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Abstract. We survey the work due to Isham, Döring, Abramsky, and others

that uses presheaves and related methods to understand strong contextuality as

it arises in quantum mechanics and elsewhere. In particular, we make explicit
the connection between the Kochen-Specker theorem in topos quantum theory

and the existence of certain strongly contextual empirical models, which in turn

relate to cohomological obstructions. We explore as well how the existence of
strongly contextual models can be used to study problems outside of quantum

mechanics, including when a set of sentences is paradoxical.
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1. Introduction

In the early 20th century, it became clear that classical mechanics was unable
to account for a wealth of observations related to the behavior of electrons within
the atom. Attempts to accommodate these discrepancies led to the development
of quantum mechanics to treat such microscopic phenomena. Although the two
theories are consistent in the sense that the classical theory holds in the macro-
scopic limit of the quantum theory, the starkly different mathematics of quantum
mechanics poses a challenge to classical intuitions.

We will delve into the particular mathematical models in Section 2, but the key
conceptual issue is the question of realism. Classical mechanics is a realist theory:
given any physical system (e.g. electrons in an atom), all of its physical properties
(e.g. position and momentum) have a definite value at any given time, regardless
of the act of measurement. Einstein is reported as indicating that realism should
hold as well for an atomic object, which is governed by quantum mechanics, as for
the Moon, which is governed by classical mechanics [13].

According to quantum mechanics, however, this is not the case. An essential
aspect of any mathematical formalism of quantum mechanics is the Heisenberg

1



2 AJ DEROSA

uncertainty principle, which states that there is a lower bound to the uncertainty of
the position x(t) and momentum p(t) of a particle. This comes from the canonical
commutation relation

[x, p] = iℏ.

More generally, there is a lower bound of uncertainty for any physical quantities
that do not commute. To this day, the meaning of the uncertainty which pervades
quantum mechanics is up for debate. Einstein, Podolsky, and Rosen (EPR) [8] ar-
gued that uncertainty arises from our inability to access some hidden part of reality
that gives rise to the part of reality we model with quantum mechanics. If that is
true, then there is some hidden variable theory that reproduces the predictions of
quantum mechanics.

In the decades following the publication of the EPR paper, physicists and mathe-
maticians including David Bohm [4], John von Neumann, Greta Hermann, and J.S.
Bell [3] published various results regarding what characteristics a hidden variable
theory could or could not have. Bohm’s work consists of the explicit construction
of a particular hidden variable theory, whereas von Neumann, Hermann, and Bell
sought generic constraints—or “no-go theorems”—for such theories. These efforts
were subsumed in 1967 by the work of Simon Kochen and Ernst Specker [11].

The Kochen-Specker theorem demonstrates the impossibility of non-contextual
hidden variable theories. Contextuality refers to the fact that the value of a physical
quantity depends on the whole set of measurements—or the measurement context—
to which a physical system is subjected. Consider the strange consequences of this
condition: the measured value of any given physical quantity is affected by the other
measurements you choose to make of the same system, even if those measurements
occur later in time.

The pursuit of a complete characterization of contextuality remains an important
problem in the mathematical foundations of quantum mechanics. Much progress
has been made on this front since Mermin [12] showed that one could obtain simple
proofs of contextuality using hypothetical scenarios later termed all-versus-nothing
scenarios. A generalization of these scenarios due to Abramsky et al. [2] makes use
of presheaf cohomology and is inspired by C.J. Isham’s topos quantum theory [7].
In this paper, we survey these two developments, which study contextuality and
quantum mechanics more broadly in a new mathematical setting—topos theory.
We aim to provide a concise and well-motivated exposition that makes clear how
the Kochen-Specker theorem inspires a new perspective on quantum theory and
how that perspective, in turn, has something new to say about the Kochen-Specker
theorem. Finally, we consider some examples of how contextuality arises outside of
quantum mechanics and how this theory can be applied in such cases.

In Section 2, we give a brief account of hidden variable theories, contextuality,
and the Kochen-Specker theorem. In Section 3, we discuss the foundations of
topos quantum theory wherein arises a sheaf-theoretic Kochen-Specker theorem.
In Section 4, we discuss how this inspires a more general sheaf-theoretic notion of
strong contextuality. In Section 5, we discuss how strong contextuality is related to
cohomological obstructions. In Sections 6 and 7, we take a step away from quantum
mechanics, and look at strong contextuality as a more general phenomenon. In
Section 6, we detail the relationship between strong contextuality and the theory
of semantic paradox; in Section 7, we speculate on a relationship with the theory
of directed graphs.
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2. Kochen-Specker theorem

In classical mechanics, there is a state space Σ and a set of observables O. The
state space is the set of all possible states in which a physical system can be. An
observable is a property of a physical system that we can measure. When we
measure an observable, we associate to it a real number, so for any state ψ ∈ Σ,
we have a valuation function λψ : O → R, where λψ(A) represents the value of
observable A given state ψ. This means that classical mechanics is not only realist
but non-contextual : the measurement context, or set of measurements actually
performed on the system, is irrelevant to the value of λψ(A) for any given A ∈ O.
We define non-contextuality formally as follows.

Definition 2.1. A theory (Σ,O) is non-contextual if every state ψ ∈ Σ determines
a valuation function λψ : O → R subject to the functional composition principle:
for any function f : R → R and observable O ∈ O,

(2.2) λψ(f(O)) = f(λψ(O)).

The functional composition principle ensures that if we, for example, measure
the momentum of a system and then square that value, we get the same result as
if we measure the squared momentum itself.

Definition 2.3. Quantum mechanics consists of

i) a state space H, which is a Hilbert space with a Hermitian inner product
⟨−,−⟩;

ii) a set of observables Osa consisting of bounded self-adjoint operators on H.

The particular choice of Hilbert space depends on the physical system in question.
For example, the spin of an electron is represented by a vector in the Hilbert space
C2. In this paper, we consider finite-dimensional Hilbert spaces.

Remark 2.4. To understand (2.2) in this context, we need to clarify what we mean

by f(Ô) for a self-adjoint operator Ô. If Ô =
∑
oiP̂i is the spectral decomposition

of Ô, then

f(Ô) :=
∑

f(oi)P̂i.

Definition 2.5. A valuation function λ : Osa → R for quantum mechanics maps
any self-adjoint operator Ô to an element of its spectrum σ(Ô) such that for all
f : R → R, the following holds

(2.6) λ(f(Ô)) = f(λ(Ô)),

where f(Ô) is defined as in Remark 2.4.

Kochen and Specker [11] set out to check whether one could actually construct
such valuation functions for quantum mechanics. If it were possible to do so, then
quantum mechanics would admit a refinement by a non-contextual hidden variable
theory and could be considered a realist theory. Their efforts culminated in the
following no-go theorem.

Theorem 2.7 (Kochen-Specker). If dimH > 2, then there does not exist a
valuation function λ : Osa → R.

In order to prove this theorem, we need the following two results regarding
operators and valuation functions.
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Lemma 2.8. Given Â, B̂ ∈ Osa such that [Â, B̂] = 0̂, there exist functions f, g : R → R
and Ĉ ∈ Osa such that Â = f(Ĉ) and B̂ = g(Ĉ).

