
SEPARATING FORMAL SYSTEMS: RCA0, WKL0, AND ACA0

JUDSON BUCHKO

Abstract. This paper serves as an introduction to reverse mathematics and

proof theory. To do this, we introduce the systems of RCA0, WKL0, and

ACA0, which correspond to different allowed systems of induction, compre-
hension, and algorithmic strength. Introducing these systems allow one to see

what axioms certain mathematical theorems and properties are dependent on

and equivalent to, and providing a good separation of them therefore provides
a separation of the strength of our mathematics. We will discuss the defini-

tions of these systems, why they are defined the way that they are, how they

are separated, and some of the mathematical properties that are provable in
each system.

Contents

1. RCA0 and its Motivation 1
1.1. Computability Theoretic Motivation 4
1.2. Models of RCA0 6
1.3. Proofs in RCA0 9
2. Trees, Weak Kőnig’s Lemma, and WKL0 13
3. Arithmetic Comprehension and ACA0 19
Acknowledgments 21
References 21

1. RCA0 and its Motivation

We will begin our discussion of reverse mathematics with defining the system
that all other systems will be based on, RCA0, as well as providing the motivation
for its axioms in the form of a discussion of computability theory. Some definitions
will be required before we define RCA0 itself.

We begin by defining the two-sorted language of second order arithmetic.

Definition 1.1. The language of second order arithmetic, commonly denoted as
Z2, is a mathematical language consisting of two kinds of variables, ’individuals’
which represent numbers and are often denoted as lower case letters, i.e. a, and
’set variables’, which may be thought of as sets of natural numbers and are denoted
by capital letters, i.e. A. The language contains a symbol for set membership,
∈, as well as the existential and universal quantifiers ∃ and ∀ for quantification of
individuals and set variables. Individual terms are defined in the language and the
structure of second order arithmetic by the constant 0 and successive applications
of the successor function S, which adds 1 to the input. Additionally, the language

Date: DEADLINES: Draft AUGUST 14 and Final version AUGUST 28, 2024.

1

2 JUDSON BUCHKO

includes the nonlogical symbols +, ∗, < which specify the operations and relations
they classically do, and finally an equality symbol =. Thus, in notation, the lan-
guage of second order arithmetic is given the signature L = (0, S,+, ∗,=, <,∈)

For example, a formula in the language of second order arithmetic is: ∀A(∃x(x ∈
A) ∨A = ∅).

The systems of RCA0,WKL0, and ACA0 are, more precisely, subsystems of second
order arithmetic, where a subsystem of second order arithmetic is a collection of
theorems in L that are stated as axioms of the theory of the subsystem. What is
critical in the discussion of these systems of second order arithmetic are formulas.
These are the formalization of a common kind of mathematical sentence where we
are allowed to have implications, quantifiers, parameters, and things of that like.
An arithmetic formula is a formula that does not quantify over sets, for instance,
t < u, t = u, and so on. The language of second order arithmetic allows us access to
second order objects, these are sets. We must be careful, however, as second order
arithmetic contains no term for forming operations for sets, only the terms for set
variables themselves. Because of this, we work with sets by doing operations and
making reference to their first order elements. For finite sets, we can do a little
better and ’code’ the entire set into one first order element in such a way that the
information of all the elements in the set can be recovered through operations on
the ’code’ of the finite set. As will be seen, there is an effective coding that can be
done in RCA0. between finite sets and numbers to reduce second-order problems
to, often simpler, first order ones that will be discussed in detail in section 1.3.

Our formulae are often abbreviated as just ϕ, or ψ, where ϕ(x) is a certain
instance of the formula holding for the free variable x.

Sets are however fine to be used as parameters for our formulas, and where
pertinent, a set parameter will be indicated alongside free variables and other first-
order parameters in the following way. For a set X, parameters y1, y2, ..., yn := y,
and free variables x1, x2, ..., xn := x, we write ϕ(x, y,X) for the instance of the
formula with those parameters and free variables.

The classification of formulas is done along the basis of the quantifiers employed
in the formula. The most basic kind of quantifier is the bounded quantifier, of
the form ∀x < t, or ∃x < t. The most basic type of formula that we consider
is the bounded quantifier formula or the Σ0

0 formula, a formula quantified only
over bounded quantifiers, for instance, (∀x < t)[t − x > 0]. We distinguish other
kinds of formulas by their number and order of unbounded quantifiers, this kind of
distinguishing is known as the Arithmetic Hierarchy.

Definition 1.2. A Σ0
n formula is of the form ∃x1∀x2∃x3∀x4...Qxnϕ where ϕ is Σ0

0,
and Q is ∃ if n is odd, and is ∀ if n is even. A Π0

n formula is one of the form
∀x1∃x2∀x3∃x4...Qxnϕ where ϕ is Σ0

0, and Q is ∀ if n is odd, and is ∃ if n is even.

We now have enough definitions taken care of to start defining RCA0. RCA0

comes with the base axioms of Peano Arithmetic, or P0, as well as an induction
scheme and a comprehension scheme that tells us what kind of sets we can talk
about and construct in models of RCA0

Definition 1.3. P−
0 refers to just the first order axioms of Peano arithmetic over a

discrete, ordered, commutative semiring. It consists of the closures of the following

SEPARATING FORMAL SYSTEMS: RCA0, WKL0, AND ACA0 3

axioms over such a structure:

x+ y = y + x x · y = y · x (Commutativity)

(x+ y) + z = x+ (y + z) (x · y) · z = x · (y · z) (Associativity)

x(y + z) = x · y + x · z (Distributivity)

x+ 0 = x x · 0 = 0 x · 1 = x (Identity and Absorption)

∀x(¬(x < x)) (< is Irreflexive)

x < y ∧ y < z → x < z (< is Transitive)

x < y ∨ y < x ∨ x = y (< is Trichotomous)

(x < y) → (x+ z < y + x) (Ordering Preserved Under Addition)

(0 < z ∧ x < y) → (x · z < y · z) (Ordering Preserved Under Positive Multiplication)

(x < y) → ∃z(x+ z = y) (The Larger Equals the Smaller plus Another.)

