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Abstract. This expository paper develops the theory behind stochastic calcu-

lus, placing special emphasis on the measure-theoretic “risk-neutral” derivation
of the Black-Scholes-Merton equation. Along the way, this paper will explore

the topics of the Radon-Nikodym derivative, Brownian motion, the stochas-

tic integral, the Itô-Doeblin formula, and Girsanov’s theorem. Basic measure
theory and probability theory knowledge is assumed, along with calculus and

some differential equations.
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1. Motivation and Introduction

Kiyosi Itô, despite Japanese paper shortages, having to mimeograph work, and
publishing his papers in American journals, was able to introduce calculus to the
world of random (stochastic) processes when he published his 1944 paper, Stochastic
Integral [1]. In it, he introduced the Itô integral,

I(t) =

∫ t

0

∆sdBs,(1.1)
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where Bt is a continuous random motion. Seven years later, he established the
foundations of stochastic differential calculus by publishing his change of variables
formula in [2]. The formula is given by

dφ(t,Xt) =

(1.2)

[
∂tφ(t,Xt) +mtXt∂xφ(t,Xt) +

σ2
tX

2
t

2
∂xxφ(t,Xt)

]
dt+ σtXt∂xφ(t,Xt)dBt

whereXt is a geometric Brownian motion satisfying the stochastic differential equa-
tion, {

dXt = mtXtdt+ σtXtdBt

X(0) = 0.
(1.3)

In 1940, on the other side of the war, a 25-year old Wolfgang Doeblin dies in
battle, burning his math notes as a last stand against the Nazis. Paul Lévy com-
pared this Frenchman to the likes of Gaolois and Able, but his name was forgotten
to history until his Pli (a mathematical black box used in wartime) was opened in
2000. The Pli revealed that 2 years before Itô published his first papers on sto-
chastic differential equations, Doeblin’s notes contained his own change of variables
formula,

dφ(Xt, t) =

[
∂tφ(Xt, t) +mXt∂xφ(Xt, t) +

σ2X2
t

2
∂xxφ(Xt, t)

]
dt+ dδ(Ht),

where δ(u) is a Brownian motion and Ht =
∫ t

0
[σ(Xs, s)∂xφ(Xs, s)]

2
ds.1 Doeblin,

depressed by the war, wrote that he was happy during the hours he spent develop-
ing his theory of stochastic analysis, which would go unnoticed for 60 years. [3]

The goal of this paper is to understand the importance of their work by taking
a measure-theretic approach to stochastic analysis and deriving the Ito-Doeblin
formula along with its most important financial application, the Black-Scholes-
Merton equation. First, however, we begin by recalling definitions for stochastic
processes, proving some basic probability results, and introducing Martingales and
conditional expectation via Radon-Nikodym derivatives.

1.1. Definitions. Louis Bachalier’s doctoral thesis, The Theory of Speculation
(1900), was the first attempt to use mathematics to model finances. In it, he
made use of Brownian motion, or continuous random motion. The following defi-
nitions are introduced in order to understand what Brownian motion is, and more
generally, what random processes are, and how they can be used to model the
markets.

Definition 1.4. A probability space (Ω,F ,P) is a triple where Ω is an arbitrary
set, F is a σ−algebra of Ω containing events, and P is a probability measure on
(Ω,F).

1The difference between (1.2) and Deoblin’s formula was later explained by Dúbins-Shwarz
and Dambis in 1965 with their representation of continuous martingales.
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For the rest of the paper, it is understood, but not always stated, that we are
always acting within a probability space.

Definition 1.5. A stochastic process is a sequence of random variables in a prob-
ability space.

Definition 1.6. A filtration {Ft}t∈T of (Ω,F), where T is the time index set, is a
sequence of σ−algebras, Ft ⊆ F such that if s < t, then Fs ⊆ Ft.

It is convenient to think of a filtration as an increasing sequence of the informa-
tion contained in the random variables. Thus, F contains all the information that
could possibly be known in the probability space.

Remark 1.7. Let {Xt}t∈T be a stochastic process. We say that the natural filtra-
tion of Xt is the sigma algebra generated by Xt. That is,

Ft = σ(X1, X2, . . . , Xt).

Definition 1.8. We say a process {Xt}t∈T is adapted to a filtration {Ft}t∈T if Xt

is Ft−measurable for each t.

Definition 1.9. A random variable T : Ω → T ∪ {∞} is called a random time. A
random time is defined as a stopping time (with respect to the filtration {Ft}t∈T)
if

{T ≤ t} = {ω : T (ω) ≤ t} ∈ Ft

One can think of a stopping time as a random time T such that the event that
T has occurred before time t is known by time t.

The next example gives an instance of these definitions with a simple scenario.

Example 1.10. Suppose we throw a fair coin three times, then the sample space
is

Ω = {HHH,HHT,HTH,HTT, TTT, TTH, THT, THH}.
The first toss divides Ω by the events which start with either a head, AH , or tail,
AT . Thus,

F1 = {Ω,Ø,AH ,AT }.
Note that Ω and Ø are included in order for F1 to be a valid σ−algebra; both of
these sets are redundant information at this point, as a toss (which already excludes
half of Ω’s options) has already been made.

The second toss divides AH into two sets, those whose second toss is tails, AHT ,
and those who’s second toss is heads, AHH . Similarly, we can create ATT and
ATH . However, for this to be a valid σ−algebra, we must take complements and
unions,

F2 = {Ø,Ω,AH ,AT ,AHH ,AHT ,ATH ,ATT , Ac
HH ,Ac

HT ,Ac
TH ,Ac

TT ,

AHH ∪ ATH ,AHH ∪ ATT ,AHT ∪ ATT , AHT ∪ ATH} .
Then since all the information will be known for the third coin toss, F3 = F , which
contains 28 elements. Suppose ω = ω1ω2ω3 is the sequence of coin flips of an event
in Ω, where ωn is the outcome of the nth toss. Let

Xj =

{
1, ωj = H

−1, ωj = T
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Thus, P{Xj = 1} = P{Xj = −1} = 1
2 . Define the stochastic process Mn by

Mn :=

n∑
j=1

Xj .

Since Fn contains information up to the sequence of n tosses, we see that Mn is
adapted to {Fn}3n=1.

The following two famous lemmas are given in order to give a taste for measure
theoretic proofs, and also to refer back to for later use.

Lemma 1.11. (Chebyshev’s Inequality) If 1 ≤ p < ∞, then for any λ > 0, we have
that

P{|X| ≥ λ} ≤ E[|X|p]
λp

.

Proof. Define A := {ω ∈ Ω; |X(ω)| ≥ λ}, then

E[|X|p] =
∫
Ω

|X|pdP ≥
∫
A

|X|pdP ≥ λp

∫
A

dP = λpP{A}.

□

For the Borel-Cantelli lemma, we first need a definition.

Definition 1.12. Suppose we have (Ω,F ,P) as our probability space, {An} a
sequence of events where An ∈ F for all n. We define (An i.o), or An infinitely
often, by

(An i.o.) =

∞⋂
n=1

∞⋃
i=n

Ai = {ω ∈ Ω|ω belongs to infinitely many An}.

Lemma 1.13. (Borel-Cantelli) Let {An} be a sequence of events. If

∞∑
n=1

P{An} <

∞, then P{(An i.o.)} = 0.

Proof. Since (An i.o.) ⊆
∞⋃
i=n

Ai, we have that

P{(An i.o.)} ≤ lim
n→∞

P{
n⋃

i=n

Ai} ≤ lim
n→∞

n∑
i=n

P{Ai},

where, as n → ∞, we have that lim
n→∞

n∑
i=n

P{Ai} → 0 (a.s.). □

1.2. The Radon-Nikodym Theorem. We state and prove the Radon-Nikodym
Theorem (Theorem 1.17) in order to be able to define conditional expectation later
on, and thus be able to introduce martingales and Brownian motion. First, we
must introduce a few definitions.

