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Abstract. This expository paper explores the torus through the lenses of

topology, geometry, and dynamical systems. We begin by examining the fun-
damental group of the torus, providing a foundation for understanding its

topological properties. The concept of the flat torus is then introduced. We

also solve the Gauss Circle Problem, uncovering hidden geometric structures
within the torus. The study continues with investigating geodesic flows, lead-

ing to surprising results about periodicity and density. Finally, we prove Weyl’s

Equidistribution Theorem, demonstrating the uniform distribution of orbits of
the shifting map.
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1. Introduction

The torus, a shape as familiar as a donut yet as rich in complexity as the most
intricate mathematical concepts, holds a unique place in the study of mathematics.
It’s a shape that offers insights that span across topology, geometry, and dynamical
systems. This paper explores the torus from multiple perspectives, unraveling some
of its mysteries and revealing its significance in various areas of mathematics.

We start by looking at the fundamental group of the torus, a group that helps us
to understand its loops and paths and gain a deeper understanding of the torus’s
topological structure.

From there, we move to the flat tori, characterized by having zero curvature.
The flat tori aren’t just a mathematical curiosity; they play a significant role in
both theoretical mathematics and practical applications.
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We then dive into the Gauss Circle Problem, an ancient and intriguing question
connecting number theory and geometry. Our solution to this problem doesn’t just
solve a puzzle; it adds another layer of understanding to the torus by uncovering
some of its hidden geometric structures.

Next, we prove a theorem that leads to surprising results about geodesic flow on
the torus. They prove to be either periodic or dense.

Finally, we delve into Weyl’s Equidistribution Theorem, a result that beautifully
connects number theory and dynamical systems. We demonstrate how sequences
that might seem having no pattern at first glance actually distribute uniformly over
the torus.

This paper is more than just a series of mathematical discussions—it’s a journey
through the interconnected world of topology, geometry, and dynamics, with the
torus as our guide. This paper invites you to explore the beauty and complexity of
the torus in a way that’s both accessible and enlightening.

2. Fundamental Group

Let S1 denote the unit circle. A torus of dimension n, considered as a topological
space, is defined to be the product Tn = S1 × . . . × S1 (with n factors). For n = 1,
the torus T 1 is simply S1, which is a circle. The 2-dimensional torus T 2 is given by
S1 × S1, which can be visualized as a donut-shaped topologically, a surface formed
by the Cartesian product of two circles. More generally, the n−dimensional torus
represents a space formed by the Cartersian product of n circles. Hence, a torus is
a topological space where each dimension is a circle.

A fundamental concept in algebraic topology is the fundamental group. The
fundamental group of a topological space X at a chosen base point x0 ∈X, denoted
π1(X,x0), is a group that captures information about the space’s shape and the
possible loops within it.

The fundamental group is the set of all equivalence classes of loops based at the
point x0. Two loops belong to the same class if they are homotopic, meaning they
can be continuously deformed into each other without tearing or breaking.

If the space is path-connected, then π1(X,x0) is independent of the choice of
the base point x0.

Definition 2.1. A topological space X is said to be path-connected if, for any two
points in the space, there exists a continuous path between them.

There is a well-known theorem about the fundamental groups of product spaces,
see [Arm].

Theorem 2.2. If X,Y are path-connected spaces, then π1(X × Y ) is isomorphic
to π1(X) × π1(Y ).

For any two points on the circle S1, you can always find a continuous path on
the circle that connects these points. So, by Definition 2.1, S1 is path-connected.
On the other hand, we can see that the homotopy class of a closed curve on S1

is determined by its winding number, consequently, π1(S1) = Z. Therefore, by
Theorem 2.2, we have π1(Tn) = Zn.
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3. Flat torus

We can equip a torus with a flat metric, as follows. Consider T 1, which is a
circle. It can be constructed by identifying the endpoints of an interval in R and
obtaining the metric from the interval. See Figure 1.

P

P

Figure 1. Constructing a 1-dim Torus

Now consider T 2. It can be constructed by identifying the opposite edges of a
parallelogram in R2. See Figure 2. Similarly, this construction induces a flat metric
on T 2 from the Euclidean metric on the parallelogram.

Figure 2. Constructing a 2-dim Torus

Finally, consider T 3, which we can’t visualize because it can only be embedded
in Rn when n > 3. It is constructed by identifying opposite sides of a parallelepiped
and identifying all vertices (red dots in the figure) as one point on the torus. See
Figure 3.

