
THURSTON CONSTRUCTION MAPPING CLASSES WITH MINIMAL

DILATATION

MARYAM CONTRACTOR AND OTTO REED

Abstract. Given a pair of filling curves α, β on the surface of genus g with n punctures Σg,n, we
explicitly compute the smallest dilatation mapping classes over all the pseudo-Anosov maps given by
the Thurston construction. We do so by solving for the minimal dilatation in a congruence subgroup
of PSL2(Z). We apply this result to realized lower bounds on intersection number between α and β
to give the minimal mapping class over any Thurston construction pA map given by a filling pair
α ∪ β.
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1. Introduction

1.1. Preliminaries. Given a surface of genus g with n punctures Σg,n, the mapping class group
identifies homotopy classes of maps on Σg,n which are not isotopic to the identity. Thurston classified
these equivalence classes of maps into three categories:

Theorem 1.1 (Nielsen-Thurston Classification). Let [f ] ∈ Mod(Σg,n). Then there exists a repre-
sentative homeomorphism g ∈ [f ] such that either

(i) g is periodic: gd = I for some 0 ≤ d < ∞
(ii) g is reducible: there exists a (reducible) simple closed curve {γi} such that g({γi}) = {γi}.
(iii) g is unique and pseudo-Anosov

A pseudo-Anosov diffeomorphism f of a surface Σg,n is characterized by the dilatation λ > 1 and
two transverse directions, unstable and stable, along which f expands lengths by λ and contracts
lengths by 1/λ, respectively. Iterating f causes the lengths of curves in the unstable direction to
tend to infinity and lengths of curves in the stable direction to tend to zero.

Thurston’s classification gives that every mapping class in Mod(Σg,n) which does not have finite
order and is not reducible must be pA. To find such maps, one might first consider generators of
the entire mapping class group. One example of such maps are Dehn twists.
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Definition 1.2. Let S be an oriented surface and α a simple closed curve in S. The Dehn twist
about α, Tα : S → S is the homeomorphism given by cutting the surface along α, twisting a
neighborhood of one of the boundary components by 2π and then regluing it. By convention we
choose to twist counterclockwise, which gives a left twist.

We will typically take an isotopy class a of simple closed curves in S and write Ta to mean the
Dehn twist about a representative α ∈ a.

It is known that Mod(Σg,n) is generated by finitely many Dehn twists (see [4], Theorem 4.1).
However, Dehn twists about just two curves (specifically, two which fill Σg,n) generate some pA
mapping classes.

Definition 1.3. If A and B are each unions of disjoint isotopy classes of simple closed curves on
Σg,n, we say A and B fill Σg,n if the complement Σg,n \ (A ∪ B) is a union of topological disks or
punctured disks.

We can easily extend the definition of a Dehn twist to a multicurve A = {α1, . . . , αk} (i.e., a

collection of pairwise disjoint simple closed curves) by defining the multitwist TA =
∏k

i=1 Tαi .
For two multicurves A = {α1, . . . , αk}, B = {β1, . . . , βℓ} which fill Σg,n, Thurston gives an

explicit construction of pseudo-Anosov (pA) mapping classes using only information from these two
curves ([4], Theorem 14.1).

Theorem 1.4 (Thurston’s Construction). Suppose A and B are multicurves in Σg,n so that A∪B
fills Σg,n. Then there is a real number µ = µ(α, β) and a representation ρ : ⟨TA, TB⟩ → PSL2(R)
given by

TA 7→
[
1 −µ1/2

0 1

]
TB 7→

[
1 0

µ1/2 1

]
.

Moreover, ρ has the following properties:

(i) There is a bijective correspondence between periodic, reducible, and pA elements in ⟨TA, TB⟩
and elliptic, parabolic, and hyperbolic elements in PSL2(R)

(ii) Parabolic elements in ρ(f) are exactly powers of TA or TB

(iii) If ρ(f) is hyperbolic, then the dilatation of [f ] ∈ Mod(Σg) is exactly the spectral radius of ρ(f)

We say ⟨TA, TB⟩ ⊂ Mod(Σg,n) are Thurston pA maps.