0 < 1 (0 and 1 are Distinct.)

0 ≤ x (0 is the Minimum Element.)

(0 < x) → (1 ≤ x) (0 is covered by 1)

Over this basic structure of axioms, RCA0 allows for two types of induction,
first, the one packaged together with Peano Arithmetic.

Definition 1.4. P0, or Peano arithmetic with restricted induction, is P−
0 with the

addition of set induction, which states:

(0 ∈ X ∧ ∀n[n ∈ X → n+ 1 ∈ X]) → ∀n(n ∈ X)

Second, a restricted type of induction over formulae, limiting us to only Σ0
1

formulas for which we can make inductive conclusions over.

Definition 1.5. The Σ0
1 induction scheme states that for each Σ0

1 formula ϕ, with
distinguished free variable n:

(ϕ(0) ∧ ∀n[ϕ(n) → ϕ(n+ 1)]) → ∀n(ϕ(n))

Note that Σ0
1 induction, and in fact Π0

1, Σ
0
n, and Π0

n induction are downward
closed for the kinds of formulas that can be inducted on. For instance, if I have
Σ0

1 induction and I want to induct on a Σ0
0 or equivalently Π0

0 formula ψ, I can
just add a dummy quantifier to my formula. For instance, ∃x ψ where x is neither
a parameter or free variable in ψ, now ∃x ψ is Σ0

1 and can be inducted as such.
The same reasoning holds as for why Σ0

n induction or similarly higher inductive
schemes imply all lower forms of induction: just add dummy quantifiers to your
lower formulae.
RCA0 also restricts the kinds of sets that can be constructed within it. It does

this through a restricted comprehension scheme, where a comprehension scheme is
able to take the elements that satisfy a given formula and comprehend them into a
set. There are at least as many comprehension schemes as there are classifications
of formula, but the one we highlight is ∆0

1 comprehension.

Definition 1.6. The ∆0
1 comprehension scheme consists of, for pairs of formulas

ϕ, where ϕ is Σ0
1, and ψ, where ψ is Π0

1:

∀n[ϕ(n) ↔ ψ(n)] → ∃X∀n[n ∈ X ↔ ϕ(n)]

4 JUDSON BUCHKO

Putting it all together, we come to the definition of RCA0, the weakest base
system for reverse mathematics.

Definition 1.7. The system RCA0 consists of P0 with Σ0
1 induction and ∆0

1 com-
prehension.

The choices for what kinds of induction is allowed and what kinds of sets are
allowed to be constructed may seem arbitrary at first. For instance, why Σ0

1 in-
duction and not Σ0

5? Or, why not Π0
1 comprehension instead? The answers to

these questions come in the name of RCA0 itself, where RCA stands for the Recur-
sive Comprehension Axiom, which is exactly the same as ∆0

1 comprehension, and
in modern terms may be more accurately called the ”Computable Comprehension
Axiom”. For the motivation behind RCA0 lies in computability theory.

1.1. Computability Theoretic Motivation.

This paper will assume basic computability-theory knowledge of the concepts of
the Turing machine, the oracle Turing machine, etc. For this section, we will not
explicitly prove that our discussion of computability theory can be done in RCA0,
instead, this is more of an informal section that motivates RCA0’s definition, so we
will talk in computability-theoretic terms rather than reverse mathematical ones
until we start making our connections.

Definition 1.8. A Countably Enumerable, or c.e., set A is the domain of a com-
putable function Φ

We will now provide multiple equivalent characterizations of a c.e. set, the first
should sound familiar.

Definition 1.9. A set is in Σ0
1 form if it is the projection of a computable relation

R, where a projection A takes the following form A = {y : (∃x)R(x, y)}

Here we have the familiar ’one unbounded existence quantifier’ form of the Σ0
1

formula. However, instead of being followed by a Σ0
0 bounded quantifier predicate,

it is followed by a computable predicate, which may seem like an incongruence at
first, but is really hinting at something deeper. The general computable function
f or relation R may be seen, by definition, as a Turing machine that produces
the same outputs as f on the same inputs, like, (∃s)ϕe,s(x) = f(x), where s is
the number of steps the Turing machine will run, halting or not. If there exists
an s such that the above is true for a given x, and one exists for every x, then
we say f is a computable function. We can put the existential quantifier in the
function/relation together with the existential quantifier with ∃x together in a
block like so: A = {y : (∃⟨x, s⟩)ϕe,s(x) such that we have one coded quantifier
followed by a Turing machine that will run for only finitely many steps, something
with only bounded quantifiers. Thus, it seems accurate to refer to such a set as in
Σ0

1 form.

Theorem 1.10. A set is c.e. iff it is Σ0
1

Proof. First, if A is c.e. then A = dom(Φe) where Φ is a Turing machine with index
e. Thus,

x ∈ dom(Φe) ↔ (∃s)[x ∈ dom(Φe,s)]

SEPARATING FORMAL SYSTEMS: RCA0, WKL0, AND ACA0 5

where the s is the number of steps that the turing machine will run, determined
before the turing machine starts, where we halt no matter what once we’ve reached s
steps in the operation of the machine. The relation {⟨x, e, s⟩ : x ∈ dom(Φe,s)} where
the angle brackets represent a computable coding to ω, where ω is the naturals,
s.t. x, e, s can be recovered from their code in ω. This relation itself is in fact
computable, since we just calculate on x until the program halts, or until we have
computed for s steps. Thus, since we can recover x in a computable fashion from
this computable relation, A is a projection of a computable relation R, so A is Σ0

1.
In the opposite direction, if A is Σ0

1 then A = {y : (∃x)R(x, y)} where R is
computable, then A = dom(ψ) where ψ(x) = The least y such that R(x, y) ψ is
computable because R is, so A is c.e. □

We will now look at another equivalent characterization of c.e. that will, together
with the first characterization, will provide sufficient motivation for Σ0

1 induction.

