
ANALYSIS OF LANGEVIN DIFFUSIONS

ROHAN BULUSWAR

Abstract. This expository paper presents a construction of the Langevin dif-

fusion process and both analytic and geometric perspectives on its convergence.

First, it introduces stochastic calculus, culminating with Itô processes and Itô’s
formula. Second, it introduces Markov semigroup theory and several promi-

nent functional inequalities, which serve to quantify the rate of convergence

to the stationary distribution. Finally, it introduces optimal transport theory
and Otto calculus to give an alternate interpretation of Langevin diffusion in

Wasserstein space and help illuminate the ’curvature-dimension’ condition in

Bakry-Émery theory.
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1. Introduction

This paper presents an overview and analysis of the Langevin diffusion process,
defining it from first principles as a stochastic differential equation, obtaining results
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about long-term behavior using Markov semigroup theory, and showing how it can
also be viewed as a gradient flow in a pseudo-manifold of probability distributions.

Section 2 focuses on rigorously defining the Langevin SDE (stochastic differential
equation). Familiarity with the basic notions of stochastic processes is expected
- readers unfamiliar with any of these can consult Appendix A Stochastic
Processes. We begin with an informal construction of Brownian motion, then move
to stochastic integration and Itô’s formula. Finally, we define the Langevin SDE.

Section 3 presents Markov semigroup theory, which views stochastic processes
from the perspective of functional analysis. To begin, we define the important
operators associated with a Markov semigroup and show how we obtain exact results
about the evolution of the law of continuous-time Markov processes. Finally, we
describe two important inequalities bounding the mixing times of Markov processes,
and the conditions under which they hold.

Finally, Section 4 presents a geometric perspective on the Langevin diffusion.
Some familiarity with Riemannian manifolds and Ricci curvature is expected, but
a brief introduction can be found in Appendix B Riemannian Manifolds and
Ricci Curvature. First, we relate curvature and dimension to the inequalities on
mixing times of Markov processes and show the conditions under which they hold
for the Langevin diffusion. Next, we introduce optimal transport theory and explain
how it is used to construct a pseudo-manifold of probability distributions, leading
to the creation of Otto calculus. We present proofs about functional equalities that
utilize Otto calculus, and finally, describe how the Langevin diffusion can be viewed
as a gradient flow in the pseudomanifold of distributions.

2. Stochastic Calculus and the Langevin SDE

2.1. Markov Processes and Brownian Motion. The focus of this paper is on
a class of stochastic process called Markov processes. These are the ‘memoryless’
processes, in which future values of Xt depend only on the current value, and not
past values, as captured in the following definition [BGL14, 8].

Definition 2.1 (Markov property). Given a stochastic process (Xt), we say it
has the Markov property if for any A ∈ F and any s > t, P(Xs ∈ A|Σt) = P(Xs ∈
A|Xt).

The technical details of conditional probability and conditional expectation can
be found in [Lawler23, 1.1]. In other words, the law of Xs conditioned on Σt is
the same as conditioned on Xt. Moreover, we call the process time-homogenous
if the law of Xs conditioned on Xt is the same as the law of Xs−t conditioned on
X0 for any s, t. The Markov processes studied in this paper are generally time-
homogenous. Critically, we can then fully capture the information of the Markov
process in the transition kernels (probability measures) pt(x, dy) where P(Xt ∈
A|X0 = x) =

∫
A
1pt(x, dy). This allows for another interpretation of the Markov

property [BGL14, 8].

Proposition 2.2 (Weak Markov property). If the process Xt satisfies the
Markov property, then for any times 0 < t1 ≤ t2 ≤ ... ≤ tk, the law of the random
vector (Xt1 , .., Xtk) given that X0 = x is

pt1(x, dy1)pt2−t1(y1, dy2)...ptk−tk−1(yk−1, dyk).
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The proof is left to the reader, as this is a fairly standard result. In the case of
discrete Markov processes, we can only take the ti to be natural numbers and this
is in fact equivalent to the Markov property [Berestycki23, 10].

One basic example of a Markov property is the random walk. We could take a
random walk on many different structures, but let us begin with Z.

Definition 2.3. The simple random walk on Z is a discrete-time stochastic process
(Xn)n∈N, given by Xn =

∑n
i=1 Si, where the Si are i.i.d random variables with

P(Si = 1) = 1
2 = P(Si = −1).

Proposition 2.4. The simple random walk on Z is a Markov process.

Proof. Using Definition 2.1, it suffices to show that for any integer z and time t ∈ N,
P(Xt = z|X1, ..., Xt−1) = P(Xt = z|Xt−1)

There are two cases. First, suppose that Xt−1 /∈ {z−1, z+1}. Then it is impossible
so that Xt = z, since Xt − Xt−1 ∈ {−1, 1} by construction. Hence, both the
LHS and RHS are equal to 0. Next, suppose that Xt−1 ∈ {z − 1, z + 1}, and
let us suppose WLOG that z − Xt−1 = 1. By construction, the RHS is equal to
P(Xt = z|Xt−1 = z − 1) = P(St = 1) = 1

2 . For the LHS, we again exactly require
St = 1, and St is assumed to be independent of all the Xi, so we can write

1

2
= P(St = 1) = P(St = 1|X1, ..., Xt−2) = P(St = 1|X1, ..., Xt−2, Xt−1 = z − 1)

1

2
= P(Xt = z|X1, ..., Xt−1 = z − 1)

Hence, in either case, the two sides of the equation are the same, and the simple
random walk Xt is a Markov process. □

This proof captures the intuitive notion that randomly moving particles, or collo-
quially drunkards, do not remember where they have been. The idea of the proof is
not specific to Z - one can also show that a random walk on a graph, for example, is
also a Markov chain. Random walks are useful for modeling real-world phenomena,
from the fluctions of the prices of equities and their options to the movement of
particles in a fluid impacted by many nearly-random collisions. Moreover, they are
used to define the core class of processes on which we perform stochastic calculus.

However, for the purposes of modeling real-world systems, we prefer that our
random walk be continuous in space and time. We will thus begin an informal
construction of such an object, called Brownian motion or a Wiener process.

While the simple random walk takes values in Z, we can just as well view it as
taking values in R, with a step size of 1. This step size is an arbitrary positive
real, and will be denoted by ∆x. Moreover, while it is discrete in time, we may
assign a time increment of ∆t, initially assumed to be 1. In this way, the simple
random walk is akin to taking snapshots of some continuous-time process every
∆t seconds. Hence, as we send ∆x → 0 and ∆t → 0, we expect to recover that
continuous-time process: a continuous random walk with time values in R≥0 and
position values in R. The method of taking limits here must be done with some
care, and the technical details are difficult. In fact, it is a priori unclear if such a
stochastic process even exists. However, let us begin by describing the properties
we require it to have, in order to be a good model of a continuous random walk.
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Definition 2.5 (Standard Brownian motion). Standard Brownian motion (in
one dimension) is a continuous-time stochastic process Bt taking values in R satis-
fying the following properties:

• B0 = 0
• With probability one, the function B(t) = Bt is continuous
• For any 0 < t1 < t2 < ... < tk, the random variablesBt1 , Bt2−Bt1 , ..., and Btk−
Btk−1

are independent of each other
• For any 0 < t1 ≤ t2, Bt2 −Bt1 ∼ N(0, t2 − t1)

The first property, that Bt starts at the origin, is mainly for convenience. We
can always add some constant to obtain the process c + Bt, a continuous random
walk from a different origin. The second property, that B(t) is continuous, is the
necessary level of niceness to perform stochastic calculus, and makes intuitive sense
for the purposes of modeling. The third property, called independent increments,
captures the notion that the steps at different times are independent of each other.
In the case of the simple random walk, this was the assumption that the Si are
independent.

The fourth property, describing the distribution of the increments, has two im-
plications. First is that increments of the same size have the same distribution,
since N(0, t2 − t1) only depends on the difference between t2 and t1, not their in-
dividual values. In the case of the simple random walk, this was the assumption
that the Si have the same distribution. Second, it prescribes that the distributions
of the increments are normal with mean zero and linearly increasing variance. In
fact, the previous properties are enough to conclude that the increments satisfy
Bt2 −Bt1 ∼ N(µ(t2 − t1), σ

2(t2 − t1)) for some µ ∈ R, σ2 ≥ 0, but we do not pro-
vide a proof here [Lawler23, 44]. In the case of the standard Brownian motion, we
have µ = 0 and σ2 = 1. To recover the general form, if Bt is the standard Brownian
motion, we can consider Xt = σBt+µt. (The process Xt will still satisfy properties
2-4.) µ is called the drift and σ2 is called the variance. This distribution of incre-
ments should make sense from the properties of the simple random walk. Because
the Si are independent, if they have mean µ and variance σ2, Xn =

∑n
i=1 Si will

have E(Xn) = nµ and Var(Xn) = nσ2. Thus, the mean and variance of Xn grow
linearly in time. Moreover, in considering the limit of random walks with finer step
size, we are in fact taking an average of an increasing number of Si, sampled from
the same distribution. By the Central Limit Theorem, we expect the result to be
normally distributed.

Although we have a precise definition of standard Brownian motion, the challenge
of constructing such a stochastic process remains. We have informally thought of
it as a limit of random walks as ∆x,∆t → 0, but much clarification is needed. A
complete proof would be onerous, but there are important ideas to outline. First,
we need to understand how ∆x and ∆t move together as they approach zero. Recall
that for standard Brownian motion, we want B1 ∼ N(0, 1). Let us assume that ∆t
is chosen so that 1 = N∆t for some natural N , and XN occurs at t = 1. Then let

us consider XN =
∑N

i=1 Si, where Si takes on the values ∆x and −∆x with equal
probability. No matter how ∆x is chosen, E(Si) = 0, so E(XN ) = NE(Si) = 0.

However, Var(XN ) = NVar(Si) = N(∆x)2, and we require ∆x =
√

1
N =

√
∆t.

This property has consequences for the most important and computationally useful
formulas of stochastic calculus. Notably, any approximation in time at the level of
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∆t must be accurate at the level of (∆x)2. We will thus find second-order Taylor
expansions where ordinary calculus would only have one. As another consequence,
∆Bt

∆t ≈ 1
∆t , which tends to infinity as ∆t → 0. One implication is that with

probability one, Brownian motion is nowhere differentiable [Lawler23, 51].

Theorem 2.6. With probability one, the function B(t) = Bt is nowhere differen-
tiable.

Next, we give a brief outline of the method used to construct standard Brownian
motion (the details will take too much space, but the idea is generally useful in
studying stochastic process), as presented in detail in [Lawler23, 2.5]. We will
in fact only construct Bt for t ∈ [0, 1], but by repeating these one after another,
beginning where the previous one ends, we obtain Bt for all t ≥ 0. We begin with
a countable set of independent standard normal random variables {Zi}. We denote
by Dn the set of rationals in [0, 1] with denominator 2n. The union D =

⋃
n∈N Dn

is the set of dyadic rationals in [0, 1]. D is countable, so for each t ∈ D, we associate
it with one of our standard normal variables Zt. We can use these random variables
to define Bt, our standard Brownian motion, for t ∈ D, recursively in n for each Dn.
By beginning with D1 and then defining Bt for each t ∈ Dn+1 \ Dn for all n ∈ N,
we associate a unique random variable Bt to each t ∈ D. This process Bt, t ∈ D
satisfies every property of Brownian motion except continuity. However, because D
is dense in [0, 1], knowing that the full Bt ought to be continuous, we should have
enough information. We can prove that the function B(t) = Bt defined intially
only on D is (almost surely) uniformly continuous. Hence, for each t ∈ [0, 1], we
can take tn → t where tn ∈ D, and define Bt = limn→∞ Btn . Finally, one can check
that this definition of Bt satisfies all of the necessary properties.

