {F, }nen, -

We claim that if @ < b are real, then M,, cannot infinitely fluctuate above b and
below a. Define

S = min{n | M,, < a}, Ty = min{n > S1 | M,, > b}

as stopping times denoting S; as the first time the martingale drops below a and
T1 as the first time after S; the martingale rises above b. For j > 1, define

S; =min{n > T;_1 M, <a}, T; = min{n > S; M, > b}.
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Define the discrete stochastic integral as

W, = ZAk[Mk — My 1],
k=0
where A,, is a “bet” we make such that A,, =0 if n — 1 < S; (we don’t buy if the
“price” of the martingale hasn’t dropped below a), A, =1if §; <n —1<Tj (we
“buy” if the price just dropped below a) and A, = 0if T; < n —1 < Sj;41 (we
“sell” once the price rises above b). Define the number of fluctuations between a
and b as

Un:j, Tj<n§Tj+1.
Thus, since each U; results in a profit of at least b — a, we have that
(1.28) W, > Uy(b—a)+ (M, — a),

where the last term represents the loss of holding the asset at the present. By
Proposition 1.26, W, is a martingale, and thus by Theorem 1.23, E[W,,] = E[W,] =
0. Therefore, taking expectations of (1.28), we have that, for every n,

Bla — M) _ |a| +E[Ma]] _ Ja[+C _

E[U,] <

(U] < b—a — b—a ~ b-a

Thus, since lim E[U,] < oo, a result from measure theory? shows that lim U, <
n—o n—r oo

00, implying a finite number of fluctuations. (]

Remark 1.29. The definition of a continuous-time martingale is analogous to the
discrete-time martingale, with the distinction that T = [0,00). It is not hard to
show that the two above theorems hold for continuous-time martingales.

Definition 1.30. Let {X;};cr be a process and suppose Iy = {0 =t <tV <
-+» < t¥ =t} is a partition of T by stopping times {t¥},; yen. Suppose further that
ITT|| — 0 as N — co. We define the quadratic variation of M; to be

N

Z(Mtﬁl - Mtf’)Q — (M),

i=1

as N — oo.

The rest of the paper focuses on a specific example of a continuous-time martin-
gale: Brownian motion.

2. BROWNIAN MOTION
We first define Brownian motion and then provide intuition for it.

Definition 2.1. A continuous adapted process {B;};c[0,00) taking values in RY is
called a (d-dimensional) Brownian motion with drift m and variance o2 if, for all
0=ty <ty <---<t,, we have that
(1) BO == O;
(2) the distribution of {B,,, — By, }!~) is normal with
By — Biy ~ N(m(tigr — 1), 0% (tis1 — ti));

(3) By, — By, is independent of F,.

i+1

2If f is measurable and J fdu < oo, then f < oo a.s.
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We often make use of the standard Brownian motion, which is a Brownian motion
with drift 0 and variance 1.

2.1. Drunkard’s Walk. To construct a continuous random motion, it is helpful
to first construct the discrete case. A drunkard’s walk, or symmetric random walk,
is the stochastic process {M,, } ner defined in Example 1.9, with the change that we
let w = wiws ... be an infinite sequence of coin tosses instead of a finite one. We
allow the tosses happen every At time increment.

Proposition 2.2. The drunkard’s walk satisfies the following properties:

(1) if 0= ko < k1 < --- <ky are integers, then the random variables { By
By, 11 1 are mdependent with mean 0 and variance k11 — ki;

(2) the drunkard’s walk is a martingale;

(3) the quadratic variation of the drunkard’s walk is

k
=Y (M; — M;_1)* = k.

Jj=1

it

Proof. We use Propostion 1.21.

(1) The first proposition is immediate by construction.
(2) Let m < n be natural numbers, then

BIM,|Fm] = E[(Mn — M) + My | Fni]
= E[(My — M) |Fn] + E[Mp|Fpp
(2.3) = E[(M,, — My,))] + My, = M,,

Where the equalities in (23) hold due to independence, M,, being F,,

measurable, and the first property.
k

(3) For any j, M; — M;_y = %1, and thus Z(il)2 =k.
j=1
(]

Remark 2.4. We can approximate Brownian motion as a limit of the Drunkard’s
walk where the speed of coin tosses is increased and the step size is decreased, we
define a scaled random walk by

where N is a fixed integer, Nt is an integer, and ﬁ is the step size of the walk.
We prove a few properties of Proposition 2.2, now applied to the scaled random

walk, and leave the rest for the reader to check.

(1) While the expectation is still obviously 0, we need to see if the variance
remains the same. Let s <t such that Ns, Nt are integers, then

Var[Wt(N)—WQ(N)]:Var[ (Mni — M)

T
= %(Var[Xl] + Var[Xp] +--- + Var[XN(t_s)]) = (t—s).
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(2) For t > 0 such that Nt is an integer,

Nt

=2

Jj=1

(N)

(W

o 4) e

Nt

D

Jj=1

e
VN

j—1

N

R E

Moreover, we will state, but not prove, one final theorem from [5] for the scaled

random walk.