Definition 1.14. A measure ν is said to be absolutely continuous with respect to
a measure µ if whenever µ(E) = 0, then ν(E) = 0. We write this as ν ≪ µ.

Definition 1.15. Let (Ω,F , µ), (Ω,F , ν) be two measure spaces. We say that µ
and ν are mutually singular, denoted by µ ⊥ ν, if there exists some A ∈ Ω such
that µ(A) = 0 and ν(AC) = 0.
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We state a lemma which will allows us to prove the Radon-Nikodym Theorem,
the proof of which is simple using the Hahn decomposition theorem.

Lemma 1.16. Let µ and ν be finite positive measures on a measurable space (X,F).
Either µ ⊥ ν or else there exists ϵ > 0 and G ∈ F such that µ(G) > 0 and G is a
positive set for ν − ϵµ.

Theorem 1.17. (Radon-Nikodym) Suppose µ and ν are measures on (Ω,F) with
ν ≪ µ such that

Ω =

∞⋃
n=1

An, with µ(An), ν(An) < ∞ ∀n.

Then there exists a µ−integrable non-negative function f which is measurable with
respect to F such that for every A ∈ F ,

ν(A) =

∫
A

fdu.

Moreover, f is unique almost everywhere with respect to µ.

The function f is called the Radon-Nikodym derivative of ν with respect to µ
and is written dν = fdµ.

Proof. We give the proof in [4] and begin by defining f. Let

A = {g measurable|g ≥ 0,

∫
A

gdµ ≤ ν(A), A ∈ F}.

Since A is bounded above by some ν(A) and 0 ∈ A, we let L := sup{
∫
gdµ | g ∈ A.}

Let gn ∈ A for all n with
∫
gndµ → L, then define hn = max{g1, . . . , gn}. We claim

that hn ∈ A by induction and prove the n = 2 case. Let B := {x | g1(x) ≥ g2(x)},
so then ∫

A

h2dµ =

∫
A∩B

h2dµ+

∫
A∩Bc

h2dµ

=

∫
A∩B

g1dµ+

∫
A∩Bc

g2dµ

≤ ν(A ∩B) + ν(A ∩Bc)

= ν(A).

And thus h2 ∈ A. Because g ≥ 0, then hn is increasing up to some f, where by the
monotone convergence theorem,∫

A

gndµ ≤
∫
A

hndµ ≤
∫
A

fdµ ≤ ν(A).

Because this holds for all n, then
∫
fdµ = L. Define a positive measure by

λ(A) = ν(A)−
∫
A

fdµ.

Assume, for the sake of contradiction, that λ is not absolutely singular to µ. By
Lemma 1.15, there exists some ϵ > 0 and G ∈ F such that µ(G) > 0 and G is a
positive set for λ− ϵµ. Thus,

ν(A)−
∫
A

fdµ = λ(A) ≥ λ(A ∩G) ≥ ϵµ(A ∩G) =

∫
A

ϵ1Gdµ,
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where 1G is the indicator function for G. Thus, since ν(A) ≥
∫
A
(f + ϵ1G)dµ, we

have that (f + ϵ1G) ∈ A. However, since∫
A

(f + ϵ1G)dµ = L+

∫
A

ϵ1Gdµ ≥ L,

then L ̸= sup{
∫
gdµ | g ∈ A}, which is a contradiction.

Thus, there exists some E ∈ F such that µ(E) = 0 and λ(Ec) = 0, where, since
ν ≪ µ, ν(E) = 0. Because λ is a positive measure, we must write

λ(E) = ν(E)−
∫
E

fdµ = 0.

Thus, ν(A) =
∫
A
fdµ for all A ∈ F . The rest of the proof can be found in [4]. □

Example 1.18. Let (Ω,F ,P) be a probability space, and supposeQ is a probability
measure with Q ≪ P, then the Radon-Nikodym derivative

X =
dQ

dP
is a nonnegative random variable with E[X] = 1 satisfying

Q(E) = EP[1EX] ⇔ Q(E) =

∫
E

XdP.

Definition 1.19. Suppose (Ω,F ,P) is a probability space and G ⊂ F . We define
the conditional expectation of X given G as

E[X|G] = dQ

dP|G
.

Remark 1.20. We provide the Radon-Nikodym derivative definition of conditional
expectation in order to be able to show its existence, which is not immediate by its
usual definition. It takes little work to show that this definition satisfies the usual
definition of conditional expectation: E[X|G] is G−measurable random variable;
and for all G ∈ G,

∫
G
E[X|G]dP =

∫
G
XdP. Another useful aspect of the Radon-

Nikodym conditional expectation is that it is unique.

Proposition 1.21. Let X,Y be random variables and G be a σ−algebra.

• If a, b are constants, then E[aX + bY ] = aE[X] + bE[Y ].
• If Y is G measurable, then E[Y |G] = Y.
• If Y is independent of G, then E[Y |G] = E[Y ].
• (Tower Property) If G ⊂ F , then E[E[Y |F ]|G] = E[Y |G].

1.3. Martingales. Consider a fair gambling game. The expected winnings in fu-
ture games is $0, regardless of the games already played. Mathematically, if our
winnings are denoted by Mt, then if m < n, we can express this as

E[Mn −Mm|Fm] = 0 or E[Mn|Fm] = Mm.

We call fair games like this martingales.

Definition 1.22. Let T = N.We say that a real-valued stochastic process {Mn}n∈T
is a (discrete) martingale with respect the filtration {Fn}n∈T if

(1) E[|Mn|] < ∞ for each n;
(2) {Mn}n∈T is adapted to {Fn}n∈T;
(3) Mm = E[Mn|Fm] for all m ≤ n.
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We shall later see that Brownian motion is a martingale, and thus provide these
next two theorems to outline some important properties of martingales.

Theorem 1.23. (Doob’s Optional Stopping Theorem) Let {Fn}n∈T be a filtration
on F and Mn be a martingale with respect to {Fn}. If T is a stopping time bounded
above by some integer K, then E[Mn] = E[Mk].

The stopping theorem tells us that there is no beating a fair game. Intuitively, it
says that on average, a gambler leaves a fair game with the same amount of money
as when he started.

Definition 1.24. Suppose ∆1,∆2, . . . is an adaptable sequence with respect to
{Fn}n∈N, and E[∆2

n] < ∞ for all n. We define the discrete stochastic integral as

Zn =

n∑
j=1

∆j(Mj −Mj−1).(1.25)

We can think of ∆j as a betting strategy on the Drunkard’s walk, in which we
have some bet predicting whether the interval Mj − Mj−1 will go up or down.
Thus, the discrete stochastic integral describes the winnings in our game. We give
without proof the following properties.

Proposition 1.26. The discrete stochastic integral described in (1.25) satisfies the
following:

(1) (Martingale Property) the integral Zn is a martingale with respect to {Fn};
(2) (Linearity) suppose ∆n and Θn are adaptable sequences with a, b real num-

bers, then
n∑

j=1

(a∆j + bΘj)(Mj −Mj−1) = a

n∑
j=1

∆j(Mj −Mj−1) + b

n∑
j=1

Θj(Mj −Mj−1);

(3) (Isometry)

Var

 n∑
j=1

∆j(Mj −Mj−1)

 =

n∑
j=1

E[∆j ]
2.

This next theorem provides insight into the behaviors of martingales motion in
the long term.

Theorem 1.27. (Martingale Convergence Theorem) Suppose Mn is a martingale
with respect to {Fn}n∈T and there exists a constant C < ∞ such that E[|Mn|] ≤ C
for all n. Then there exists a random variable M∞ such that with probability one,

lim
n→∞

Mn = M∞.

