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Abstract. We aim to present C.T.C. Wall’s theorem on h-cobordisms, which

states that any two simply-connected smooth 4-manifolds with isomorphic
intersection forms must be h-cobordant. After briefly introducing the inter-

section form, which is a fundamental invariant for 4-manifolds, we develop

the necessary tools to prove Wall’s theorem, including basic Morse theory and
handle decompositions. In the last section, we use these tools to sketch a proof

of Wall’s theorem.
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1. Introduction

In this paper we focus on the study of simply-connected 4-manifolds. All mani-
folds are assumed to be oriented. A key invariant for a 4-manifold is its intersection
form. Intuitively, the intersection form of a 4-manifold M keeps track of how the
2-homology classes of M , which may be represented by embedded surfaces, inter-
sect with each other. Moreover, if M is simply-connected, by Poincaré duality, we
have H1(M ;Z) = H3(M ;Z) = 0, and thus the only nontrivial homological infor-
mation is contained in H2(M ;Z). It is then reasonable to ask to what extent the
intersection form determines the topology of M . The notion of h-cobordism arises
precisely in this context, serving as a bridge from the homological to the topolog-
ical or differentiable. The theorem of C.T.C. Wall, which we aim to prove in this
paper, states that two simply-connected smooth 4-manifolds with isomorphic inter-
section forms must be h-cobordant. Combining this with M. Freedom’s remarkable
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topological h-cobordism theorem in dimension 4, we arrive at an affirmative an-
swer to the aforementioned question: two smooth simply-connected 4-manifolds
with isomorphic intersection forms must be homeomorphic. With these amazing
results in mind, we now begin developing the necessary notions and tools towards
understanding them. We start by rigorously defining the intersection form.

2. Intersection Forms

Let M be a smooth simply-connected 4-manifold. As described in the introduc-
tion, we want to keep track of how 2-homology classes of M intersect. It would
be convenient to be able to represent the 2-homology classes by embedded sur-
faces, and then the intersection number would take on a more concrete geometric
meaning. It turns out that we can always do this:

Lemma 2.1. Every 2-homology class of a 4-manifold M can be represented by an
embedded surface.

Proof. Since CP∞ is an Eilenberg-Maclane space K(Z, 2), we have an isomor-
phism [M,CP∞] ≃ H2(M ;Z) via f 7→ f∗u where u = [CP1]∗ is the generator
of H2(CP∞;Z). Moreover, by cellular approximation, f : M → CP∞ can be ho-
motoped to a map into CP2. Further perturbing f to be smooth and transverse to
CP1 ⊂ CP2 gives that f−1[CP1] is a surface in M dual to f∗u. □

Definition 2.2. For a closed oriented 4-manifoldM , define its intersection form
to be the map

QM : H2(M ;Z)×H2(M ;Z) → Z, QM (α, β) = Sα · Sβ ,

where Sα and Sβ are embedded surfaces representing α and β, and Sα ·Sβ denotes
the signed intersection number. Equivalently, by Poincaré duality, we may regard
the intersection form as

QM : H2(M ;Z)×H2(M ;Z) → Z, QM (α∗, β∗) = (α∗ ∪ β∗)[M ],

where [M ] denotes the fundamental class.

Basic properties of the intersection form are:

Lemma 2.3. QM is Z-bilinear, symmetric, and unimodular, i.e. the matrix rep-
resenting it is invertible over Z.

Proof. The only nontrivial assertion is unimodularity. By linearity, QM vanishes
on torsion elements. Thus we may assume WLOG that H2(M ;Z) is torsion-free.
By Poincaré duality, the map

Q̂M : H2(M ;Z) → HomZ(H2(M ;Z),Z), α 7→ (x 7→ α · x)
is an isomorphism. But this is equivalent to unimodularity by linear algebra. □

Intersection forms also behave nicely with respect to connected sum. This follows
from the simple observation that performing connected sum on 4-manifolds does
not affect 2-homology.

Lemma 2.4. Let M and N be 4-manifolds. Then QM#N = QM ⊕QN .