Theorem 2.5. (Central limit) Let t > 0.
random walk W™ (t) evaluated at time t
mean zero and variance t.

Thus, as Figure 1 below shows, we can
scaled random walks.

Drunkard's Walk

As N — oo, the distribution of the scaled
converges to the normal distribution with

think of Brownian motion as the limit of

Symmetric Random Walk (N = 1000)

—— Drunkard's Walk

—2.01

!
ol
o

Position

|
W
o

-3.54

—— Symmetric Random Walk (Scaled)

0.8

0.6

0.4

Position

0.2

0.0

-0.2

8

1D Brownian Motion Over Time

0.0 0.2 0.8

Position

—— Brownian Motion

FIGURE 1. Drunkard’s Walk, Symmetric Random Walk, and

Brownian Motion

2.2. Lévy’s Construction of Brownian Motion. To show that there exists a

Brownian motion, we will give the Lévy construction from [6].

preliminary lemma.

We first need a

Lemma 2.6. Let {X"},en be a sequence of a.s. continuous functions which con-
verge uniformly in probability to a process X. That is, for any e > 0,

n—oo

for all t. Then X is also continuous.

lim P{ sup || X —Xs||<e}=1
s€[0,t
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We leave this lemma without proof, but note that for fixed w, this is just a
classical uniform convergence statement. For fixed ¢, there exists a sub-sequence in
n such that convergence is almost sure. We can now build a Brownian motion.

For n € Ny, define

k
D, = {2—n|k € N},
Do = N. Then we have that D = U D,, is the set of Dyadic rationals. Let {Z,, }mep

be a collection of random variables such that Z,,, ~ N(0,1), and Zy = 0. Determine
the value of the nth approximation X;* on ¢t € D,, by defining

X0 = Z .

k€Dg:k<t
For n > 0, define X' = X{“l forallt € D, ;. For t € D, \ D,,_1, let
n — Zt
(27) Xp =X o

and use linear interpolation to define X" for all value of ¢. We can now formally

interpolate between {X[*}ep,, :
Xt = X\_tJn + I—t~|n _ LtJn (X[ﬂn - X\.tJn)

where [t], is the maximum s € D,, less than ¢, and [t],, is defined similarly.

Theorem 2.8. The processes X™ defined in (2.7) converge, in its natural filtration,
a.s. uniformly to a process Brownian motion starting at zero.

Proof. First we will show convergence. By construction, we have that

Z
sup || X" — X7t = max 1.
se[OI,)t] 1% Sl s€{Dn+1\Dn|s<t} ||2"+1 i

Note that {D,41\ Dy|s < t} has t2" elements. Let F(z) := P{||Z4||?> < x} be the
distribution function of ||Z,||?.> Then

P{sup || X" — X" >e} =P max
{SE[O,t] || || } {{Dn+1\Dn|s<t

< Y Bzl

s€{Dpni1\Dy|s<t}

= 12"(1 — F(22"12¢%))
— 12" exp{—22"F1e2)
<te " < 0.

26l > 2" e}

Where the last inequality stands since as n — oo, we can choose N large enough
such that N(In(2) + 1) < 22V*+1e2 and thus the inequality hold for n > N. Thus,
by Borel-Cantelli (Lemma 1.13), we have that
P{ sup [|X™ — X""!|| > e for infinitely many n} = 0.
s€[0,t]
By Lemma 2.9, X" converges uniformly on [0,¢] and so thus X; is a continuous
process.

—x

3It is known that || Zs||2 has a x2—distribution with d = 2, and thus F(z) =1 —e2 .
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Now we prove that X; is a Brownian motion. For s,t¢ such that [s], < t,
t € Dy \ Dy41, we know that Z; is independent of Fy = o(X,|u < s) since Z; is
not involved in the construction of X,. Moreover,

Xi—X,=X)-X0= Y Zy~N(0,(t->9)
k€Dg:s<k<t
and X; — X, is independent of F, by the above logic. If the result holds for any
s,t € Dy, then if u € Dy 1\ Dy,

Xty ¥ X () | Zu _ 27"VZg, 0 2, 1
Xu _XLU'J" = 9 + 2n+2 - 2 + 2n+2 ~ N(O,W)

Similarly, we have that Xr,1, — Xy ~ N(0, Qn%) Both intervals are independent
of Flu),. Thus, for all s, € Dy,

X = Xo = (Xo = Xpap,) + (X, = Xpa1,) + (Xpa7,, = Xs) ~ N(O, (= 9)).

The first two terms of the sum are independent of F,, , and thus independent of
Fs. The last is independent of both F| and X — X|, . To prove that X4 is
independent of Fg, simply write

Fs = Fls), Vo (Xs = X(s),) Vo(Zulu € ([5]n), ).

Thus, by inducting, we see that for any D,, € D, if s,t € D,41, we have that
X; — X, is normally distributed and independent of Fj.