Figure 3. Building Block of a 3-dim Torus

Similarly, we can put a flat metric on Tn in higher dimensions by considering a
parallelepiped in Rn.
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This construction gives a nice description of the universal cover of a flat torus
X. Let P be the n−dimensional parallelepiped used to construct X. We can tile
Rn by copies of P . Each tile is a fundamental domain, and the lattice of vertices
corresponds to the preimages of a fixed point on X under the universal cover map.
For example, when P is the square [0,1] × [0,1], the universal cover is R2 tiled by
squares whose vertices have integer coordinates, see Figure 4.

1 2 3
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-1-2

3

-3

Figure 4. Universal Cover of P

4. Counting closed geodesics1

In mathematics, the Gauss circle problem is a problem in determining how many
lattice points are in a circle. The first result came from Carl Friedrich Gauss in
1834, hence its name. For reference see [Guy].

4.1. Gauss Circle Problem.

Problem 4.1. Consider a circle in R2 with center at the origin and radius r ≥ 0.
How many lattice points, points (m,n) where m,n ∈ Z, are in the circle? Call
this number N(r). In other words, N(r) represents the number of closed geodesics
starting from an arbitrarily chosen origin whose lengths are ≤ r.

We find an estimate for N(r).

Theorem 4.1. We have

lim
r→∞

N(r)
r2
= π.

Proof. We will solve this problem on R2, the universal cover of the flat torus X =
R2/Z2. A geodesic on X is the image of a line on R2. A closed geodesic corresponds
to a line from the origin to a lattice point. On the other hand, each lattice point
is the center of a one-by-one square, and these area 1 squares tile R2 without
overlapping. Consider the tiles whose centers are the lattice points in the disk of
radius r. They cover the disk of radius r − 1 and are inside the disk of radius r + 1.
Therefore, we have π(r − 1)2 ≤ N(r) ≤ π(r + 1)2, as required. □

1A geodesic is the shortest path between two points on a manifold.
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4.2. Primitive Circle Problem. Now, we will explore an extension of the regular
Gauss Circle Problem.

Problem 4.2. Consider a circle in R2 with center at the origin and radius r ≥ 0.
How many lattice points, points (m,n) where m,n ∈ Z, are in the circle such that
m and n are coprime? Call this number M(r). In other words, M(r) represents
the number of closed geodesics with different angles with respect to the x-axis and
have lengths ≤ r. (In this scenario we are no longer considering closed geodesics
that follow the same path but have different lengths.)

Theorem 4.2. We have lim
r→∞

M(r)
r2
= π

6
.

Proof. To solve this, we will use the same setup as the previous problem, and then
expand on it. So, using our equation N(r) for the number of lattice points in a
circle of radius r, we will multiply it by P0, which represents the probability of any
two integers being coprime. P0 = 6

π2 so overall we get ∼ 6
π
r2 points.2 □

5. Geodesic flow

Geodesic flows describe the free motion of points on manifolds. Consider a
manifold M. Given x ∈M, and a unit verctor v at x, there exists a unique geodesic
starting from x in the direction v.

A geodesic on a flat torus is the image of a line in R2 under the covering map.
For the following theorem, we will consider the flat torus X.

Theorem 5.1. Any geodesic on X is either periodic or dense.

To prove this theorem, we consider rational and irrational slopes separately. We
show that the dichotomy in Theorem 5.1 depends on the slope of this line.

Proposition 5.2. If the angle between the line and the x-axis is rational then the
geodesic is periodic.

Proof. Observe X from its universal cover R2, where lattice points of Z⊕Z (points
(m,n) where m,n ∈ Z) represent the preimages of a point, as shown in Figure 5.
Consider a line in R2 as the preimage of the geodesic. Without loss of generality,
we can assume that this line passes through the origin.

If θ, the slope of the line, is rational then θ can be rewritten as θ = n
m

for
n,m ∈ Z and the point (x,xθ) = (m,n) is on the line for x = m. Therefore, the
geodesic returns to the image of the origin in X, which means it is periodic. □

For the irrational slope case, we use the following result.

Lemma 5.3. Let α be an irrational real number. For any ϵ > 0, there are integers
r > 0, l such that ∣rα − l∣ < ϵ.
Proof. We want to show for some integer r, rα is ϵ close to 0 mod 1. Therefore, we
consider numbers {rα ∶ r ∈ Z} on circle S1 = R/Z representing the fractional parts
of the numbers.