Remark 1.5. In PSL2(R), hyperbolic elements are characterized by two real eigenvalues λ, 1
λ where

λ > 1. The correspondence given in Theorem 1.4(i) guarantees that dilatation of pA maps are real.
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In this paper, we will prove the following:

Theorem 1.6. The minimal dilatation over all Thurston pA mapping classes for all filling pairs
in Σg,n, g ̸= 0, 2 is given by

1

2
((2g − 1)2 + (2g − 1)

√
(2g − 1)2 − 4− 2)

for n = 0 and
1

2
((2g − 1 + n)2 + (2g − 1 + n)

√
(2g − 1 + n)2 − 4− 2)

for n ≥ 1. Additionally, we have the following characterization:

Genus Punctures i(α, β) Minimal Dilatation

g = 0 n ≥ 4 even n− 2 1
2((n− 2)2 + (n− 2)

√
(n− 2)2 − 4− 2)

g = 0 n odd n− 1 1
2((n− 1)2 + (n− 1)

√
(n− 1)2 − 4− 2)

g = 2 n ≤ 2 4 7 + 4
√
3

g = 2 n > 2 2g + n− 2 1
2((2g + n− 2)2 + (2g + n− 2)

√
(2g + n− 2)2 − 4− 2)

In the special case where A = {α}, B = {β}, the number µ is equal to the square of the geometric
intersection number i(α, β) = |α ∩ β|; we assume the two curves are in minimal position, i.e., are
represenatives of their respective isotopy classes that minimize this quantity.

Thus, our representation is given by

Tα 7→
[
1 −i(α, β)
0 1

]
Tβ 7→

[
1 0

i(α, β) 1

]
.

Remark 1.7. Determining whether two curves are in minimal position is quite simple using
Thurston’s bigon criterion (see [4], Section 1.2.4): two simple closed curves α and β in Σg,n are
in minimal position if, and only if, they do not form any bigons–embedded disks in Σg,n whose
boundary is union of an arc of α and an arc of β intersecting at exactly two points (note that the
disk cannot be punctured).

If α, β is a pair of filling curves on Σg,n with i(α, β) ≥ 2, Section 14.1.2 of [4] gives that ⟨Tα, Tβ⟩ is
free. Thus, the representation of Tα, Tβ, given by

[
1 −i(α,β)
0 1

]
,
[

1 0
i(α,β) 1

]
generates a free subgroup in

PSL2(Z) of pseudo-Anosov mapping classes in Mod(Σg,n). We use Thurston’s construction to find
the minimal dilatation maps in this subgroup of Mod(Σg,n) by constructing minimally intersecting
pairs of filling curves on Σg,n.
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The dilatation of pA mapping class is related to the the length of closed geodesics in the Moduli
space of Σg,n. Roughly speaking, Mg,n is a set of hyperbolic structures on Σg,n up to actions of the
mapping class group. To define it concretely, we must begin with Teichmuller space.

Definition 1.8. We say (X,φ) is a marking of Σg,n if there is a homeomorphism φ : Σg,n → X
where X has a hyperbolic metric.

Definition 1.9. The Teichmuller space of Σg,n is this set of markings modulo homotopy (defined
as isometry between two spaces X and Y which respects composition of markings).

There is a natural interpretation of the Teichmuller space of Σg,n. If all of the isotopy classes of
essential simple closed curves on Σg are denoted as S, then for any X ∈ Teich(Σg) we may define
a length function ℓX : S → R≥0. Each point X ∈ Teich(Σg) corresponds to an isotopy class of a
marking (X,φ). Then ℓX(c) for some c ∈ S would be given by the length of the geodesic in X of the
isotopy class φ(c). Taking the pullback of the geodesic for an isotopy class from any fixed marking
gives a new hyperbolic metric on our original surface Σg,n.

Moduli space generalizes this space of structures further by considering the action of the mapping
class group on Teichmuller space. Formally, Mg,n is given by

Mg,n = Teich(Σg,n)/Mod(Σg,n)

Each point (equivalence class) in moduli space corresponds to a hyperbolic metric on Σg,n, and
there is a bijective correspondance between Mg,n and Mod(Σg,n) given as follows:

{length spectrum of M(Σg,n)} ↔ {set of dilatations in Mod(Σg,n)}

where the length spectrum in Mg,n is the length of closed geodesics. Thus, finding minimal
dilatation Thurston pA maps minimizes the length of the geodesic between two hyperbolic metrics
in moduli space.