Finally, if s < ¢, we can find sequences s, | s and ¢, Tt with s,,t, € D,, and
sp <ty for some k > 0. Then X; — X, ~ N(0,(t, — sp)) and by continuity of X,
we have that

X=Xy =Xy, — X+ Y (X, — X,
n=k+1

- X, + X, 1) ~ N(O,(t - s5)).

n—1

Thus, X is a Brownian motion starting at zero (by construction) in its natural
filtration. U

2.3. Brownian Motion. Having now showed the existence of Brownian motion,
we can talk about some of its properties.

Theorem 2.9. Brownian motion is a martingale.

The proof of the theorem is identical to its discrete version in Proposition 2.2.
This theorem now allows us to apply Theorems 1.23 and 1.27 to Brownian motion.

From now on, it is implied that the index time of the processes T is the continuous
set [0, 00).

Theorem 2.10. (Markov Property) Let B, be a Brownian motion and T a stopping
time with P{T < oo} = 1. Then the process defined by

Y: = Br4+ — Br
is a standard Brownian motion with respect to the filtration {Fr}.
Intuitively, the Markov Property states that stopping the Brownian motion at
any time T and starting it up again creates a Brownian motion independent of its
past. Thus, Brownian motion is “memory-less.” We provide a result for Brownian

motion which is often used to compute specific probabilities associated with the
randomness.
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Corollary 2.11. (Reflection Principle) If By is a standard Brownian motion with
By =0, then for every a > 0,

> = .
P{Org?gt Bs; > a} = 2P{B; > a}

Proof. Let 1, be the first time B; hits a, that is, B;, = a. Then we know that
> = .
P{Orgg?t B, > a} =P{r, < t}

Moreover, we have that
P{B; >a} =P{r, <t and B;>a}
=P{r, <t}P{B;— B,, >0| 7, <t}

By Theorem 2.10, we know that the probability of Y; = B; — B, being positive is
equal to it being negative, since it is a Brownian motion. Thus,

1
IP’{Bt—BTa>a|Ta<t}:§.

O

It is easy to show that if f is C!, that is, f has a continuous derivative, then
its quadratic variation is zero. Later on, we will see that quadratic variation is the
source for the volatility term in the Black-Scholes-Merton PDE. The next theorem
provides us with a useful characterization of Brownian motion that provides much
meaning to the I[t6-Doeblin formulas.

Theorem 2.12. Let B be a Brownian motion. Then (B); =1t for allt >0 a.s.

Proof. Suppose T is a stopping time and 0 < ¢ < T. Let IT = {tg,¢1,...,t,} be a
partition of [0, T]. It suffices to show that the sampled quadratic variation,

n—1

Qu = Z (Btj+1 - Btj)2

=0
converges to T as [|II|| — 0. To do this, we must conclude that E[Qn] — T and

Var[Qn] — 0. Note that because the intervals are independent normal variables
with mean zero, we have that the variance of the intervals is

E [(Btjﬂ - Btj)ﬂ =tljt1 — 1.

To compute E[Qn], we use the linearity of expectation and bring it inside the
telescoping sum, giving E[Qr] = T.
To see that the variance of Qr; converges to 0, note that*

Var [(Btjﬂ - Btj)Q} =E H(Btj+1 - Btj)2 - (thrl - tj)r]
E [(Btjﬂ - Btj)ﬂ

2
- 2(tj+1 - tj)]E {(Bt.wl - Btj) } + (thrl - tj)2
(tj41 —15)? = 2(tj01 — )% + (L1 — t5)°

(2.13) =

4We use a well known fact, known as normal kurtosis, to derive the first term in (2.19). Read
more about it in Exercise 3.3 of [5]
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Again, using the linearity of variance, we obtain
n—1 n—1
Var[Qu) = D 2(tj41-1,)" < 2T > (841 — t5) = 2||TI||T.
§=0 §j=0

Thus, as ||II|] — 0, we conclude that Var[Qn] — 0. O

We conclude the section with a dilemma. A known result in stochastic analysis
is a theorem stating that Brownian motion is nowhere differentiable. The proof,
which can be found on pages 48-55 of 7], deals with the fact that Brownian motion
is a—Holder continuous for a < % Intuitively, if one could determine the derivative
of a Brownian motion B at time t by looking at B, 0 < s < ¢, then the derivative
would provide information on By;a; — By, contradicting Definition 2.1’s indepen-
dence statement. Thus, how could Doeblin and It6 talk about dX; in (1.2)? The
answer lies in the foundations of stochastic calculus: the stochastic integral.

3. StocHASTIC CALCULUS

Now that we have introduced Brownian motion, we can look at some of the tools
which will be used in order to utilize Brownian motion in finance in section 5.

3.1. The Ito-Integral. We shall finally make sense of (1.1), and with it, (1.2).
To do this, it will be helpful to first recall a construction of the classic Riemann
integral.

Definition 3.1. Suppose f : [a,b] — R is a continuous function, and II is a
partition of [a,b] with a =ty < t; < --- < t, = b. If f is approximated by a step
function, f,(z) = f(s;), where t;_1 <t <t; and s; € [t;_1,t;], then we define the
Riemann Integral by

b b n
Rt:/ f(z)dz = lim / fu(@)dz = lim Y f(s;)(t; — tj-1).
a n—oo Jo n—)oojzl

We can now compare this definition with the definition of the stochastic integral,
often referred to as an Itd integral.