Proof. Since [Â, B̂] = 0̂, Â and B̂ can be simultaneously diagonalized, i.e. there

is a set of projectors {P̂i} such that Â =
∑
aiP̂i and B̂ =

∑
biP̂i. Then, we can

choose some {ci} ⊆ R and let Ĉ =
∑
ciP̂i. Then, we can define f, g : R → R such

that f(ci) = ai and g(ci) = bi. Thus, Â = f(Ĉ) and B̂ = g(Ĉ). □

Lemma 2.9. For Â, B̂ ∈ Osa and valuation function λ,

λ(Â+ B̂) = λ(Â) + λ(B̂).

Proof. By Lemma 2.8, let Â = f(Ĉ) and B̂ = g(Ĉ), for some Ĉ ∈ Osa. Define
h := f + g. Then,

Â+ B̂ = f(Ĉ) + g(Ĉ) = h(Ĉ).

By two applications of (2.6), we have

λ(Â+ B̂) = λ(h(Ĉ)) = h(λ(Ĉ)) = f(λ(Ĉ)) + g(λ(Ĉ)) = λ(f(Ĉ)) + λ(g(Ĉ)).

Thus, λ(Â+ B̂) = λ(Â) + λ(B̂). □

Now we can discuss the proof of Theorem 2.7.

Proof. For ease of explanation, we will use a proof [5] that works only for dimH > 3.
For a four-dimensional Hilbert space H, we can find a set of 18 vectors such that
we can construct 9 orthonormal bases (ONBs) of H by using each of our 18 vectors
exactly twice. This is illustrated in the following diagram1, in which each column
defines an ONB. This makes it easy to check that each vector is used exactly twice.

e1 (0,0,0,1) (0,0,0,1) (1,-1,1,-1) (1,-1,1,-1) (0,0,1,0)
e2 (0,0,1,0) (0,1,0,0) (1,-1,-1,1) (1,1,1,1) (0,1,0,0)
e3 (1,1,0,0) (1,0,1,0) (1,1,0,0) (1,0,-1,0) (1,0,0,1)
e4 (1,-1,0,0) (1,0,-1,0) (0,0,1,1) (0,1,0,-1) (1,0,0,-1)

e1 (1,-1,-1,1) (1,1,-1,1) (1,1,-1,1) (1,1,1,-1)
e2 (1,1,1,1) (1,1,1,-1) (-1,1,1,1) (-1,1,1,1)
e3 (1,0,0,-1) (1,-1,0,0) (1,0,1,0) (1,0,0,1)
e4 (0,1,-1,0) (0,0,1,1) (0,1,0,-1) (0,1,-1,0)

For any ONB {e1, e2, e3, e4}, we can define a set of projectors by P̂i := eie
†
i ,

where e†i denotes the conjugate transpose of ei. Then, we can consider a valuation
function λ on these projectors.

P̂1 + P̂2 + P̂3 + P̂4 = 1̂

λ(P̂1 + P̂2 + P̂3 + P̂4) = λ(1̂)

Then by Lemma 2.9, λ(P̂1 + P̂2 + P̂3 + P̂4) = λ(P̂1) + λ(P̂2) + λ(P̂3) + λ(P̂4).

Moreover, λ(1̂) must be 1 since that is the only possible eigenvalue. Thus,

λ(P̂1) + λ(P̂2) + λ(P̂3) + λ(P̂4) = 1.

Projectors have eigenvalues of 0 and 1, so each λ(P̂i) is either 0 or 1. Thus, exactly
one such term is 1, and the rest are 0. Then, if we view λ as assigning a 0 or 1

1Reproduced from https://en.wikipedia.org/wiki/Kochen-Specker_theorem.

https://en.wikipedia.org/wiki/Kochen-Specker_theorem
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to every cell in the table above, there will be nine 1s, one for each ONB. However,
each vector appears twice in the table, so there will be an even number of 1s. Thus,
no such λ exists. □

Thus, quantum mechanics does not admit a refinement by a non-contextual hid-
den variable theory. A contextual hidden variable theory could still work, however.
For example, if λ only had to be defined over one of the ONBs from the table above,
then it would be easy to make an assignment consistent with (2.6). In general, if
a valuation function λψ depends on the context of measurements that the state ψ
undergoes, then λψ can be consistently defined. Put informally, a physical system
must “know” what measurements to which it will be subject before it can assign
values to observables.

Given that this condition is a difficult one to satisfy in a sensible way, why not
just give up realism and hidden variable theories altogether? One possible answer is
that belief in a realist interpretation of quantum mechanics is entailed by the belief
that the universe is a closed system. After all, if you don’t take a realist view of
quantum mechanics, then you need an observer for any physical system to “become
real.” Thus, there must be an observer of the universe and also an observer of that
observer and so on, ad infinitum.

So we do have an interest in studying hidden variable theories. How, then, should
we go about constructing one? Since contextuality must be a feature of any such
theory, we might as well bake it into the theory from the start, constructing a theory
where observables depend on measurement contexts and there is no consistent way
to “glue” all of these contexts together. This lead us to the mathematical framework
of a topos of (pre)sheaves, which comes with a notion of gluing together local
contexts. In the next section, we will look at how quantum mechanics can be
studied within such a framework.

3. Topos quantum theory

Roughly speaking, topos quantum theory [7],[9] is formalized in the category
of set-valued presheaves over a category of “measurement contexts,” or sets of
commuting observables that could be simultaneously measured of one system. We
formalize this with the following definitions.

Definition 3.1. A von Neumann algebra is a ∗-algebra of bounded operators on
a Hilbert space H that contains the identity and is closed in the weak operator
topology.

Definition 3.2. Given H, the category V(H) of abelian von Neumann sub-algebras
is defined as follows. The objects of V(H) are abelian von Neumann algebras V
of operators over H, and for every V, V ′ ∈ V(H) such that V ⊆ V ′, there exists a
morphism iV,V ′ : V → V ′.

The details of these definitions are not essential to understanding topos quan-
tum theory or this paper, but we should note that V(H) is a category of abelian
von Neumann algebras, so given some V ∈ V(H), every operator in V commutes.
This means that every observable represented in a given V ∈ V(H) can be mea-
sured simultaneously, which makes V a classical context. The quantum behavior
is encoded in the broader categorical structure of V(H) rather than within each
V ∈ V(H).
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Definition 3.3. Given V ∈ V(H), the Gel’fand spectrum ΣV of V is the set of

multiplicative linear functionals λ : V → C such that λ(1̂) = 1 and for all Ô ∈ V ,

λ(Ô) ∈ σ(Ô), where σ(Ô) denotes the spectrum of Ô.

We use the suggestive notation λ to imply that ΣV is the set of valuation func-
tions on V . This turns out to be the case.

Proposition 3.4. Given a V ∈ V(H), the operators in V can be simultaneously

diagonalized in some basis {ei}i∈I . Then, ΣV = {λei : Ô 7→ ⟨ei, Ôei⟩}i∈I .

Proof. We first need to check that every λei is in ΣV . By the definition of the

Hermitian inner product, every λei is linear and satisfies λei(1̂) = 1, so we just
need to check that λei is multiplicative:

λei(ÂB̂) = ⟨ei, ÂB̂ei⟩ = ⟨ei, Âλei(B̂)ei⟩ = λei(B̂) ⟨ei, Âei⟩ = λei(Â)λei(B̂).