Theorem 1.11. For a set A. A is c.e. iff A is the range of some computable
function Ψ, or A = ∅.

Proof. First, the backwards direction. If A = ∅ then A is vacuously c.e. Oth-
erwise, suppose A = range(Ψe). The set range(Ψe) is equivalent to the set {y :
(∃s)(∃x)[ψ(x)e,s = y] This is a computable relation, and the two quantifiers can be
compressed into one using a computable coding, so A is of Σ0

1 form, so A is c.e.
Now, the forwards direction, let A = dom(ϕe) ̸= ∅. Choose an a ∈ dom(ϕe).

Define the computable function f by:

f(⟨s, x⟩) =

{
x if x ∈ dom(ϕe,s+1)− dom(ϕe,s)

a if x /∈ dom(ϕe,s+1)− dom(ϕe,s)

f ’s computability is clear, since calculating the domain of a finite-step Turing
machine is a computable process. Each x ∈ dom(ϕe), x ̸= a is listed by this function
exactly once, since f outputs x at the exact step at which ϕe goes from not halting
to halting on x, which is only at one step sx per x. So clearly, range(f) = A. This
completes the proof. □

With this in context, we can provide a motivation for Σ0
1 induction. As, since

the set of the x that satisfy a Σ0
1 formula ϕ is a Σ0

1 set, so is c.e., and we can provide
a computable listing, or enumeration, of that set with the computable function f
in the second half of the above proof. So while we can’t construct the set explicitly
in RCA0, we can count its elements, so the inductive conclusion that (∀x)ϕ(x) is
decided by a finitisitc, computable algorithm for each x.
Next, we’ll provide a motivation for ∆0

1 comprehension.

Definition 1.12. A set A is in ∆1 form if A and Ac (A-Complement) are both Σ0
1

Equivalently, since we can characterize Ac like Ac = {y : (∃x)R(x, y)}, we can
characterize A like A = {y : (∀x)¬R(x, y)}. Thus, we can say that a ∆1 set is both
Σ0

1 and Π0
1.

Theorem 1.13. A set A is computable iff A and Ac are c.e., equivalently, A is
∆1.

Proof. If A is computable, then we know that Ac is computable, so A and Ac are
both c.e.
If A is ∆1, then A and Ac are c.e., so let, for some e ∈ ω, A = dom(ϕe) where

6 JUDSON BUCHKO

ϕe is a computable function. Similarly, Ac = dom(ϕi). We define the computable
function

f(x) = The least such s such that {x ∈ dom(ϕe,s) or x ∈ dom(ϕi,s)}
Then we have that x ∈ A iff x ∈ dom(ϕe,f(x)) Now, we can set up the characteristic
function χA(x) to output 1 only when ϕe,f(x)(x) ↓, and 0 when ϕi,f(x)(x) ↓ The
reason this works is that every x ∈ ω will cause f to halt, so χA is a finite algorithm
over all x ∈ ω. This is unlike solely c.e. sets’ characteristic function, where the
members outside of the set can result in indeterminate calculation.

□

This proof provides sufficient motivation for ∆0
1 comprehension, for now, we see

that we are only able to make sets in RCA0 if those sets are computable, i.e. have
equivalent Σ0

1 and Π0
1 characterizations.

1.2. Models of RCA0.

RCA0, as it stands thus far, is just a system of schemes and allowed operations,
it doesn’t specify the first order system which it works over. Models specify the first
order and second order parts over which a subsystem of second order arithmetic
can reference, therefore we will differentiate between our systems by differentiating
between models that model said systems.

Definition 1.14. Amodel is structureM whereM = {M,S,+M , ·M , 0M , 1M ,≤M}
Where M is a set equipped with interpretations fo the operations +, ∗, etc, S ⊂
P(M) is the domain for quantifiers over set variables, basically the ’allowed’ sets in
the model; and the operations, elements, and relations are the allowed operations
and significant field-elements in the model M, lastly the relation ≤M implies an
ordering.

However, not all models are created equal. For most of this paper, we will
consider a model of RCA0 that has ω as its first-order part and where S are only
the sets which are constructible in RCA0. This requires some prior definitions, the
set join operation and the Turing ideal.

Definition 1.15. An ω-model is a model structure M in which M = ω, and the
arithmetical operations are the standard ones described in Definition 1.4.

The options for S given M = ω are exactly the Turing Ideals in the context of
RCA0.

Definition 1.16. The set join operation ⊕, when operating on sets A and B and
forming the set A⊕B refers to the set:

A⊕B = {2n|n ∈ A} ∪ {2n+ 1|n ∈ B}

Note that the set join operation is RCA0 definable, that is the sets described by
the set join operation are definable with the allowed methods. Apply Σ0

0 compre-
hension to the formula (∃m < n)[(m ∈ A∧m+m = n)∨(m ∈ B∧m+m+1 ∈ B)].

Definition 1.17. A Turing ideal is a nonempty set I ⊆ P(ω) such that the follow-
ing hold for all X,Y :

(1) If X,Y ∈ I, then X ⊕ Y ∈ I
(2) If X ∈ I and Y ≤T X then Y ∈ I

SEPARATING FORMAL SYSTEMS: RCA0, WKL0, AND ACA0 7

A Turing ideal is an ’ideal’ over the Turing degrees, which has a more general
structure we will not specify, but the idea is that Turing ideals are the exact type
of structure that models the set-construction restrictions present in RCA0 from a
computability theory perspective, and allow us to define omega models of RCA0,
which are the most natural models to work in.

Theorem 1.18. A structure {ω, S,+M , ·M , 0M , 1M ,≤M} is a model of RCA0 iff
S ⊂ P (ω) is a Turing ideal.