Definition 3.2. Let B; be a Brownian motion and suppose { X} j¢[,,] is a stochastic
process adapted to a filtration {F;,}, with 0 = to < t; < --- < t, =t < oo, and
]E[XJQ] < 0o. We say a A, is a simple process if Ay = X, where t; <t < tj11. We
define the Ité integral by

(3.3)

t Jj—1 J
I = /0 AsdBs = ZAi[BtH_l — By,] + Aj[By — By = Z At [Briyint — Biintl-
i=0 i

Intuition for the stochastic integral can be gained by regarding B; as a Brow-
nian motion modeling the price per share of some asset at time ¢, and thinking
of tg,t1,...,t, as trading dates for the asset. It is natural to assume a position
taken in the asset at each trading date, and thus A; is simple and adapted to the
information known at time ¢, that is, F;. Thus, I(¢) = I; models the gains from
trading at each time t.

Proposition 3.4. The It6 integral defined in (3.3) satisfies the following properties:
(1) I is a martingale;
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(2) (Ité Isometry)

(3.5) E[I?] =E Uot Afds} :

(3) if a,c are constants and Ay, C; are simple processes, then aA; + cCy are
stmple processes and

t t t
(3.6) / (aAs + cC5)dBs = a/ AgdBg + c/ C,dBsy;
0 0 0

(4) (Quadratic Variation)

(3.7) <I>t:/0 AZds.

Proof. (1) Let t; < ty such that t,t; € II, where s € [tp,tp11), and t € [tg, trt1)-
Rewriting (3.3) gives

{—1
Iy = Z Ay [By,,, — Bt
j=0

+ Ate [Bte+1 - Bte]
k—1

+ Z Atj [Btj+1 _Btj}

J=t+1
+ Atk [Btk+1 - Btk]
We proceed by taking conditional expectations of each term in (3.8). Because
te < s, then the terms in the first sum in (3.8) are F; measurable. Thus, the first
sum remains the same after taking the conditional expectation.

For the second sum in (3.8), since we know that B; is a martingale by Theorem

2.9, we have that
E[A¢,[Bt,, — Bi,) | Fs] = A, [E[By,,, | Fs] — Bi,] = A, [Br, — By,].

s

Thus, adding the first two terms yields I;. The third sum, whose time-terms are
greater than s, yields by the tower property of expectation that

E [Atj (B, 11 — Btj] | ]:S] =E [E [At;’ [Btj+1 - Btj} | -th] | ‘FS]
=E[A,[E[By,,, | Fi;] = Byl | Fi]
=E[A,[B(t;) - B(t) | K] =0.

By the same logic, the fourth term is also 0. We conclude that E[I;|F,] = I.

j+1

(2) We must prove that the expectation of the cross terms in I? is zero. For
1<,
E [At, At (B, nt = Bioat) (Biy oyt — Bijar)]
=E[E [Ay, Ay, (Beiyint — Bend) (Biyyone — Biae)| | Fy]
=E [Ay A (Btyont — Biat)E [(Biyone — Biyae) | Fi]] =0,

J

and for the remaining terms, we recognize that E [(Bt,#l/\t - BtiAt)Q] is the variance
of the Brownian increment (By, ,, ¢ — By, a¢), which is defined to be (t; 41 At) —(t;At).
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Thus, since all the cross products are zero,

E[(1)’) =E | A [Bi,ar— Biyad®| =E

(2

:]E{/OtAids}.

(3) This property is immediate from the definition.
(4) Suppose [tj,tj41] is a sub-interval on which A; is constant, and let II =

i AF [(tigr At) = (ti A )]

{50, 81,-..,8m} be a partition of the subinterval. Then,
m—1 m—1
2 2
(3.9) Lo, — 1) =22 Y [Byy, — B T AF (tjp1 —t5).
i=0 i=0
Since A(t) is constant on t; < t < tj11, (3.9) is equal to fttjj“ A2ds, and so we
obtain (3.7) by adding up all the time intervals. O

We can now generalize (3.3) by approximating the simple processes, loosening
our definition of the stochastic integral.

Definition 3.10. Suppose {A;} is a continuous process adapted to the filtration
{Fi}te(0,00), and suppose further that A, € L?(€, F,P).” Let A} be a sequence of

simple process such that
T
lim E / |AT — Ag|?dt| = 0.
0

n—oo

We define the Ité Integral by

t t
(3.11) / AydB, = lim [ A"dB,.
0

n—oo 0

The existence of such a simple process comes from the completeness of L?, of
which the reader can explore more in [6]. We leave as a fact that this definition
satisfies Proposition 3.4.

Remark 3.12. We can know define the stochastic differential equation, or SDE,
to be the differential equation
dlt = AtdBt

satisfying
t
I, =1y —|—/ Ay dB;.
0

Thus, an SDE means nothing more than formal notation for the stochastic integral,
which is well defined.