Consequently, we know that Brownian motions, or random walks that are con-
tinuous in space and time, can exist. Like the simple random walk, Brownian
motion is a Markov process, due to having independent and identically distributed
increments. Finally, with a grasp of Brownian motion in one dimension, we can
extend it to taking values in Rd, its full generality. We have the following definition
[Lawler23, 67].

Definition 2.7 (General Brownian motion). Consider µ ∈ Rd, and let Γ ∈ Rd×Rd

be a symmetric positive semi-definite matrix. Then a Brownian motion in Rd with
drift µ and covariance Γ is a stochastic process Bt = (B1

t , B
2
t , ..., B

d
t ) satisfying the

following properties:

• B0 = 0
• With probability one, the function B(t) = Bt is continuous
• For any 0 < t1 < t2 < ... < tk, the random vectors Bt1 , Bt2 −Bt1 , ..., Btk −

Btk−1
are independent of each other

• For any 0 < t1 ≤ t2, Bt2 −Bt1 is normally distributed with mean (t2− t1)µ
and covariance (t2 − t1)Γ

The definition is essentially the same as in one dimension, adapted to the def-
inition of the normal distribution in multiple dimensions. In fact, there is no dif-
ficulty in constructing multidimensional Brownian motion because its components
are themselves Brownian motions, though they are not necessarily independent.

2.2. Stochastic Integration. By constructing Brownian motion we have laid the
foundations of a more general class of ‘random walk’ stochastic processes, in which
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the drift and variance may vary in time and space. The end goal, however, is
to make sense of stochastic differential equations, and in particular, the Langevin
equation. But how can we have differential equations when Brownian motion is
almost certainly differentiable nowhere? The answer is that SDEs are defined in
terms of integrals, and in particular, integrals against a Brownian motion. Hence,
we focus next on the development of stochastic integration.

The goal of stochastic integration is to make sense of
∫
Xt dBt, the integration

of a continuous-time stochastic process against Brownian motion. If the Brownian
motion Bt represents the random movements of a stock and Xt represents bets
placed on the movement of that stock, then the integral

∫
Xt dBt is representative

of the total profit made from these bets. To clarify this idea, let us return to the
simpler case of ‘discrete stochastic integration’ with respect to a simple random
walk. To begin, we introduce the following definition [Lawler23, 26].

Definition 2.8. Let Xn be discrete-time stochastic process with its natural filtra-
tion {Σn}. A sequence of random variables Yn is called predictable if for all n ∈ N,
Yn is measurable with respect to Σn−1.

This is a reasonable requirement because we would like the value of the integral∫ T

0
XtdBt to depend only on the values of Bt up to time T , and the same should be

true for the discrete scenario. Now, we can formulate discrete stochastic integration.

Definition 2.9 (Discrete stochastic integration). Let S1, S2, ... be independent
and identically distributed random variables with mean zero and variance σ2. We
then consider the stochastic process Xn by Xn =

∑n
i=1 Si, a random walk, and

its natural filtration. Moreover, let Yn be a sequence of random variables that is
predictable and satisfies E[Y 2

n ] < ∞ for all n ∈ N. The discrete stochastic integral
is defined by the process Zn, where

Zn =

n∑
i=1

YiSi

If we assume that the Si take on values of −1 and 1 with 1
2 probability each,

then Xn is exactly the simple random walk discussed earlier. However, we could
also assume that the Si are normally distributed with equal variance. In this case,
Xn looks more like snapshots of a Brownian motion at equal time intervals. This
intuition, like with constructing Brownian motion, will aid in constructing the full
stochastic integral. First, however, it is worth noting some interesting properties of
the discrete stochastic integral. To do so, it is worth introducing a new definition,
for another important class of stochastic processes.

Definition 2.10 (Martingales). Let Xt be a stochastic process with respect to a
filtration {Σt}. Suppose that for all t, E[X2

t ] < ∞. Then Xt is called a Martingale
if for all pairs t1 < t2, E[Xt2 |Σt1 ] = Xt1

This definition is valid for both discrete-time and continuous-time Martingales.
It can be reformulated as E[Xt2 − Xt1 |Σt1 ] = 0. In other words, we require that
absent relevant information, any jumps inXt have expected value equal to 0. Hence,
Martingales are also called ‘fair games’. In fact, the discrete stochastic integral as
defined above is a typical example of a Martingale:

Proposition 2.11. Consider Xn, Yn, and Zn as in Definition 2.9. The discrete
integral Zn satisfies the following properties:
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• Linearity
• Zn is a Martingale
• Var[Zn] = σ2

∑n
i=1 E[Y 2

i ]

Proof. First, linearity of the integral follows immediately from linearity of ex-
pectation. Second, we can show that Zn is a Martingale. To begin, note that
Z2
n =

∑n
i=1

∑n
j=1 YiSiYjSj . For any i < j, Sj is independent of Si, Yi, and Yj , so

that E[YiSiYjSj ] = E[Sj ]E[YiSiYj ] = 0E[YiSiYj ] = 0. (Yj is measurable w.r.t Σj−1,
which is in turn independent from Sj , by definition of a random walk.) Hence,
we are left with E[Z2

n] = E[
∑n

i=1 Y
2
i S

2
i ] =

∑
E[Y 2

i S
2
i ]. Similarly, Yi and Si are

independent, so this reduces to
n∑

i=1

E[Y 2
i ]E[S2

i ] = σ2
∑
i=1

E[Y 2
i ]

By assumption, E[Y 2
k ] is finite for each k, so E[Z2

n] is also finite. Next, for any i < j
we need to show that

E[Zj − Zi|Σi] = 0

To begin, we can write

E[Zj − Zi|Σi] = E[
j∑

k=i+1

YkSk|Σi] =

j∑
k=i+1

E[YkSk|Σi]

As before, Yk and Sk are independent, so E[YkSk|Σi] = E[Yk|Σi]E[Sk|Σi]. Because
k > i, Sk is independent of S1, S2, ..., Si, and thus independent of Σi. Therefore,
E[Sk|Σi] = E[Sk] = 0. Finally, we know that

E[Zj − Zi|Σi] =

j∑
k=i+1

E[Yk|Σi]E[Sk|Σi] = 0

Therefore, Zn satisfies both of the requisite properties of a Martingale. Note that
Z0 = 0 because it is an empty sum, so for any n, E[Zn] = E[Zn|Σ0] = E[Z0|Σ0] = 0.
(Σ0 represents no information.) As a result, any betting strategy that cannot look
into the future is expected to make no money trading stocks! Third, we can compute

Var[Zn] = E[Z2
n]− E[Zn]

2 = σ2
n∑

i=1

E[Y 2
i ]− 0 = σ2

n∑
i=1

E[Y 2
i ]

where the first equality follows from our earlier calculations. □

While the proof itself relied on working in discrete-time, once we construct the
continuous stochastic integral, we will find that many of the same properties still
hold. The full technical details of the construction are beyond the scope of this
paper, but we will give a brief summary. In the beginning, defining the stochastic
integral is much like defining the Lebesgue integral. Akin to simple functions, we
have the notion of a simple process: processes which are constant except for jumps
at some fixed (finite in number) times t1, ..., tn. It is fairly straightforward to define
the integral for a simple process, as it is essentially a discrete-time process with time
intervals inserted: the details can be found in [Lawler23, 3.2]. Then, we consider
well-behaved processes, and take an approximating sequence of simple processes
that converges in the L2 sense. We can define the integral of the original process
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to be the limit of the integral of the simple processes, which can be proven to exist
with probability one. With that definition, one can prove the following proposition
[Lawler23, 90-91].

Proposition 2.12. Let Bt be a standard Brownian motion with its natural filtration
{Σt}. Consider processes At and Ct such that: for all t, At and Ct are measurable
w.r.t Σt (i.e. they are adapted to {Σt}); At and Ct have continuous paths with
probability one; there exists a constant M such that with probability one, |At|, |Ct| ≤
M for all t. If the stochastic integral is denoted by Zt =

∫ t

0
AsdBs, then the following

hold:

• Linearity:
∫ t

0
(aAs + cCs)dBs = a

∫ t

0
AsdBs + c

∫ t

0
CsdBs and

∫ t

0
AsdBs =∫ r

0
AsdBs +

∫ t

r
AsdBs

• Martingale: Zt is a Martingale, and in particular E[Zt] = 0 for all t
• Continuous paths: with probability one, the function f(t) = Zt is continuous

• Itô Isometry: E[(
∫ t

0
AsdBs)

2] =
∫ t

0
E[A2

s]ds

Note that the Itô Isometry is the equivalent of the variance calculations from
the earlier proposition about discrete stochastic integration. While the continuity
property is unique to continuous-time integration, the other two properties also
carry over from before, as promised. Next, we relax the assumptions on At to
define the stochastic integral for a larger class of processes. For example, At does
not need to be bounded, although Zt may no longer be a Martingale [Lawler23,
93]. Moreover, At may only be piecewise continuous. More details and broader
definitions of the stochastic integral can be found in [Lawler23, 3.1-3.3].

2.3. Itô’s Formula. Now, equipped with a notion of stochastic integration, we
can begin to make sense of stochastic differential equations, and their solutions.
There is, however, a more pressing question: given that the definition of stochastic
integration is somewhat abstruse, how does one actually compute these integrals?

For example, what is
∫ t

0
BsdBs? The main tool for answering these questions,

analogous to Taylor’s theorem or the fundamental theorem of calculus, is Itô’s
formula.

To begin, we consider a particular class of stochastic processes called Itô processes
[Chewi24, 8].

Definition 2.13 (Itô processes). Let Bs be a standard Brownian motion in RN .
A stochastic process Xt with values in Rd is called an Itô process if it can be written
as

Xt =

∫ t

0

bs ds+

∫ t

0

σs dBs

where bs is a vector-valued stochastic process in Rd and σs is a matrix-valued
stochastic process in Rd×N . (We assume that bs and σs are such that the integrals
are well-defined.) Alternatively, we may formally write the stochastic differential
equation

dXt = btdt+ σtdBt

In other words, an Itô process moves like a Brownian motion with changing mean
(bt) and variance (σt). These coefficients are called the drift and diffusion, respec-
tively. Itô’s formula (also called Itô’s lemma) allows us to compute differentials of
a function of an Itô process as follows [Chewi24, 9].
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Theorem 2.14 (Itô’s formula). Let f(t,X) : R≥0 × Rd → R be a function that
is C1 in t and C2 in X. Moreover, let Xt be an Itô process satisfying dXt =
btdt + σtdBt, as in Definition 2.13. Then f(t,Xt) is also an Itô process, and it
satisfies

f(t,Xt)−f(0, X0) =

∫ t

0

∂sf(s,Xs)+⟨∇f(s,Xs), bs⟩+
1

2
⟨∇2f(s,Xs), σsσ

T
s ⟩ ds+

∫ t

0

⟨σT
s ∇f(s,Xs), dBs⟩

A brief aside on notation: for matrices A and B of the same dimension, we
define ⟨A,B⟩ := Tr(ABT ). Moreover, ∇2f is used to denote the Hessian of f .
Finally, if vs = (v1s , ..., v

N
s ) is a vector-valued stochastic process of dimension N (as

σT
s ∇f(s,Xs) is) and Bs = (B1

s , ...B
N
s ) is a standard Brownian motion in RN , then

we define
∫ t

0
⟨vs, dBs⟩ =

∑N
i=1

∫ t

0
visdB

i
s.