Proof. Consider a set X which is ∆0
1 definable with parameters Y1, Y2, ..., Ym, be-

cause the information contained within the parameter sets is essential to defining
X in a computable fashion, a general ∆0

1 set X is computable in the join of its
parameters. This corresponds to closure property (2) of the Turing ideal, as if X
is computable in the join of its computable parameters ⊕iYi ∈ I, then X ≤T ⊕iYi
implies X ∈ I, or X is ∆0

1 definable with those parameters. In the case of closure
property (1), for two ∆0

1 sets X, Z, the computability of their join is implied by
the computability of the join of their parameters, which we know is true since the
set join operation with finite parameters is Σ0

0. □

Finally we take a brief detour to explore some of the implications of the existence
of nonstandard models, and therefore see why we stick to an ω-model as the choice
model.

Definition 1.19. The standard model of second order arithmetic is the model M
such that M is an ω-model and S = P(ω).

Models with non-standard first-order parts end up introducing a distinction be-
tween bounded and finite sets which must be parsed out with a coding scheme.

Definition 1.20. A nonstandard first order element is an element that lies outside
of the natural numbers ω, call it c, that is ”after” all the others, as it can’t lie
within the naturals as by PA it must then be the successor of one of them and be
succeeded by another. So it must lie after all of them, (∀n ∈ ω)c > n. We will not
go into details on the construction of nonstandard models, just state they exist.

Sets in RCA0 are often coded with single elements, and because the model
decides which first order elements are available to us, we speak of sets X as coded
or bounded in relation to the model M.
As we begin to prove things in RCA0, we will need to formally reference our coding
scheme, the choice of which will be critical for later theorems. We use the following
definitions.

Definition 1.21. The bijective pairing function, p : N × N → N is defined as
p(x, y) := 1

2 (x+ y)(x+ y+1)+ y). The notation (x, y) or ⟨x, y⟩ notates the output
of the pairing function with inputs x, y.

The pairing function is the base tool for coding sets with numbers in RCA0,
and it is a primitive recursive (so computable) function, and so its output can be
decided in RCA0, as well as its inversion which allows one to recover the pair,
forming an effective code for pairs.

Definition 1.22. A number (first order object) c represents a set X if there are
k,m, and n such that c = (k, (m,n)) , and, for all i, we have i ∈ X iff

(i < k) ∧ (m · (i+ 1) + 1 divides n).

8 JUDSON BUCHKO

The code for a set X is the least such c that represents X in the above fashion.
If such a c exists, X is coded. The above coding scheme is useful for working in
RCA0 since the membership of a given i in X can be decided by a formula with
solely bounded quantifiers according to our definition, so a Σ0

0 formula.
As previously stated, we view finite and bounded sets in relation to the model

M

Definition 1.23. Let M be a model of RCA0, and X ⊂M , (X is not necessarily
in S).

(1) X is M-bounded (or just ”bounded”, if the model is assumed), if there is
a n ∈M such that i ≤ n for all i ∈ X.

(2) X is M-coded (or just ”coded”) if there is a c ∈ M that codes X as in
Definition 1.22.

It remains to be shown that this coding scheme is effective in coding bounded
sets in RCA0

Theorem 1.24. RCA0 proves that for any set X, if X is M-bounded, then X is
M-coded.

Proof. We will argue in RCA0. Say X is bounded by some k ∈ N. By the primitive
recursion of multiplication, we can define m = k! as follows: define f : {x ∈ N|x ≤
k + 1} → N, let f(0) = 1, and for i < k let f(i + 1) = f(i) · (i + 1); then we let
m = f(k). By Σ0

0 induction,

(1.25) (∀i < k) i+ 1 divides m.

The claim is that for all j < i < k,m(j + 1) + 1 and m(i + 1) + 1 are relatively
prime, that is, they do not divide each other. Say, for the sake of contradiction,
that d divides both m(j+1)+1 and m(i+1)+1. So we set m(j+1)+1 = dqj , and
m(i+1)+1 = dqi, and we see that their difference, d(qj − qi) is also divisible by d,
so d divides m(i− j) := dq We then see that m(j+1)+1 divides dqjq = m(i− j)qj
Clearly m and m(j + 1) + 1 are relatively prime because of the last +1 term, so
m(j + 1) + 1 must divide (i− j)qj . However, 1 < i− j < k, so i− j divides m by
(1.25). Thus, m(j+1)+1 must divide qj . So since qj divides m(j+1)+1, we have
that qj = dqjr, 1 = dr, so d = 1 which proves the claim.

By primitive recursion, define n = Πi∈X(m(i + 1) + 1 as follows: let g : {x ∈
N|x ≤ k + 1} → N, and set g(0) = 1. For i < k, let

g(i+ 1) =

{
g(i) · (m(i+ 1) + 1) if i ∈ X

g(i) if x /∈ X

And set g(k) = n. Thus, m(i + 1) + 1 will divide n if i ∈ X. Induction on l ≤ k
shows that the prime factors of g(l) must be a factor of m(i+1)+ 1 for some i < l
in X, since g(l) is nothing more than a sequence of products of m(i+1)+1 running
i through up to l. By the above claim, m(i+ 1) + 1 dividing n = g(k) implies that
it belongs in the sequence of products as a prime factor, and since it must be a
factor of one of the m(j + 1) + 1 where j < k, but where j ̸= i these are relatively
prime, so this implies that m(i+1)+ 1 is in the sequence, for some j < k, j = i, so
i ∈ X.

We conclude that r = (k, (m,n) represents X in the sense of Definition 1.22.
The set R of all r representatives exists by Σ0

0 comprehension, and it is nonempty
because it contains r. If we let ϕ(x) be the Σ0

0 formula (∀y ≤ x)[y /∈ R]. We have

SEPARATING FORMAL SYSTEMS: RCA0, WKL0, AND ACA0 9

¬ϕ(r), by Σ0
0 induction there exists a c ≤ r such that ¬ϕ(c) and either c = 0 or

c > 0 and ϕ(c − 1), this implies that c is the least member of R, and that c is a
code of X in the sense we desire. □

We finally relate finiteness and boundedness in models of RCA0

Definition 1.26. For a model M of RCA0, a set X ⊆ M is M-finite if it is
M-coded, X ∈ S, and M-bounded

There is a fine distinction to be made between M-finite sets and finite sets in the
traditional sense when nonstandard first-order elements are present in the model
M. For example, in a nonstandard model M, with nonstandard number n ∈ M ,
the set N = {i : i ≤ n} is M-bounded by n in S (because we construct it with
only bounded quantifiers), and is thus coded by some c ∈ M , and so is M finite.
However, because n is nonstandard, for all m ∈ N, m < n, so N ⊂ N , yet is still
M− finite when viewed from inside the model.