From an algebraic perspective, by Lemma 2.3, the intersection form is a diago-
nalizable matrix in GLn(Z) where n is the second Betti number b2(M). We may
thus define a few algebraic invariants of the intersection form:
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Definition 2.5. The signature of the intersection form QM , denoted by signQM ,
is defined to be its signature as a symmetric bilinear form, i.e. the number of
positive eigenvalues minus the number of negative eigenvalues. We say QM is even
if QM (α, α) is an even number for all α ∈ H2(M ;Z), and we say QM is odd if there
exists α ∈ H2(M ;Z) for which QM (α, α) is an odd number.

A remarkable feature of the signature is that it vanishes if and only if M is a
boundary. A proof can be found in [5].

Theorem 2.6 (V. Rokhlin). A smooth 4-manifold M has signQM = 0 if and only
if M = ∂W for some smooth 5-manifold W .

3. Cobordisms and Statement of Wall’s Theorem

Having defined the intersection form, which is a key homological invariant, we
now turn to the notion of h-cobordisms, which serve as a bridge between the ho-
mological and the topological.

Definition 3.1. Two m-manifoldsM and N are said to be cobordant through an
(m+1)-manifold W if ∂W =M ∪N , where the overline denotes the same manifold
endowed with the opposite orientation. We sayM andN are h-cobordant through
W if in addition the inclusion of M (equivalently, of N) into W is a homotopy
equivalence.

Intuitively, two m-manifolds M and N being h-cobordant means that they can
be connected by an (m+1)-manifold in such a way that nothing happens homolog-
ically in between. Since as indicated above the intersection form captures the main
homological information, it is reasonable to expect two 4-manifolds with isomorphic
intersection forms to be h-cobordant. This is precisely the content of C.T.C. Wall’s
theorem:

Theorem 3.2 (Wall’s Theorem on h-Cobordisms). If two smooth simply-connected
4-manifoldsM and N have isomorphic intersection forms, then they are h-cobordant.

The rest of this paper will be devoted to sketching a proof of this theorem. But
before that, we first derive a nice consequence of this theorem by combining it with
a difficult result of M. Freedman, as mentioned in the introduction:

Theorem 3.3 (Freedman’s 4-Dimensional h-Cobordism Theorem). Suppose two
simply-connected 4-manifolds M and N are h-cobordant through a simply-connected
5-manifold W . Then W is homeomorphic to M × [0, 1]. In particular, M and N
are homeomorphic.

Combining the preceding two theorems yields the following corollary, which rep-
resents the full passage from the homological to the topological: the intersection
form completely determines the homeomorphism type.

Corollary 3.4. If two smooth simply-connected 4-manifolds M and N have iso-
morphic intersection forms, then they are homeomorphic.

In the following section, we develop the tools necessary to prove Wall’s theorem.
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4. Morse Theory and Handle Decompositions

To get started on proving Wall’s theorem, a first observation is that by Rokhlin’s
theorem (Theorem 2.6), if the smooth simply-connected 4-manifoldsM and N have
isomorphic intersection forms, then in particular they have the same signature, and
hence are cobordant through some 5-manifold W . The main task then is to “up-
grade” this cobordism to an h-cobordism. To make this cobordism homologically
trivial, it is convenient to have a “nice” decomposition of W into simpler parts.
This is precisely accomplished by Morse theory. The guiding philosophy is that
the topology of W can be completely determined by studying the singularities of
certain smooth real-valued functions onW . In fact, these singularities give a recipe
for reassembling W from simple pieces known as handles.

Definition 4.1. Given a smooth real-valued function f on a smooth manifold W ,
a critical point p of f is called non-degenerate if the differential df , as a section of
the cotangent bundle T ∗W , is transversal at p to the zero section, or equivalently,

the Hessian matrix ( ∂2f
∂xi∂xj

(p))i,j of f at p is non-singular.

A smooth function f :W → R is called a Morse function if all its critical points
are non-degenerate and have distinct values.