We give the beautiful proof for discrete martingales by Greg Lawler in [7].

Proof. LetM0,M1, . . . be a martingale with respect to its natural filtration {Fn}n∈N0
.

We claim that if a < b are real, then Mn cannot infinitely fluctuate above b and
below a. Define

S1 = min{n |Mn ≤ a}, T1 = min{n > S1 |Mn ≥ b}
as stopping times denoting S1 as the first time the martingale drops below a and
T1 as the first time after S1 the martingale rises above b. For j > 1, define

Sj = min{n > Tj−1 Mn ≤ a}, Tj = min{n > Sj Mn ≥ b}.
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Define the discrete stochastic integral as

Wn =

n∑
k=0

∆k[Mk −Mk−1],

where ∆n is a “bet” we make such that ∆n = 0 if n− 1 < S1 (we don’t buy if the
“price” of the martingale hasn’t dropped below a), ∆n = 1 if Sj ≤ n− 1 < Tj (we
“buy” if the price just dropped below a) and ∆n = 0 if Tj ≤ n − 1 < Sj+1 (we
“sell” once the price rises above b). Define the number of fluctuations between a
and b as

Un = j, Tj < n ≤ Tj+1.

Thus, since each Uj results in a profit of at least b− a, we have that

Wn ≥ Un(b− a) + (Mn − a),(1.28)

where the last term represents the loss of holding the asset at the present. By
Proposition 1.26, Wn is a martingale, and thus by Theorem 1.23, E[Wn] = E[W0] =
0. Therefore, taking expectations of (1.28), we have that, for every n,

E[Un] ≤
E[a−Mn]

b− a
≤ |a|+ E[|Mn|]

b− a
≤ |a|+ C

b− a
< ∞.

Thus, since lim
n→∞

E[Un] < ∞, a result from measure theory2 shows that lim
n→∞

Un <

∞, implying a finite number of fluctuations. □

Remark 1.29. The definition of a continuous-time martingale is analogous to the
discrete-time martingale, with the distinction that T = [0,∞). It is not hard to
show that the two above theorems hold for continuous-time martingales.

Definition 1.30. Let {Xt}t∈T be a process and suppose ΠN = {0 = tN0 < tN1 <
· · · < tNN = t} is a partition of T by stopping times {tNi }i,N∈N. Suppose further that
∥Π∥ → 0 as N → ∞. We define the quadratic variation of Mt to be

N∑
i=1

(MtNi+1
−MtNi

)2 → ⟨M⟩t

as N → ∞.

The rest of the paper focuses on a specific example of a continuous-time martin-
gale: Brownian motion.

2. Brownian Motion

We first define Brownian motion and then provide intuition for it.

Definition 2.1. A continuous adapted process {Bt}t∈[0,∞) taking values in Rd is

called a (d-dimensional) Brownian motion with drift m and variance σ2 if, for all
0 = t0 < t1 < · · · < tn, we have that

(1) B0 = 0;
(2) the distribution of {Bti+1 −Bti}n−1

i=0 is normal with

Bti+1
−Bti ∼ N(m(ti+1 − ti), σ

2(ti+1 − ti));

(3) Bti+1
−Bti is independent of Fti .

2If f is measurable and
∫
fdµ < ∞, then f < ∞ a.s.
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We often make use of the standard Brownian motion, which is a Brownian motion
with drift 0 and variance 1.

2.1. Drunkard’s Walk. To construct a continuous random motion, it is helpful
to first construct the discrete case. A drunkard’s walk, or symmetric random walk,
is the stochastic process {Mn}n∈T defined in Example 1.9, with the change that we
let ω = ω1ω2 . . . be an infinite sequence of coin tosses instead of a finite one. We
allow the tosses happen every ∆t time increment.

Proposition 2.2. The drunkard’s walk satisfies the following properties:

(1) if 0 = k0 < k1 < · · · < kn are integers, then the random variables {Bti+1
−

Bti}n−1
i=1 are independent with mean 0 and variance ki+1 − ki;

(2) the drunkard’s walk is a martingale;
(3) the quadratic variation of the drunkard’s walk is

⟨M⟩k =

k∑
j=1

(Mj −Mj−1)
2 = k.

Proof. We use Propostion 1.21.

(1) The first proposition is immediate by construction.
(2) Let m < n be natural numbers, then

E[Mn|Fm] = E[(Mn −Mm) +Mm|Fm]

= E[(Mn −Mm)|Fm] + E[Mm|Fm]

= E[(Mn −Mm)] +Mm = Mm.(2.3)

Where the equalities in (2.3) hold due to independence, Mm being Fm

measurable, and the first property.

(3) For any j, Mj −Mj−1 = ±1, and thus

k∑
j=1

(±1)2 = k.

□

Remark 2.4. We can approximate Brownian motion as a limit of the Drunkard’s
walk where the speed of coin tosses is increased and the step size is decreased, we
define a scaled random walk by

W
(N)
Nt =

1√
N

MNt,

where N is a fixed integer, Nt is an integer, and 1√
N

is the step size of the walk.

We prove a few properties of Proposition 2.2, now applied to the scaled random
walk, and leave the rest for the reader to check.

(1) While the expectation is still obviously 0, we need to see if the variance
remains the same. Let s < t such that Ns,Nt are integers, then

Var[W
(N)
t −W (N)

s ] = Var[
1√
N

(MNt −MNs)]

=
1

N
(Var[X1] + Var[X2] + · · ·+Var[XN(t−s)]) = (t− s).
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(2) For t ≥ 0 such that Nt is an integer,

⟨W (N)
t ⟩t =

Nt∑
j=1

[
W (N)

(
j

N

)
−W (N)

(
j − 1

N

)]2
=

Nt∑
j=1

[
1√
N

Xj

]2
= t.

Moreover, we will state, but not prove, one final theorem from [5] for the scaled
random walk.

Theorem 2.5. (Central limit) Let t ≥ 0. As N → ∞, the distribution of the scaled
random walk W (n)(t) evaluated at time t converges to the normal distribution with
mean zero and variance t.

Thus, as Figure 1 below shows, we can think of Brownian motion as the limit of
scaled random walks.

Figure 1. Drunkard’s Walk, Symmetric Random Walk, and
Brownian Motion

2.2. Lévy’s Construction of Brownian Motion. To show that there exists a
Brownian motion, we will give the Lévy construction from [6]. We first need a
preliminary lemma.

Lemma 2.6. Let {Xn}n∈N be a sequence of a.s. continuous functions which con-
verge uniformly in probability to a process X. That is, for any ϵ > 0,

lim
n→∞

P{ sup
s∈[0,t]

||Xn
s −Xs|| < ϵ} = 1

for all t. Then X is also continuous.
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We leave this lemma without proof, but note that for fixed ω, this is just a
classical uniform convergence statement. For fixed t, there exists a sub-sequence in
n such that convergence is almost sure. We can now build a Brownian motion.

For n ∈ N0, define

Dn := { k

2n
|k ∈ N},

D0 = N. Then we have that D =
⋃
n

Dn is the set of Dyadic rationals. Let {Zm}m∈D

be a collection of random variables such that Zm ∼ N(0, 1), and Z0 = 0. Determine
the value of the nth approximation Xn

t on t ∈ Dn by defining

X0
t =

∑
k∈D0:k<t

Zk.

For n > 0, define Xn
t = Xn−1

t for all t ∈ Dn−1. For t ∈ Dn \Dn−1, let

Xn
t = Xn−1

t +
Zt

2n+1
(2.7)

and use linear interpolation to define Xn
t for all value of t. We can now formally

interpolate between {Xn
t }t∈Dn

:

Xn
t = Xn

⌊t⌋n +
t− ⌊t⌋n

⌈t⌉n − ⌊t⌋n
(Xn

⌈t⌉n −Xn
⌊t⌋n)

where ⌊t⌋n is the maximum s ∈ Dn less than t, and ⌈t⌉n is defined similarly.