Next, we need to show that any multiplicative linear functional λ : V → C with
λ(1̂) = 1 is a map of the form Ô 7→ ⟨ei, Ôei⟩. On account of linearity, we can

characterize any given λ ∈ ΣV by its action on projectors {eie†i}i∈I . For i ̸= j,

λ
(
(eie

†
i )(eje

†
j)
)
= λ(eie

†
ieje

†
j) = λ(0̂) = 0.

Thus by multiplicativity, either λ(eie
†
i ) = 0 or λ(eje

†
j) = 0. This means that λ

is non-zero for at most one element of {eie†i}i∈I . The case where λ is zero for all

elements of {eie†i}i∈I violates the condition λ(1̂) = 1, so we suppose that for some

eie
†
i , we have λ(eie

†
i ) ̸= 0. (Accordingly, for all j ̸= i, we have λ(eje

†
j) = 0.) Then,

by linearity, for any Â =
∑
j∈I aieje

†
j , we have λ(Â) = aiλ(eie

†
i ). Then,

λ(Â)λ(eie
†
i ) = λ(Âeie

†
i ) = λ

∑
j∈I

aieje
†
jeie

†
i


= λ(aieie

†
i ) = aiλ(eie

†
i ) = λ(Â).

Thus, λ(eie
†
i ) = 1, so λ is the map Â 7→ ⟨ei, Âei⟩. □

Corollary 3.5. Every λ ∈ ΣV satisfies (2.2) for all operators in V .

Proof. Fix some λei ∈ ΣV , Ô ∈ V , and function f : R → R. Note that we can

write Ô =
∑
j∈I ojeje

†
j . Then,

λei(f(Ô)) = ⟨ei, f(Ô)ei⟩ = f(oi) = f
(
⟨ei, Ôei⟩

)
= f(λei(Ô)).

□

Corollary 3.6. If λ : Osa → R satisfies (2.2) for all self-adjoint operators in V ,
then λ ∈ ΣV .

Proof. Suppose λ /∈ ΣV . Then there exist Â, B̂ ∈ V such that λ(Â) = ai and

λ(B̂) = bj for i ̸= j, i.e. λ assigns two different operators to the eigenvalues

associated with two different eigenvectors. Define f : R → R such that f(Â) = B̂.
Then, by (2.2),

λ(f(Â)) = f(λ(Â)) = f(ai) = bi,
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but

λ(f(Â)) = λ(B̂) = bj .

So we have a contradiction. Thus, λ ∈ ΣV . □

Recall that in a realist theory valuation functions are associated to states, so
we can consider ΣV as the set of states in which a system can be if the system
is measured in the context V . Then, we define the state space of topos quantum
theory by putting all the Gel’fand spectra together with the following definition.

Definition 3.7. The spectral presheaf Σ : V(H)op → Set maps

i) every context V to its Gel’fand spectrum ΣV ;
ii) every morphism iV ′V : V ′ → V to the restriction map given by

Σ(iV ′V ) : Σ(V ) → Σ(V ′)

λ 7→ λ|V ′ .

Since Σ is the analogue of the state space, then there should be an analogous
result to the Kochen-Specker theorem. To state this result, we need the following
notion.

Definition 3.8. A global section of a presheaf X : C op → Set is a natural trans-

formation γ : 1 → X, where 1 denotes the terminal presheaf in SetC op

. whose
components are given by elements γA({∗}) ∈ X(A). Since γ is a natural transfor-
mation, this is subject to the condition that if there is some f : B → A in C , then
X(f)(γA({∗})) = γB({∗}).

Theorem 3.9. The Kochen-Specker theorem is equivalent to the following: for
dimH > 2, the spectral presheaf Σ has no global sections.

Proof. We need to show that a global section of Σ exists if and only if a valuation
function λ : Osa → R satisfying (2.2) exists.

Suppose that a global section γ of Σ exists. For any Ô ∈ Osa, there is some
V ∈ V(H) such that Ô ∈ V . Define λ by λ(Ô) := γV (Ô). We need to check that

this is well-defined. Consider some W such that Ô ∈W but V ̸=W . Then,

i) V ∩W ⊆ V , so γV ∩W (Ô) = Σ(iV ∩W,V )(γV )(Ô) = γV (Ô), and

ii) V ∩W ⊆W , so γV ∩W (Ô) = Σ(iV ∩W,W )(γW )(Ô) = γW (Ô).

Thus, γV (Ô) = γW (Ô), so λ is well-defined. We need to check that λ satisfies (2.2).

Fix some V ∈ V(H), Ô ∈ V and f : R → R. Note that since f(Ô) is defined via

the spectrum of Ô, f(Ô) is either in V , in a superset of V , or in a subset of V—it

commutes with every operator in V . Then, pick some V ′ ⊇ V such that Ô ∈ V ′

and f(Ô) ∈ V ′. Then,

λ(f(Ô)) = γV ′(f(Ô)) = f(γV ′(Ô)) = f(λ(Ô)),

where the middle equality comes from Corollary 3.5. Thus, λ satisfies (2.2).
Alternatively, suppose that there exists a λ : Osa → R satisfying (2.2). Then

by Corollary 3.6, for any V ∈ V(H), λ|V ∈ ΣV . Define a global section γ of Σ by
γV := λ|V . We just need to check that this is a global section. Take some V ′ ⊆ V .
Then,

Σ(iV ′,V )(γV ) = γV |V ′ = (λ|V )|V ′ = λ|V ′ = γV ′ .

Thus, γ is a global section of Σ. □
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On account of the existence of weaker forms of contextuality—see Bell’s theorem
[3] and Hardy states [10]—the kind of contextuality linked to the Kochen-Specker
theorem is called strong contextuality. Theorem 3.9 suggests that strongly contex-
tual scenarios can be studied in terms of global sections of certain presheaves. This
suggestion inspires the following generic framework for studying strong contextual-
ity.

4. Strong contextuality

A sheaf-theoretic characterization of strong contextuality in terms of strongly
contextual empirical models is due to Abramsky et al. [2]; we summarize this work
and then show that the existence of a certain strongly contextual empirical model
suffices to prove the Kochen-Specker theorem.

Definition 4.1. A measurement scenario (X,M, O) consists of a finite set X
of measurements, a finite set O of outcomes, and a measurement cover M of X
consisting of measurement contexts C ⊆ X such that

i)
⋃
C∈M C = X;

ii) if C,C ′ ∈ M and C ⊆ C ′, then C = C ′.

We denote the power set (the set of all subsets) of X by P(X) and we view P(X)
as a poset ordered by subset inclusion.

Definition 4.2. Given a measurement scenario (X,M, O), the event presheaf
E : P(X)op → Set maps

i) every U ⊆ X to the set E(U) := hom(U,O);
ii) every iU ′,U : U ′ → U to the map

E(iU ′,U ) : E(U) → E(U ′)

t 7→ t|U ′

where the restriction is just the restriction of the function t : U → O to
U ′ ⊆ U .

Note that E is a sheaf if we give P(X) the discrete topology.