Remark 4.2. In the definition of non-denegeracy, the explicit Hessian matrix de-
pends on which chart we choose. However, if p is a critical point, then whether the
Hessian matrix at p is singular is independent of the chart chosen. A quick way
to see this is to think of the Hessian as a symmetric bilinear form on TpW . More
precisely, we define a map Hp : TpW × TpW → R as follows: given u, v ∈ TpW ,
define Hp(u, v) := U(V (f))(p), where U (resp. V ) is any extension of u (resp. v)
to a vector field in a neighborhood of p. Hp is symmetric since

U(V (f))(p)− V (U(f))(p) = [U, V ](f)(p) = 0

as p is a critical point. From this we also see that Hp is well-defined (independent
of the vector field extensions) because on the one hand Hp(u, v) = u(V (f)) is
independent of how we extend u and on the other hand Hp(u, v) = v(U(f)) is
independent of how we extend v. Finally, an explicit calculation shows that after
choosing a chart, Hp is precisely the Hessian of f at p.

With this perspective, if p is a critical point of a Morse function f , the HessianHp

is a non-degenerate symmetric bilinear form on TpW and hence is diagonalizable.
More precisely, we have:

Lemma 4.3 (Morse Lemma). Let p be a non-degenerate critical point of f . Then
there is a chart x = (x1, ..., xn) around p such that x(p) = 0 and in the chart
domain we have

f = f(p)− x21 − · · · − x2k + x2k+1 + · · ·+ x2n

for some integer k ∈ [0, n]. The integer k is called the Morse index of f at p.

A first question regarding Morse functions is whether they exist. The answer is
of course affirmative. For a proof, see [2].

Lemma 4.4. Given a closed smooth manifold M , the collection of Morse functions
on M forms a dense subset of C∞(M ;R).
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We are now ready to see the remarkable interplay between the singularities of
Morse functions on W and the topology of M . Given a Morse function f :W → R,
we write W≤a := {q ∈ W : f(q) ≤ a}, Wa := {q ∈ W : f(q) = a}, and simi-
larly for W[a,b]. A first observation is that nothing happens topologically without
encountering a singular point:

Proposition 4.5. Suppose [a, b] does not contain a critical value of f and f−1([a, b])
is compact. Then there exists a smooth retraction r : W[a,b] → Wa such that
(f, r) :W[a,b] → [a, b]×Wa is a diffeomorphism. In particular, H∗(Wa,b,Wa) = 0.

Proof. Since [a, b] does not contain a critical value of f , the restriction of f toW[a,b]

is a submersion. Since we also have f−1([a, b]) compact, we may use a partition
of unity to build a vector field V on W[a,b] that lifts the vector field d

dt on R, i.e.
df(V ) = d

dt . Let Ht be the local flow of this vector field V on W[a,b]. Note that Ht

is well-defined for all x ∈ W[a,b] with t ∈ [a − f(x), b − f(x)]. By construction, we

have f(Ht(x)) = f(x) + t since V lifts d
dt . Thus r(x) := Ha−f(x)(x) is the desired

retraction. □

On the other hand, passing through a critical point of Morse index k is homo-
topically the same as attaching a thickened k-cell:

Proposition 4.6. Let p ∈W be a non-degenerate critical point of f with index k.
Write c = f(p). Then there exists ϵ > 0 and an embedding j : Dk ↪→ W[c−ϵ,c+ϵ],

where Dk is the closed unit ball in Rk, such that c is the only critical value in
[c − ϵ, c + ϵ], j−1Wc−ϵ = ∂Dk, and W≤c−ϵ ∪ j(Dk) is a deformation retract of
W≤c+ϵ.

Proof. Let x = (x1, ..., xn) : U → Rn be a chart as in Lemma 4.3, where U is
a neighborhood of p. From this lemma it is clear that the critical values of f
are isolated. Thus we may choose ϵ > 0 such that c is the only critical value in
[c − ϵ, c + ϵ], and x(U) ⊂ Rn contains the ball B2

√
ϵ of radius 2

√
ϵ centered at 0.

Define j : Dk ↪→ U ⊂W[c−ϵ,c+ϵ] by

j(y) = x−1(
√
ϵy1, · · · ,

√
ϵyk, 0, · · · , 0).

As illustrated in the following figure, we obtain a deformation retraction ofW≤c+ϵ∩
x−1(B2

√
ϵ) onto (W≤c−ϵ ∪ j(Dk)) ∩ x−1(B2

√
ϵ), which we may arrange to be given

by the flow of a vector field that lifts d
dt outside of x−1(B√

ϵ), as in the proof of
Proposition 4.5 above. We may then use a partition of unity to further extend this
deformation retraction to the whole of W≤c+ϵ.