Theorem 2.8. The processes Xn defined in (2.7) converge, in its natural filtration,
a.s. uniformly to a process Brownian motion starting at zero.

Proof. First we will show convergence. By construction, we have that

sup
s∈[0,t]

||Xn
s −Xn+1

s || = max
s∈{Dn+1\Dn|s<t}

|| Zs

2n+1
||.

Note that {Dn+1 \Dn|s < t} has t2n elements. Let F (x) := P{||Zs||2 ≤ x} be the
distribution function of ||Zs||2.3 Then

P{ sup
s∈[0,t]

||Xn
s −Xn+1

s || > ϵ} = P{ max
{Dn+1\Dn|s<t}

||Zs|| > 2n+1ϵ}

≤
∑

s∈{Dn+1\Dn|s<t}

P{||Zs|| > 2n+1ϵ}

= t2n(1− F (22n+2ϵ2))

= t2n exp{−22n+1ϵ2}
≤ te−n < ∞.

Where the last inequality stands since as n → ∞, we can choose N large enough
such that N(ln(2) + 1) < 22N+1ϵ2, and thus the inequality hold for n > N. Thus,
by Borel-Cantelli (Lemma 1.13), we have that

P{ sup
s∈[0,t]

||Xn
s −Xn+1

s || ≥ ϵ for infinitely many n} = 0.

By Lemma 2.9, Xn converges uniformly on [0, t] and so thus Xt is a continuous
process.

3It is known that ||Zs||2 has a χ2−distribution with d = 2, and thus F (x) = 1− e
−x
2 .



12 AGUSTÍN ESTEVA

Now we prove that Xt is a Brownian motion. For s, t such that ⌈s⌉n < t,
t ∈ Dn \ Dn+1, we know that Zt is independent of Fs = σ(Xu|u ≤ s) since Zt is
not involved in the construction of Xs. Moreover,

Xt −Xs = X0
t −X0

s =
∑

k∈D0:s<k<t

Zk ∼ N(0, (t− s))

and Xt − Xs is independent of Fs by the above logic. If the result holds for any
s, t ∈ Dn, then if u ∈ Dn+1 \Dn,

Xu −X⌊u⌋n =
X⌈u⌉n +X⌊u⌋n

2
+

Zu

2n+2
=

2−(n+1)Z⌈u⌉n
2

+
Zu

2n+2
∼ N(0,

1

2n+1
).

Similarly, we have that X⌈u⌉n −Xu ∼ N(0, 1
2n+1 ). Both intervals are independent

of F⌊u⌋n . Thus, for all s, t ∈ Dn+1,

Xt −Xs = (Xt −X⌊t⌋n) + (X⌊t⌋n −X⌈s⌉n) + (X⌈s⌉n −Xs) ∼ N(0, (t− s)).

The first two terms of the sum are independent of F⌈s⌉n , and thus independent of
Fs. The last is independent of both F⌊s⌋n and Xs −X⌊s⌋n . To prove that X⌈s⌉n is
independent of Fs, simply write

Fs = F⌊s⌋n ∨ σ(Xs −X⌊s⌋n) ∨ σ(Zu|u ∈ (⌊s⌋n), s).
Thus, by inducting, we see that for any Dn ∈ D, if s, t ∈ Dn+1, we have that
Xt −Xs is normally distributed and independent of Fs.

Finally, if s < t, we can find sequences sn ↓ s and tn ↑ t with sn, tn ∈ Dn and
sk ≤ tk for some k ≥ 0. Then Xtn −Xsn ∼ N(0, (tn − sn)) and by continuity of X,
we have that

Xt −Xs = Xtk −Xsk +

∞∑
n=k+1

(Xtn −Xtn−1
−Xsn +Xsn−1

) ∼ N(0, (t− s)).

Thus, X is a Brownian motion starting at zero (by construction) in its natural
filtration. □

2.3. Brownian Motion. Having now showed the existence of Brownian motion,
we can talk about some of its properties.

Theorem 2.9. Brownian motion is a martingale.

The proof of the theorem is identical to its discrete version in Proposition 2.2.
This theorem now allows us to apply Theorems 1.23 and 1.27 to Brownian motion.

From now on, it is implied that the index time of the processes T is the continuous
set [0,∞).

Theorem 2.10. (Markov Property) Let Bt be a Brownian motion and T a stopping
time with P{T < ∞} = 1. Then the process defined by

Yt = BT+t −BT

is a standard Brownian motion with respect to the filtration {FT }.

Intuitively, the Markov Property states that stopping the Brownian motion at
any time T and starting it up again creates a Brownian motion independent of its
past. Thus, Brownian motion is “memory-less.” We provide a result for Brownian
motion which is often used to compute specific probabilities associated with the
randomness.
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Corollary 2.11. (Reflection Principle) If Bt is a standard Brownian motion with
B0 = 0, then for every a > 0,

P{max
0≤s≤t

Bs ≥ a} = 2P{Bt > a}.

Proof. Let τa be the first time Bt hits a, that is, Bτa = a. Then we know that

P{max
0≤s≤t

Bs ≥ a} = P{τa < t}.

Moreover, we have that

P{Bt > a} = P{τa < t and Bt > a}
= P{τa < t}P{Bt −Bτa > 0 | τa < t.}

By Theorem 2.10, we know that the probability of Yt = Bt −Bτa being positive is
equal to it being negative, since it is a Brownian motion. Thus,

P{Bt −Bτa > a | τa < t} =
1

2
.

□

It is easy to show that if f is C1, that is, f has a continuous derivative, then
its quadratic variation is zero. Later on, we will see that quadratic variation is the
source for the volatility term in the Black-Scholes-Merton PDE. The next theorem
provides us with a useful characterization of Brownian motion that provides much
meaning to the Itô-Doeblin formulas.

Theorem 2.12. Let B be a Brownian motion. Then ⟨B⟩t = t for all t ≥ 0 a.s.

Proof. Suppose T is a stopping time and 0 ≤ t ≤ T. Let Π = {t0, t1, . . . , tn} be a
partition of [0, T ]. It suffices to show that the sampled quadratic variation,

QΠ =

n−1∑
j=0

(
Btj+1

−Btj

)2
converges to T as ∥Π∥ → 0. To do this, we must conclude that E[QΠ] → T and
Var[QΠ] → 0. Note that because the intervals are independent normal variables
with mean zero, we have that the variance of the intervals is

E
[(
Btj+1

−Btj

)2]
= tj+1 − tj .

To compute E[QΠ], we use the linearity of expectation and bring it inside the
telescoping sum, giving E[QΠ] = T.
To see that the variance of QΠ converges to 0, note that4

Var
[(
Btj+1

−Btj

)2]
= E

[[(
Btj+1

−Btj

)2 − (tj+1 − tj)
]2]

= E
[(
Btj+1

−Btj

)4]
− 2(tj+1 − tj)E

[(
Btj+1

−Btj

)2]
+ (tj+1 − tj)

2

= 3(tj+1 − tj)
2 − 2(tj+1 − tj)

2 + (tj+1 − tj)
2(2.13)

= 2(tj+1 − tj)
2.

4We use a well known fact, known as normal kurtosis, to derive the first term in (2.19). Read
more about it in Exercise 3.3 of [5]
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Again, using the linearity of variance, we obtain

Var[QΠ] =

n−1∑
j=0

2(tj+1−tj )
2 ≤ 2∥Π∥

n−1∑
j=0

(tj+1 − tj) = 2∥Π∥T.