When considering standard models of RCA0, which we will assume we have from
now on, the traditional notion of finite and M-finite coincide.

1.3. Proofs in RCA0.

The first batch of things we will prove in RCA0 deal with bounding, and that
an additional type of useful comprehension holds in RCA0.

Definition 1.27. Let Γ be a collection of formulas. The Γ bounding scheme (BΓ)
is the scheme consisting of all ϕ(x, y) ∈ Γ of sentences of the form:

(∀z)[(∀x < z)(∃y)ϕ(x, y) → (∃w)(∀x < z)(∃y < w)ϕ(x, y)]

It is quick to see that RCA0 proves BΣ0
0 through Σ0

0 comprehension. ϕ(x, y) be
a Σ0

0. Suppose that for some z we have that (∀x < z)(∃y)ϕ(x, y). Let θ(v) be the
statement v > z or (∃w)(∀x < v)(∃y < w)ϕ(x, y). This is a Σ0

1 statement, so we
can induct on it for all v, and we have θ(z), which is the bounding statement.

We will now prove some things about general bounding schemes in PA− that hold
in the more specific cases pertaining to the allowed induction and comprehension
schemes in RCA0.

Theorem 1.28. Fix n ≥ 0, let t be a first order term.

(1) If ϕ(x, z) is a Σ0
n formula, then (∀x < t)ϕ(x, z) is equivalent over PA−+BΣ0

n

to a Σ0
n formula.

(2) If ϕ(x, z) is a Π0
n formula, then (∃x < t)ϕ(x, z) is equivalent over PA−+BΠ0

n

to a Π0
n formula.

Proof. We prove by induction on n. For n = 0, we know that Σ0
0 formulae are

closed under bounded quantification. Fixing n > 0, we assume the result for n− 1.
We will prove (1), where (2) is analogous just by replacing the Σs with Πs and the
∀s with ∃s. Say ϕ(x, z) = (∃y)ψ(x, y, z), where ψ is Π0

n−1. In PA−+BΣ0
n, we have

(∀x < t)ϕ(x, z) ↔ (∀x < t)(∃y)ψ(x, y, z) ↔ (∃w)(∀x < t)(∃y < w)ψ(x, y, z)

. We apply the inductive hypothesis to (∃y < w)ψ(x, y, z), implying that it is
equivalent to a Π0

n−1 formula υ(w, x, z), so (∀x < t)ϕ(x, y) is equivalent to the Σ0
n

formula (∃w)(∀x < t)υ(w, x, z). This formula is Σ0
n because the bounded universal

is inside the scope of the existential. □

10 JUDSON BUCHKO

Theorem 1.29. The following are provable in PA−.

(1) BΣ0
n+1 is equivalent to BΠ0

n

(2) IΣ0
n + BΣ0

0 → BΣ0
n

Proof. (1) The implication BΣ0
n+1 → BΠ0

n is immediate, since Π0
n formulas are a

subclass of BΣ0
n+1. For the converse implication, consider a given Σ0

n+1 formula
ϕ(x, y) = (∃u)(ψ(x, y, u)) Where ψ is a Π0

n formula. Fix a z, and suppose that
(∀x < z)(∃y)ϕ(x, y) holds. Define θ(x, v) to be the formula

(∀y, u ≤ v)[v = ⟨y, v⟩ → ψ(x, y, u)]

which, since we only added bounded quantifiers, is still a Π0
n formula. Then, because

of what we suppose about ϕ, we have that for all x < z we can find a y such that
ϕ(x, y) holds, and therefore a u such that ψ(x, y, u) holds. Once we’ve found our y
and u we code them into a v in the RCA0 effective method, and by consequence
they will be less than or equal to v. Thus, we have that (∀x < z)(∃v)(θ(x, v),
and by BΠ0

n we can fix a w such that (∀x < z)(∃v < w)θ(x, v). Finally, since
y ≤ v < w, and because of what θ states about ψ and therefore ϕ, we have that
(∃w)(∀x < z)(∃y < w)ϕ(x, y).

(2) We prove by induction on n. For n = 0, there is nothing to show. Fixing
n > 0, we assume the result for n − 1. We will argue in PA−+IΣ0

n+BΣ0
0, and by

part (1), it suffices to show Π0
n−1. Suppose ϕ(x, y) is a Π0

n−1 formula, such that for
some z,

(∀x < z)(∃y)ϕ(x, y).
Let ψ(u) be the formula u > z ∨ (∃w)(∀x < u)(∃y < w)ϕ(x, y). By inductive
hypothesis, we have BΣ0

n−1. We apply Theorem 1.28 to (∃y < w)ϕ(x, y), implying
it is Π0

n−1, which implies Ψ is Σ0
n with the extra existential quantifier. Thus, we

will induct on ψ through IΣ0
n. ψ(0) holds where there are no x < 0, so ψ holds

vacuously. If we have ψ(u), then either u > z, in which case u+ 1 holds, or u ≤ z
and (∃w)(∀x < u)(∃y < w)ϕ(x, y). In this case, either u + 1 > z, and ψ(u + 1)
holds; or, u+ 1 ≤ z, in which case (∀x < z)(∃y)ϕ(x, y) → (∀x < u+ 1)(∃y)ϕ(x, y)
In particular, where x = u, we have that (∃yu)ϕ(u, yu). Now we check if yu < w, if
yes, then keep w the same, if yu ≥ w, then redefine w := yu+1, and then you have,
in either case, that (∃w)(∀x < u + 1)(∃y < w)ϕ(x, y). This proves the inductive
step. Thus, we have (∀u)ψ(u), and in particular, ψ(z), which proves the desired
claim. □

We quickly see a corollary to this theorem relevant to RCA0, that:

Corollary 1.30. RCA0 proves BΣ0
1.