Definition 3.13. Let B, be a Brownian motion. We say that {X;}ier is an Ité
process if it satisfies

t t
X = Xo —|—/ msds —|—/ 0sdBg,
0 0

1
5We refer to L? as the space of Borel-measurable functions such that || f||2 = ([ 1f(@)2dp)2 <
co. One can read more about LP spaces in [4].



MEASURE THEORY, STOCHASTIC CALCULUS, AND THE BLACK-SCHOLES-MERTON MODHIZ

where m; and o; are adapted processes in L?. In other words, X; satisfies
(314) dXt = mtdt + O'tdBt.

Remark 3.15. Note that (3.14) is a general version of the geometric Brownian
motion described by (1.3). One can see this by letting m; = mX; and oy = 0X;.
Moreover, if X; is a geometric brownian motion, then one can use Proposition 3.4
to see that d(X); = o2 X?.

Note that for the following theorem, a function f being C™ in a variable = de-
scribes that the nth derivative of f with respect to x exists and is continuous.

Theorem 3.16 is a less-generalized version of the It6-Doeblin formula. This for-
mula is known as the fundamental theorem of stochastic calculus since it can be
easily used to find solutions to stochastic differential equations. Moreover, the
Black-Scholes model can be easily derived in a few lines using the It6-Doeblin for-
mula®.

Theorem 3.16. Let X; be a Brownian motion and ¢ be a real valued function
which is C' in t and C? in x. Then
(3.17)

t t 1t
o(t, Xt) = p(0, Xo) +/ Orp(s, Xs)ds +/ O (s, Xs)dXs + 5/ Ozaip(s, Xs)ds.
0 0 0

We will prove this for the single variable case, where

PX) = o(X0) + [ P XX+ 5 [ (X s

Proof. Consider that by expanding ¢ into a second order Taylor series, we have

that
1
P(y) = plz) = ¢'(@)(y — ) + 50" @)y —2)* + o ((y = 2)?)
Let II = {to,t1,...,t,} be a partition on [0, ], and thus

(P(Xt) = QO(XO) + Z(‘P(thrl) - <p(th'))

i

Il
=]

(3'18) = (P(XO) + |:§0/(Xti)(Xti+1 - th)

1M

_|_

7

(p//(Xti)(Xti+1 - th‘)2 +o ((Xti+1 - Xt')Q)

DN | =

If X[ = X, then for t € [t;,ti1], ¢’ (X)) W ¢’ (X¢) a.s. This holds for ¢” as
—0

well. Note that both ¢/ (X[!) and ¢”(X}!) are adapted processes.

For the first of the three sums in (3.18)’s right hand side, since ¢’(X) is a
continuous adapted process, then as ||II|| — 0, we get by Definition 3.10 that

n

tim 3 [0 (X0) (X, — Xo)] = / o (X)X, s / o (X)dX,.

n—00 4
=0

SWhile we opt for another derivation of the model using Girsanov’s theorem since it provides
more insight, the simpler derivation can be found in page 143 of [5]
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For the second sum in (3.18), let h(t) = ¢”(By). Since f is continuous, then there ex-
ists a step function h.(t) such that |h(t) —h(t)| < € for every ¢. By an analogous ar-
gument to the proof for (4) in Proposition 3.4, we can say that if 7 = {s1, $1,...,8m}
is a partition on [t;,t;41] where h. is constant, then

m—1 tj+1
lim > he(t)[Bs,,, — By)* = / he(s)ds a.s.
n (o) i—1 t

j
Moreover, consider that, as e — 0

n

Z (h(t) - he(t)) [Btj+l - Btj}Q < ei[Bti+1 - Bti]z — 0.

Jj=1 j=1
Therefore,
1 I I
lim = [ he(s)ds = 7/ h(s)ds = f/ ©"(Bs)ds a.s.
e—0 2 0 2 0 2 0

For the last sum, we have that, for partitions fine enough,
1
0((Xti+1 - Xtri)Q)) ~ O(E) — 0,

and thus the last sum converges to zero in the limit.
|

The following theorem is the differential form of (3.17), with the change that X,
is an Ito process instead of a Brownian motion and thus we change the third term
in the formula. The proof is similar to Theorem 3.16, but with more terms to keep
track of.

Theorem 3.19. (Generalized It6-Doeblin Formula) Suppose that X, is an Ito pro-
cess, By is a Brownian motion, and o is C% in x and C' int. Then

1

We illustrate the usefulness of the It6-Doeblin formula by finding a strong solu-
tion to (1.3).

Example 3.21. Let B; be a Brownian motion and {F;} be its natural filtration.
Suppose m(t, X;) = m; and o(t, X;) = oy are adapted processes in L?. Suppose
further that

2
(3.22) X, = Xoexp { <mt - U;) tr atBt} = o(t, By).
Then
o2
atSO(t,Bt) = (mt - 2t> X, az@(taBt) = 0 X, 817:@(@ Bt) = U?Xt-

Theorem 3.19 gives
2 1
dXt = {(mt — O;) Xt + 20’?X,5j| dt + O'tXtdBt = mtXtdt + O'tXtdBt.
Thus, (3.22) is a strong solution to (1.3). We use (3.22) to model an asset price

that is non-negative, continuous, and driven by a single Brownian motion. We call
m the drift, and we say o is the volatility.
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Remark 3.23. If m; = 0, then (1.3) gives
¢
(324) dXt = O'tXtdBt, — Xt = Xo +/ O'SXSdBS,
0

which is a stochastic integral, and thus a martingale.” If m; # 0, then X, is not a
martingale, as if m; > 0, then X; would have a tendency to rise; if m; < 0, then it
would have a tendency to fall. In either case, E[X;iqr — X¢|F:] # 0, and thus X; is
not a martingale. The It6-Doeblin formula can be used to conclude that

t 1 [t
X = Xpexp {/ osdBg — f/ agds} .
0 2 Jo

is a solution to (3.24).