Consider integer n > 1/ϵ. Among the points α,2α, . . . , nα mod 1 on the circle,
there exist kα, k′α for k, k′ ∈ N whose difference mod 1 can be expressed as follows:

∣(k − k′)α∣ = ∣kα − k′α∣ ≡ δ mod 1

2Notation ∼ means their ratio goes to 1 as r →∞
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θ

Figure 5. Universal Cover of Torus

for some δ representing the fractional part of ∣kα − k′α∣, such that:

δ < 1

n
< ϵ

In other words, there exists l ∈ Z s.t.

∣rα − l∣ < ϵ,

for r = k − k′. □

Proposition 5.4. If θ is irrational, then the geodesic is dense.

Proof. Given ϵ > 0, from Lemma 5.3, we get the two following observations:

● Consider α = θ. There are integers r, l such that the vertical displacement
between a point (r, rθ) on the line and a lattice point (r, l) is ϵy ∈ (0, ϵ).
● Now, consider α = 1

θ
. There are integers r, l such that the horizontal dis-

placement between a point ( r
θ
, r) on the line and a lattice point (l, r) is

ϵx ∈ (0, ϵ).
Note that r, l can be negative. Now, we want to show that for any point P in X,
the geodesic line reaches the ϵ−neighborhood of P . Consequently, the geodesic line
is dense.

Let tx, ty be the time it takes, when we move along the line, to get ϵy, ϵx displace-
ment from a lattice point in the vertical and horizontal directions, respectively.

Consider the lattice ϵyZ⊕ ϵxZ. Let (ϵxm, ϵyn) be a point of the lattice, which is
ϵ−close to the point P . See Figure 6.

The line can reach the point (ϵxm, ϵyn) in txm+ tyn time. Therefore, we showed
for any point P in X, the geodesic can get ϵ-close to it after some time, as required.

□

Proof of Theorem 5.1. Follows from Proposition 5.2 and Proposition 5.4. □
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Figure 6. ϵ-displacements

6. Equidistribution

In this section, we will prove Weyl’s Equidistribution Theorem by utilizing the
theory of the Fourier series. Weyl’s equidistribution theorem is a fundamental
result in mathematics, particularly in number theory and dynamical systems, that
describes how sequences distribute uniformly across the unit circle. Its significance
lies in connecting arithmetic properties with uniform distribution, which has far-
reaching applications in areas such as Diophantine approximation, cryptography,
and numerical methods.

Consider a flat torus X. As we explained, it can be constructed by a paral-
lelepiped in Rn. An important dynamical system on X is shifting points by a
vector v = (θ1, . . . , θn). We can see that an orbit either is periodic or its closure
is a sub-torus in X. Moreover, the Kronecker-Weyl theorem states that the orbit
points are equidistributed in their closure. Weyl’s theorem is a particular case of
this result for n = 1. For a reference see [Bai]. The proof that follows is from [SS].

In this proof, we will use the following known result in the theory of the Fourier
series, which we will not prove here:

Corollary 6.1. Continuous functions on the circle can be uniformly approximated
by trigonometric polynomials. [SS]

Before proceeding, we define trigonometric polynomials:

Definition 6.2. P (x) is a trigonometric polynomial if it can be expressed as P (x) =
cke

2πki + . . . + cje2πji, where k, j ∈ Z.

Theorem 6.3. Weyl’s equidistribution theorem: If θ is irrational, then the sequence
of fractional parts {kθ ∶ k ∈ N} is equidistributed in S1.

To prove this, we arbitrarily select two points a and b on the circle S1 and show
that as our sequence goes to infinity, the proportion of total points that fall within
[a, b] is equal to the distance between a and b.

To capture the fraction of points within the interval [a, b], we define the charac-
teristic function χ[a,b]∶R→ R as follows:

χ[a,b](x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x mod 1 ∈ [a, b]
0 otherwise
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Thus, for any n ∈ N, we have:

#{1 ≤ k ≤ n ∶ ⟨kθ⟩ ∈ [a, b]} =
n

∑
k=1

χ[a,b](kθ)

We want to show that as n goes to infinity, the following holds:

lim
n→∞

1

n

n

∑
k=1

χ[a,b](kθ) = b − a

Or equivalently:

(1) lim
n→∞

1

n

n

∑
k=1

χ[a,b](kθ) = ∫
S1

χ[a,b](x)dx

More generally, this can be expressed as:

lim
n→∞

1

n

n

∑
k=1

f(kθ) = ∫
S1

f dx,

where f = χ[a,b]. We use the following results in the proof.