Thus, as ∥Π∥ → 0, we conclude that Var[QΠ] → 0. □

We conclude the section with a dilemma. A known result in stochastic analysis
is a theorem stating that Brownian motion is nowhere differentiable. The proof,
which can be found on pages 48-55 of [7], deals with the fact that Brownian motion
is α−Hölder continuous for α < 1

2 . Intuitively, if one could determine the derivative
of a Brownian motion B at time t by looking at Bs, 0 ≤ s ≤ t, then the derivative
would provide information on Bt+∆t − Bt, contradicting Definition 2.1’s indepen-
dence statement. Thus, how could Doeblin and Itô talk about dXt in (1.2)? The
answer lies in the foundations of stochastic calculus: the stochastic integral.

3. Stochastic Calculus

Now that we have introduced Brownian motion, we can look at some of the tools
which will be used in order to utilize Brownian motion in finance in section 5.

3.1. The Itô-Integral. We shall finally make sense of (1.1), and with it, (1.2).
To do this, it will be helpful to first recall a construction of the classic Riemann
integral.

Definition 3.1. Suppose f : [a, b] → R is a continuous function, and Π is a
partition of [a, b] with a = t0 < t1 < · · · < tn = b. If f is approximated by a step
function, fn(x) = f(sj), where tj−1 < t ≤ tj and sj ∈ [tj−1, tj ], then we define the
Riemann Integral by

Rt =

∫ b

a

f(x)dx = lim
n→∞

∫ b

a

fn(x)dx = lim
n→∞

n∑
j=1

f(sj)(tj − tj−1).

We can now compare this definition with the definition of the stochastic integral,
often referred to as an Itô integral.

Definition 3.2. Let Bt be a Brownian motion and suppose {Xj}j∈[n] is a stochastic
process adapted to a filtration {Ftj}, with 0 = t0 < t1 < · · · < tn = t < ∞, and

E[X2
j ] < ∞. We say a ∆t is a simple process if ∆t = Xj , where tj ≤ t < tj+1. We

define the Itô integral by

It =

∫ t

0

∆sdBs =

j−1∑
i=0

∆i[Bti+1 −Bti ] + ∆j [Bt −Btj ] =

j∑
i

∆ti [Bti+1∧t −Bti∧t].

(3.3)

Intuition for the stochastic integral can be gained by regarding Bt as a Brow-
nian motion modeling the price per share of some asset at time t, and thinking
of t0, t1, . . . , tn as trading dates for the asset. It is natural to assume a position
taken in the asset at each trading date, and thus ∆t is simple and adapted to the
information known at time t, that is, Ft. Thus, I(t) = It models the gains from
trading at each time t.

Proposition 3.4. The Itô integral defined in (3.3) satisfies the following properties:

(1) It is a martingale;
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(2) (Itô Isometry)

E[I2t ] = E
[∫ t

0

∆2
sds

]
;(3.5)

(3) if a, c are constants and At, Ct are simple processes, then aAt + cCt are
simple processes and∫ t

0

(aAs + cCs)dBs = a

∫ t

0

AsdBs + c

∫ t

0

CsdBs;(3.6)

(4) (Quadratic Variation)

⟨I⟩t =
∫ t

0

∆2
sds.(3.7)

Proof. (1) Let tℓ < tk such that tℓ, tk ∈ Π, where s ∈ [tℓ, tℓ+1), and t ∈ [tk, tk+1).
Rewriting (3.3) gives

It =

ℓ−1∑
j=0

∆tj [Btj+1
−Btj ]

+ ∆tℓ [Btℓ+1
−Btℓ ]

+

k−1∑
j=ℓ+1

∆tj [Btj+1
−Btj ]

+ ∆tk [Btk+1
−Btk ]

(3.8)

We proceed by taking conditional expectations of each term in (3.8). Because
tℓ < s, then the terms in the first sum in (3.8) are Fs measurable. Thus, the first
sum remains the same after taking the conditional expectation.

For the second sum in (3.8), since we know that Bt is a martingale by Theorem
2.9, we have that

E[∆tℓ [Btℓ+1
−Btℓ ] | Fs] = ∆tℓ [E[Btℓ+1

| Fs]−Btℓ ] = ∆tℓ [Bts −Btℓ ].

Thus, adding the first two terms yields Is. The third sum, whose time-terms are
greater than s, yields by the tower property of expectation that

E
[
∆tj [Btj+1

−Btj ] | Fs

]
= E

[
E
[
∆tj [Btj+1

−Btj ] | Ftj

]
| Fs

]
= E

[
∆tj [E[Btj+1 | Ftj ]−Btj ] | Fs]

]
= E

[
∆tj [B(tj)−B(tj) | Fs]

]
= 0.

By the same logic, the fourth term is also 0. We conclude that E[It|Fs] = Is.

(2) We must prove that the expectation of the cross terms in I2t is zero. For
i < j,

E
[
∆ti∆tj (Bti+1∧t −Bti∧t)(Btj+1∧t −Btj∧t)

]
= E

[
E
[
∆ti∆tj (Bti+1∧t −Bti∧t)(Btj+1∧t −Btj∧t)

]
| Ftj

]
= E

[
∆ti∆tj (Bti+1∧t −Bti∧t)E

[
(Btj+1∧t −Btj∧t) | Ftj

]]
= 0,

and for the remaining terms, we recognize that E
[
(Bti+1∧t −Bti∧t)

2
]
is the variance

of the Brownian increment (Bti+1∧t−Bti∧t), which is defined to be (ti+1∧t)−(ti∧t).
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Thus, since all the cross products are zero,

E
[
(It)

2
]
= E

[
n∑
i

∆2
ti [Bti+1∆t −Bti∆t]

2

]
= E

[
n∑
i

∆2
ti [(ti+1 ∧ t)− (ti ∧ t)]

]

= E
[∫ t

0

∆2
sds

]
.

(3) This property is immediate from the definition.
(4) Suppose [tj , tj+1] is a sub-interval on which ∆t is constant, and let Π =
{s0, s1, . . . , sm} be a partition of the subinterval. Then,

m−1∑
i=0

[
Isi+1

− Isi
]2

= ∆2
tj

m−1∑
i=0

[
Bsi+1

−Bsi

]2 −−−−−→
∥Π∥→0

∆2
tj (tj+1 − tj).(3.9)

Since ∆(t) is constant on tj ≤ t ≤ tj+1, (3.9) is equal to
∫ tj+1

tj
∆2

sds, and so we

obtain (3.7) by adding up all the time intervals. □

We can now generalize (3.3) by approximating the simple processes, loosening
our definition of the stochastic integral.

Definition 3.10. Suppose {∆t} is a continuous process adapted to the filtration
{Ft}t∈[0,∞), and suppose further that ∆t ∈ L2(Ω,F ,P).5 Let ∆n

t be a sequence of
simple process such that

lim
n→∞

E

[∫ T

0

|∆n
t −∆t|2dt

]
= 0.

We define the Itô Integral by∫ t

0

∆sdBs = lim
n→∞

∫ t

0

∆n
s dBs.(3.11)

The existence of such a simple process comes from the completeness of L2, of
which the reader can explore more in [6]. We leave as a fact that this definition
satisfies Proposition 3.4.

Remark 3.12. We can know define the stochastic differential equation, or SDE,
to be the differential equation

dIt = ∆tdBt

satisfying

It = I0 +

∫ t

0

∆sdBs.

Thus, an SDE means nothing more than formal notation for the stochastic integral,
which is well defined.

Definition 3.13. Let Bt be a Brownian motion. We say that {Xt}t∈T is an Itô
process if it satisfies

Xt = X0 +

∫ t

0

msds+

∫ t

0

σsdBs,

5We refer to L2 as the space of Borel-measurable functions such that ∥f∥2 =
(∫

|f(x)|2dµ
) 1

2 <

∞. One can read more about Lp spaces in [4].
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where mt and σt are adapted processes in L2. In other words, Xt satisfies

dXt = mtdt+ σtdBt.(3.14)

Remark 3.15. Note that (3.14) is a general version of the geometric Brownian
motion described by (1.3). One can see this by letting mt = mXt and σt = σXt.
Moreover, if Xt is a geometric brownian motion, then one can use Proposition 3.4
to see that d⟨X⟩t = σ2

tX
2
t .