Definition 4.3. Given a measurement scenario (X,M, O), an empirical model S
is a subpresheaf of E such that for any C ∈ M, S(C) ̸= ∅ and such that S is flasque
below the cover, i.e. for any U ′ ⊆ U ⊆ C ∈ M, the map S(iU ′,U ) : S(U) → S(U ′)
is onto.

Definition 4.4. An empirical model S is strongly contextual (denoted SC(S)) if it
has no global sections.

Proposition 4.5. A global section γ of S is an element of S(X).

Proof. Fix a global section γ : 1 → S. Since X ∈ P(X), there is some component
γX ∈ S(X). For any U ⊆ X and any x ∈ U , we must have γU (x) = γX(x), so all
components of γ are defined by γX .

Alternatively, if there exists some g ∈ S(X), this defines a global section by
γU := g|U . Thus, a global section of S is equivalent to an element of S(X). □

The following definition relates the data of the spectral presheaf Σ and an em-
pirical model S in such a way that we can use strong contextuality to prove the
Kochen-Specker theorem.
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Definition 4.6. Given H, a quantum measurement scenario is a measurement
scenario (X,M, O) such that X is a finite subset of self-adjoint operators on H and
O is the set of all possible outcomes of these operators, i.e.

O :=
⋃
Ô∈X

σ(Ô).

Theorem 4.7. Given an empirical model S defined over a quantum measurement
scenario, if S is strongly contextual, then the spectral presheaf Σ has no global
sections.

Proof. Suppose for sake of contradiction that there exists a global section γ of Σ.
As shown in Theorem 3.9, this defines a function λ : Osa → R. We can define
g ∈ S(X) by g := λ|X . Then, S(X) is non-empty, so we have a contradiction.
Thus, there are no global sections of Σ. □

Theorem 4.7 links the sheaf-theoretic framework of strong contextuality with
Theorem 3.9 and thus with the Kochen-Specker theorem. Moreover, this frame-
work turns out to be the most useful for studying what kinds of empirical models
are strongly contextual. While a complete characterization of strongly contextual
models remains elusive, all known instances are accounted for and generalized by
the notion of an all-versus-nothing model, which we examine in the next section.
Moreover, the contextuality of every all-versus-nothing model is witnessed by a
cohomological obstruction.

5. Cohomological witnesses of contextuality

5.1. All-versus-nothing models. All-versus-nothing models were introduced in
Mermin [12] and generalized in Abramsky et al. [2]. Notably, this generalization is
sufficient to account for every known example of strong contextuality. The general-
ized definition is inspired by the observation that every known strongly contextual
model defines an unsolvable system of equations in some ring.

Fix a measurement scenario (X,M, R) where the set of outcomes is a finite
commutative ring R.

Definition 5.1. An R-linear equation ϕ = ⟨C, a, b⟩ consists of a context C ∈ M, a
function a : C → R, and an element b ∈ R. We say that a section s ∈ E(C) satisfies
ϕ (denoted s |= ϕ) if ∑

m∈C
a(m)s(m) = b.

Let Γ be a set of R-linear equations. This in turn defines a set M(Γ) of sections
that satisfy every equation in Γ, i.e.

M(Γ) := {s ∈ E(C) | for all ϕ ∈ Γ, s |= ϕ}.
Alternatively, a set of sections S ⊆ E(C) defines an R-linear theory, which is a set
TR(S) of R-linear equations that are satisfied by all sections in S, i.e.

TR(S) := {ϕ | for all s ∈ S ⊆ E(C), s |= ϕ}.

Definition 5.2. Define the R-linear theory of an empirical model S over (X,M, R)
by

TR(S) :=
⋃
C∈M

TR(S(C)) =
⋃
C∈M

{ϕ | for all s ∈ S(C), s |= ϕ}.
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Definition 5.3. S is an all-versus-nothing model over R (denoted AvNR(S)) if
there is no function g : X → R such that for all ϕ = ⟨C, a, b⟩ ∈ TR(S), g|C satisfies
ϕ.

Proposition 5.4. AvNR(S) ⇒ SC(S) (see Definition 4.4))

Proof. For sake of contradiction, suppose that S is not strongly contextual, so
there exists a global section g : X → R. Let ϕ ∈ TR(S). Then, for some C ∈ M,
ϕ ∈ TR(S(C)). Note that g|C ∈ S(C), so by Definition 5.2, g|C satisfies ϕ. This
argument works for all ϕ ∈ TR(S), so S is not an all-versus-nothing model. This is
a contradiction, so SC(S). □

Definition 5.5. The affine closure affS of a set S ⊆ E(U) is given by

affS :=

{
t∑
i=1

cisi | si ∈ S, ci ∈ R,

t∑
i=1

ci = 1

}
.

Definition 5.6. The affine closure of an empirical model S is defined for each
C ∈ M by

(AffS)(C) := aff(S(C)).
Proposition 5.7. AvNR(S) ⇒ AvNR(AffS) ⇒ SC(AffS)
Proof. Note that (M ◦ T)(S) gives the maximum set of sections that satisfy every
equation satisfied by all sections in S. Since the affine combination of solutions
to a linear equation is also a solution, affS ⊆ (M ◦ T)(S). Thus, for all S(C),
TR(aff(S(C))) = TR(S(C)). Thus, TR(S) = TR(AffS), so if S is an AvNR model,
then so is AffS. Then by Proposition 5.4, AffS is strongly contextual. □

The reason for shifting to the affine model is to show that the strong contextuality
of all-versus-nothing models is witnessed by cohomological obstructions.

5.2. Čech cohomology. We will briefly work in a more general setting than above
in order to give an account of the Čech cohomology theory. Fix a topological space
X, open cover M, and presheaf F : O(X)op → AbGrp.

Definition 5.8. A q-simplex of the nerve of M is a (q+1)-tuple σ = (C0, . . . , Cq)
of elements of M such that

|σ| :=
⋂
C∈σ

C ̸= ∅.

Let N (M)q denote the set of q-simplices.

Definition 5.9. Define the j-th partial boundary operator ∂j by

∂j : N (M)q → N (M)q−1

(C0, . . . , Cj , . . . , Cq) 7→ (C0, . . . , Cj−1, Cj+1, . . . , Cq).

Note that |σ| ⊆ |∂jσ|, so there exists a morphism i|σ|,|∂jσ| : |σ| → |∂jσ| in O(X).
Thus, there exists a restriction map

ρ
|∂jσ|
|σ| := F(i|σ|,|∂jσ|) : F(|∂jσ|) → F(|σ|).

Definition 5.10. A q-cochain ω is a map on q-simplices such that for all σ ∈ N (M)q,
ω(σ) ∈ F(|σ|). The set Cq(M,F) of q-cochains forms an abelian group under point-
wise addition. That is, if ω1, ω2 ∈ Cq(M,F), then so is ω1 + ω2, which is defined
by (ω1 + ω2)(σ) := ω1(σ) + ω2(σ). Since ω1(σ) and ω2(σ) are elements of the same
abelian group F(|σ|), then (ω1 + ω2)(σ) ∈ F(|σ|), so ω1 + ω2 ∈ Cq(M,F).
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Definition 5.11. Define the coboundary operator δq : Cq(M,F) → Cq+1(M,F)
by

(δqω)(σ) :=

q+1∑
j=0

(−1)jρ
|∂jσ|
|σ| (ω(∂jσ)).