□
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More precisely, if dimW = n, then W≤c+ϵ is homeomorphic to the result of
attaching to W≤c−ϵ a copy of Dk × Dn−k along the thickened boundary-sphere
Sk−1 × Dn−k according to the embedding j. We call this procedure attaching a
k-handle to W≤c−ϵ.

For a k-handle Dk × Dn−k, we call Sk−1 × 0 the attaching sphere and call
0× Sn−k−1 the belt sphere.

Given a smooth n-manifold W with boundary, the homeomorphism type of the
result of attaching a k-handle to W is determined by precisely two ingredients: (1)
the homotopy class of the attaching map from the attaching sphere Sk−1×0 to ∂W ,
and (2) the way in which we identify the thickened neighborhood of the attaching
sphere, which can be specified by an automorphism of the trivial Dn−k-bundle over
Sk−1.

Combining Propositions 4.5 and 4.6, we see that analogous to the CW structure
on a cell complex, we can build W by successively attaching handles of different
orders. Moreover, analogous to the classical cellular approximation theorem, we
can always assume that lower-order handles are attached before their higher-order
counterparts. More precisely,

Lemma 4.7. Let M be a smooth n-manifold with boundary. Let M1 be obtained
from M by attaching a k-handle and let M2 be obtained from M1 by attaching a
j-handle. If j ≤ k, then up to homeomorphism M2 be also be obtained by first
attaching a j-handle followed by a k-handle.

Proof. To prove the lemma, it suffices to show that we can homotope the attaching
map fj : Sj−1 → M1 to a map into M . We do this in two steps. First, we
homotope fj to miss the belt sphere 0×Sn−k−1 of the k-handle. This can be done
by dimension counting: both the image of Sj−1 and the belt sphere 0×Sn−k−1 live
in the (n − 1)-manifold ∂M1. Thus their generic intersection will have dimension
(j − 1) + (n− k − 1)− (n− 1) = j − k − 1, which is negative since j ≤ k. Thus we
can perturb fj to miss the belt sphere.
The next and last step is to push the image of fj into ∂M . Indeed, after step 1, the
part of the image of fj outside of ∂M can only be contained in (Dk\0)× Sn−k−1.
But this deformation retracts radially onto Sk−1 × Sn−k−1, which is contained in
∂M . This completes the proof. □

Propositions 4.5 and 4.6 suggest a strong connection between the CW structure
of a manifold and its decomposition into handles. Indeed, cellular homology itself
can be rephrased in terms of handles.

Let M be a smooth n-manifold. We build a chain complex {Ck}k∈N as follows.
Fix a Morse function f :M → R and consider the associated handle decomposition
induced by f . We define Ck to be the free abelian group on the set of k-handles in
this decomposition. For the boundary maps ∂k : Ck → Ck−1, if h

k
α is a k-handle

and hk−1
β is a (k − 1)-handle, we define the incidence number ⟨hkα, hk−1

β ⟩ to be

the intersection number of the attaching sphere of hkα with the belt sphere of hk−1
β .

This allows us to define

∂k(h
k
α) :=

∑
⟨hkα, hk−1

β ⟩hk−1
β ,

where the sum ranges over all (k − 1)-handles.
We claim that homology groups Hk(C∗) = ker ∂k/ Im ∂k+1 are naturally isomor-

phic to the cellular homology groups of M . In particular, the groups Hk(C∗) are
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independent of the choice of the Morse function and the handle decomposition.
Indeed, Proposition 4.6 shows that given a Morse function f on M , there exists
a CW structure on M such that there is a bijection between the set of k-handles
in the handle decomposition induced by f and the set of k-cells in the CW struc-
ture. Moreover, the incidence number ⟨hkα, hk−1

β ⟩ measures the number of times the

attaching sphere of hkα wraps around the core of the (k − 1)-handle hk−1
β . Thus

the boundary map ∂k defined above corresponds precisely to the cellular boundary
formula for cellular homology.