Remark 3.25. There are a few formal rules associated with differential stochastic
calculus, such as

(3.26) dB,dB; = dt,  dB,dt=0,  dtdt = 0.

The first comes from Theorem 2.12, as

/Ot(dBt)2 =(B);=t= /Ot dt.

Similarly, we have shown that the quadratic variation of (t); = 0, as it is a contin-
uous process. For the remaining rule, one can show that the quadratic co-variation
(B, t); is equally zero.

The following theorem can be easily proved with these formal rules.

Theorem 3.27. (Stochastic product rule) Suppose X, Yy are It processes as in
Definition 3.13. Then

d(X:Yy) = X4 dY; + dX, Yy + d(X)d(Y),.

4. GIRSANOV’S THEOREM AND THE RISK-NEUTRAL MEASURE

One considers the value of a stock in the physical world by assessing the risk
attributed to it by the market. In other words, its price is associated with its risk.
If one wants to consider the fair price associated with a stock without having to
discount it for its individual risk profile, then using a risk-neutral probability will
allow any stock to be priced by taking the expected value of its payoff. Girsanov’s
theorem will tell us how Brownian motion will acquire drift when we go from the
physical measure P to a risk neutral measure P as described in Example 4.4.

Suppose M; is a martingale given by
th = 0'(71'7 Mt)Mtht7 MQ = 17
as in Remark 3.23. We define a probability measure P such that if E is a F, mea-
surable event, then P(F) = E[1gM;]. Thus, M; is the Radon-Nikodym derivative

"In general, we can only conclude that if m; = 0, then X; is a local martingale (a martingale
only on specific time intervals). However, we shall make the assumption that X; is a martingale.
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of P with respect to P. This implies that if Y is an F; measurable random variable,
then

(4.1) Es[Y] = E[Y M,)].

We need an additional lemma before proving Girsanov’s Theorem, the proof which
can be found in the appendix.
Lemma 4.2. Let s <t and let' Y be an Fy—measurable random variable, then
1
]E]?’[Y | ]:s] = ME[YMt | ]:s]'

S

Theorem 4.3. (Girsanov) Let By be a Brownian motion on a probability space
(Q, F,P) and let {F:} be a filtration for By. If

¢
B, =B, 7/ o(s, M)ds,
0

then with respect to the measure P, which is defined above, B, is a standard Brow-
nian motion.

In other words, if we weight P by the martingale, then in the new measure,
the Brownian motion acquires drift o (¢, M;). We use Levy’s characterization of a
Brownian motion (Theorem 6.1) to proof this theorem in the appendix.

Example 4.4. Suppose that X; is a geometric Brownian motion satisfying
dXt = m(t, Xt)Xtdt + O'(t, Xt)XtdBt

under the probability measure P, where B; is a P—Brownian motion. Our goal is
to find a probability measure Q) such that X; satisfies

(45) dXt = T(t,Xt)Xtdt+O'(t,Xt)Xtth
under @, where W; is a Q—Brownian motion. If

br(s, Xs) —m(s, Xs)
W:B I S I Sd
t t+/0 (5, X) S,

then by plugging in the differential dB; into the geometric Brownian motion, we

arrive at (4.5). Thus, we must define d@QQ = M;dP, where M, is the Radon-Nikodym

derivative of Q with respect to P satisfying

T(s, Xs) — m(57 Xs)
o(s, Xs)

th == MtdBt, MO == ].

Thus, by Girsanov’s theorem, W; is a —Brownian motion. We call Q) the risk-
neutral measure since under ), dX; has a drift of r, which is the risk-free interest
rate in the Black-Scholes-Merton equation.

5. FINANCIAL APPLICATIONS: THE BLACK-SCHOLES-MERTON MODEL

We can now begin discussing the financial applications of stochastic calculus.
Suppose the price of a stock, S, is a geometric Brownian motion satisfying

dSt = m(t, St)Stdt + O'(t, St)StdBt.
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Suppose further that we are engaged in a Furopean call option in which, at the
expiry time T, an agent has the right (but not the obligation), to buy a share of
the stock at price K. Thus, the value of the option at time 7" is

F(ST) = (St - K)+ = maX{St - K,O}

The seller is at an obvious disadvantage here. If S; < K, then the buyer won'’t
exercise the option and he will have missed out on K — S; dollars, and if S; > K,
then he should have held on to the stock instead! The game of the Black-Scholes-
Merton equation is to find the value of the option at any time 0 < ¢ < T in order
for the seller to charge a premium and not lose out on money.