Definition 5.12. A q-cocycle is a q-cochain ω such that for all (q+1)-simplices σ,
(δqω)(σ) = 0. Denote the set of q-cocycles as Zq(M,F) := ker δq. A q-coboundary
is a q-cochain ω such that there exists a (q − 1)-cochain τ such that δq−1τ = ω.
Denote the set of q-coboundaries as Bq(M,F) := Imδq−1.

Since δq+1 ◦ δq = 0, we have Bq(M,F) ⊆ Zq(M,F) ⊆ Cq(M,F).

Definition 5.13. We have the following cochain complex (C•(M,F), δ):

0 → C0(M,F)
δ0−→ C1(M,F)

δ1−→ C2(M,F)
δ2−→ · · ·

The Čech cohomology of M in F is the cohomology of (C•(M,F), δ), i.e. the q-th
Čech cohomological group is Ȟq(M,F) := Zq(M,F)/Bq(M,F).

Remark 5.14. Note that a 0-simplex is an element C ∈ M. Thus, a 0-cochain
is a family {rC ∈ F(C)}C∈M and a 0-coycle is a compatible family2. Moreover,
Ȟ0(M,F) := Z0(M,F)/0 ∼= Z0(M,F), so Ȟ0(M,F) is the set of compatible
families.

Remark 5.15. Since B1(M,F) ⊆ Z1(M,F), we can corestrict δ0 to a map

δ̃0 : C0(M,F) → Z1(M,F). Then, ker δ̃0 = Z0(M,F) ∼= Ȟ0(M,F) and

coker δ̃0 = Z1(M,F)/B1(M,F) = Ȟ1(M,F).

Now we fix an open set U ⊂ X.

Definition 5.16. Let F|U : O(X)op → AbGrp be defined by F|U (V ) := F(U∩V ).
There is a natural transformation p : F → F|U whose components are given by

pV : F(V ) → F(U ∩ V )

r 7→ r|U∩V .

Let FŨ : O(X)op → AbGrp be defined by FŨ (V ) := ker pV ⊆ F(V ).

Thus, we have the following exact sequence:

(5.17) 0 → FŨ ↪→ F p−→ F|U

Moreover, we can lift this to a short exact sequence at the level of cochain groups:

(5.18) 0 → C0(M,FŨ ) → C0(M,F) → C0(M,F|U ) → 0

2If ω = {rC ∈ F(C)}C∈M is a 0-coycle, then for any 1-simplex (C0, C1), (δ0ω)((C0, C1)) = 0.

That is, ρC1
C0∩C1

(ω(C1))− ρC0
C0∩C1

(ω(C0)) = 0, or ρC1
C0∩C1

(rC1
) = ρC0

C0∩C1
(rC0

).
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Putting the map from Remark 5.15 and (5.18) together, we have the diagram

Ȟ0(M,FŨ ) Ȟ0(M,F) Ȟ0(M,F|U )

0 C0(M,FŨ ) C0(M,F) C0(M,F|U ) 0

0 Z1(M,FŨ ) Z1(M,F) Z1(M,F|U )

Ȟ1(M,FŨ ) Ȟ1(M,F) Ȟ1(M,F|U )

δ̃0 δ̃0 δ̃0

where the groups in the first row are the kernels of the map between the second
and third row and the groups in the last row are the cokernels. Thus, by the snake
lemma there exists a map γ : Ȟ0(M,F|U ) → Ȟ1(M,FŨ ) such that

Ȟ0(M,FŨ ) → Ȟ0(M,F) → Ȟ0(M,F|U )
γ−→ Ȟ1(M,FŨ ) → Ȟ1(M,F) → Ȟ1(M,F|U )

is an exact sequence.

Remark 5.19. Recall from Remark 5.14 that Ȟ0(M,F|U ) is the set of compatible
families of sections in F|U . Consider such a family {sC ∈ F|U (C)}C∈M. By
Definition 5.16, this is equal to {sC ∈ F(U ∩ C)}C∈M, and this family uniquely
determines a section s ∈ F(U) such that for all C ∈ M, s|U∩C = sC . Thus,
Ȟ0(M,F|U ) ∼= F(U).

Remark 5.20. Consider the map Ȟ0(M,F) → Ȟ0(M,F|C0
) where C0 ∈ M. Call

this map P . An element ω ∈ Ȟ0(M,F) is a compatible family ω = {rC ∈ F(C)}C∈M.
Then,

P (ω) = {pC(rC) ∈ F(C0 ∩ C)}C∈M

where each pC is a component of the natural transformation p : F → F|C0 .
The element rC0 of the original family associated with C0 is unchanged. That
is, rC0

∈ P (ω). Moreover, since rC0
∈ F(C0), it must be that rC0

is the unique
section determined by the compatible family P (ω) as discussed in Remark 5.19.
Thus, P maps a compatible family {rC ∈ F(C)}C∈M to the section rC0

of the
family associated to C0 ∈ M.

Definition 5.21. Given C0 ∈ M and r0 ∈ F(C0), the cohomological obstruction
of r0 is γ(r0), where γ : Ȟ0(M,F|C0

) → Ȟ1(M,FC̃0
).

Proposition 5.22. γ(r0) = 0 if and only if there exists a compatible family
{rC ∈ F(C)}C∈M such that rC0

= r0.

Proof. From Remarks 5.19 and 5.20, we have the following exact sequence:

Ȟ0(M,F)
P−→ F(C0)

γ−→ Ȟ1(M,F)

Thus, γ(r0) = 0 if and only if r0 ∈ ker γ = ImP . Then by the definition of P ,
r0 ∈ ImP if and only if there exists a compatible family {rC ∈ F(C)}C∈M. □

So we are justified in referring to γ(r0) as an “obstruction.” It tells us whether
or not we can extend a particular local section to a global section.
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5.3. Witnesses for AvN models. In order to find cohomological obstructions for
empirical models, we need to make one modification. In particular, we need to turn
empirical models into functors to abelian groups rather than sets.

Definition 5.23. Fix a commutative ringR and define the functor FR : Set → ModR
to the category of modules over R as the functor that maps

i) every set X to the free R-module FR(X) = {ϕ : X → R | supp ϕ <∞};
ii) every function f : X → Y to the map

FR(f) : FR(X) → FR(Y )

ϕ 7→ λ,

where

λ(y) =
∑

f(x)=y

ϕ(x).

Definition 5.24. An empirical model S over a measurement scenario (X,M, O)
is cohomologically strongly contextual over a ring R (denoted CSCR(S)) if for all
C ∈ M, s ∈ C, we have the obstruction γFRS(s) ̸= 0.

Note that we can view an element ϕ ∈ FR(X) as a formal linear combination of
elements of X given by

∑
ϕ(x)x.

Proposition 5.25. CSCR(S) ⇒ SC(S)

Proof. By Proposition 5.22, for all C ∈ M, s ∈ C, s is not a member of any
compatible family. Thus, there is no compatible family over M, so there is no
global section of S. Thus, S is strongly contextual. □

Since AvN models encompass all known strongly contextual models, we would
like to show that they are cohomologically strongly contextual. From Proposition
5.7, we have AvNR(S) ⇒ SC(AffS). Thus, we need to show SC(AffS) ⇒ CSCR(S).