1.2. The case of the torus. We begin the proof of Theorem 1.6 with a simple case: the torus.
The result is well known–we simply include it for the sake of completeness.

Theorem 2.5 in [4] gives that Mod(T 2) ≃ SL2(Z). Thus, the proof of Theorem 1.6 amounts to
finding the matrix in SL2(Z) with the smallest spectral radius exceeding 2, which is equivalent to
minimizing the roots of the characteristic polynomial equation

x2 − tr(α)x+ 1.

In SL2(Z), eigenvalues grow monotonically as a function of trace; the smallest magnitude trace
is 3, so we have

x2 − 3x+ 1 = 0 =⇒ λ =
3 +

√
5

2
Now, finding α = [w x

y z ] follows immediately from the conditions w + z = 3, wz − xy = 1: the
solution is given by α = [ 2 1

1 1 ]. Furthermore, α has two distinct real eigenvalues, so this solution is
unique up to conjugacy.

2. Minimal dilatation in Λn

To solve the general problem, we find the minimal dilatation matrices in the subgroup of SL2(Z)
given by

Λn :=

〈[
1 n
0 1

]
,

[
1 0
n 1

]〉
.
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We define the smallest dilatation function λ in Λn to be

λ(Λn) := inf{|λ(α)| : |λ(α)| > 2, α ∈ Λn}

where λ(α) is the spectral radius (i.e. magnitude of the larger eigenvalue). Since Λn is discrete, this
infimum must be realized.

For the case n = 1, we use the fact that Λ1 ≃ SL2(Z). Then, from the previous section, we know
that SL2(Z) ≃ Mod(T 2), so the minimal dilatation pA map is simply [ 2 1

1 1 ].
For the general case, let A = [ 1 n

0 1 ] and B = [ 1 0
n 1 ]. Since we are considering matrices in the

subgroup generated by A and B, we can write any element M of the subgroup as a word M =
Ak1Bℓ1Ak2Bℓ2 · · ·Akn for integers ki, ℓi (we will ignore infinite words, since a simple argument shows
they cannot attain the minimal dilatation). Since the subgroup is free, M corresponds to a unique
reduced word, i.e., where we have ki, ℓi ̸= 0 for all i. This gives a well-defined word length for each
element of the subgroup.

We will consider a surface Σg,n and assume i(α, β) ̸= 2 for any filling pair α, β; later (Remark
3.4) we show that Λ2 is not the representation given by the Thurston construction for any number
of genus or punctures.

Theorem 2.1. The minimal dilatation λ(Λn), n > 2, is given by 1
2(n

2 + n
√
n2 − 4 − 2), which is

achieved by the matrix
[
1−n2 −n
n 1

]
.

Fix n > 2. In PSL2(Z), the spectral radius of a matrix α is given by the larger root of the
characteristic polynomial

x2 − tr(α)x+ 1 = 0

Explicitly, these solutions are

x =
tr(α)±

√
(tr(α))2 − 4

2

We wish to minimize spectral radius over hyperbolic matrices, so we assume also that | tr(α)| > 2.
Thus the spectral radius λ is monotonically increasing as a function of the magnitude of the trace;
thus minimizing spectral radius is equivalent to minimizing trace magnitude. Thus we minimize
over trace and then compute the corresponding dilatation.