Note that for the following theorem, a function f being Cn in a variable x de-
scribes that the nth derivative of f with respect to x exists and is continuous.

Theorem 3.16 is a less-generalized version of the Itô-Doeblin formula. This for-
mula is known as the fundamental theorem of stochastic calculus since it can be
easily used to find solutions to stochastic differential equations. Moreover, the
Black-Scholes model can be easily derived in a few lines using the Itô-Doeblin for-
mula6.

Theorem 3.16. Let Xt be a Brownian motion and φ be a real valued function
which is C1 in t and C2 in x. Then

φ(t,Xt) = φ(0, X0) +

∫ t

0

∂tφ(s,Xs)ds+

∫ t

0

∂xφ(s,Xs)dXs +
1

2

∫ t

0

∂xxφ(s,Xs)ds.

(3.17)

We will prove this for the single variable case, where

φ(Xt) = φ(X0) +

∫ t

0

φ′(Xs)dXs +
1

2

∫ t

0

φ′′(Xs)ds.

Proof. Consider that by expanding φ into a second order Taylor series, we have
that

φ(y)− φ(x) = φ′(x)(y − x) +
1

2
φ′′(x)(y − x)2 + o

(
(y − x)2

)
.

Let Π = {t0, t1, . . . , tn} be a partition on [0, t], and thus

φ(Xt) = φ(X0) +

∞∑
i=0

(φ(Xti+1)− φ(Xti))

= φ(X0) +

∞∑
i=0

[
φ′(Xti)(Xti+1 −Xti)

+
1

2
φ′′(Xti)(Xti+1

−Xti)
2 + o

(
(Xti+1 −Xti)

2
) ]

.

(3.18)

If XΠ
t = Xt, then for t ∈ [ti, ti+1], φ

′(XΠ
t ) −−−−−→

∥Π∥→0
φ′(Xt) a.s. This holds for φ

′′ as

well. Note that both φ′(XΠ
t ) and φ′′(XΠ

t ) are adapted processes.

For the first of the three sums in (3.18)’s right hand side, since φ′(XΠ) is a
continuous adapted process, then as ∥Π∥ → 0, we get by Definition 3.10 that

lim
n→∞

n∑
i=0

[φ′(Xti)(Xti+1
−Xti)] =

∫ t

0

φ′(XΠ)dXs
P−→

∫ t

0

φ′(Xs)dXs.

6While we opt for another derivation of the model using Girsanov’s theorem since it provides
more insight, the simpler derivation can be found in page 143 of [5]
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For the second sum in (3.18), let h(t) = φ′′(Bt). Since f is continuous, then there ex-
ists a step function hϵ(t) such that |h(t)−hϵ(t)| < ϵ for every t. By an analogous ar-
gument to the proof for (4) in Proposition 3.4, we can say that if π = {s1, s1, . . . , sm}
is a partition on [tj , tj+1] where hϵ is constant, then

lim
n→∞

m−1∑
i=1

hϵ(t)[Bsi+1 −Bsi ]
2 =

∫ tj+1

tj

hϵ(s)ds a.s.

Moreover, consider that, as ϵ → 0∣∣∣∣∣∣
n∑

j=1

(h(t)− hϵ(t)) [Btj+1
−Btj ]

2

∣∣∣∣∣∣ ≤ ϵ

n∑
j=1

[Bti+1
−Bti ]

2 → 0.

Therefore,

lim
ϵ→0

1

2

∫ t

0

hϵ(s)ds =
1

2

∫ t

0

h(s)ds =
1

2

∫ t

0

φ′′(Bs)ds a.s.

For the last sum, we have that, for partitions fine enough,

o((Xti+1
−Xti)

2)) ≈ o(
1

n
) → 0,

and thus the last sum converges to zero in the limit.
□

The following theorem is the differential form of (3.17), with the change that Xt

is an Itô process instead of a Brownian motion and thus we change the third term
in the formula. The proof is similar to Theorem 3.16, but with more terms to keep
track of.

Theorem 3.19. (Generalized Itô-Doeblin Formula) Suppose that Xt is an Itô pro-
cess, Bt is a Brownian motion, and φ is C2 in x and C1 in t. Then

dφ(t,Xt) = ∂tφ(t,Xt)dt+ ∂xφ(t,Xt)dXt +
1

2
∂xxf(t,Xt)d⟨X⟩t.(3.20)

We illustrate the usefulness of the Itô-Doeblin formula by finding a strong solu-
tion to (1.3).

Example 3.21. Let Bt be a Brownian motion and {Ft} be its natural filtration.
Suppose m(t,Xt) = mt and σ(t,Xt) = σt are adapted processes in L2. Suppose
further that

Xt = X0 exp

{(
mt −

σ2
t

2

)
t+ σtBt

}
= φ(t, Bt).(3.22)

Then

∂tφ(t, Bt) =

(
mt −

σ2
t

2

)
Xt, ∂xφ(t, Bt) = σtXt, ∂xxφ(t, Bt) = σ2

tXt.

Theorem 3.19 gives

dXt =

[(
mt −

σ2
t

2

)
Xt +

1

2
σ2
tXt

]
dt+ σtXtdBt = mtXtdt+ σtXtdBt.

Thus, (3.22) is a strong solution to (1.3). We use (3.22) to model an asset price
that is non-negative, continuous, and driven by a single Brownian motion. We call
m the drift, and we say σ is the volatility.
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Remark 3.23. If mt ≡ 0, then (1.3) gives

dXt = σtXtdBt,↔ Xt = X0 +

∫ t

0

σsXsdBs,(3.24)

which is a stochastic integral, and thus a martingale.7 If mt ̸≡ 0, then Xt is not a
martingale, as if mt > 0, then Xt would have a tendency to rise; if mt < 0, then it
would have a tendency to fall. In either case, E[Xt+dt −Xt|Ft] ̸= 0, and thus Xt is
not a martingale. The Itô-Doeblin formula can be used to conclude that

Xt = X0 exp

{∫ t

0

σsdBs −
1

2

∫ t

0

σ2
sds

}
.

is a solution to (3.24).

Remark 3.25. There are a few formal rules associated with differential stochastic
calculus, such as

dBtdBt = dt, dBtdt = 0, dtdt = 0.(3.26)

The first comes from Theorem 2.12, as∫ t

0

(dBt)
2 = ⟨B⟩t = t =

∫ t

0

dt.

Similarly, we have shown that the quadratic variation of ⟨t⟩t = 0, as it is a contin-
uous process. For the remaining rule, one can show that the quadratic co-variation
⟨B, t⟩t is equally zero.

The following theorem can be easily proved with these formal rules.

Theorem 3.27. (Stochastic product rule) Suppose Xt, Yt are Itô processes as in
Definition 3.13. Then

d(XtYt) = XtdYt + dXtYt + d⟨X⟩td⟨Y ⟩t.

4. Girsanov’s Theorem and the Risk-Neutral Measure

One considers the value of a stock in the physical world by assessing the risk
attributed to it by the market. In other words, its price is associated with its risk.
If one wants to consider the fair price associated with a stock without having to
discount it for its individual risk profile, then using a risk-neutral probability will
allow any stock to be priced by taking the expected value of its payoff. Girsanov’s
theorem will tell us how Brownian motion will acquire drift when we go from the
physical measure P to a risk neutral measure P̃ as described in Example 4.4.