Remark 5.26. Since FR maps sets to the free R-module over that set, it forms
an adjoint pair with the forgetful functor U : ModR → Set. The counit of the
adjunction ϵ : FRU → 1ModR

is given by components ϵM defined by

ϵM : FRU(M) →M

r 7→
∑
m∈M

r(m)m.

Since the set of outcomes is the ring R, every E(C) is itself an R-module. Then,
we have the map ϵ : FRUE → E given by ϵE(C) : FRUE(C) → E(C). For S ⊆ E ,
this restricts to a map FRUS → Span S given by ϵS(C) : FRUS(C) → Span S(C),
where Span S(C) denotes the linear span of S(C) in R. Finally, if we restrict to
affine R-modules, we have a map F aff

R US → AffS.

Proposition 5.27. SC(AffS) ⇒ CSCR(S)

Proof. Suppose for sake of contradiction that there is some C0 ∈ M such that
there is some s0 ∈ S(C0) such that γFRS(s0) ̸= 0. By Proposition 5.22, there is a
compatible family {rC ∈ FRS(C)}C∈M such that rC0

= s0. s0 is not only a formal
linear combination but an affine combination, since s0 = 1 · s0.
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Note that S(∅) = {∗}. Then, for any C, we have i : ∅ → C, so we have the
restriction

FRi : FRS(C) → FRS(∅) = FR{∗}
rC 7→ rC |∅,

where by Definition 5.23,

rC |∅(∗) =
∑

s∈S(C)

rC(s).

Since we have a compatible family, every restriction to the empty set must be the
same, so so the coefficients of every rC sum to the same number. Then, since
rC0

= s0 is an affine combination, so is every rC . Then, the map F aff
R US → AffS

lifts the compatible family to a compatible family {rC ∈ (AffS)(C)}C∈M, which
contradicts SC(AffS). Thus, S is cohomologically strongly contextual. □

To summarize, we have the following for an empirical model S:

AvNR(S) ⇒ SC(AffS) ⇒ CSCR(S) ⇒ SC(S).

All-versus-nothing models provide a good account of strong contextuality in
quantum mechanics, and this is their intended purpose. However, there is sufficient
generality in the idea to think about other ways strong contextuality emerges in
mathematics. We now briefly discuss two examples where strong contextuality
provides a nice perspective. The first example is the theory of semantic paradoxes.

6. Semantic paradox

The results of the previous section were proven in Abramsky et al. [2], where
the authors note the possibility of applying their work to the case of semantic
paradoxes. In this section, we demonstrate one possible approach that connects
the contextuality framework outlined above to the characterization of semantic
paradoxes in Cook [6].

6.1. Background. A semantic paradox is a set of sentences such that truth values
cannot be consistently assigned. A simple example is the liar paradox : “This
sentence is false.” If the liar paradox is false, then is is true, and if the liar paradox
is true, then it is false. More generally, we can come up with large and even infinite
sets of sentences that are paradoxical. The following characterization of semantic
paradoxes in terms of a simple propositional language is from Cook [6].

Definition 6.1. We define our propositional language Lp as consisting of a class of
sentence names {Sn}n∈N, a conjunction operation ∧, and a negation ¬. Associated
to Lp is a set of well-formed formulae, denoted WFF , given by

WFF := {∧{¬(Sβ)}β∈B |B ⊆ N}.

It is helpful to also use the following notation for a formula.

¬(Sβ1
) ∧ ¬(Sβ2

) ∧ ¬(Sβ3
) ∧ · · · := ∧{¬(Sβ)}β∈B

The intuitive way to understand this notation is to take ¬(Sβ) to mean “the sentence
Sβ is false” and to take ∧ to mean “and.”
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Definition 6.2. A denotation function δ is a map

δ : {Sn}n∈N →WFF.

δ assigns each sentence to a particular “meaning” in the form of a well-formed
formula. For each Sn, we define the set

Dδ(Sn) := {Sγ | δ(Sn) = ∧{¬(Sβ)}β∈B and γ ∈ B}.

Intuitively, we can think of Dδ(Sn) as the set of sentences that must be false in
order for Sn to be true. We formalize this idea with the following notion.

Definition 6.3. Let T = {0, 1}. A truth-value assignment σ : {Sβ}β∈B → T is
acceptable if for all β ∈ B, σ(Sβ) = 1 if and only if for all Sγ ∈ Dδ(Sβ), σ(Sγ) = 0.

We now have a formal notion of paradox.

Definition 6.4.

i) {Sβ}β∈B is evaluable if there exists an acceptable assignment σ;
ii) {Sβ}β∈B is paradoxical if there is no acceptable assignment.

We are interested in the following two situations.

Definition 6.5. The n-cycle consists of the set of sentences {Si}i≤n and a deno-
tation function defined by

δ(Si) =

{
¬(Si+1) i < n

¬(S1) i = n

Definition 6.6. The n-Yablo chain consists of the set of sentences {Si}i∈N with
the denotation function δ given by

δ(Si) = ∧{¬(Sk) | there exists m ≥ 0 such that k = i+ nm+ 1}.

Example 6.7. The 1-Yablo chain is known as Yablo’s paradox [15]. The denotation
of each sentence is

δ(S1) = ¬(S2) ∧ ¬(S3) ∧ ¬(S4) ∧ · · ·
δ(S2) = ¬(S3) ∧ ¬(S4) ∧ ¬(S5) ∧ · · ·
...

δ(Sn) = ¬(Sn+1) ∧ ¬(Sn+2) ∧ ¬(Sn+3) ∧ · · ·
...

Yablo’s paradox is a countable sequence of sentences, each one saying “all of the
following sentences are false.” Similarly, each sentence of the n-Yablo chain says
“every n-th sentence of the following sentences is false.”

There is an important connection between n-cycles and n-Yablo chains. To
understand it, we need to understand the notion of “unwinding” a set of sentences.

Definition 6.8. Let ≺ denote the lexicographical order on pairs of natural numbers
(x, y), i.e. (a, b) ≺ (c, d) if one of the following is true.

i) a < c
ii) a = c and b < d
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Definition 6.9. The unwinding of a finite set of sentences {Si}i≤n with denotation
function δ is given by

({Si}i≤n)U = {S(a,b) | a, b ∈ N and b ≤ n}

with denotation function δU defined by

δU (S(a,b)) = ∧{¬(S(c,d)) | (a, b) ≺ (c, d) and Sd ∈ Dδ(Sb)}.

Definition 6.10. An assignment σ on ({Si}i≤n)U is recurrent if for all a < b and
c < n, σ(S(a,c)) = σ(S(b,c)).

Lemma 6.11. If σ is acceptable on ({Si}i≤n)U , then σ is recurrent.

Proof. Let a < b and c < n.

i) If S(a,c) = 1, then for any (x, y) such that (b, c) ≺ (x, y), and Sy ∈ Dδ(Sc),
we have (a, c) ≺ (x, y), so σ(S(x,y)) = 0. But S(x,y) ∈ DδU (S(b,c)), so
S(b,c) = 1 = S(a,c).

ii) If S(a,c) = 0, then there is some (j, k) such that (a, c) ≺ (j, k) and Sk ∈ Dδ(Sc)
and σ(S(j,k)) = 1. Suppose for sake of contradiction that σ(S(b,c)) = 1.
Then, since (b, c) ≺ (b+ j + 1, k) and Sk ∈ Dδ(Sc), σ(S(b+j+1,k)) = 0. But
(j, k) ≺ (b + j + 1, k), so S(b+j+1,k) ∈ DδU (S(a,c)), so S(a,c) = 1. This is a
contradiction, so we must have S(b,c) = 0.