To begin, we show the following, which was originally stated, but not proved in [3], Theorem 4a:

Proposition 2.2. Let α ∈ Λn, n > 2. Then α has the form[
1 + k1n

2 k2n
k3n 1 + k4n

2

]
ki ∈ Z

Proof. For simplicity, we say a matrix γ is congruent (denoted γ ∼=
[
1 mod n2 0 mod n
0 mod n 1 mod n2

]
) if γ

takes on the form

[
1 + k1n

2 k2n
k3n 1 + k4n

2

]
. We induct on the length of α. Say α has the form X1X2

for X1, X2 ∈ {A,A−1, B,B−1}. Assume without loss of generality that X2 = A. Then we have the
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following cases:

A−1A = id ∼=
[
1 mod n2 0 mod n
0 mod n 1 mod n2

]
AA =

[
1 2n
0 1

]
∼=

[
1 mod n2 0 mod n
0 mod n 1 mod n2

]
BA =

[
1 n
n 1 + n2

]
∼=

[
1 mod n2 0 mod n
0 mod n 1 mod n2

]
B−1A =

[
1 n
−n 1− n2

]
∼=

[
1 mod n2 0 mod n
0 mod n 1 mod n2

]
,

For X2 = A−1, X2 = B±1, the cases follow similarly, so the base case is proven. Now assume for

some k that
∏k

i=1Xi
∼=

[
1 mod n2 0 mod n
0 mod n 1 mod n2

]
for Xi ∈ {A,A−1, B,B−1}. Say

∏k
i=1Xi =

[
ai bi
ci di

]
for

ai, bi, ci, di ∈ Z[n]. Then we have

A±1
k∏

i=1

Xi =

[
ai ± cin bi ± din

ci di

]
By assumption, ci ≡ 0 mod n, so cin ≡ 0 mod n2. Also, di ≡ 0 mod n2 so din ≡ 0 mod n. It

follows that A±1
∏k

i=1Xi
∼=

[
1 mod n2 0 mod n
0 mod n 1 mod n2

]
.

Similarly,

B±1
k∏

i=1

Xi =

[
ai bi

ci ± ain di ± bin

]

Using the same reasoning as above, B±1
∏k

i=1Xi
∼=

[
1 mod n2 0 mod n
0 mod n 1 mod n2

]
. Thus in all possible

cases for Xk+1, we know
∏k+1

i=1 Xi
∼=

[
1 mod n2 0 mod n
0 mod n 1 mod n2

]
. □

Proof of Theorem 2.1. To prove Theorem 2.1, by Proposition 2.2 it suffices to minimize trace over
all matrices of the form

(2.0.1) α =

[
k1n

2 + 1 k2n
k3n k4n

2 + 1

]
, ki ∈ Z such that (k1n

2 + 1)(k4n
2 + 1)− k2k3n

2 = 1

Note the second constraint comes from the fact that α ∈ SL2(Z), so its determinant (k1n
2+1)(k4n

2+
1)− k2k3n

2 is 1. Rearranging the determinant equation gives k2k3 = k1k4n
2 + (k1 + k4) ∈ Z. Thus

given any fixed k1, k4 ∈ Z, there always exists k2, k3 such that the matrix
[
1+k1n2 k2n
k3n 1+k4n2

]
is in

SL2(Z).
For any α given by 2.0.1, | tr(α)| is given by

|2 + n2(k1 + k4)|

which is the quantity which we want to minimize, subject to our constraints. Of course, this quantity
is the smallest when k1 + k4 = 0–but this would imply tr(α) = 2, i.e., α is not hyperbolic. Thus,
k1 + k4 ̸= 0.
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Consider the case where |k1+k4| = 1. If k1+k4 = −1, then | tr(α)| = 2−n2 and if k1+k4 = 1, then
| tr(α)| = 2+n2 > n2−2. Finally, for |k1+k4| > 1, |2+n2(k1+k4)| ∈ {(k1+k4)n

2−2, (k1+k4)n
2+2}

and in either case is greater in magnitude than n2 − 2.
It is left to show that a matrix in Λn achieves the minimum trace of n2 − 2. Choosing k1 =

−1, k4 = 0 gives the matrix

[
1− n2 k2n
k3n 1

]
, which implies k2 = −n, k3 = n. But this matrix is equal

to AB, given by

[
1− n2 −n

n 1

]
. Thus both AB and BA (which are conjugate in Λn) achieve the

minimum dilatation of 1
2(n

2 + n
√
n2 − 4− 2). □

3. Construction of Filling Curves

The goal of this section is to obtain a lower bound for the intersection number of a pair of filling
curves and subsequently construct examples achieving these minima. We will use the filling permu-
tations of Aougab & Huang [1] and Aougab & Taylor [2] and the generalized filling permutations
of Jeffreys [5], which gives us an algebraic way to describe “gluing patterns” of polygons. The idea
is to construct polygons whose sides are identified in such a way that, once glued, they form the
surface Σg with the glued sides becoming the filling curves α, β. Each polygon will correspond to
a disk in the complement of α ∪ β on Σg, so we can retroactively puncture the polygons to form
Σg,n. Since we will “place” the punctures, our convention will be to treat them as marked points
and thus exclude them from the Euler characteristic.