We will generally focus on functions f that are constant in time, so that the term
∂sf(s,Xs) disappears, but the others remain. It is notable that in normal calculus,
this result would only involve integrating the derivative, a first order approximation.
Here, however, we have the Hessian ∇2f(s,Xs). This is because we know that in

time δt, a Brownian motion experiences a movement on the order of δx ≈
√
δt.

Hence, (δx)2 ≈ δt, and second order terms are nonnegligible on the scale of δt. We
will not prove the full extent of Itô’s formula, but can develop some intuition by
giving a rough argument for a less general version.

The following argument is presented in [Lawler23, 100-102]. We consider the
case of Xt = Bt (a standard Brownian motion in one dimension) and a function f
that is constant in time. We claim that

f(Bt)− f(B0) =

∫ t

0

f ′(Bs)dBs +
1

2

∫ t

0

f ′′(Bs)ds

Without loss of generality, it suffices to consider t = 1. Then we can write, for
arbitrarily large n ∈ N:

f(B1)− f(B0) =

n∑
i=1

f(B i
n
)− f(B i−1

n
)

By ordinary Taylor expansion, we can approximate

f(B i
n
)−f(B i−1

n
) = f ′(B i−1

n
)(B i

n
−B i−1

n
)+

1

2
f ′′(B i

n
)(B i

n
−B i−1

n
)2+o((B i

n
−B i−1

n
)2)

Summing up and taking the limit, we find that

f(B1)−f(B0) = lim
n→∞

n∑
i=1

f ′(B i−1
n
)(B i

n
−B i−1

n
)+ lim

n→∞

n∑
i=1

1

2
f ′′(B i

n
)(B i

n
−B i−1

n
)2+ lim

n→∞

n∑
i=1

o((B i
n
−B i−1

n
)2)

First, recall that δx = (B i
n
−B i−1

n
) ≈

√
δt =

√
1
n , so (B i

n
−B i−1

n
)2 ≈ 1

n . Thus, we

can substitute to see that

f(B1)−f(B0) = lim
n→∞

n∑
i=1

f ′(B i−1
n
)(B i

n
−B i−1

n
)+ lim

n→∞

n∑
i=1

1

2
f ′′(B i

n
)
1

n
+ lim

n→∞

n∑
i=1

o(
1

n
)

The last term is a summation of n terms of order smaller than 1
n , so in the limit

it is equal to 0. The second term is a Riemann sum approximation to the integral
1
2

∫ 1

0
f ′′(Bt)dt, and the limit is precisely this integral. Finally, the first term is an

approximation by a simple process to the stochastic integral
∫ 1

0
f ′(Bt)dBt. These
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substitutions must be rigorously justified, but if the reader will believe them for
now, we immediately recover this particular case of Itô’s formula:

f(B1)− f(B0) =

∫ 1

0

f ′(Bt)dBt +
1

2

∫ 1

0

f ′′(Bt)dt

Finally, we can return to computing
∫ t

0
BsdBs. Let us consider f(x) = x2, and

apply the simplified Itô’s formula:

B2
t =

∫ t

0

2BsdBs +
1

2

∫ t

0

2ds

2

∫ t

0

BsdBs = B2
t − t∫ t

0

Bs dBs =
1

2
(B2

t − t)

Like in the argument for the simplified Itô’s formula, we can use the intuition
we have built to do unrigorous (formal) computations. The key fact is again that
(∆Bt)

2 ≈ ∆t. Thus, ∆t, ∆Bt, and (∆Bt)
2 are all relevant on the order of ∆t,

but (∆t)2 and (∆t)(∆Bt) are not, and can be treated as zero, much like (∆x)2,
(∆x)3, etc. when computing derivatives in ordinary calculus. For example, suppose
that Xt is a one-dimensional Itô process satisfying dXt = btdt+ σtdBt for bt ∈ R,
σt ∈ R≥0. We may want to compute

∫ t

0
(dXt)

2, which can be formalized as quadratic
variation [Lawler23, 63].

Definition 2.15 (Quadratic variation). Let Xt be a stochastic process. The
quadratic variation of X is defined by

⟨X⟩t = lim
n→∞

j≤tn∑
j=1

[X j
n
−X j−1

n
]2

We can write:

(dXt)
2 = (btdt+ σtdBt)

2 = (bt)
2(dt)2 + 2btσt(dtdBt) + (σt)

2(dBt)
2

By substituting (dt)2 = 0, dtdBt = 0, and (dBt)
2 = dt, we obtain∫ t

0

(dXt)
2 =

∫ t

0

σ2
sds

There are several ways in which Itô’s formula can be used to do important
calculations, as we will discover in the study of Markov semigroups.

2.4. The Langevin SDE. Finally, we may define the central object of study: the
Langevin SDE. To begin, we consider a particularly important class of Itô processes
called diffusion processes [Lawler23, 111].

Definition 2.16 (Diffusion processes). A stochastic process Xt is called a dif-
fusion process if it satisfies

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt

In other words, the movement of the process depends only on the time t and its
current location. Consequently, diffusion processes have the Markov property. In
particular, we study time-homogeneous processes, in which the functions µ and σ
do not depend on t. Within diffusion processes, we can consider Langevin diffusions
[Chewi24, ix-x].
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Definition 2.17 (Langevin diffusions). Let V : Rn → R be a C2, strongly
convex function. The Langevin diffusion is the stochastic process Xt taking values
in Rn and satisfying

dXt = −∇V (Xt)dt+
√
2dBt

Intuitively, we think of Xt as a gradient flow with some noise (of constant vari-
ance). Although Langevin’s work was motivated by random movements of particles
in fluids, Langevin diffusion processes have found powerful applications in the realm
of sampling algorithms. To access those applications, we must take an alternative
view of stochastic processes as a whole, using functional analysis and in particular
Markov semigroups, the focus of the next section.

3. Markov Semigroup Theory

3.1. The Markov Semigroup and Related Operators. Although formally a
time-indexed collection of random variables, we often think about a stochastic pro-
cess Xt as a particle moving through some state space over time. There is, however,
another equally valid view. We can think about the probability density functions
πt of the random variables Xt, and how these functions evolve in time. Do they
converge as t approaches infinity? If so, to what limit, and how fast is the conver-
gence? Because the tools we have already seen (like Itô’s formula) were constructed
from the point of view of the particle, to answer these questions, we need to develop
a new theory: that of Markov semigroups. As the name implies, the rest of this
section, we only consider Markov processes. We begin with the following definition
[Chewi24, 10].

Definition 3.1 (Markov semigroups). Let Xt be a Markov process. The semi-
group of operators (Pt)t≥0 acts on measurable real-valued functions f (whose do-
main is the state space of Xt) and satisfies

Ptf(x) = E[f(Xt)|X0 = x]

Because Markov processes are fully defined by transition kernels, though it is
somewhat sloppy language, we can talk about one Markov process Xt that may
start at any X0. Note that P0 = Id by definition, and the semigroup is abelian
because PtPs = PsPt = Pt+s [Chewi24, 10]. This fact can be demonstrated directly
from the Markov property. As before, if we fix some x, we can assume thatXt begins
at X0 = x. First, by definition,

Pt+sf(x) = E[f(Xt+s)]

By the law of total expectation, we also know that

E[f(Xt+s)] = E[E[f(Xt+s)|Σt]]

Substituting, we find
Pt+sf(x) = E[E[f(Xt+s)|Σt]]

Because Xt is a Markov process we can simplify to

Pt+sf(x) = E[E[f(Xt+s)|Xt]]

By definition of Ps, we have

Pt+sf(x) = E[Psf(Xt)]

Finally, by definition of Pt, this is just

Pt+sf(x) = Pt(Psf)(x)
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Hence, the two operators Pt+s and PtPs agree for any function f and input value
x. Moreover, Pt+s = Ps+t so the semigroup is indeed abelian.

In fact, we can give a definition of a Markov semigroup that does not make
reference to any previously defined Markov process.

Definition 3.2 (Markov semigroups, II). Let (Pt)t∈R≥0
be a family of oper-

ators acting on real-valued, bounded, measurable functions f with domain of the
measurable space (E,F). Moreover, let µ be a σ-finite measure on E, and suppose
that the following hold:

• For every bounded positive measurable function f : E → R and every t ≥ 0,∫
E
Ptfdµ =

∫
E
fdµ (µ is invariant)

• For every t ≥ 0, Pt is a linear operator mapping bounded measurable
functions to bounded measurable functions

• P0 = Id
• Pt(1) = 1, where f = 1 is a constant function
• If f ≥ 0 then Ptf ≥ 0
• For all t, s ≥ 0, Pt+s = Pt ◦ Ps

• For every f ∈ L2(µ), Ptf → f converges in the L2 norm

Then (Pt) is called a Markov semigroup of operators.

Hence, study can be done of Markov semigroups without reference to Markov
processes: one is not subordinate to the other. In fact, when a Markov semigroup
is derived from Markov process, it fully captures the original information [Chewi24,
11]. For the rest of this paper, however, we will only be concerned with Markov
semigroups as a tool to analyze Markov processes.

Next, we move to another important operator in the theory of Markov semi-
groups, which allows us to take derivatives [Chewi24, 11].

Definition 3.3 (Infinitesimal generator). Let (Pt) be the semigroup associated
with some Markov process, and let f be a function (such that the following limit
exists). The infinitesimal generator L is defined by

L f = lim
t↘0

Ptf − f

t

There are some technical details regarding the domain of this operator, but for
now it suffices to note that if we take Lp(µ) to be the domain of the semigroup
Pt (for some reference measure µ and 1 ≤ p < ∞) then it admits a dense linear
subspace on which L is defined and is a linear operator [BGL14, 18]. As promised,
the definition of L has the structure of a time derivative of the semigroup. For the
sake of example, we can compute the generator of a Langevin process [Chewi24,
11]. Let

dXt = −∇V (Xt)dt+
√
2dBt

For any test function f (which is assumed to be constant in time), by Theorem 2.14,
we can compute

f(Xt)−f(X0) =

∫ t

0

⟨∇f(Xs),−∇V (Xs)⟩+
1

2
⟨∇2f(Xs),

√
2In

√
2ITn ⟩ds+

∫ t

0

⟨
√
2ITn ∇f(Xs), dBs⟩

f(Xt)−f(X0) =

∫ t

0

−⟨∇f(Xs),∇V (Xs)⟩+Tr(∇2f(Xs))ds+
√
2

∫ t

0

⟨∇f(Xs), dBs⟩
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Because Bs is a standard Brownian motion in Rn, dBs is mean-zero. It is also
independent from Xs and thus ∇f(Xs), so that

E[⟨∇f(Xs), dBs⟩] = 0

and thus

E[
√
2

∫ t

0

⟨∇f(Xs), dBs⟩] = 0

Because we are computing a first time-derivative, approximation up to error o(t) is
sufficient. We can use ordinary Taylor expansion to write:∫ t

0

−⟨∇f(Xs),∇V (Xs)⟩+Tr(∇2f(Xs))ds = t[−⟨∇f(X0),∇V (X0)⟩+Tr(∇2f(X0))]+o(t)

Conditioned on X0 = x, the LHS is entirely constants. Thus, we can write

E[f(Xt)|X0 = x]− f(x) = t[−⟨∇f(x),∇V (x)⟩+∆f(x)] + o(t)

Ptf(x)− f(x)

t
= −⟨∇f(x),∇V (x)⟩+∆f(x) +

o(t)

t

lim
t↘0

Ptf(x)− f(x)

t
= −⟨∇f(x),∇V (x)⟩+∆f(x) + 0

(3.4) L f(x) = −⟨∇f(x),∇V (x)⟩+∆f(x)

This result should feel intuitively reasonable. L f(x) represents the instanta-
neous change in Ptf(x) at t = 0. In other words, it answers the question of how
E[f(Xt)] is likely to change for small ∆t, given that X0 = x. We know (Xt) has
drift −∇V (x) at t = 0, and moving in this direction, by definition of gradient,
results in a change to f of ⟨∇f(x),−∇V (x)⟩. Simultaneously, (Xt) has a random
movement proportional to a standard Brownian motion. Because this Brownian
motion is uniform in direction, it contributes an averaging effect of f among points
in a spherical shell around x, as captured by the term ∆f(x).