Now that we have developed the tools of Morse theory and the language of handle
decompositions, we will proceed to sketch a proof of Wall’s Theorem (Theorem 3.2).

5. Proof of Wall’s Theorem

As explained at the beginning of the preceding section, since M and N have the
same signature, they are cobordant through some 5-manifold W . The goal is to
modify W to be simply-connected and homologically-trivial. We do this in several
steps:

5.1. Step 1: Kill the fundamental group. Take generating loops l1, ..., ln for
π1(W ). For dimension reasons, the loops can be realized as pairwise-disjoint em-
bedded circles. For each li (viewed as an embedded S1), we cut out a tubular
neighborhood S1 × D4 in W and glue in a copy of D2 × S3 along the boundary.
After performing this for each i, the modified W is now simply-connected.

5.2. Step 2: Simplify handles. Fix a Morse function f : W → [0, 1] with
f−1(0) = M and f−1(1) = N . As discussed in the preceding section, W can
be viewed as the result of successively attaching 0-, 1-, . . . , 5-handles to M . We
first claim that all 0-handles and 5-handles can be cancelled. Indeed, attaching a
0-handle is simply taking the disjoint union with a copy of D5. Since M and W
are connected, if a 0-handle were present in the handle decomposition, there must
be a 1-handle that bridges the copy of D5 with another component. However, the
thickened attaching sphere of the 1-handle is merely two disjoint copies of D4, one
of which is embedded in the boundary S4 of the 0-handle D5. But as illustrated
in the figure below, attaching such a pair of 0-handle and 1-handle has no affect
on the topology. By a symmetric argument, we may also assume that no 5-handles
are present in the handle decomposition.

We next claim that all 1-handles can also be eliminated at the price of adding
extra 3-handles. Suppose there is a 1-handleD1×D4 in the handle decomposition of
W . Since W is connected, there must be a segment connecting the two endpoints
of the core D1 × 0 of this 1-handle, and thus after attaching this 1-handle we
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get an embedded circle C in W . Since we have made W simply-connected and
dimW = 5 ≥ 2× 2 + 1, C must bound an embedded disk D in W . To cancel this
1-handle, our strategy will be first creating “out of thin air” a cancelling pair of a
2-handle and a 3-handle (by cancelling we mean attaching this pair does not affect
the topology of W ), and then using the newly created 2-handle to cancel with the
1-handle. We now carry out this strategy in more detail.

We attach a 2-handle D2 ×D3 by identifying the attaching sphere S1 × 0 with
C in such a way that the this two handle D2 ×D3 and a tubular neighborhood of
D in W (which is homeomorphic to D2 ×D3 glue together along S1 ×D3 to form
a copy of S2×D3. We then attach a 3-handle D3×D2 by identifying its attaching
sphere S2 × 0 with the S2 factor above. (See the illustration below. The net effect
of attaching this pair of a 2-handle and a 3-handle does not do anything to the
topology of W .)

On the other hand, this newly added 2-handle cancels with the original 1-handle,
since the attaching sphere of the 2-handle precisely wraps around the core of the
1-handle once. Thus, the net effect of this maneuver is that the 1-handle is now
gone, and we get a new 3-handle in its place.

By symmetry, we may also eliminate all 4-handles at the price of adding 2-
handles, without affecting the topology of W . This produces a handle decomposi-
tion of W consisting only of 2- and 3-handles. Moreover, by Lemma 4.7, we may
assume all 3-handles are attached after all 2-handles. This creates an interface,
denoted by M1/2, which is a 4-submanifold of W obtained either by attaching all
the 2-handles to M or by attaching all the 3-handles to N (recall that N , the
other manifold whose intersection form is isomorphic to that of M as given in the
statement of Theorem 3.2, is the other “end” of the cobordism W ) upside-down.

5.3. Step 3: Analyzing the topology of M1/2. We claim that

M1/2 =M#m(S2 × S2)#m′(S2×̃S2)

for some m,m′ ∈ N. To see this, we analyze how a 2-handle can be attached to
M : a 2-handle is a copy of D2 × D3, and to attach it we need to specify (1) the
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homotopy class of the “un-thickened” attaching map S1 × 0 → M and (2) a self-
diffeomorphism of the trivialD3-bundle over S1 (this determines how the thickening
is performed). For (1), there is only one choice, since all embedded circles in a 4-
manifold are isotopic. For (2), since π1(SO(3)) = Z/2Z, we have two choices. More
explicitly, the choices correspond to whether the D3 factor rotates an even number
of times as we travel around the base S1 or an odd number of times.