We begin with a general lower bound for the intersection number on any surface Σg,n from Aougab
and Huang ([1], Lemma 2.1).

Lemma 3.1. Fix g ≥ 1, n ≥ 0. If α, β fill Σg,n, then

i(α, β) ≥ 2g − 1

where i denotes geometric intersection number.

Proof. We model α, β as a 4-valent graph G (where vertices v are intersection points) since the
complement Σg \ (α, β) is a union of topological discs D. The Euler characteristic of the graph must
match that of Σg,n. We know ∑

v∈G
degv(G) = 2|E| = 4|V | = 2i(α, β)

Then we obtain

χ(Σg) = 2− 2g = |D| − 2i(α, β) + i(α, β)

and since |D| ≥ 1, we have the result. □

This bound is only realized in the case when n = 0. For punctured surfaces, however, we can
come very close. To construct an explicit example where equality is realized, we now introduce the
notion of filling permutations from [1] and [5].

Fix a surface Σg,n for g, n ≥ 0 and let ig,n denote the minimal intersection number for a pair
of filling curves on the surface. Suppose α, β fill Σg,n and intersect i(α, β) = m ≥ ig,n times.
Choose orientations for α, β and label the subarcs α1, . . . , αm where each subarc corresponds to
arcs beginning and ending at intersection points. Similarly, label subarcs of β as β1, . . . , βm.
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Let Q = Qα,β ∈ S4m be given as Q = (1, 2, . . . , 4m)2m. We note that Q changes nothing except
the orientation of every edge, i.e., it sends j to k if and only if the jth and kth elements of A are
inverses of each other. Finally, define τ = τα,β ∈ S4m as

τ = (1, 3, 5, . . . , 2m− 1)(2, 4, 6, . . . , 2m)(4m− 1, 4m− 3, . . . , 2n+ 1)(4m, 4m− 2, . . . , 2m+ 2).

The first cycle represents sending αi to αi+1, the second βi to βi+1, the third α−1
k to α−1

k+1, and

the fourth β−1
k to β−1

k+1. In other words, τ moves each arc in α to the next arc of α with the same
orientation, and similarly for β.

We will say that a permutation is parity-respecting if it sends even numbers to even numbers
and odd numbers to odd numbers and parity-reversing if it sends even numbers to odd numbers
and odd numbers to even numbers.

The following lemma from Jeffreys ([5], Lemma 2.3) gives the conditions necessary to define a
filling permutation on a surface Σg,n; we will subsequently construct the filling curves by finding a
permutation that satisfies these hypotheses.

Lemma 3.2. Let α, β be a filling pair on Σg,n with i(α, β) = m ≥ ig,n. Then, σ = σα,β satisfies
σQσ = τ . Conversely, a parity-reversing permutation σ ∈ S4m consisting of m+2−2g cycles and no
more than n 2-cycles that satisfies the above relation defines a filling pair on Σg,n with intersection
number m.

Proof. Take j ∈ {1, 2, . . . , 4m}. The edge labelled as the jth element of A is followed by the edge
labelled by the σ(j)th element of A. Additionally, Q(σ(j)) is the inverse of σ(j) and the edge
labelled by the σ(Q(σ(j)))th element of A follows that labelled by the Q(σ(j))th element. The
latter is exactly the edge labelled by the j + 1th element of A, so σQσ = τ .