Suppose Mt is a martingale given by

dMt = σ(t,Mt)MtdMt, M0 = 1,

as in Remark 3.23. We define a probability measure P̃ such that if E is a Ft mea-
surable event, then P̃(E) = E[1EMt]. Thus, Mt is the Radon-Nikodym derivative

7In general, we can only conclude that if mt ≡ 0, then Xt is a local martingale (a martingale
only on specific time intervals). However, we shall make the assumption that Xt is a martingale.
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of P̃ with respect to P. This implies that if Y is an Ft measurable random variable,
then

EP̃[Y ] = E[YMt].(4.1)

We need an additional lemma before proving Girsanov’s Theorem, the proof which
can be found in the appendix.

Lemma 4.2. Let s < t and let Y be an Ft−measurable random variable, then

EP̃[Y | Fs] =
1

Ms
E[YMt | Fs].

Theorem 4.3. (Girsanov) Let Bt be a Brownian motion on a probability space
(Ω,F ,P) and let {Ft} be a filtration for Bt. If

B̃t = Bt −
∫ t

0

σ(s,Ms)ds,

then with respect to the measure P̃, which is defined above, B̃t is a standard Brow-
nian motion.

In other words, if we weight P by the martingale, then in the new measure,
the Brownian motion acquires drift σ(t,Mt). We use Levy’s characterization of a
Brownian motion (Theorem 6.1) to proof this theorem in the appendix.

Example 4.4. Suppose that Xt is a geometric Brownian motion satisfying

dXt = m(t,Xt)Xtdt+ σ(t,Xt)XtdBt

under the probability measure P, where Bt is a P−Brownian motion. Our goal is
to find a probability measure Q such that Xt satisfies

dXt = r(t,Xt)Xtdt+ σ(t,Xt)XtdWt(4.5)

under Q, where Wt is a Q−Brownian motion. If

Wt = Bt +

∫ t

0

r(s,Xs)−m(s,Xs)

σ(s,Xs)
ds,

then by plugging in the differential dBt into the geometric Brownian motion, we
arrive at (4.5). Thus, we must define dQ = MtdP, where Mt is the Radon-Nikodym
derivative of Q with respect to P satisfying

dMt =
r(s,Xs)−m(s,Xs)

σ(s,Xs)
MtdBt, M0 = 1.

Thus, by Girsanov’s theorem, Wt is a Q−Brownian motion. We call Q the risk-
neutral measure since under Q, dXt has a drift of r, which is the risk-free interest
rate in the Black-Scholes-Merton equation.

5. Financial Applications: The Black-Scholes-Merton Model

We can now begin discussing the financial applications of stochastic calculus.
Suppose the price of a stock, St, is a geometric Brownian motion satisfying

dSt = m(t, St)Stdt+ σ(t, St)StdBt.
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Suppose further that we are engaged in a European call option in which, at the
expiry time T, an agent has the right (but not the obligation), to buy a share of
the stock at price K. Thus, the value of the option at time T is

F (ST ) = (St −K)+ = max{St −K, 0}.

The seller is at an obvious disadvantage here. If St ≤ K, then the buyer won’t
exercise the option and he will have missed out on K − St dollars, and if St > K,
then he should have held on to the stock instead! The game of the Black-Scholes-
Merton equation is to find the value of the option at any time 0 < t ≤ T in order
for the seller to charge a premium and not lose out on money.

More generally, if φ(t, St) denotes the value of an option with payoff F (T, ST ),
then if φ(T, ST ) < ST , the buyer would exercise the option and collect the payoff,
and vice-versa in the other case, creating an opportunity for arbitrage (risk-free
profit). Our model will make the assumption of an arbitrage-free market, implying
that φ(T, ST ) = F (ST ). We are interested in how we can insure that the value of
our portfolio (a collection of stocks and bonds in this case) ends up with the same
payoff as F (ST ), and thus we must decide what to do with our portfolio before time
T to guarantee this. If we can build a portfolio that is self-financing (there are no
outside resource added to the portfolio) and with the same payoff as F (ST ), then
we could hedge (insure) the risk of this option before time T . If ∆t denotes the
number of shares of St at time t, and bt denotes the number of risk-free bonds of
price Rt held at time t, then the value of the portfolio (∆t, bt) is given by

Vt = ∆tSt + btRt.(5.1)

Another arbitrage opportunity, which we will not allow, is if Vt < φ(t, St) for some
0 ≤ t < T. The strategy in this case is to sell the option for φ(t, St), invest Vt

dollars into the stock, and the remaining φ(t, St) − Vt would go into the risk-free
bond as profit. Likewise, we do not allow Vt > φ(t, St) for any time t.

Therefore, since we always want to guarantee an arbitrage-free pricing model
which at time T yields VT = F (ST ) = φ(T, ST ), then the only option is for
Vt = φ(t, St) at all times 0 ≤ t ≤ T. Our goal then becomes in finding a strat-
egy to handle our portfolio by switching between stocks and bonds.

Suppose the risk-free bond has a rate of r(t, x). Then if Rt denotes the value of
a risk-free bond at time t,

dRt = r(t, St)Rtdt =⇒ Rt = R0 exp

{∫ t

0

r(s, Ss)ds

}
.(5.2)

Since we are discussing the future values of options in the present, we would like
to talk about the discounted stock price and discounted portfolio value, respectively
given by S̃ = 1

Rt
St, and Ṽ = 1

Rt
Vt for 0 ≤ t ≤ T.
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We define Q as in Example 4.4 to be the risk-neutral measure. Using the product
rule, we notice that under Q, the discounted stock rate satisfies

dS̃t = d(
1

Rt
St)

= d(
1

Rt
)St +

1

Rt
dSt + d⟨ 1

R
⟩td⟨S⟩t

=
−r(t,Xt)

Rt
Stdt+

r(t,Xt)Stdt+ σ(t,Xt)StdWt

Rt

= σ(t,Xt)S̃tdWt.

Where the third equality holds because 1
Rt

is a continuous function with zero qua-

dratic variation. By Example 3.23, we know that S̃t is a Q−martingale.8

We let φ(t, x) be the expected value of the option at time t, discounted for the
interest rate:

Vt = φ(t, St) = EQ

[
Rt

RT
F (ST ) | St = x

]
= EQ

[
Rt

RT
F (ST ) | Ft

]
,(5.3)

where the third equality holds because St is a Markov process (Theorem 2.10). We
assume that ϕ is C1 in t and C2 in x = St.

It is not hard to show that Ṽt is a Q−martingale, and thus by the Martingale
Representation Theorem found in the appendix as Theorem 6.2, there exists an
adapted process At such that dṼt = AtdWt. Thus,

dVt = d(RtṼt)

= d(Rt)Ṽt +Rtd(Ṽt) + d⟨R⟩td⟨Ṽ ⟩t
= dRtṼt +RtAtdWt

= dRtṼt +
At

σS̃t

RtdS̃t

= dRtṼt +
At

σS̃t

[dS − S̃tdRt]

=
At

σS̃t

dS + [Ṽt −
At

σ
]dRt.

Comparing to (5.1), we conclude that ∆t =
At

σS̃t
, and bt = [Ṽt − At

σ ]. Thus, barring

the fact that At is unknown, we have found the portfolio, whose value at time t
is given by the Black-Scholes-Merton PDE. We can apply Itô-Doeblin’s formula to
(5.3).

dφ(t, St) = ∂tφ(t, St)dt+ ∂xφ(t, St)dSt +
1

2
∂xxφ(t, St)d⟨S⟩t

= ∂tφ(t, St)dt+ ∂xφ(t, St)[r(t, St)Stdt+ σ(t, St)StdWt] +
σ2S2

t

2
∂xxφ(t, St),

8We only know that S̃t is aQ−local martingale, which is a specific type of martingale. However,
we make the strong assumption here that S̃t is actually a Q−martingale.