More generally, if ¢(t,S;) denotes the value of an option with payoff F (T, St),
then if (T, ST) < St, the buyer would exercise the option and collect the payoft,
and vice-versa in the other case, creating an opportunity for arbitrage (risk-free
profit). Our model will make the assumption of an arbitrage-free market, implying
that o(T, St) = F(St). We are interested in how we can insure that the value of
our portfolio (a collection of stocks and bonds in this case) ends up with the same
payoff as F(St), and thus we must decide what to do with our portfolio before time
T to guarantee this. If we can build a portfolio that is self-financing (there are no
outside resource added to the portfolio) and with the same payoff as F(Sr), then
we could hedge (insure) the risk of this option before time 7. If A; denotes the
number of shares of S; at time t, and b; denotes the number of risk-free bonds of
price R; held at time ¢, then the value of the portfolio (A, b;) is given by

(5.1) Vi = AS; + bRy

Another arbitrage opportunity, which we will not allow, is if V; < o(t, S;) for some
0 <t < T. The strategy in this case is to sell the option for ¢(t,S;), invest V;
dollars into the stock, and the remaining ¢(t,S;) — V; would go into the risk-free
bond as profit. Likewise, we do not allow V; > (¢, S;) for any time ¢.

Therefore, since we always want to guarantee an arbitrage-free pricing model
which at time T yields Vp = F(St) = (T, St), then the only option is for
Vi = ¢(t,5¢) at all times 0 < ¢ < T. Our goal then becomes in finding a strat-
egy to handle our portfolio by switching between stocks and bonds.

Suppose the risk-free bond has a rate of r(¢,2). Then if R; denotes the value of
a risk-free bond at time ¢,

¢
(5.2) dR; = r(t, S¢)Redt = R = Rpexp {/ (s, Ss)ds} .
0

Since we are discussing the future values of options in the present, we would like
to talk about the discounted stock price and discounted portfolio value, respectively
given by S = R%St, and V = R%Vt for0<t<T.
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We define @ as in Example 4.4 to be the risk-neutral measure. Using the product
rule, we notice that under @), the discounted stock rate satisfies

1 1
Sy + Edst + d<§>td<S>t
_ —T(t, Xt) Stdt + T(t, Xt)Stdt + O'(t7 Xt)Stth
Rt Rt

= O'(t, Xt)gtth-

Where the third equality holds because R% is a continuous function with zero qua-

dratic variation. By Example 3.23, we know that S; is a Q—martingale.®

We let ¢(t,x) be the expected value of the option at time ¢, discounted for the
interest rate:

R R
(5.3) Vi =o(t,8) =Eq | == F(S7) | Sy = 2| =Eq | == F(S7) | Fi |,
RT RT

where the third equality holds because S; is a Markov process (Theorem 2.10). We
assume that ¢ is C' in t and C? in z = S,.

It is not hard to show that V; is a Q—martingale, and thus by the Martingale
Representation Theorem found in the appendix as Theorem 6.2, there exists an
adapted process A; such that dV; = A;dW;. Thus,

dV; = d(R,V})
= d(Re)Vi + Red(V) + d(R),d(V ),
= dR,V, + Ry A dW,

- A -
= dR,V; + L R,dS,
O'St

A _
= dRV; + —=[dS — S,dRy]
O'St
A - A
= ZLdS + [V; — ZL)dR,.

O'St g
Comparing to (5.1), we conclude that A; = %, and b, = [V, — 4¢]. Thus, barring
the fact that A; is unknown, we have found the portfolio, whose value at time ¢
is given by the Black-Scholes-Merton PDE. We can apply It6-Doeblin’s formula to
(5.3).

1
2 Q2

S
= 0,0(t, S,)dt + Dyp(t, SV (L, So)Sedt + o (t, Sy)SpdWy] + 2 S Ounip(t, S0,

SWe only know that S; is a Q—local martingale, which is a specific type of martingale. However,
we make the strong assumption here that St is actually a Q—martingale.
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Note that x = S; in all the partial derivatives. We can now compute:

- 1
dVy =d [R,fp(t’ St)]

1 262
= ﬁ |: (—T(t, St)(p(t, St) + 8t(p(t, St) + aIQO(t, St)T(t, St)St =+ O.Ttawwgﬁ(t, St)) dt
t

+ 6a:g0(t, St)O'(t, St)Stth:|
1
Ry

Since V; is a martingale, then by Remark 3.27, the dt term is zero, and so we derive
the B-S-M PDE,

[Jydt + Ay dWV,).

O'(t, St)2

SQ
0= Jt = —’I‘(t, Sf)(p(t, St) + 3t<p(t, St) + Bxgo(t, St)T'(t, St)St + 2 ¢ amw(t, St)

(5.4)
oV V,  a(t,S:)2S? 0%V,
=—r(t,S)Vi + — t,8)St— + — .
Pt SVed G S)Sige T ase
By setting the risk and volatility as constant, we can derive the explicit Black-
Scholes-Merton formula as a solution to (5.4).