We can use the infitesimal generator to define two more important operators,
beginning with the ‘carré du champ’ [BGL14, 20]:

Definition 3.5 (Carré du champ). Let A be a vector subspace of the domain
of L that is closed under products (i.e. is an algebra). Then for any f, g ∈ A, we
can define the operator

Γ(f, g) =
1

2
[L (fg)− fL (g)− gL (f)]

As before, the construction of the domain of Γ is not our primary concern.
Recalling that L acts as a differential operator, the expression inside the brackets
should be familiar as the product rule from ordinary calculus. In fact, if L exactly
satisfied the product rule, then we would simply have Γ ≡ 0. Hence, we can think
of Γ as capturing how far L is from acting like familiar differential operators. We
can again consider the case of the Langevin diffusion:

Γ(f, g) =
1

2
[(∆fg − ⟨∇fg,∇V ⟩)− f(∆g − ⟨∇g,∇V ⟩)− g(∆f − ⟨∇f,∇V ⟩)]

=
1

2
[∆fg − f∆g − g∆f + ⟨∇V,−∇fg + f∇g + g∇f⟩]

But by the product rule,
∇fg = f∇g + g∇f



14 ROHAN BULUSWAR

so we can simplify to

=
1

2
[∆fg − g∆f − g∆f ]

Applying the product rule twice also yields

∆(fg) = g∆f + 2∇f · ∇g + f∆g

Γ(f, g) = ⟨∇f,∇g⟩
Finally, we use the carré du champ to define one more operator that will be

useful in the near future [Chewi24, 14]:

Definition 3.6 (Dirichlet energy). Let (Pt) be a Markov semigroup with ref-
erence measure µ as in Definition 3.2, generator L , and carré du champ Γ. The
Dirichlet energy is then defined by

E (f, g) =

∫
Γ(f, g)dµ

Remarkably, in certain cases, when the semigroup is derived from a Markov
process (Xt), the laws of the random variables exactly evolve in time to minimize
the Dirichlet energy. This is the first, but not only, way in which we can view
Langevin diffusions as pure gradient flows.

3.2. Kolmogorov’s Equations and Reversible Processes. One of the most
fundamental questions one can ask about a stochastic process (Xt), especially when
described by a stochastic differential equation, is: given an initial probability dis-
tribution of X0 and a time t, what is the distribution of Xt? Markov semigroups
provide the answer to this question, and yield further insights into the long-term
behavior of such processes.

To begin, recall that any Markov process (Xt) (here assumed to have state space
Rn) is fully specified by an initial location X0 and a collection of transition kernels
pt(x, dy), representing the probability measure of the distribution of Xt given that
X0 = x.

As we saw, the semigroup property, Pt+s = Pt ◦ Ps, reflects the definition of
a Markov process. The property is also reflected in the Chapman-Kolmogorov
equation, which relates these transition kernels [BGL14, 16]:

(3.7) pt+s(x, dz) =

∫
y∈Rn

pt(y, dz)ps(x, dy)

If we instead consider pt(x, y), the density of pt(x, dy) with respect to a reference
measure (here the natural choice is the Lebesgue), then this equation is simply

(3.8) pt+s(x, z) =

∫
y∈Rn

pt(y, z)ps(x, y)dλ(y)

These equations express that to find the probability of moving from x to z in
time t + s, we can consider all the cases of the location at time s. For each y,
the probability (density) of moving from x to y in time s is by definition ps(x, y),
at which point, due to the Markov property, the probability of ending at z is
pt(y, z). These cases are mutually exclusive so we integrate to find the total density
pt+s(x, z).

As promised, we move to the first major use of Markov semigroups towards
analyzing the Langevin diffusion: Kolmogorov’s forward and backward equations.
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To begin, we can use the densities of the transition kernels to give a more explicit
formulation of the semigroup [BGL14, 54]:

Ptf(x) =

∫
y∈Rn

f(y)pt(x, y)dλ(y)

We can recall that by definition, ∂tPtf(x)|t=0 = L f(x). But what if we want
to evaluate at an arbitrary time t? We have the following formula [Chewi24, 12]:

Proposition 3.9 (Kolmogorov’s backward equation). For any t ≥ 0, ∂tPtf =
LPtf = PtL f .

Proof.

∂tPtf = lim
h↘0

Pt+hf − Ptf

h
= lim

h↘0

Ph − Id

h
Ptf = LPtf

Because the semigroup is commutative, we can repeat the same calculation on the
left.

∂tPtf = lim
h↘0

Pt+hf − Ptf

h
= Pt lim

h↘0

Ph − Id

h
f = PtL f

□

We have seen that at any time t, the derivative of Pt(f) is just L (Ptf), so
we may formally write Pt = exp(tL ). In fact, when working with Markov chains
on finite spaces, so that L is a matrix, this formula is exactly true [BGL14, 35].
We can alternatively view Kolmogorov’s backward equation as a statement about
the kernel densities pt(x, y). The following calculations lack some rigor but should
demonstrate the intuition:

Ptf(x) =

∫
y∈Rn

f(y)pt(x, y)dλ(y)

To emphasize that L is acting as a differential operator in x, we use the subscript
Lx. Using Kolmogorov’s equation and pulling the time-derivative through the
integral in y, we have

LxPtf(x) = ∂tPtf(x) = ∂t

∫
y∈Rn

f(y)pt(x, y)dλ(y) =

∫
y∈Rn

∂t[f(y)pt(x, y)]dλ(y)

Lx

∫
y∈Rn

f(y)pt(x, y)dλ(y) = LxPtf(x) =

∫
y∈Rn

f(y)∂tpt(x, y)dλ(y)

Finally, pulling the Lx through the integral in y and function of y, we conclude
that ∫

y∈Rn

f(y)Lxpt(x, y)dλ(y) =

∫
y∈Rn

f(y)∂tpt(x, y)dλ(y)

Lxpt(x, y) = ∂tpt(x, y)

Hence, Kolmogorov’s backward equation describes how the transition probability
pt(x, y) changes in time for a fixed y, in terms of a spatial derivative in x. From
this perspective, we expect a similar relation with Ly to calculate ∂tpt(x, y) for a
fixed x. To address this expectation we have Kolmogorov’s forward equation. To
begin, we introduce the dual of the Markov semigroup, P ∗

t .
Let πt denote the law of the random variable Xt, which has some starting distri-

bution π0. Then for any test function f , we can compute E[f(Xt)] =
∫
x∈Rn Ptf(x)dπ0(x)

- we are just taking a weighted average over Ptf(x) according to the distribution
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π0. Because this integral is bilinear in f and (the density function of) π0, we can
treat it as an inner product and thus define the adjoint operator P ∗

t to satisfy∫
Ptf(x)dπ0(x) =

∫
f(x)dP ∗

t π0(x)

But at the same time, E[f(Xt)] =
∫
f(x)dπt(x), so that P ∗

t π0 = πt. By differenti-
ating in time, we have

∂t

∫
f(x)dP ∗

t π0(x) =

∫
f(x)∂tdP

∗
t π0(x)

(Note that the above may be used as a definition of the time derivative of a measure.)
Simultaneously, by the previous equality and Kolmogorov’s backward equation,

∂t

∫
f(x)dP ∗

t π0(x) = ∂t

∫
Ptf(x)dπ0(x) =

∫
Pt(L f(x))dπ0(x)

By definition of the dual,∫
Pt(L f)dπ0(x) =

∫
L f(x)dP ∗

t π0(x)

Defining the dual L ∗ in a similar manner yields∫
Pt(L f)dπ0(x) =

∫
f(x)dL ∗P ∗

t π0(x)

Hence for any function f , we have

∂t

∫
f(x)dP ∗

t π0(x) =

∫
f(x)dL ∗P ∗

t π0(x)

Thus, we conclude that ∂tP
∗
t π0 = L ∗P ∗

t π0. By similar calculations, one can show
that as before, L ∗ and P ∗

t commute. Hence, Kolmogorov’s forward equation, also
called the Fokker-Planck equation (when applied to the densities of the measures
πt), states that [Chewi24, 12]

(3.10) ∂tP
∗
t π0 = L ∗P ∗

t π0 = P ∗
t L ∗π0

Alternatively,

(3.11) ∂tπt = L ∗πt

As with the backward equation, we can characterize this statement with respect
to the kernel densities. By a similar calculation (left as an exercise to the reader),
one can show that ∂tpt(x, y) = L ∗

y pt(x, y).
Equipped with these two equations, powerful tools for analyzing stochastic pro-

cesses, we can return to one of the original questions of this section: what is the
long-term behavior of the probability measures πt, the laws of Xt? First, we need
a definition for a steady-state of the process.

Definition 3.12. Let Xt be a Markov process in Rn. Let π be a probability dis-
tribution on Rn, and let X0 ∼ π. We call π a stationary (or invariant) distribution
of Xt if for all t ≥ 0, Xt ∼ π.

In other words, even though the variable Xt itself may not reach a steady-state,
its law may. According to (3.11), π is stationary exactly when L ∗π = 0. We
earlier calculated the generator for the Langevin diffusion process. By integration,
one can show that L ∗f = ∆f + div(f∇V ) [Chewi24, 13]. Hence, the density of a
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stationary distribution, π, must satisfy

0 = ∆π + div(π∇V ) = div(π(∇ lnπ +∇V ))

The solution is of the form ∇(lnπ + V ) = 0, so that lnπ + V = C for some
constant C, and π = Aexp(−V ). It is from this fact that the Langevin diffusion
derives so much value in sampling algorithms: desired distributions often take the
form of being proportional to exp(−V ) for some function V , but with a constant
A that is difficult to calculate. Now, equipped with the knowledge of what the
steady-state distribution of the Langevin diffusion is, we move to the problem of
convergence. This problem, the different ways in which we can define convergence,
and the bounds on it we can achieve, are the focus of the remainder of the paper.

Now, with a notion of a stationary distribution, we consider together a Markov
process Xt, its invariant distribution π as the reference measure, and its semigroup
Pt, which acts on L2(π). Given these, we can focus on a special class of Markov
processes [BGL14, 25]:

Definition 3.13 (Reversible processes). Let Pt be the Markov semigroup of a
process Xt, as above. The semigroup is called symmetric (with respect to π) if for
any f, g ∈ L2(π) and any t ≥ 0,

∫
fPtgdπ =

∫
gPtfdπ.