Proof. Let n = 1 in Theorem 1.29, RCA0 has BΣ0
0 and IΣ0

1, so RCA0 proves
BΣ0

1. □

We will need one more preliminary result before we prove that an additional
type of comprehension holds in RCA0. This result regards a least number principle
in RCA0.

Definition 1.31. Let Γ be a collection of formulas. The Γ least number principle
(LΓ) is the scheme over all ϕ(x) ∈ Γ of sentences of the form

(∃x)ϕ(x) → (∃x)[ϕ(x) ∧ ¬(∃y < x)ϕ(y)].

Theorem 1.32. For n ≥ 1, PA− proves that IΣ0
n → LΠ0

n

SEPARATING FORMAL SYSTEMS: RCA0, WKL0, AND ACA0 11

Proof. Let ϕ(x) be a Π0
n formula, and define ψ(x) to be the formula (∀y ≤ x)¬ϕ(y),

since the negation of a Π0
n formula is Σ0

n, and we are working in the naturals, we
can equivalently write ψ(x) = (∀y < x + 1)¬ϕ(y), by Theorem 1.28 ψ(x) is Σ0

n.
We assume for the sake of contradiction that we do not have LΠ0

n, we will induct
on ψ(x) using IΣ0

1. ψ(0) holds where there is no least element satisfying ϕ, since
(∀y ≤ 0)¬ϕ(x), as we have ¬ϕ(0), or else ϕ would have a least element. Assuming
ψ(x) holds, ψ(x+1) must also hold, or else x+1 would be the least element satisfying
ϕ. Thus, by Σ0

n induction, (∀x)ψ(x), so (∀x)¬ϕ(x), this is a contradiction for any
Π0

n sentence that hold for some x, which exist. □

Similarly, we see a quick application to RCA0.

Corollary 1.33. RCA0 proves LΠ0
1

Proof. Let n = 1 in Theorem 1.32, RCA0 has IΣ0
1, so RCA0 proves LΠ0

1 □

We now have all we need to prove the result that, in similar fashion to the
last two theorems, will apply to RCA0 with little friction and reveal an important
comprehension scheme that holds in RCA0.

Theorem 1.34. Fix n ≥ 1, and let M be a model that supports RCA0. The
following are equivalent.

(1) M supports IΣ0
n

(2) Every Σ0
n definable, bounded subset of M is M-finite.

Proof. (1→ 2) Let ϕ(x) be a Σ0
n formula, and fix k ∈ M . Let m = k! as defined

in Theorem 1.24, so we know that m is recursively defined. Consider the following
formula in which n is a free variable:

(1.35) (∀i < k)[ϕ(i) → m(i+ 1) + 1 divides n

The above holds where n = Πi<km(i + 1) + 1. By BΣ0
n in M (Theorem 1.29),

the above formula is Π0
n. Then, by Theorem 1.32 we have LΠ0

n, so there is a least
n ∈M satisfying (1.35). Suppose there is an i <M k such that m(i+1)+1 divides
n but ¬ϕ(i). We write n = (m(i+1)+1)n∗, from the information that m(i+1)+1
divides n, for some n∗ <M n, the inequality is strict because the minimum value
of (m(i+ 1) + 1) is 2. By Theorem 1.24, M satisfies

(∀j < k)[j ̸= i→ m(j + 1) + 1 and m(i+ 1) + 1 are relatively prime.

This however implies that n∗ satisfies (1.35), since we know that when we consider
all j < k for that formula, we need not consider the i such that ¬ϕ(i), and every
other m(j + 1) + 1 divides n∗, but n was supposed to be the least element that
satisfies the formula. So we have a contradiction. Thus, (1.35) must actually
be a biconditional so we have that M satisfies that ⟨k, ⟨m,n⟩ represents the set
{i < k : ϕ(i)} in the desired sense of Definition 1.22, so the set is M-finite.

(2 → 1) Let ϕ(x) be a Σ0
n formula such that M proves that ϕ(0) ∧ (∀x)[ϕ(x) →

ϕ(x+1)] Fix an arbitrary a ∈M . By the assumed (2), the set Fa of b ∈M such that
b < a+1∧ϕ(b) is M-finite, since it is Σ0

n definable. We can thus use a code for Fa,
and express the formula x ∈ Fa as a Σ0

0 formula, since checking if something is in
a coded set against the code is a Σ0

0 formula as previously discussed. Thus, we can
induct on the membership of the set, like ψ(x) being the Σ0

0 formula x > a∨x ∈ Fa.
Then we have that ψ(0) ∧ (∀x)[ψ(x) → ψ(x+ 1)]. By IΣ0

0 in RCA0, we can induct

12 JUDSON BUCHKO

on ψ and conclude that ψ(a) holds, so a ∈ Fa, so ϕ(a), since a was arbitrary, we
have proved (∀a)ϕ(a) and proved IΣ0

n. □

We now use the above theorem for a quick proof of Bounded Σ0
1 comprehension.

Theorem 1.36. For every Σ0
1 formula ϕ(x), RCA0 proves that

(∀z)(∃X)(∀x)[x ∈ X ↔ x < z ∧ ϕ(x)]

Proof. We follow the same tack as the second part of the proof of Theorem 1.34.
Fixing an a ∈ M , we can code the set F = {x < a : ϕ(x)} with a code c ∈ M . We
can now just check membership in this set F with a Σ0

0 formula, and then form it
with Σ0

0 comprehension. □

Note that if we add higher forms of induction, IΣ0
n for n > 1 to RCA0, we get a

similar bounded Σ0
n comprehension in exchange.

We will now prove that a known computability-theoretic fact about Σ0
1 sets is

provable in RCA0, namely that they are the range of a computable function. We
will need a few preliminary results first.