Theorem 5.5. Let both the interest rate and the volatility be constant. Then a
solution to the Black-Scholes-Merton PDE (5.4) in the case of a call option is
given by

a? _ z _a _ z
(r+g)T-t+me ok (r-%)T-t+ms
oVl —t oVl —t ’

where @ is the CDF of the standard normal distribution.

Vi =5,®

Proof. Assuming constant interest rate, we have that the value of the bond at time
t is given by R; = €. Example 3.21 shows that we can represent the price of the
stock by

o2

Sy = Sgexp{ (r — 2) t+ odW,}.
If we let 7 =T —t, then using the Markov property of W3, it can be shown that
2 2

Sr = S, exp] (r - "2) T+ o(Wr — Wi)} = Sy exp{ <r - U2> r—oVTY),

where Y = Wf%f is a standard normal variable. Therefore, we can compute an
explicit formula for (5.3) by
R
(650 =Bq | (5~ K1 | 7
T

2

= Eg [e”(st exp{ (r - ‘;) oY} — K)4 | ]-'t} .
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Since S; is F; measurable and exp{ (7" - %2) T —0+/7Y} is independent of F;, then
by letting = = S,

o(t,z) = Eqg {e‘”(x exp{ (7« - ";) r—oyTY} - K)+]

e 7T > o2 1,2
=75 /oo(xexp{(r— 2) T—oyTy} — K)ye 2¥ dy.

Since we only care about when the option price is positive, we can restrict the
integral such that if

d(r,z) = ?lﬁ |:(7“_O;)T+ln;;_:| ,

then

ot z) = e_F / T e (r - "2) = ovTy) — K)e= 3y,

d_ (Tm) o2 d_(7,z) L s
\/%/ " exp{ <r— ) \/7/ Ke™2Y dy.

(1,2) o2
Z o .2 _ - TT
\/ﬂ/ xexpq 5T o1y 2y ty. — e "TK®(d_(1,x))

(1,z) -1
- = / zexp{ -y + ovT)*}dy. — ¢ TKD(d(7,))
_(r,x)+o/T

-l
= g';(b(d_,_ (T, JU)) — eirTK(I)(d— (T’ ZE)),

exp{%luQ}du. — e "TK®(d_(7,x))

where d (7, x) [( ) 7+ In K} Explicitly, we derived the Black-Scholes-
Merton formula

2

o . nE B Lz - i
o(t, Si) = S @ <T . 7> RREL e TN K (T 2 ) (T'=1) +In &
0\/715 g

6. APPENDIX

Proof. (Lemma 4.2) By definition, the left hand side is the conditional expectation
of the right hand side, so it will suffice to show that the two characterizations of
conditional expectation are met as in Remark 1.20. The first is obvious, as the
right hand side is, by definition, Fs—measurable. For the second, we must show
that, if £ € Fj, then

1 - -
/ o7 EslY Mi| F]dP = / Y dP.
E s E
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Consider that, if F is an Fs measurable set, then

1 - 1
ElY M, NdIP = 1
/EMS VM | Fsld /Q L,

1
=Ep {]lE]\/[SE[YMt | F]

E[YMt | ]:Jd]ip

=E [E[1gY M,]|F]

=E[lgY M,
= Es[Y]
= / Y dP,
E
where the third and fifth equality follow from (4.1), and the fourth follows from the
fact that M, is a martingale. O

Proofs for the following two theorems can be found in [5].

Theorem 6.1. (Levy’s characterization of Brownian motion) Let M(t),t > 0, be a
martingale relative to a filtration Fy, t > 0. Assume that M (0) = 0 has continuous
paths and (M) =t for allt > 0. Then M(t) is a Brownian motion.

We provide a sketch of the proof for Girsanov’s theorem (Theorem 4.3) using
Levy’s characterization of Brownian motion.

Proof. For readability, let o(t, M;) = 0. By definition, B(O) = 0. By Theorem 2.18,
since the integral term, which is continuous, has zero quadratic variation, then
(B); = t. By Theorem 6.1, it suffices to show that B; is a P—martingale.
We use the stochastic product rule (Theorem 3.27) and Remark 3.25 to show
that B;M; is a P—martingale.
d(B;My) = BydM, + dB,M; + dB,dM,
= Bt(O'MtdBt) + (dBt — O'dt)Mt + (dBt — O'dt)(O'MtdBt)
= ByoM;dB; + dB;M; — o Mydt + o MydB;dB; — 0> MydBydt
= (Bta + 1)MtdBt

Since the dt term vanishes, this is just an Itd Integral, and thus the process is a
P—martingale. We finish by applying Lemma 4.2 to show that B, is a P—martingale:

~ 1 ~ 1 - -
Eg[B:|Fs] = E]E[BtMt|}'s] = EBSMS = B;.
O
Theorem 6.2. (Martingale Representation) Let Wy, be a Brownian motion on a

probability space (2, F,P), and let F; be the natural filtration of Wy. Let M, be a
martingale with respect to Fy. Then there is an adapted process Ay, such that

t
Mt = MO +/ Adet-
0
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