Lemma 6.4. (1) holds for fk(x) = e2πikx when k is a nonnegative integer.

Proof. This holds for f0(x) = 1 as LHS = n
n
= 1 and RHS = x∣1

0
= 1.

For fk(x) = e2πikx for k ≠ 0, we have:
RHS:
We can solve for ∫S1 f like so:

∫
1

0
e2πikx dx = e2πikx

2πik
∣1
0

= e2πik − 1
2πik

= 1 − 1
2πik
= 0

LHS:
The LHS is given by, limn→∞

A
n

where

A = a0 + a + . . . + am + . . . + an

for a = e2πikθ. So, the LHS is equal to the limit of

1 − an+1
n(1 − a) =

1 − e(n+1)(2πikθ)
n(1 − e2πikθ)

as n goes to infinity and we can see that its absolute value is:

≤ lim
n→∞

2

c ⋅ n = 0.

Hence, we have shown that both sides are zero and as a result (1) holds for all
functions fk. □

Lemma 6.5. If two functions f, g satisfy (1) then so does Af+Bg for any A,B ∈ C.
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Proof. Let f and g be two functions that satisfy (1). For some A,B ∈ C:

lim
n→∞

n

∑
k=1

Af(kθ)

n
= ∫

S1
Af

lim
n→∞

n

∑
k=1

Bg(kθ)

n
= ∫

S1
Bg

By linearity of limits and integrals, adding these two equations gives us:

lim
n→∞

n

∑
k=1

Af(kθ)

n
+

n

∑
k=1

Bg(kθ)

n
= ∫

S1
Af + ∫

S1
Bg

lim
n→∞

n

∑
k=1

Af(kθ) +Bg(kθ)

n
= ∫

S1
Af +Bg

Thus, Af +Bg also satisfies (1). □

Remark: As a direct result of this lemma we note that when f is a finite
combination of trigonometric polynomials, then (1) holds.

Lemma 6.6. Assume that a sequence of functions fn converges absolutely to func-
tion f . If (1) holds for fn’s, it holds for f too.

Proof. Let f be any continuous function on the circle of period 1. Then by Corollary
6.1 we can choose a trigonometric Polynomial P s.t. for ϵ > 0, supx∈R ∣f(x)−P (x)∣ <
ϵ
3
. Then by Lemmas 6.4 and 6.5, for all large N we have:

∣ 1
N

N

∑
n=1

P (nθ) − ∫
S1

P (x)dx∣ < ϵ

3

Hence:

∣ 1
N

N

∑
n=1

f(nθ) − ∫
S1

f(x)dx∣ ≤ 1

N

N

∑
n=1

∣f(nθ) − P (nθ)∣

+ 1

N

N

∑
n=1

∣P (nθ) − ∫
S1

P (x)dx∣

+ ∫
S1
∣P (x) − f(x)∣ dx < ϵ.

Thus, (1) holds for f . □

Proof of Theorem 6.3.

Proof. Consider a continuous function f. The sequence SN(f) converges to f by
Corollary 6.1 as N approaches infinity. SN(f) satisfies (1) by Lemma 6.4 and
Lemma 6.5. Therefore, f satisfies (1) by Lemma 6.6.

We estimate χ[a,b] from above and below by continuous periodic functions f+ϵ , f
−

ϵ .
These functions agree with χ[a,b] except in two intervals of length 2ϵ as seen in
Figure 7.

We know that (1) holds for these two functions and we know the following
inequality holds:

f−ϵ ≤ χ[a,b] ≤ f+ϵ
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10 a ba + ϵa − ϵ b − ϵ b + ϵ

f+ϵ

f−ϵ

Figure 7. Approximation of χ[a,b]

For SN = 1
N ∑

N
n=1 χ[a,b](nθ), we obtain the following:

1

N

N

∑
n=1

f−ϵ (nθ) ≤ SN ≤
1

N

N

∑
n=1

f+ϵ (nθ)

Then we get:

b − a − 2ϵ ≤ lim
N→∞

inf SN b − a + 2ϵ ≥ lim
N→∞

supSN

b − a − 2ϵ ≤ lim
n→∞

SN ≤ b − a + 2ϵ
Since this is true for any ϵ > 0, limN→∞ SN exists and equals b − a.

□
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