Theorem 1.37. In RCA0, for an infinite set S, there exists a function pS called the
principal function of S, such that range(f) = S, and for n < m, pS(n) < pS(m).

Proof. We can order our set S in increasing order, and then define the function
computibly for each input x, such that on input x we scan the ordered S starting
from the bottom until we’ve reached the xth element of S ordered sequentially.
This gives a finite algorithm for determining the pairs of the function pS , so pS is
computable from S, and RCA0 proves computibly definable sets exist. (This is a
somewhat informal argument, and relies on the fact that recursive constructions,
like checking against the ordering of S recursively, are justified by ∆0

1 comprehension
and Σ0

1 induction.) □

Theorem 1.38. (1) is equivalent to (2) in RCA0, given a model M of RCA0, for
a function f :M →M :

(1) f is Σ0
1 definable.

(2) f is ∆0
1 definable.

Proof. We will prove the theorem by means of computability theory. If a function
f is c.e., since a function is nothing more than a coded set {⟨x, y⟩ : f(x) = y} We
will prove for a c.e. graph, which is what f being c.e. implies, that this implies that
the function is computable. Given an input n into f , we know that a computable
function g outputs one pair (n, y) in finite time, since the graph is c.e., so just wait
for g to output (n, y) and set f(n) := y. This proves f is computable, and therefore
∆0

1 □

We have the preliminary results to prove the final theorem of this section.

Theorem 1.39. Let ϕ be a Σ0
1 formula. Then RCA0 proves there is a function

f : N → N such that for every y, ϕ(y) holds iff y ∈ range(f). Moreover, if ϕ(y)
holds for infinitely many y then f may be chosen to be injective.

Proof. We will begin with the finite case. Suppose there is a finite set F such that
for all y, y ∈ F iff ϕ(y) holds. In this case, we define f by f(y) = y for all y ∈ F
and f(y) = inf(F) for all y ̸∈ F

SEPARATING FORMAL SYSTEMS: RCA0, WKL0, AND ACA0 13

In the case that no such F exists, write ϕ(y) as (∃x)ψ(x, y), where ψ is Σ0
0. Let

S be the set of pairs ⟨x, y⟩ such that

ψ(x, y) ∧ (∀x∗ < x)¬ψ(x∗, y).

By LΠ0
0 in RCA0, we have that ϕ(y) ↔ (∃x)[⟨x, y⟩ ∈ S]. If S were bounded by

some b, we would have that this x < b, or that ϕ(y) ↔ (∃x < b)[⟨x, y⟩ ∈ S]. Thus
the set of y such that ϕ(y) would exist by Σ0

0 comprehension, and would be finite,
which contradicts our assumption that no such F exists. Thus S is unbounded.
Let pS be the principal function of S as defined in Theorem 1.37, we know pS is
injective with range S. Define f by

⟨z, y⟩ ∈ f ↔ (∃x)[⟨z, x, y⟩ ∈ pS].

f is a function because pS is, and is injective because if ⟨x, y⟩, ⟨x∗, y⟩ ∈ S, and
x ̸= x∗, we have that x∗ < x (other case is symmetric), so ¬ψ(x∗, y) by the
definition of S, which contradicts ⟨x∗, y⟩ ∈ S, so x∗ = x. Thus f is injective. Since
f is Σ0

1 definable, by Theorem 1.38, it is ∆0
1 definable, so f exists in the RCA0

sense, and f is the function we desired. □

Corollary 1.40. The above f is monotonic increasing.

Proof. The Cantor pairing function is monotonic increasing w.r.t. each argument,
so ps’s monotonicity implies that f is monotonic increasing, as it is the composition
of these two. □

2. Trees, Weak Kőnig’s Lemma, and WKL0

To motivate our next system,WKL0, we need to introduce trees and relate them
to our existing discussion of computable mathematics.

Definition 2.1. A tree is a subset T of N<N (finite length strings over N) such
that if σ ∈ T , then every initial segment of σ is also in T . A tree T is finitely
branching if for every σ ∈ T , there are only finitely many extensions of σ that are
still in T . (We denote an extension like σn, so there are only finitely many n such
that σn ∈ T.) A tree is binary if it is a subset of 2<N. A path on a tree T is an
X ∈ N<N such that for all n, X ↑ n ∈ T (the initial segment of X up to the nth
position in the string.)

A familiar term is used to denote the set of all all paths on a tree T , denoted as
[T].

Definition 2.2. A Π0
1 class is a set of the form [T] for some computable binary

tree T

The familiar usage of the term Π0
1 hints at a connection to the Π0

1 form of a set,
as this is actually the case.

Theorem 2.3. P is of the form [T] for a computable binary tree iff P is Π0
1

definable.

Proof. We will begin with the forwards implication. For P = [T], the set T is a
computable binary tree, so if X ∈ P , X is some path on T , which implies, since T
is computable, that there exists a set S := T such that X ∈ P iff (∀n)X ↑ n ∈ S,
which is a definition in Π0

1 form. For if X ∈ P then by definition ∀nX ↑ n ∈ S,

14 JUDSON BUCHKO

since X is a path on T , and the converse also holds since P is of the form [T], and
the statement ∀nX ↑ n ∈ S implies X is a path on T .

The converse states that for a class of sets P , if P is defined in a Π0
1 form, then

P is of the form [T] for a computable binary tree T . To see this, we can expose an
implication of our definition of a Π0

1 form for a function in the following way. Origi-
nally, Π0

1 form was ∀xϕ(X,x), where ϕ is Σ0
0, and X is a free set variable. However,

a Σ0
0 formula is also Π0

1 and Σ0
1 with the addition of dummy quantifiers, so all Σ0

0

formulas are computable. Thus, if ψ is Π0
1, then it is of the form ∀xϕ(X,x), where

ϕ is computable, and X can be thought of as an oracle on the computable function
with input x. Computable functions are equivalent to a binary computation tree T ,
that consist of strings σ such that if ϕ(σ, n) converges in |σ| steps, then it outputs 1.
Here, the oracle set X has been coded into a finite string oracle σ, and if ϕ attempts
to query outside the length of σ, the computation is undefined. So, interpreting
each x as a depth on the decision tree, ∀x implies that σ is a path through said
binary computation tree. The collection of all σ such that ∀xϕ(σ, x) is therefore of
the form [T].