Equivalently, we say that π is reversible for Pt. This terminology arises because
if π is a reversible distribution for the semigroup Pt and pt(x, y) are the densities of
the transition kernels with respect to π, then pt is symmetric: pt(x, y) = pt(y, x).
This fact can be easily derived from the definition as follows:∫

f(x)Ptg(x)dπ(x) =

∫
g(x)Ptf(x)dπ(x)∫

x

f(x)

∫
y

g(y)pt(x, y)dπ(y)dπ(x) =

∫
x

g(x)

∫
y

f(y)pt(x, y)dπ(y)dπ(x)∫
x

∫
y

f(x)g(y)pt(x, y)dπ(y)dπ(x) =

∫
x

∫
y

f(y)g(x)pt(x, y)dπ(y)dπ(x)

Because x and y are just dummy variables in the right side, we can rewrite it as∫
y

∫
x

f(x)g(y)pt(y, x)dπ(x)dπ(y)

This is again equal to
∫
x

∫
y
f(x)g(y)pt(x, y)dπ(y)dπ(x), and this equality holds

for any test functions f, g, so we must have pt(x, y) = pt(y, x). In other words,
under the reversible distribution, the probability of moving from x to y in time t
is the same as moving from y to x. At the same time, the definition is exactly
the statement that Pt is a symmetric operator. The definition is also equivalent to∫
fL gdπ =

∫
gL fdπ, so it also states that L is a symmetric operator [BGL14,

25-26]. To see why the carré-du-champ and Dirichlet energy are useful, we have
the following theorem [Chewi24, 14]:

Theorem 3.14 (Integration by parts). Let Pt be a Markov semigroup with its
associated operators that is symmetric w.r.t π. For any functions f, g, we have∫

f(−L )gdπ =

∫
g(−L )fdπ =

∫
Γ(f, g)dπ = E (f, g)

In fact, this is an equivalent condition to symmetry, via the first equality. This
theorem allows us to show that −L is a positive semi-definite operator [BGL14,
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28]. It is also a (nontrivial) fact that in the case of symmetric semigroups, L is not
just symmetric, but self-adjoint. These qualifiers on L allow for deeper analysis,
since it is easier to work with positive self-adjoint operators. Despite this fact,
and that the Langevin diffusion is symmetric w.r.t its invariant distribution (which
can be checked using Theorem 3.14 and is left as an exercise), in working with
Kolmogorov’s equations, we introduced both L and L ∗. In that calculation, we
were taking the adjoint in L2(λ) instead of L2(π), where they are the same. Hence,
if we take ft to be the density of πt w.r.t π, Kolmogorov’s forward equation reads:

(3.15) ∂tft = L ft

Because it holds for the Langevin diffusion, moving forward, we will generally
assume that π is reversible. Finally, we return to the question of Dirichlet energy
and gradient flow. Let us consider a Markov semigroup Pt with a reversible invariant
distribution π. Let ft be the densities of the laws of Xt w.r.t π, so that t 7→ ft is a
curve in L2(π). We can also consider the functional E (ft) = E (ft, ft) and its L2(π)
gradient, ∇E (ft). As usual, the gradient is defined such that for any curve t 7→ ft
and its velocity vt = ∂sfs|s=t,

∂tE (ft)|t=0 = ⟨∂tft|t=0,∇E (ft)⟩ =
∫

v0∇E (f0)dπ

Then we can use Theorem 3.14 to show [Chewi24, 15]:

E (ft) =

∫
ft(−L )ftdπ

∂tE (ft) = ∂t

∫
ft(−L )ftdπ =

∫
∂t[ft(−L )ft]dπ

By the product rule,

∂tE (ft) =

∫
(∂tft)(−L ft) + ft(∂t(−L ft))dπ

Because L is a linear operator with no dependence on t, we can interchange again
to find

∂tE (ft) =

∫
vt(−L )ft + ft(−L )vtdπ

Next, by symmetry of −L , we can combine to see

∂tE (ft) = 2

∫
vt(−L )ft∫

v0∇E (f0)dπ = ∂tE (ft)|t=0 = 2

∫
v0(−L )f0dπ

This equality holds for any chosen f0, v0, so we must conclude ∇E (f0) = −2L f0.
A gradient flow of E will thus take the form ∂tft = −∇E (ft) = 2L ft. But we also
assumed that ft is the law of Xt, so that by (3.15), ∂tft = L ft. Hence, up to a
difference in units of time, the laws of Xt evolve to minimize the Dirichlet energy.

3.3. Two Important Functional Inequalities. In this section, we investigate
two functional inequalities that, when satisfied, give desired convergence results.
Ultimately, we want to show that if πt is the law of Xt and π is the invariant
distribution, then πt → π as t → ∞, in some appropriate sense. When this occurs,
we say that the Markov process mixes, because it forgets its initial condition. Thus,
these kinds of results are also called mixing time results. To begin, however, we
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take an alternate approach. If Xt mixes, then for large t, we would expect Ptf(x)
to converge to a constant function, as the law of Xt will not depend on X0. That
constant must be the true mean of f ,

∫
fdπ.

To bound the rate of this convergence, we turn to the negative generator, −L ,
and its spectrum. Recall that when π is reversible, −L is positive semi-definite
and self-adjoint, and therefore has real nonnegative eigenvalues. It will always have
0 as an eigenvalue because for any constant function c, Pt(c) is also the constant
function c, so ∂tPt(c) = LPt(c) = L (c) = 0. However, let us suppose that
the eigen values of −L exist in {0} ∪ [C,∞). (To avoid the case of λ = 0, we
only consider functions with mean zero, i.e. in the orthogonal complement of the
subspace of constant functions in L2(π).) This is appropriately called a spectral gap
for −L . Recall that because ∂tPtf = LPtf , we can formally write Pt = exp(tL ).
Hence, if L is bounded above by −C, uniformly in time, then we would expect
(negative) exponential convergence of Ptf to 0, with constant proportional to −C.
To formalize this convergence, we have the Poincaré inequality [BGL14, 181].

Definition 3.16 (Poincaré inequality). Let Pt be a Markov semigroup with
invariant distribution π. We say that π satisfies a Poincaré inequality with constant
C if for any function f in the domain of E

Varπ(f) ≤ CE (f)

Variance is defined as usual in probability theory:
∫
f2dπ − (

∫
fdπ)2. One

immediate consequence of the Poincaré inequality, abbreviated PI(C), is that if
E (f) = 0 then Varπ(f) = 0, i.e. f is constant almost everywhere. Hence, the
convergence of E (ft) downwards (where ft is the density of πt w.r.t π), as proven
earlier, goes hand-in-hand with convergence of ft to a constant. This constant must
be 1, and ft = 1 implies that πt = π.

Returning to the spectrum of −L , let f be an eigenfunction with eigenvalue
λ > 0. Then if the Poincaré inequality holds with constant C and f has mean zero,
by Theorem 3.14∫

f2dπ ≤ CE (f) = C

∫
f(−L )fdπ = Cλ

∫
f2dπ

Cλ ≥ 1 =⇒ λ ≥ 1

C
We thus derive an upper bound on 1

C , or a lower bound on C, from the spectral
gap of −L . As promised, we have a theorem linking the Poincaré inequality to
exponential decay of Ptf [BGL14, 182].

Theorem 3.17. Let Pt be a Markov semigroup with invariant distribution π. The
following statements are equivalent:

(1) π satisfies PI(C)
(2) For any f ∈ L2(π) and t ≥ 0,

Varπ(Ptf) ≤ exp(−2t

C
)Varπ(f)

(3) For any f in L2(π), there exists a constant c(f) > 0 such that for any
t ≥ 0,

Varπ(Ptf) ≤ c(f)exp(−2t

C
)
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The proof hinges on showing that ∂tVar(Ptf) = −2E (Ptf). Finally, we can
use the Poincaré inequality to show convergence of πt → π. Again, let ft be the
density of πt with respect to π. By Kolmogorov’s forward equation and symmetry
of Pt, Ptf0 = ft. As πt → π, ft → 1, so we are interested in the convergence of
||ft − 1|| → 0. We formalize this through χ2 divergence [Chewi24, 17]:

Definition 3.18 (χ2 divergence). Let π′ and π be probability measures on the
same space. We define the χ2 divergence of π′ w.r.t π by:

χ2(π′||π) = ||dπ
′

dπ
− 1||L2(π)

when π′ << π and ∞ otherwise.

Substituting πt for π′ yields χ2(πt||π) = Var(ft), which is exactly what Theo-
rem 3.17 allows us to bound. Thus, we have another consequence of the Poincaré
inequality [Chewi24, 17]. If Pt satisfies PI(C), then for any π0 and t ≥ 0,

χ2(πt||π) ≤ exp(−2t

C
)χ2(π0||π)

We thus obtain our first convergence result of πt → π. However, the question
remains of how to prove the existence of a Poincaré inequality. This question will
be explored more in the next section, but for now, we have one result specifically
useful for the case of Langevin diffusions [BGL14, 203]:

Theorem 3.19 (Kannan-Lovász-Simonovits-Bobkov). Let π be a probability
measure on Rn given by dπ = e−V dx for some smooth convex function V . Then
with respect to Γ = |∇f |2, π satisfies a Poincaré inequality.

The proof of this theorem is rooted in geometry, and while it will not be covered
here, is the first glimpse at the geometry underlying the analysis of Markov processes
and semigroups. Note that taking V to be the potential function, e−V dx is exactly
the stationary distribution of the Langevin diffusion. Moreover, |∇f |2 is its carré
du champ. Then, all we need is for V to be smooth and convex. In this case, we
call π log-concave. In fact, for the purposes of optimization it is often reasonable to
assume that V is convex, and for purposes of sampling it is reasonable to assume
that π is log-concave [Chewi24, x].

In considering the convergence of Ptf towards the constant function
∫
fdπ, vari-

ance was one possible way to measure how far a function is from being constant.
Another comes in the form of entropy [BGL14, 236]:

Definition 3.20 (Entropy). For any probability measure µ, we define the entropy
of f as

Entµ(f) =

∫
f log(f)dµ− (

∫
fdµ) log(

∫
fdµ)

As with variance, the entropy of f is zero iff f is constant a.e. Moreover, it is only
defined for nonnegative functions f , and 0 log(0) = 0. Just as bounds on variance
give rise to the Poincaré inequality, entropy allows us to define a new inequality.