Thus, σ is recurrent. □

Theorem 6.12. σ is acceptable on {Si}i≤n if and only if σ′ is acceptable on
({Si}i≤n)U , where

σ′(S(a,c)) := σ(Sc).

Proof. Suppose that σ is acceptable on {Si}i≤n.
i) If σ′(S(b,c)) = 1, then σ(Sc) = 1, so for all Sd ∈ Dδ(Sc), σ(Sd) = 0. Then,

for all S(a,d) ∈ DδU (S(b,c)), σ
′(S(a,d)) = 0.

ii) If σ′(S(b,c)) = 0, then σ(Sc) = 0, so there is some Sd ∈ Dδ(Sc) such
that Sd = 1. Thus, there is some a > b such that S(a,d) = 1 and
S(a,d) ∈ DδU (S(b,c)).

Thus, σ′ is acceptable.
Alternatively, suppose that σ′ is acceptable on ({Si}i≤n)U . By Lemma 6.11, σ′ is

recurrent, i.e. for all a < b, σ(S(a,c)) = σ(S(b,c)). For all d, c such that Sd ∈ Dδ(Sc)
and all a < b, we have S(b,d) ∈ DδU (S(a,c)). Then,

i) if σ(Sc) = 1, then σ′(S(a,c)) = 1, so σ′(S(b,d)) = 0, so σ(Sd) = 0;
ii) if σ(Sc) = 0, then σ′(S(a,c)) = 0. This is true for all c such that Sd ∈ Dδ(Sc)

and all a < b, so it holds for all S(a,c) ∈ DδU (S(b,d)). Thus, S(b,d) = 1, so
Sd = 1. This holds for all Sd ∈ Dδ(Sc).

Thus, σ is acceptable. □

Corollary 6.13. ({Si}i≤n)U is paradoxical if and only if {Si}i≤n is paradoxical.

We can apply this result to n-cycles and n-Yablo chains due to the following
theorem.

Theorem 6.14. The unwinding of the n-cycle is the n-Yablo chain.
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Proof. Consider the n-cycle, consisting of the set {Si}i≤n and denotation function
δ as defined in Definition 6.5. Then, consider the unwinding

({Si}i≤n)U = {S(a,1) | a ∈ N} ∪ {S(a,2) | a ∈ N} ∪ · · · ∪ {S(a,n) | a ∈ N}.

The associated denotation function δU is given on each of the above subsets by

δU (S(a,1)) = ∧{¬(S(c,2)) | a ≤ c}
δU (S(a,2)) = ∧{¬(S(c,3)) | a ≤ c}

...
...

δU (S(a,n−1)) = ∧{¬(S(c,n)) | a ≤ c}
δU (S(a,n)) = ∧{¬(S(c,1)) | a < c}

To see that this is just the n-Yablo chain, consider the following renaming:

S(a,1) 7→ S(a−1)n+1, S(a,2) 7→ S(a−1)n+2, . . . , S(a,n) 7→ San.

Then,

δU (S1) = δU (S(1,1)) = ¬(S(1,2)) ∧ ¬(S(2,2)) ∧ ¬(S(3,2)) ∧ · · ·
= ¬(S2) ∧ ¬(S2+n) ∧ ¬(S2+2n) ∧ · · ·

δU (S2) = δU (S(1,2)) = ¬(S(1,3)) ∧ ¬(S(2,3)) ∧ ¬(S(3,3)) ∧ · · ·
= ¬(S3) ∧ ¬(S3+n) ∧ ¬(S3+2n) ∧ · · ·
...

δU (Sn−1) = δU (S(1,n−1)) = ¬(S(1,n)) ∧ ¬(S(2,n)) ∧ ¬(S(3,n)) ∧ · · ·
= ¬(Sn) ∧ ¬(S2n) ∧ ¬(S3n) ∧ · · ·

δU (Sn) = δU (S(1,n)) = ¬(S(2,1)) ∧ ¬(S(3,1)) ∧ ¬(S(4,1)) ∧ · · ·
= ¬(Sn+1) ∧ ¬(S2n+1) ∧ ¬(S3n+1) ∧ · · ·

δU (Sn+1) = δU (S(2,1)) = ¬(S(2,2)) ∧ ¬(S(3,2)) ∧ ¬(S(4,2)) ∧ · · ·
= ¬(Sn+2) ∧ ¬(S2n+2) ∧ ¬(S3n+2) ∧ · · ·
...

□

Corollary 6.15. The n-cycle is paradoxical if and only if the n-Yablo chain is
paradoxical.

6.2. Connecting paradox and contextuality. At a conceptual level, semantic
paradox and strong contextuality seem like the same kind of phenomenon—both
are cases of the non-existence of global assignments. To formalize this connection,
we demonstrate that one can associate empirical models to sets of sentences in such
a way that the sentences are paradoxical if and only if the associated empirical
model is strongly contextual.

Definition 6.16. Given a finite set of sentences {Si}i≤n, define the associated
event presheaf E : P(X)op → Set by setting X := {Si}i≤n and O := T = {0, 1}.
In this context, for a set of sentences U ⊆ X, E(U) is the set of possible (not
necessarily acceptable) truth-value assignments σ : U → {0, 1}.
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Definition 6.17. Given also a denotation function δ, consider the cover M of X
given by

M = {Ci}i≤n, where Ci := {Si} ∪Dδ(Si).

Define the associated empirical model S ⊆ E such that for all C ∈ M,

S(C) := {σ ∈ E(C) | σ is acceptable}.

Proposition 6.18. {Si}i≤n with δ is paradoxical if and only if the associated em-
pirical model S is strongly contextual.

Proof. This follows immediately from the fact that an element of S(X) is an ac-
ceptable truth-value assignment on {Si}i≤n. □

Moreover, we can connect n-cycles and n-Yablo chains to the previous discussion
of cohomological strong contextuality.

Proposition 6.19. If n is odd, then the empirical model associated to the n-cycle
is an all-versus-nothing model.

Proof. Let {Si}i≤n with δ be the n-cycle with odd n. Recall (Definition 6.5) that
δ is defined by

δ(Si) =

{
¬(Si+1) i < n

¬(S1) i = n
.

Define M according to Definition 6.17. That is, M = {Ci}i≤n where for all i < n,

Ci = {Si, Si+1},

and for i = n,

Cn = {Sn, S1}.
Then, M defines the associated empirical model S. Recall (Definition 5.3) that
an all-versus-nothing model depends on a ring R. We will use the boolean ring B.
Then, S determines a B-linear theory

TB(S) =
⋃
i≤n

TB(S(Ci)).