MEASURE THEORY, STOCHASTIC CALCULUS, AND THE BLACK-SCHOLES-MERTON MODEL23

Note that x = St in all the partial derivatives. We can now compute:

dṼt = d

[
1

Rt
φ(t, St)

]
=

1

Rt

[(
−r(t, St)φ(t, St) + ∂tφ(t, St) + ∂xφ(t, St)r(t, St)St +

σ2S2
t

2
∂xxφ(t, St)

)
dt

+ ∂xφ(t, St)σ(t, St)StdWt

]
=

1

Rt
[Jt dt+At dWt] .

Since Ṽt is a martingale, then by Remark 3.27, the dt term is zero, and so we derive
the B-S-M PDE,

0 = Jt = −r(t, St)φ(t, St) + ∂tφ(t, St) + ∂xφ(t, St)r(t, St)St +
σ(t, St)

2S2
t

2
∂xxφ(t, St)

= −r(t, St)Vt +
∂Vt

∂t
+ r(t, St)St

∂Vt

∂St
+

σ(t, St)
2S2

t

2

∂2Vt

∂S2
t

.

(5.4)

By setting the risk and volatility as constant, we can derive the explicit Black-
Scholes-Merton formula as a solution to (5.4).

Theorem 5.5. Let both the interest rate and the volatility be constant. Then a
solution to the Black-Scholes-Merton PDE (5.4) in the case of a call option is
given by

Vt = StΦ


(
r + σ2

2

)
(T − t) + ln x

K

σ
√
T − t

− e−r(T−t)KΦ


(
r − σ2

2

)
(T − t) + ln x

K

σ
√
T − t

 ,

where Φ is the CDF of the standard normal distribution.

Proof. Assuming constant interest rate, we have that the value of the bond at time
t is given by Rt = ert. Example 3.21 shows that we can represent the price of the
stock by

St = S0 exp{
(
r − σ2

2

)
t+ σdWt}.

If we let τ = T − t, then using the Markov property of Wt, it can be shown that

ST = St exp{
(
r − σ2

2

)
τ + σ(WT −Wt)} = St exp{

(
r − σ2

2

)
τ − σ

√
τY },

where Y = WT−Wt√
T−t

is a standard normal variable. Therefore, we can compute an

explicit formula for (5.3) by

φ(t, St) = EQ

[
Rt

RT
(St −K)+ | Ft

]
= EQ

[
e−rτ (St exp{

(
r − σ2

2

)
τ − σ

√
τY } −K)+ | Ft

]
.



24 AGUSTÍN ESTEVA

Since St is Ft measurable and exp{
(
r − σ2

2

)
τ −σ

√
τY } is independent of Ft, then

by letting x = St,

φ(t, x) = EQ

[
e−rτ (x exp{

(
r − σ2

2

)
τ − σ

√
τY } −K)+

]
=

e−rτ

√
2π

∫ ∞

−∞
(x exp{

(
r − σ2

2

)
τ − σ

√
τy} −K)+e

− 1
2y

2

dy.

Since we only care about when the option price is positive, we can restrict the
integral such that if

d−(τ, x) =
1

σ
√
τ

[(
r − σ2

2

)
τ + ln

x

K

]
,

then

φ(t, x) =
e−rτ

√
2π

∫ d−(τ,x)

−∞
(x exp{

(
r − σ2

2

)
τ − σ

√
τy} −K)e−

1
2y

2

dy.

=
1√
2π

∫ d−(τ,x)

−∞
e−rτx exp{

(
r − σ2

2

)
τ − σ

√
τy}e− 1

2y
2

dy.− e−rτ

√
2π

∫ d−(τ,x)

−∞
Ke−

1
2y

2

dy.

=
1√
2π

∫ d−(τ,x)

−∞
x exp{σ

2

2
τ − σ

√
τy − 1

2
y2}dy.− e−rτKΦ(d−(τ, x))

=
1√
2π

∫ d−(τ,x)

−∞
x exp{−1

2
(y + σ

√
τ)2}dy.− e−rτKΦ(d−(τ, x))

=
x√
2π

∫ d−(τ,x)+σ
√
τ

−∞
exp{−1

2
u2}du.− e−rτKΦ(d−(τ, x))

= xΦ(d+(τ, x))− e−rτKΦ(d−(τ, x)),

where d+(τ, x)) =
1

σ
√
τ

[(
r + σ2

2

)
τ + ln x

K

]
. Explicitly, we derived the Black-Scholes-

Merton formula:

φ(t, St) = StΦ


(
r + σ2

2

)
(T − t) + ln x

K

σ
√
T − t

−e−r(T−t)KΦ


(
r − σ2

2

)
(T − t) + ln x

K

σ
√
T − t

 .

□

6. Appendix

Proof. (Lemma 4.2) By definition, the left hand side is the conditional expectation
of the right hand side, so it will suffice to show that the two characterizations of
conditional expectation are met as in Remark 1.20. The first is obvious, as the
right hand side is, by definition, Fs−measurable. For the second, we must show
that, if E ∈ Fs, then ∫

E

1

Ms
EP̃[YMt|Fs]dP̃ =

∫
E

Y dP̃.
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Consider that, if E is an Fs measurable set, then∫
E

1

Ms
E[YMt | Fs]dP̃ =

∫
Ω

1E
1

Ms
E[YMt | Fs]dP̃

= EP̃

[
1E

1

Ms
E[YMt | Fs]

]
= E [E[1EYMt]|Fs]

= E[1EYMs]

= EP̃[Y ]

=

∫
E

Y dP̃,

where the third and fifth equality follow from (4.1), and the fourth follows from the
fact that Mt is a martingale. □

Proofs for the following two theorems can be found in [5].

Theorem 6.1. (Levy’s characterization of Brownian motion) Let M(t), t ≥ 0, be a
martingale relative to a filtration Ft, t ≥ 0. Assume that M(0) = 0 has continuous
paths and ⟨M⟩t = t for all t ≥ 0. Then M(t) is a Brownian motion.

We provide a sketch of the proof for Girsanov’s theorem (Theorem 4.3) using
Levy’s characterization of Brownian motion.

Proof. For readability, let σ(t,Mt) = σ. By definition, B̃(0) = 0. By Theorem 2.18,
since the integral term, which is continuous, has zero quadratic variation, then
⟨B̃⟩t = t. By Theorem 6.1, it suffices to show that B̃t is a P̃−martingale.

We use the stochastic product rule (Theorem 3.27) and Remark 3.25 to show

that B̃tMt is a P−martingale.

d(B̃tMt) = B̃tdMt + dB̃tMt + dB̃tdMt

= B̃t(σMtdBt) + (dBt − σdt)Mt + (dBt − σdt)(σMtdBt)

= B̃tσMtdBt + dBtMt − σMtdt+ σMtdBtdBt − σ2MtdBtdt

= (B̃tσ + 1)MtdBt.

Since the dt term vanishes, this is just an Itô Integral, and thus the process is a
P−martingale. We finish by applying Lemma 4.2 to show that B̃t is a P̃−martingale:

EP̃[B̃t|Fs] =
1

Ms
E[B̃tMt|Fs] =

1

Ms
B̃sMs = B̃s.

□

Theorem 6.2. (Martingale Representation) Let Wt, be a Brownian motion on a
probability space (Ω,F ,P), and let Ft be the natural filtration of Wt. Let Mt be a
martingale with respect to Ft. Then there is an adapted process At, such that

Mt = M0 +

∫ t

0

AsdWt.



26 AGUSTÍN ESTEVA

7. Acknowledgments

I would like to thank my mentor, Antonis Zitridis, for answering any/all questions
and helping me find the resources necessary to write this paper. I also express
gratitude to Peter May for running the UChicago Math REU program. Moreover,
I would like to thank Daniil Rudenko, Elizaveta Shuvaeva, and Greg Lawler for
their wonderful lectures throughout the program.

References
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