Definition 3.21 (log-Sobolev inequality). The Markov semigroup Pt with in-
variant distribution π is said to satisfy a log-Sobolev inequality with constant C
(or LSI(C)) if for all functions f in the domain of E ,

Entπ(f
2) ≤ 2CE (f)
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We can again rephrase the LSI as a statement about probability distributions,
as opposed to functions. To do so, we introduce two new definitions [Chewi24, 17]:

Definition 3.22 (Kullback-Leibler divergence). If π′ and π are two probability

measures such that dπ′

dπ = f , then the Kullback-Leibler divergence of π′ w.r.t π, also
called the relative entropy, is defined by

KL(π′||π) =
∫

f log(f)dπ =

∫
log(f)dπ′ = Entπ(f)

(As before, if π′ is not absolutely continuous w.r.t π then KL(π′||π) = ∞.)
Second, [BGL14, 237]:

Definition 3.23 (Fisher information). If π′ and π are two probability measures

such that dπ′

dπ = f , then the Fisher information of π′ w.r.t π is defined by

I(π′||π) := E (f, log(f)) =

∫
Γ(f)

f
dπ

We can use Fisher information to give an equivalent formulation of LSI(C)
[Chewi24, 18]: for all density functions f , we require that

(3.24) KL(fπ||π) ≤ C

2
I(fπ||π)

To make use of this formulation, note that one can show that if πt is the law
of Xt and ft = dπt

dπ , then ∂tKL(πt||π) = −I(πt||π) [Chewi24, 17]. We may thus
conclude exponential convergence of KL(πt||π) to zero as t → ∞, just as with
χ2(πt||π) under a Poincaré inequality. Specifically we have [Chewi24, 18]:

Theorem 3.25. For a Markov semigroup Pt with invariant distribution π, the
following two conditions are equivalent:

(1) π satisfies LSI(C)
(2) For any π0 and t ≥ 0,

KL(πt||π) ≤ exp(−2t

C
)KL(π0||π)

Log-Sobolev inequalities are stronger than Poincaré inequalities. Moreover, they
are often more useful because χ2(π0||π) is likely to be much larger than KL(π0||π)
[Chewi24, 37,38]. Hence, moving into the next section, we study the conditions
under which an LSI holds.

4. Geometry of Markov Semigroups, Optimal Transport, and Otto
Calculus

4.1. Curvature-Dimension Conditions. To begin, we address the problem of
proving the existence of a log-Sobolev inequality. First, we must define the iterated
carré du champ operator by [Chewi24, 18]:

(4.1) Γ2(f, g) :=
1

2
(L Γ(f, g)− Γ(f,L g)− Γ(g,L f))

The iterated carré du champ is so named because its formula is analogous to that
of Γ, but with Γ replacing multiplication of functions. Γ2 is the key to unlocking
log-Sobolev inequalities, per the following fundamental theorem [Chewi24, 19]:
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Theorem 4.2 (Bakry-Émery Theorem). Let Pt be a Markov semigroup such
that for some constant α, for all functions f ,

Γ2(f, f) ≥ αΓ(f, f)

Then Pt satisfies LSI(C) for some C ≤ 1
α .

Hence, for any α > 0, we can conclude the existence of an LSI, and it has a
stronger guaranteed constant for larger α. The condition in this theorem is referred
as a curvature condition and is denoted by CD(α,∞). To make use of this theorem,
we examine when it is satisfied in the case of Langevin diffusions.

Substituting the case of the Langevin diffusion into the definition of Γ2 we have

Γ2(f, f) =
1

2
[L (||∇f ||2)− 2⟨∇f,∇L f⟩]

Then by the Bochner identity for Euclidean space [Chewi24, 50],

1

2
∆(||∇f ||2) = ⟨∇∆f,∇f⟩+ ||∇2f ||2HS

where ||∇2f ||2HS = Tr(∇2f(∇2f)T ) and by the equation [Chewi24, 51]

∇L f − L∇f = −∇2V∇f,

one can show that

Γ2(f, f) = ||∇2f ||2HS + ⟨∇f,∇2V∇f⟩
We therefore have the following theorem [Chewi24, 19]:

Theorem 4.3. A Langevin diffusion with potential V satisfies CD(α,∞) iff V is
α-strongly convex, i.e. for any vector w, ⟨w,∇2V w⟩ ≥ α.

Now, let us consider a more general kind of Langevin diffusion, taking place on
an arbitrary manifoldM instead of only Rn, with potential V . The manifold admits
a volume measure µ, and we then define a reference measure π by dπ

dµ = Cexp(−V )

for some constant C. The diffusion has the same infinitesimal generator and carré
du champ, but on a manifold, where the Bochner identity takes the form of

1

2
∆(||∇f ||2) = ⟨∇∆f,∇f⟩+ ||∇2f ||2HS +Ric(∇f,∇f)

where Ric(·, ·) is the Ricci curvature tensor [Chewi24, 81]. Hence, we conclude that
instead

Γ2(f, f) = ||∇2f ||2HS + ⟨∇f, (∇2V +Ric)∇f⟩,
so that Ric+∇2V is taking the place of ∇2V . The first term captures the geometry
of the space and the second of the potential, and thus the reference measure. In this
case, to conclude CD(α,∞) (and therefore an LSI with C ≤ 1

α , by Theorem 4.2),

it suffices to show that for any vector field X, Ric(X,X) + ⟨X,∇2V X⟩ ≥ α||X||2
everywhere [Chewi24, 81]. In fact, the curvature condition can be further refined
to a curvature-dimension condition CD(α, d):

Definition 4.4 (Curvature-dimension condition). The Markov semigroup Pt

satisfies CD(α, d) if for any function f ,

Γ2(f, f) ≥ αΓ(f, f) +
1

d
(L f)2

This condition is so-named because if we take a Brownian motion on a manifold
M (i.e. Langevin diffusion with constant V ), the condition is equivalent to M
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having Ricci curvature at least α everywhere, in all directions, and dimension at
most d [Chewi24, 82]. In summary, we have the following result [BGL14, 215,270]:

Theorem 4.5. If Pt is a Markov semigroup satisfying CD(α, d) for α > 0 and
d > 1, then it also satisfies PI(d−1

αd ) and LSI(d−1
αd ).

4.2. Optimal Transport Theory and Wasserstein Space. One issue with the
previous approach is that in considering the tensor Ric + ∇2V , the properties of
the manifold M in which we are working and the diffusion process (i.e. choice of
V ) become intertwined. In order to separate them, we present another way to view
the evolution of Langevin diffusions through the theory of optimal transport.

Consider separable metric spaces X and Y , and let P (X), P (Y ) represent the
space of probability measures on X and Y respectively. Then for any cost function
c : X,Y → R≥0 we define the optimal transport cost as follows [Chewi24, 20]:

Definition 4.6 (Optimal transport cost). For µx ∈ P (X) and µy ∈ P (Y ), the
optimal transport cost is given by

T (µx, µy) := inf
π∈Π(µx,µy)

∫
X×Y

c(x, y)dπ(x, y)

where Π(µx, µy) ⊆ P (X×Y ) is the subset of probability measures on X×Y having
first and second marginal distributions of µx and µy, respectively. In other words,
π ∈ Π(µx, µy) satisfies that for any bounded continuous functions f and g,∫

X×Y

(f(x) + g(y))dπ(x, y) =

∫
X

f(x)dµx +

∫
Y

g(y)dµy

A minimizing π ∈ Π(µx, µy) is called an optimal transport plan and always exists
when c is lower semicontinuous [Chewi24, 20]. In order to define a distance between
probability measures on the same space, we consider a particular kind of optimal
transport problem [OV99, 362]:

Definition 4.7 (Wasserstein distance). If M is a manifold and µ, ν are two
probability measures, we define their Wasserstein distance by

W2(µ, ν)
2 = inf

π∈Π(µ,ν)

∫
M×M

d(x, y)2dπ(x, y)

When computing Wasserstein distance, we always assume that µ and ν have
finite second moment. That is, for any chosen reference point p ∈ M ,∫

M

d(p, x)2dµ(x) < ∞

We denote the set of all such measures µ by P2(M). Equivalently, we can write
[OV99, 362]:

W2(µ, ν)
2 = inf{E[d(X,Y )2] : X ∼ µ, Y ∼ ν}

where X and Y are random variables on M with laws µ and ν respectively. Finally,
using duality, we can give one more equivalent formulation of the problem [Chewi24,
21]:

(4.8)
1

2
W2(µ, ν)

2 = sup{
∫

fdµ+

∫
gdν : f, g ∈ D(µ, ν)}
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where

D(µ, ν) = {f, g ∈ L1(µ)× L1(ν) : f(x) + g(y) ≤ ||x− y||2

2
a.e.}

The purpose of introducing optimal transport is to think about the set of prob-
ability measures itself on a manifold M as having a manifold-like structure. It
will not be locally homeomorphic to Euclidean space, but we can endow it with a
tangent space and local inner product, and from there, do calculus on it.

First, we must specify the set that forms the manifold of probability measures on
M . We only work with measures that are absolutely continuous w.r.t the standard
volume measure on M , and we again want to assume that they have finite second
moment. That set, denoted by P2,ac(M), along with W2 distance, is a complete
and separable metric space [Chewi24, 26]. Defining the tangent space is slightly
trickier.

Consider any curve in P2,ac(M): µt, t ∈ (−ε, ε), with µ0 = µ. We want to define

the velocity of this curve at t = 0, i.e. ∂µt

∂t
|t=0. It is possible to prove that for any

such curve, there exists a function Φ satisfying [OV99, 371]:

(4.9) −∇ · (µ∇Φ) =
∂µt

∂t
|t=0

which means that for any test function f ,

(4.10)

∫
∇f · ∇Φdµ =

d

dt

∫
fdµt

We can picture the mass of the probability distribution µt as moving according
to the gradient of Φ. For any point p ∈ M , the original mass there, dµ, moves in
the direction ∇Φ, resulting to a change of f of ⟨∇f,∇Φ⟩, by definition of gradient.
Integrating over the whole space must therefore yield the time-derivative of

∫
fdµt.

On the other hand, given a function Φ and an initial distribution µ0, we can generate
the corresponding curve using the previous differential equation, (4.9). There is
therefore a one-to-one correspondence between velocities of curves through µ and
gradient fields ∇Φ (up to adding a constant to Φ). Hence, we set TµP to be the
space of L2 functions on M up to a constant difference and we define the local
inner product by ⟨Φ,Ψ⟩ =

∫
M
⟨∇Φ,∇Ψ⟩dµ [OV99, 371]. A tangent space and local

inner product allows us to construct geodesics, and therefore define a metric on our
manifold of probability measures, even though we already began with the notion of
W2 distance. It therefore behooves us to check that the induced geodesic distance is
exactly W2(µ, ν): luckily, using the dual version of the optimal transport problem,
this exactly holds [OV99, 371-373]. Therefore, the choice of tangent space and
inner product was correct. Now, with a more robust notion of this psuedo-manifold
of probability measures, henceforth referred to as Wasserstein space and denoted
by P (M), we can perform calculus: this calculus is called ‘Otto calculus’ for Felix
Otto, the mathematician who pioneered it.

4.3. Applications of Otto Calculus. Now, we explore some applications of Otto
calculus. In this section, we do not present rigorous proofs (recall that Wasserstein
space is not a bona fide manifold), but rather formal arguments that should yield
value for the intuition behind the results. Let us consider a manifold M , with vol-
ume measure V and a reference probability measure ν having density proportional
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to exp(−V ). First, recall from (3.24) that ν satisfying LSI(C) is equivalent to hav-
ing that for any µ = fν, KL(µ||ν) ≤ C

2 I(µ||ν). We are now prepared to present
a formal proof of the following theorem, analogous to the prior result about LSI
for measures on manifolds, but focused on the probability measures independent of
any Markov semigroup, as presented in [OV99, 366]:

Theorem 4.11. If ν is a probability measure as defined above such that ∇2V +
Ric ≥ C(Id) as bilinear operators, then ν satisfies LSI( 1

C ).