Conversely, assume σ ∈ S4m satisfies the hypothesis. Since σ is parity-reversing, it consists
of cycles of even length, which we associate to polygons with a corresponding number of sides.
Puncture every 2-gon and any remaining polygons at most once until all punctures have been
placed. Note that this is possible because a filling pair on Σg,n intersecting ig,n times gives a graph
with 2 − 2g + ig,n faces, which must be at least equal to the number of punctured discs. Hence,
m ≥ ig,n implies m+2− 2g ≥ n. There are at most n 2-cycles, so we can puncture all of the bigons
to ensure α and β are in minimal position.

Label each polygon clockwise with the elements of the corresponding cycle and glue polygons
together according to the elements of A identified with these labels. Each edge occurs eactly once
with each orientation, so the resulting closed surface has n punctures.

Now we show that the Euler characteristic of this surface is given by 2 − 2g; then, by the
classification of surfaces, this surface would be homeomorphic to our original Σg,n. We know that
there are m + 2 − 2g faces and 2m edges, so V − E + F = 2 − 2g if, and only if, there are m
equivalence classes of vertices under gluing.

Each equivalence class of vertices contains exactly 4 vertices. The one between αk and βj+1 glues

to that between β−1
j+1 and αk+1; similarly the vertex between β−1

j+1 and αk+1 glues to the one in
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between α−1
k+1 and β−1

j . The one between α−1
k+1 and β−1

j glues to the one between βj , α
−1
k , which

glues to the original vertex between αk, βj+1. This creates a 4-cycle and thus the equivalence class
under the gluing consists of exactly 4 vertices. Hence we have 4m/4 = m total equivalence classes,
as desired.

Finally, since the last vertex of αk is identified to the first of αk+1, it follows that the α-arcs form
a simple closed curve α. Performing the same for the β-arcs, we acquire a surface of genus g filled
by two simple closed curves α, β which intersect exactly m times. □

Now we have the necessary ingredients to compute the minimal realized number of intersection
points on Σg,n; we closely follow the proof in [2].

Proposition 3.3. If α, β are minimally intersecting filling curves on Σg,n, g ̸= 0, 2, i(α, β) = 2g−1
if n = 0 and i(α, β) = 2g + n− 2 if n ≥ 1.

Proof. Using the same argument as in Lemma 3.1, we have that i(α, β) = 2g+n− 2+ |D| where D
is the disks in the complement of α, β. Thus we have the lower bounds and it is left to show that
these bounds are realized. The first case is given explicitly by Lemma 3.2; for the second, we induct
on n. When n = 1, 2g− 1 = 2g+n− 2. Thus the filling curves given in Proposition 4.2 which have
a single disk D in their complement still fill Σg,1, obtained by puncturing D once. When g = 1 the
formula for intersection number on the torus (that being a (p, q) and (r, s) intersecting precisely
ps − qr times, [4]) gives a simple way to find two curves intersecting exactly p times for n ≥ 1.
The complement of these two curves is n topological disks, and puncturing each gives 2g + n − 2
intersections on Σ1,n.

Now we describe a method to give a filling pair on Σg,n+2 given a pair on Σg,n which gives 2
more intersection points. As before, let α, β be a filling pair on Σg,n, and orient and label them into
subarcs α1, . . . , αi(α,β) and β1, . . . , βi(α,β) according to intersection points. Suppose α1 and βi(α,β)
cross each other. Then pushing α1 across βi(α,β) and back over forms 2 bigons. Puncturing them
both gives the same pair of filling curves on Σg,n+2 with intersection number i(α, β) + 2.

If n = 2k + 1 is odd and g > 2, take a filling pair whose complement is connected. Puncturing
this region gives a filling pair on Σg,1. Then performing the above double bigon construction k
times gives a pair of filling curves on Σg,2k+1 = Σg,n which intersects 2g + n− 2 times. For n even,
the argument generalizes if there exists a filling pair α, β on Σg,0 intersecting 2g times. Puncturing
both gives α, β which fill and intersect 2g + p − 2 times. Thus it suffices to construct these filling
curves on Σg,0 for g > 2 intersecting 2g times.