(See Definitions 5.1 and 5.2.) Note that for i < n,

TB(S(Ci)) = {⟨Ci, (0, 0), 0⟩, ⟨Ci, (1, 1), 1⟩},

where a function a : Ci → B is denoted by the ordered pair (a(Si), a(Si+1)). Simi-
larly,

TB(S(Cn)) = {⟨Cn, (0, 0), 0⟩, ⟨Cn, (1, 1), 1⟩},
where a function a : Cn → B is denoted by (a(Sn), a(S1)). Thus,

TB(S) =
⋃
i≤n

{⟨Ci, (0, 0), 0⟩, ⟨Ci, (1, 1), 1⟩}.

Suppose for sake of contradiction that S is not AvNB, i.e. that there exists a
map g : {Si}i≤n → B such that for all ϕ = ⟨Ci, a, b⟩ ∈ TB(S), g|Ci

satisfies ϕ. Any
g will satisfy equations of the form ⟨Ci, (0, 0), 0⟩, so we only need to consider the
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equations of the form ⟨Ci, (1, 1), 1⟩. For g to satisfy equations of that form for all
Ci ∈ M, g must satisfy the following system of equations:

g(S1) + g(S2) = 1
g(S2) + g(S3) = 1

... =
...

g(Sn−1) + g(Sn) = 1
g(Sn) + g(S1) = 1

Each term appears on the left side twice, so the left sides of the equations sum to
0. However, n is odd, so the right sides sum to 1. This is a contradiction, so no
such g exists. Thus, AvNB(S). □

Corollary 6.20. If n is odd, then the empirical model associated to the n-cycle is
cohomologically strongly contextual.

Denote that a set of sentences S with δ is paradoxical with Pdox(S, δ) and that
it forms an n-cycle with Cyclen(S, δ). Then, for odd n, we have

Cyclen(S, δ) ⇒ CSCB(S) ⇒ SC(S) ⇔ Pdox(S) ⇔ Pdox(SU )

where S is the empirical model associated with S and SU is the unwinding of S, or
the n-Yablo chain. So in the case of semantic paradoxes, cohomological witnesses
of contextuality serve also as witnesses of paradox.

7. Digraphs, games, and more

Finally, we give a very short introduction into how contextuality may arise in
the study of directed graphs. Cook [6] demonstrates that a set of sentences is
paradoxical if a certain directed graph has no kernels. Taking this as our inspiration,
we consider the connection between the non-existence of kernels in digraphs and
strong contextuality.

Definition 7.1. A directed graph (digraph) G = (V,E) consists of a set V of
vertices and set E of ordered pairs of vertices called edges.

Definition 7.2. A kernel K ⊆ V is

i) stable, meaning that for all x, y ∈ K, (x, y) /∈ E;
ii) absorbing, meaning that for all x ∈ V/K, there is a y ∈ K such that

(x, y) ∈ E.

Definition 7.3. The set N+(x) of out neighbors of a vertex x ∈ V is given by

N+(x) := {y ∈ V | (x, y) ∈ E}.

Definition 7.4. Given a graphG with |V | = n, enumerate the vertices V = {v1, v2, . . . , vn}
and define the associated event presheaf by X := V and O = {0, 1}. Define a mea-
surement cover by

M = {Ci}i≤n where Ci := {vi} ∪N+(vi).

Define the associated empirical model S by letting

S(C) := {σ ∈ OC | for all x ∈ C, σ(x) = 1 iff for all y ∈ C ∩N+(x), σ(y) = 0}.

Proposition 7.5. G contains no kernels if and only if S is strongly contextual.
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Proof. Suppose that S is strongly contextual and suppose for sake of contradiction
that G contains a kernel K. Define a map g : X → O by

g(x) =

{
0 x /∈ K

1 x ∈ K
.

We need to check that g ∈ S(X). Suppose g(x) = 1. Then, x ∈ K, soN+(x) ⊆ X/K.
Thus, for all y ∈ N+(x), g(y) = 0. Alternatively, fix x and suppose that all
y ∈ N+(x) satisfy g(y) = 0. Then, N+(x) ⊆ X/K. If x ∈ X/K, then there is
at least one z ∈ N+(x) such that z ∈ K, so x must be in K, so g(x) = 1. Thus,
g ∈ S(X), so S is not strongly contextual. By contradiction, we have that G
contains no kernels.

Suppose instead that G contains no kernels and suppose for sake of contradiction
there exists a global section g ∈ S(X). Consider the set g−1(1). Note that if
x, y ∈ g−1(1), then (x, y) /∈ E. (Else, y ∈ N+(x), so g(y) = 0, so y /∈ g−1(1).)
Then, consider x /∈ g−1(1). There must be some y ∈ g−1(1) such that (x, y) ∈ E.
(Else, N+(x) ⊆ g−1(0), which means that g(x) = 1.) Thus, g−1(1) is a kernel. By
contradiction, we have that no g ∈ S(X) exists, so S is strongly contextual. □

The existence of a kernel in a directed graph has to do with the existence of
a solution to a two-person game on the graph [14] and can be used to study a
variety of situations where players alternate turns until one player is out of moves.
Thus, we can speculate on some degree of connection between strongly contextual
empirical models, semantic paradoxes, and unsolvable games.

Contextuality forces us to confront the strangeness of quantum mechanics in non-
intuitive ways. Perhaps by understanding how contextuality arises in our macro-
scopic world as well as in the microscopic one, we can come to better understand
the mathematical theory and physical reality that lies beneath everything around
us. For example, there may very well be usefulness in an analogy between games
and contextuality, and this idea has been studied by others [1]. Or perhaps the fact
that quantum reality verges on paradox suggests a new perspective on logic—the
progenitors of topos quantum theory, for instance, prefer intuitionistic logic.

The careful analysis of all the facts and consequences of quantum contextuality
is not completed, and there is more to discover about this part of the mathematical
and physical worlds. However, much interesting progress has made so far, and we
hope that this paper is an enlightening survey of where the field currently stands
and how we got here.
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[7] A. Döring and C. Isham. “What is a Thing?”: Topos Theory in the Foundations of Physics,

page 753–937. Springer Berlin Heidelberg, 2010.
[8] Albert Einstein, Boris Podolsky, and Nathan Rosen. Can quantum-mechanical description of

physical reality be considered complete? Physical review, 47(10):777, 1935.

[9] Cecilia Flori. A First Course in Topos Quantum Theory. Springer Berlin Heidelberg, 2013.
[10] LUCIEN HARDY. Are quantum states real? International Journal of Modern Physics B,

27(01n03):1345012, November 2012.
[11] Simon Kochen and Ernst P Specker. The problem of hidden variables in quantum mechanics.

Ernst Specker Selecta, pages 235–263, 1990.

[12] N. David Mermin. Simple unified form for the major no-hidden-variables theorems. Phys.
Rev. Lett., 65:3373–3376, Dec 1990.

[13] A. Pais. Einstein and the quantum theory. Rev. Mod. Phys., 51:863–914, Oct 1979.

[14] Alvin E Roth. Two-person games on graphs. Journal of Combinatorial Theory, Series B,
24(2):238–241, 1978.

[15] Stephen Yablo. Paradox without self-reference. Analysis, 53(4):251–252, 1993.


	1. Introduction
	2. Kochen-Specker theorem
	3. Topos quantum theory
	4. Strong contextuality
	5. Cohomological witnesses of contextuality
	6. Semantic paradox
	7. Digraphs, games, and more
	Acknowledgments
	References