Proof. For the sake of brevity, we give an outline of the proof. We can begin by
defining the functional E(µ) = KL(µ||ν). To begin doing formal calculus, we need
to compute the gradient of E. Fortunately, as my good friend and fellow aspiring
mathematician Otto put it, “differentiation follows by triviality”. To be precise,
we can consider a geodesic µt beginning at µ ∈ P with corresponding velocity Φt.
Then by definition,

d

dt
E(µt) = ⟨∇E(µt),Φt⟩

From Definition 3.22, we can write

E(µt) =

∫
dµt

dν
log(

dµt

dν
)dν =

∫
log(

dµt

dν
)dµt

Thus, using (4.10), we can write

d

dt
E(µt) =

∫
∇ log(

dµt

dν
) · ∇Φtdµt

Hence, in general,

⟨∇E(µ),Φ⟩ =
∫

∇ log(
dµ

dν
) · ∇Φdµ

Consequently, we also know that

||∇E(µ)||2 = ⟨∇E(µ), E(µ)⟩ =
∫

||∇ log(
dµ

dν
)||2dµ

In fact, in the case of Langevin diffusions, this quantity is equal to the Fisher infor-
mation I(µ||ν) [Chewi24, 18]. Finally, using similar methods (and again applying
the Bochner identity), one can show that the Hessian can be given by [OV99, 374]:

⟨∇2E(µ)Φ,Φ⟩ =
∫

||∇2Φ||HS +∇Φ · (Ric+∇2V )∇Φdµ

This result parallels our computations of Γ2(f, f) in section 4.1. With this, we
are ready to prove the theorem. We know by hypothesis that Ric +∇2V ≥ CId.
Because the first term is a norm, and thus nonnegative, we also know that∇2E(µ) ≥
CId. Substituting for KL(µ||ν) and I(µ||ν), we need to show that for any µ that is
absolutely continuous w.r.t ν, E(µ) ≤ 1

2C ||∇E(µ)||2. The key insight is to consider
the curve µt where µ0 = µ and µt follows the gradient flow of E. Hence,

d

dt
E(µt) = ⟨∇E(µt),−∇E(µt)⟩ = −||∇E(µt)||2

Moreover, we have the following, by the product rule:

d

dt
||∇E(µt)||2 = 2⟨∇E(µt),

d

dt
∇E(µt)⟩

d

dt
||∇E(µt)||2 = 2⟨∇E(µt),∇2E(µt)

dµt

dt
⟩
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d

dt
||∇E(µt)||2 = 2⟨∇E(µt),∇2E(µt)(−∇E(µt))⟩

We know from the hypothesis that ∇2E ≥ CId, so

d

dt
||∇E(µt)||2 ≤ −2C||∇E(µt)||2

Hence, we have exponential decay, and

||∇E(µt)||2 ≤ exp(−2Ct)||∇E(µ)||2

Thus, as t → ∞, ||∇E(µt)||2 → 0. We know that the relative entropy E(µ) is only

zero when dµ
dν is constant, but because they are both probability measures, that

would mean µ = ν. ν is thus the only minimum of E(µ), so we must have µt → ν,
in the sense of Wasserstein distance. Now, we compute

E(µt)− E(µ) =

∫ t

0

d

dt
E(µt) =

∫ t

0

−||∇E(µt)||2 dt

E(µ)− E(µt) =

∫ t

0

||∇E(µt)||2 dt ≤ ||∇E(µ)||2
∫ t

0

e−2Ct dt

E(µ)− E(µt) ≤ ||∇E(µ)||2( 1

2C
)(1− e−2Ct) ≤ 1

2C
||∇E(µ)||2

Because µt → ν as t → ∞, we also have E(µt) → 0. Because this holds for all t,
we must have

E(µ) ≤ 1

2C
||∇E(µ)||2

This completes the proof. □

4.4. Langevin Diffusion as Gradient Flow. Finally, we have one more incred-
ible result that demonstrates the utility of Otto calculus and Wasserstein space.

The proof comes from a seminal paper by Jordan, Kinderlehrer and, Otto. To
begin, we consider a Langevin diffusion (Xt) in Rn with potential V . As before, let
πt denote the law of Xt. Recall that if ft denotes the density of πt w.r.t λ, then by
the Fokker-Planck equation (3.11), we have ∂tft = L ∗ft. We will work in L2(λ),
so we cannot assume symmetry of L . We can then compute the adjoint of the
generator to find [JKO98, 3]:

dft
dt

= div(ft∇V ) + ∆ft

We have already seen that the stationary distribution of the Langevin diffusion,
and thus the stationary solution of this PDE, has f proportional to exp(−V ) (with
a constant factor such that it integrates to 1, since it is a probability measure).

The authors are interested in finding a discrete-time scheme to approximate the
solution to this PDE, and define it as follows. Define a functional by

F (ft) =

∫
Rn

V (x)ft(x)dλ(x) +

∫
Rn

ft(x) log(ft(x))dλ(x)

This is in fact just the Kullback-Leibler divergence, KL(πt||π), where π is the
stationary distribution. This can be seen as follows:

KL(πt||π) =
∫

dπt

dπ
log(

dπt

dπ
)dπ

KL(πt||π) =
∫

dπt

dλ
log(

dπt

dπ
)dλ
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Because dπt

dπ =
dπt
dλ
dπ
dλ

KL(πt||π) =
∫

ft log(
ft

exp(−V )
)dλ

KL(πt||π) =
∫

ft(log(ft)− log(exp(−V )))dλ =

∫
ftV dλ+

∫
ft log(ft)dλ

As before, they consider the set of probability measures K with finite second mo-
ment, i.e.

∫
|x|2ft(x)dx < ∞. Moreover, let d represent the Wasserstein distance.

Then for a given initial distribution f0 and a step size h, they iteratively define
fk+1 to minimize

1

2
d(fk+1, fk)

2 + hF (fk+1)

over all fk+1 ∈ K. This is a proximal method for discretizing gradient flow, which

is in general equivalent to the backwards Euler method, defined by fk+1−fk
h =

−∇F (fk+1) [PB13, 145]. (Because Otto calculus had not yet been developed, ∇F
did not yet have any meaning, but the scheme captures the same idea as discretizing
gradient flow.) We will not give the details of the proof (the full paper is worth
reading, but too long to include here), but the first step is to show that, with some
fairly weak additional assumptions on V , the scheme is well-defined. After that,
the main result is as follows:

Theorem 4.12. Suppose f0 satisfies F (f0) < ∞ and for fixed h > 0, let (fk,h)k be
the sequence of density functions solving the discretization scheme. Then we define
the continuous-time interpolation fh(t, x) : (0,∞)×Rn → R≥0 by fh(t, x) = fk,h(x)
for all t ∈ [kh, (k + 1)h) where k ∈ N0. Moreover, let gt(x) be the unique solution
to

dgt
dt

= div(gt∇V ) + ∆gt

such that gt → f0 strongly in L1(Rn), as t → 0. Then as h → 0, fh(t) → gt weakly
in L1(Rn) for all t ∈ (0,∞) and more generally fh → g strongly in L1((0, T )×Rn)
for any T < ∞.

In other words, for a Langevin diffusion, discretely approximating a gradient flow
of KL divergence, in the limit of finer step size, is exactly how the law of Xt evolves.
Thus, while Xt is defined as a ‘noisy gradient flow’, πt follows an exact gradient
flow. While this proof did not construct Wasserstein space as a pseudo-manifold of
probability measures, it did use W2 distance in its discretization scheme. In doing
so, it laid the foundations for performing formal calculations in Wasserstein space,
where the gradient of the KL divergence is well-defined in a certain sense.

Acknowledgments

First, I would like to thank my mentor, Antares Chen, for introducing me to
the Langevin diffusion, optimal transport theory, and Otto calculus. I am grateful
for his guidance as I worked through difficult computations to deepen my under-
standing, and for his advice on this paper. Second, I would like to thank Peter
May for running the REU program and ensuring that it is open to anyone who is
interested in mathematics research. Finally, I would like to thank my parents for
their support of my interest in math, before, during, and after the program.



28 ROHAN BULUSWAR

5. References

(1) [BGL14] D. Bakry, I. Gentil, M. Ledoux. Analysis and Geometry of Markov
Diffusion Operators. Springer, Cham, 2014.

(2) [Lawler23] G. Lawler, Stochastic Calculus: An Introduction with Applica-
tions, online notes. Available at https://www.math.uchicago.edu/~lawler/
finbook.pdf.

(3) [Berestycki23] N. Berestycki, Stochastic processes, online notes. Available
at https://homepage.univie.ac.at/nathanael.berestycki/wp-content/
uploads/2023/03/StochasticProcesses.pdf.

(4) [Chewi24] S. Chewi, Log-Concave Sampling, unpublished book draft. Avail-
able at https://chewisinho.github.io/main.pdf.

(5) [Ollivier13] Y. Ollivier. “A visual introduction to Riemann curvatures
and some discrete generalizations”. In: Analysis and Geometry of Metric
Measure Spaces: Lecture Notes of the 50th Séminaire de Mathématiques
Supérieures (SMS), Montréal, 2011. Ed. by Galia Dafni, Robert Mc-
Cann, and Alina Stancu. AMS, 2013, pp. 197– 219. Available at https:
//hal.science/hal-00858008.

(6) [OV99] F. Otto, C. Villani, Generalization of an Inequality by Talagrand
and Links with the Logarithmic Sobolev Inequality, Journal of Functional
Analysis 173 (2000), 2, 361-400, DOI 10.1006/jfan.1999.3557.

(7) [JKO98] R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation
of the Fokker-Planck equation, SIAM Journal on Mathematical Analysis 29
(1998), 1, DOI 10.1137/S0036141096303359.

(8) [PB13] N. Parikh, N. Boyd, Proximal Algorithms, Foundations and Trends
in Optimization 1 (2013), 3, 123-231.

Appendices

Appendix A Stochastic Processes. To make sense of stochastic differential
equations, we will begin by understanding what a stochastic process is. To begin
formalizing randomness, we need to work in a probability space.

Definition 5.1 (Probability space). Let Ω be a set, and let Σ ⊆ P(Ω) be a
σ-algebra . If P is a (nonnegative) measure such that P(Ω) = 1, then we call the
triple (Ω, Σ ,P) a probability space.

The key idea is the random variable. Intuitively, a random variable is exactly
what it sounds like: a variable that takes on values non-deterministically. We use
them to model a variety of real-world processes, like the movements of a stock’s
price of a particle undergoing motion with random ‘noisy’ forces. Formally, we say
the following [BGL14, 7].

Definition 5.2 (Random variable). Given a probability space (Ω,Σ,P) and a
measurable space (E, F) (i.e. a set E with a σ-algebra F), a random variable X
is a function X : Ω → E such that for any A ∈ F , X−1(A) ∈ Σ.

Most often, we will consider the case where E = Rn and F is the Borel algebra
generated by the Euclidean topology. There are some assumptions about E nec-
essary to proceed, but the examples we deal with are nice enough that we do not
need to worry about these technical details. For example, it suffices to assume that
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E is a Polish space, or that it is separable and metrizable by a metric in which it
is complete, and that F is its Borel algebra [BGL14, 7].

The essential information about a random variable is often not literally the
function X : Ω → E, but rather, the probabilities with which it takes on various
values in E. We might informally refer to this information as its distribution, and
formalize it as follows.

Definition 5.3. Given a probability space (Ω,Σ,P) and an output space (E,F),
we define the law of the random variable X : Ω → E by the measure µ on F
satisfying µ(F ) = P(X−1(F )), for any F ∈ F .