Consider the following two curves on Σ2,0:

The right Dehn twist of w about m, coupled with w (call these two curves (x, y)) fill Σ2,0 and its
complement is 4 topological disks:
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Then x, y intersect 6 times (given there are 6 subarcs of x, y.) Take Σ1,0 with the filling pair
above intersecting twice. Cut a small disk about each intersection point to get Σ′

1,0. This produces

a torus with boundary component and modified curves α1, α2. Now take Σ2,0 with (x, y) as above
and cut a small disk about the blue dot (which, in the gluing scheme, is identified as one point on
Σ2,0). Cutting this disk gives Σ′

2,0 which is of genus two with x, y. Glue Σ′
1,0 and Σ′

2,0, concatenating

α1 with x and α2 with y. We claim this gives a filling pair α, β on Σ3,0 intersecting 6 (= 2g) times.
Proving this amounts to taking γ a simple closed curve and assuming it is disjoint from α, β.

Then the projection of γ to the curve graph of the subsurface Σ′
2,0 πΣ′

2,0
(γ) is disjoint from x, y.

Thus it must be homotopic to ∂Σ′
2,0 since x, y fill. Thus it is homotopic into Σ′

1,0. Since α2, α2 fill
this subsurface, it follows that γ cannot be disjoint from both.

To obtain such a construction on an odd genus, we can iterate by choosing a pair intersecting
2(2(k−1)+1) times on Σ2(k−1)+1,0, cutting a disk about an intersection point and gluing to Σ′

2,0. □

A similar application of the double bigon construction gives minimal intersection numbers for
Σg,n for g = 0, 2 (see [2], Lemma 3.1 and [5] Theorem 3.3). We summarize the results as follows:

Genus Punctures i(α, β)

g = 0 n ≥ 4 even n− 2

g = 0 n ≥ 4 odd n− 1

g = 2 n ≤ 2 4

g = 2 n > 2 2g + n− 2

Remark 3.4. The case g = 0, n < 4 is not considered because the filling curves have intersection
number zero: if there are two or fewer punctures then a single curve fills and if there are exactly
three punctures then the filling pair does not intersect.

We now see that the proof of Theorem 1.6 immediately follows from the Thurston construction,
Proposition 3.3, and Theorem 2.1.

Remark 3.5. We note that the value of n = 2 is never realized for any Σg,n justifying the exclusion
of this value in Proposition 3.3.
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4. Future Directions

Revisiting the Thurston construction, we recall that for two multicurves A and B which fill Σg,n

we obtain a representation ρ : ⟨TA, TB⟩ → PSL2(R) given by

Tα 7→
[
1 −µ1/2

0 1

]
Tβ 7→

[
1 0

µ1/2 1

]
.

Throughout this paper we exclusively explored the case where A and B are single curves α and
β, respectively, but the problem of finding the minimal dilatation Thurston pA map extends to
the general case of multicurves A = {α1, . . . , αk}, B = {β1, . . . , βℓ}. Since we have two families of
curves the number µ is no longer just the intersection number between two curves; instead, we form
the k × ℓ matrix N whose (n,m) entry is given by

Nn,m = i(αn, βm)

and take µ to be the Perron-Frobenius eigenvalue of N⊤N (note that we must work with this matrix
instead of N since the latter is not necessarily square). We defer the reader to [4], Section 14.1.2
for some background on Perron-Frobenius theory.

The advantage to multicurves is that it is much easier to construct a pair of filling multicurves
than simply a filling pair, but they also add a considerable element of complexity. The number µ
now depends on all entries of the matrix N and not in a trivial way, since there is not a clear-cut
relationship between how the eigenvalues of matrix change with its entries. Thus, even determining
the minimal dilatation map for families of two curves, A = {α1, α2}, B = {β1, β2} would likely
require a large leap in understanding.

Another interesting angle to considering is that of most efficient mixing, i.e., the Thurston pA
map with “highest” dilatation. Of course, there is no maximum dilatation in a literal sense, since
for any map f we can let g = fn to obtain a higher dilatation. However, we can define a “most
efficient” map by fixing generators, say A and B and maximizing dilatation over reduced word
length. It is not clear for which generators (if any) this supremum will exist or be attained, but
inducting on word length and analyzing the growth of the entries of the word would likely be a
good start. The problem for multicurves is again more difficult in this context for the same reasons
as finding the minimal dilatation, namely the slippery relationship between µ and the matrix N .
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