To establish the claim made at the beginning of this subsection, it remains to
show that attaching an even 2-handle (i.e. twisting an even number of times in the
thickening) is equivalent to taking the connected sum with a copy of S2 × S2, and
analogously attaching an odd 2-handle is taking the connected sum with S2×̃S2

(this is the unique non-trivial S2-bundle over S2).
Indeed, since ∂(D2 × D3) = S1 × D3 ∪ D2 × S2, attaching a 2-handle deletes

from M a copy of S1 × D3 and adds a copy of D2 × S2. The attaching circle
S1 × 0 bounds a disk D in M , which together with the attached D2 factor forms a
copy of S2 ×D2. The S2 factor has self-intersection 0 if the 2-handle is even, and
self-intersection 1 if the 2-handle is odd. See the illustration below, which explains
how to understand this from the perspective of connected sum.

5.4. Step 4: Getting rid of the twist. We claim that

(5.1) M1/2 =M#m(S2 × S2)

for some m ∈ N, i.e. we do not need the twisted spheres S2×̃S2. We consider
separately the cases where the intersection form of M is odd or even.

If the intersection form QM is odd, the claim follows from the following lemma.
We omit the proof as it involves Kirby calculus, but it could be found in section
4.2 of [6].

Lemma 5.2. If M has odd intersection form, then there is a diffeomorphism

M#(S2 × S2) ≃M#(S2×̃S2).

The case where QM is even is more difficult. We do not explain the full details
here, and simply take faith in it. The result is basically a combination of the fact
that a simply-connected 4-manifold admits a spin structure if and only if its inter-
section form is even, and the following theorem of Rokhlin, which is a refinement
of Theorem 2.6.

Theorem 5.3 (Rokhlin). If two spin 4-manifolds M and N have the same signa-
ture, then they are cobordant through a spin 5-manifold W , and its spin structure
induces on M and N their respective spin structures.

With these results, we can start out with a cobordism without odd handles and
thus are left with only the connect sum with copies of S2 × S2.
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5.5. Step 5: Find a diffeomorphism of M1/2 that kills the homology. Let
us first briefly summarize what we have achieved so far. By Step 2, we have
simplified W such that all the nontrivial homological information is contained in
H2 and H3. By Steps 3 and 4, we have obtained a simple characterization of
this nontrivial homological information: it is captured in the interface M1/2. To
make the cobordism homologically trivial, it remains to cut up W along M1/2 and
then reglue along a properly chosen self-diffeomorphism of M1/2 so that the 2- and
3-homologies cancel out. For this last step, we need to invoke another difficult
theorem of Wall (see [7]):

Theorem 5.4 (Wall’s Theorem on Diffeomorphisms). Let M be a smooth simply-
connected 4-manifold with QM indefinite. Then any automorphism of QM#(S2×S2)

can be realized by a self-diffeomorphism of M#(S2 × S2).

By (5.1), we may write

H2(M1/2;Z) = H2(M ;Z)⊕Z{α1, α1, ..., αm, αm} = H2(N ;Z)⊕Z{β1, β1, ..., βm, βm}
where αi, αi represent the homology classes of the i-th copy of S2 × S2. By as-
sumption, since M and N have isomorphic intersection forms, let ϕ : H2(M ;Z) →
H2(N ;Z) be such an intersections-preserving isomorphism. We may extend this

to an isomorphism ϕ̃ : H2(M1/2;Z) → H2(M1/2;Z) by setting ϕ̃(αi) = βi and

ϕ̃(αi) = βi. By Wall’s Theorem on Diffeomorphisms, ϕ̃ is induced by a diffeomor-
phism ψ :M1/2 →M1/2. Finally, we re-glue the upper and lower halves ofW along
the interface M1/2 by ψ. This kills the homology of W and we obtain the desired
h-cobordism.
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