Note that because by definition X is a measurable function, X−1(F ) ∈ Σ for
any F ∈ F , so this is always well-defined.

Our primary object of interest is a particular stochastic process. We can think
of a stochastic process as time-series data of random variables. Most broadly, a
stochastic process is simply a collection of random variables on the same probability
space indexed by some (infinite) set.

Definition 5.4 (Stochastic process). Suppose we have a probability space (Ω,Σ,P),
an output space (E,F), and a set I of infinite cardinality. A stochastic process is
a collection {Xt|t ∈ I} where each Xt : Ω → E is a random variable.

When I is countable, we identify it with N and have a discrete-time stochastic
process. When I has the cardinality of R, we identify it with R≥0 and we have
a continuous-time process. We will thus always assume that I = N or I = R≥0,
and we do not consider any I with cardinality greater than R. Note that while
we initially define a stochastic process to be a time-indexed collection of random
variables, it can also be seen as a random path in E. Indeed, we can consider the
function X : Ω × I → E given by X(ω, t) = Xt(ω), which fully characterizes the
stochastic process. For any ω ∈ Ω, we thus have a function Xω(t) : I → E, which
can thus be seen as a randomly chosen function from I to E, or a random path in
E. A stochastic process is therefore a random variable taking values in the space
of functions from I to E. This dual view will often be just as interesting and useful
as the original.

Any stochastic process is equipped with a filtration, which loosely speaking rep-
resents the information contained in the process up to time t. We can begin with
the case of I = N.

Definition 5.5. A discrete-time filtration is a sequence of σ-algebras (Σn)n∈N such
that for any m,n ∈ N, if m < n, then Σm ⊆ Σn. Moreover, Σ0 = {∅}.

In the context of stochastic processes, we use a filtration of the σ-algebra Σ of
the probability space, not of the output space. Moreover, we always assume that
for any n ∈ N, Σn ⊆ Σ. We can analogously define continuous-time filtrations, but
will need some extra assumptions [Lawler23, 55-56].

Definition 5.6. A continuous-time filtration is a collection of σ-algebras {Σt|t ∈
R≥0} such that for any s < t, Σs ⊆ Σt. We assume that it has the following
properties:

• Right-continuity: For any t ∈ R≥0, Σt =
⋂

s>t Σs

• Strong completeness: we assume that for any t, Σt contains all null sets of
Σ. Recall that a null set A satisfies A ⊆ B for B ∈ Σ, P(B) = 0.
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These technical details do not appear in any proofs presented in this paper,
but they are important for the rigor of the foundations of stochastic processes and
are thus worth reading. Once again, for any t, Σt ⊆ Σ. We think about Σt as
representing all of the information contained in the stochastic process up to time
t. Specifically, in both the discrete and continuous cases, for any t ∈ I, the random
variable Xt is always (in this paper) assumed to be measurable with respect to
Σt. To match the intuition, we will always assume that we are using the natural
filtration, where Σt is the σ-algebra generated by {Xs : s ≤ t}, or more precisely,

Σt = σ{X−1
s (A)|s ≤ t, A ∈ F}.

Appendix B Riemannian Manifolds and Ricci Curvature. The work
of the remaining sections takes place in the world of Riemannian manifolds, and
requires some understanding of the different measures of curvature in these mani-
folds. We therefore begin with a brief informal introduction to what manifolds are,
and other useful definitions and identities.

To begin, a manifold M of dimension n, for n ∈ N, is a topological space that
at each point p ∈ M is locally homeomorphic to an open subset of Rn. The space
is also assumed to be Hausdorff and have a countable base for its topology. We
often view the manifold as a subset of Rk for some natural k ≥ n. A differentiable
manifold is one that is equipped at each point p with a tangent space TpM . TpM is
a linear subspace of Rk, of dimension n, and is comprised of all possible velocities
at p of curves in M passing through p. Finally, a Riemannian manifold is one
equipped at each point p with an inner product defined on its tangent space, ⟨·, ·⟩p :
TpM × TpM → R. These inner products vary smoothly in p.

The local inner products induce a norm, so that we can measure the lengths of
tangent vectors. If f : [0, 1] → M is a curve, then for all t, f ′(t) ∈ Tf(t)M and we

can measure the length of the curve by integration:
∫ 1

0
||f ′(t)||f(t)dt. The f(t) in the

subscript indicates that we take the norm w.r.t the inner product at p = f(t), but
is implicit henceforth. We can then define the distance between points p0, p1 ∈ M
by:

d(p0, p1) := inf{
∫ 1

0

||f ′(t)||dt : f(0) = p0, f(1) = p1}

In words, we simply take the length of the shortest possible path between the
two points. With this distance function, the manifold is also a metric space, and
is assumed to be connected and complete [Oll10]. A geodesic is a curve such that
locally, for any two points, the geodesic realizes their distance (i.e. is the shortest
path). They are thus analogous to straight lines in Euclidean space. So that the
curve specifies the function, we often assume that geodesics have constant (not
necessarily unit) speed. Moreover, for any point p and vector v ∈ TpM , there
exists a unique geodesic beginning at p with initial velocity v. If that geodesic is
given by f(t), we define the endpoint of v to be f(1) and the map from p to the
endpoint is denoted expp(v) [Oll10]. We can also define the inverse map logp(v),
where logp(p

′) = v ⇐⇒ expp(v) = p′.
Next, we consider the differential structure of manifolds. The overall goal is to

understand what a gradient flow on a manifold is and how differential operators
inform us about curvature. To begin, consider a smooth function f : M → R.
We can define its differential df at a point p to map TpM → R by taking a curve
beginning at p with velocity v and setting (df)p(v) = (∂tf(pt))|t=0 [Chewi24, 77].
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The differential (df)p is thus an element of the dual space of TpM . Moreover, we
define the gradient of f at p in the usual way: for any vector v ∈ TpM , ∇f(p)
satisfies (df)p(v) = ⟨∇f(p), v⟩p. The gradient flow of f is again the curve p(t)
whose velocity is always −∇f(p(t)) [Chewi24, 77].

Finally, we have the question of curvature. First, we consider parallel transport,
which is a way to associate a vector v ∈ TpM to v′ ∈ TqM for nearby p, q. Given
p ∈ M and q ∈ M , because we assume that d(p, q) is small, we can assume that
q = expp(w) for some w ∈ TpM [Ollivier13, 2]. Then, consider any v ∈ TpM such
that is orthogonal to w. We then define v′ by considering all vectors in TqM that
are orthogonal to the geodesic from p to q, and choosing one, v′, that minimizes
the distance between expp(v) and expq(v

′). The map from v to v′ is called parallel
transport and can be extended to the full domain TpM by requiring that it is linear
[Ollivier13, 2]. Moreover, for farther points, one can parallel transport smaller
distances along a geodesic between the two.

This is an intuitive approach, but a formal definition can be given using more
differential operators. Let us first define a vector field to be a map X associating
to each point p a tangent vector X(p) ∈ TpM . Given a function f , a vector field
produces a new function Xf by Xf(p) = (df)p(X(p)) = ⟨∇f(p), X(p)⟩p [Chewi24,
77-78]. Vector fields can thus be seen as differential operators on functions, but also
on other vector fields via the Levi-Civita connection. The Levi-Civita connection
is a map that takes in vector fields X,Y and outputs another vector field ∇XY .

One important property of the Levi-Civita connection (and of affine connec-
tions more broadly) is that for vector fields X1, X2 and a smooth function f ,
∇fX1+X2Y = f∇X1Y + ∇X2Y , where f just scales the vector fields X1(p) and
∇X1Y (p) by f(p). As a result of this property, one can prove the following lemma:

Lemma 5.7. If U ⊆ M is open and X1, X2, Y are vector fields such that X1|U ≡
X2|U then (∇X1

Y )|U ≡ (∇X2
Y )|U .

In other words, for fixed Y , local values of ∇XY only depend on local values of
X. Finally, for any curve f : R → M , we can define the covariant derivative, the
generalization of directional derivatives. (We assume f is not self-intersecting, as in
the case of geodesics.) Consider the velocity field f ′(t) (a vector field on the subset
f(R) ⊆ M), and extend it smoothly to a vector field X defined on all of M . By
the localization property in the above lemma, one can show that how we choose X
does not matter. Now, for any vector field Y , we define the covariant derivative of
Y along f(t) by [Chewi24, 78]:

DfY (t) := (∇XY )(f(t))

Because the extension to X is arbitrary, we also write it as (∇f ′(t)Y )(f(t)). Finally,
we can define the parallel transport of a vector v ∈ Tf(0)M along the curve f(t) by
the vector field V such that DfV (t) ≡ 0.

With a robust notion of parallel transport, we can begin defining curvature. To
begin, we have sectional curvature [Ollivier13, 3-4]:

Definition 5.8 (Sectional curvature). Let M be a Riemannian manifold, and
consider some x ∈ M . Moreover, consider v, w ∈ TpM with unit length and ε, δ > 0.
Let y = expx(δv) and let w′ be the parallel transport of w from x to y. Then if
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p = expx(εw) and q = expy(εw
′), we have for some K

d(p, q) = δ(1− ε2

2
K(v, w) +O(ε3 + ε2δ))

K(v, w) is called the sectional curvature at x.

In the case of Euclidean space, parallel transport creates a rectangle so the
distance between p and q is the same as between x and y, i.e. δ. We would thus
correctly find that K ≡ 0. But in other settings, that is not the case. Note that
while the estimate of δ is correct up to first order in δ, ε, the curvature provides a
necessary second-order correction. With sectional curvature, we may define Ricci
curvature, which is ultimately our object of interest [Ollivier13, 4]:

Definition 5.9 (Ricci curvature). Consider an n-dimensional manifold M and
x ∈ M . If v ∈ TxM and ||v|| = 1, we define the Ricci curvature Ric(v) as n times
mean of K(v, w) for w ∈ TxM , ||w|| = 1.

We can also give an alternate characterization that is easier to visualize [Ol-
livier13, 4]:

Proposition 5.10. Consider a point x ∈ M (again of dimension n), a unit vector
v ∈ TxM , and ε, δ > 0. Moreover, let y = expx(δv), Sx = {w ∈ TxM : ||w|| = ε},
and Sy = {w ∈ TyM : ||w|| = ε}. If Sx is mapped to Sy via parallel transport, the
average distance travelled by a point in Sx is given by

δ(1− ε2

2n
Ric(v) +O(ε3 + ε2δ)

Positive Ricci curvature is thus characterized by the phrase “balls are closer than
their centers are” [Ollivier13, 4]. Ricci curvature can also be derived from the more
general notion of the Riemann curvature tensor. Given vector fields W,X, Y, and
Z, the Riemann curvature tensor is defined, using the Levi-Civita connection, by
[Chewi24, 79]:

Riem(W,X, Y, Z) = ⟨∇X∇WY −∇W∇XY +∇[W,X]Y,Z⟩
where the Lie bracket [W,X] is a vector field implicitly defined by [W,X](f) =
W (X(f)) − X(W (f)). Notably, when evaluating at a point p, the output de-
pends only on W (p), X(p), Y (p), and Z(p), so the following is well-defined. For a
point p and fixed v, w ∈ TpM , the Ricci curvature tensor is defined by Ric(v, w) =
TrRiem(u, ·, v, ·). What we previously denoted byRic(v) was more properlyRic(v, v),
since the tensor takes two vector inputs. Positive Ricci curvature can have remark-
able consequences, which are explored section 4.1.
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