□

Thus we have that [T] for a computable binary tree, or anything that matches
that kind of form, can be defined in the Π0

1 formula specified in the proof. Thus,
since it has that form of definition, it is a set in Π0

1 form.
We now come onto the principle that gives WKL0 its name, Weak Kőnig’s

Lemma. We will give a general proof of the theorem, not restricting our axioms.

Theorem 2.4. (Weak Kőnig’s Lemma) Every infinite binary tree has a path.

Proof. For a general infinite binary tree T , start at the empty string ∅, and make
your choice on which node to follow in your path by asking the question ”is there
an infinite number of nodes following my choice?”, because the tree is infinite, one
of the two options will result in an infinite subtree that begins at the node of your
choosing. We follow this construction inductively, the inductive step being fairly
clear just by replacing the empty string with whatever string we’ve ended up on
after k steps, and then choosing the k + 1th node based on our algorithm. □

There should immediately be some alarms going off that this kind of construction
is not effective, as the membership of the set R, the infinite path, is decided for
each node by a non finitary question, that is, is there an infinite number of nodes
above the one of our choosing? This would be a correct suspicion, as we can show
that WKL0 is strictly more powerful than RCA0 with the following construction.

Definition 2.5. For A, B, disjoint sets, a separating setX is a set such that A ⊆ X
and X ∩B = ∅.

Theorem 2.6. If A and B are disjoint c.e. sets, then the class of separating sets
X is a Π0

1 class.

Proof. We would like to find a computable relation R such that (∀n)(R(C, n))
holds iff R separates A and B. This will show that the class of seprating sets is
a Π0

1 class based on the definition laid out in Theorem 2.3. Consider the com-
putable relation R := (∀i < n)((if i enters A at stage < n, then C(i) = 1.) and
(if i enters B at stage < n, then C(i) = 0)). This is coding A and B into trees and
n and is into strings and looking at when, exactly, i goes from being not in A or

SEPARATING FORMAL SYSTEMS: RCA0, WKL0, AND ACA0 15

B to in A or B. C will then look like a separator of A and B up to stage n on
inputs < n. Running through R ∀n thus results in a seperator R and we have the
condition we were looking for. □

Theorem 2.7. There are c.e. disjoint sets A, B with no computable separation.

Proof. Consider the sets A = {x|ϕx(0) = 0} and B = {x|ϕx(0) = 1}. Assume
the existence of a computable separator C for the sake of contradiction. Kleene’s
Recursion Theorem, a famous and fundamental theorem from computability theory,
states that for a partial computable function f, we can find some n such that
ϕn(j) = f(⟨n, j⟩). Since C is computable, its characteristic function is a computable
function, call it g. Thus, we can find an n such that ϕn(0) checks for n’s membership
in C. If yes, then output 1, if no, then output 0. Thus, we have that C(n) = ϕn(0) =
0 implies n ∈ A, C(n) = ϕn(0) = 1 implies n ∈ B, but C was a separator of A and
B, so this is a contradiction, since this implies it shares n with B, or n ∈ A but
the characteristic function for C outputs 0, so n ∈ A but n ̸∈ C, which is also a
contradiction to C being a seperator. □

Corollary 2.8. There are computable binary trees with no computable paths.

Proof. Theorem 2.6 together with Theorem 2.7 states that a computable tree T
exists such that no member of [T] is computable. □

This finishes the separation between RCA0 andWKL0, as Weak Konig’s Lemma
guarantees the ability to always find a path no matter the infinite binary tree T ,
but RCA0 gets stuck on the above tree implied by Corollary 2.8. The separation is
given by the model M that has as its second order part an ideal of all computable
sets. This model includes all computable binary trees, but by Corollary 2.8 does not
include all of their paths. Thus, since the existence of paths through all computable
binary trees is specified by WKL0, we say that this model models RCA0, yet not
WKL0. We can be more specific about just how much further above WKL0 is
from RCA0 in terms of computability-theoretic strength by looking at the concept
of the Turing Jump Operator, and the practice of stratifying this notion of strength
through the Turing Degrees.

Definition 2.9. The Turing Jump Operator is defined by its action on a set X.
For a set X, its Turing Jump is defined as X ′ = {x|ϕXx (x) halts.} In words, it is the
set defined by the points x such that the action of the Turing machine with oracle
X, label x, halts on input x.

Definition 2.10. Turing reducibility is a relationship defined between two sets A
and B such that A is Turing reducible to B if for a point a ∈ ω, a’s membership
in A can be decided by an oracle Turing machine ϕ with oracle B. In this case, we
write A ≤T B

Definition 2.11. A Turing degree is an equivalence class defined by the following
relation, if A and B are Turing reducible to each-other, then A and B are said to
have the same Turing degree, we write A =T B, and denote the degree by A, or
any other bolded representative element (in the case of the ∅’s Turing degree, we
often write 0).

Thus the aforementioned ideal of all computable sets is an ideal I = {X|X ≤T 0}

16 JUDSON BUCHKO

There exists a special kind of set we can specify using these concepts which
stratify computational strength and difficulty, called a low set.

Definition 2.12. A set X is low if X ′ =T 0′, where 0′ is the degree of the Turing
Jump of the empty set.

Theorem 2.13 (Low Basis Theorem). Every nonempty Π0
1 class has a low member.

Proof. Let T be a computable binary tree, we wish to construct a low path R ∈ [T].
Since Π0

1 classes are of the form [T], showing that there always exists a low path in
[T] for an arbitrary computable tree T will suffice to prove the theorem.

This construction will be 0′ effective, and we will obtain all digits of the jump
of our path through using only 0′, ensuring that the path is low.

At stage n I will have a string σn such that

∅ = σ0 < σ1 < ... < σn−1 < σn < ... =
⋃
n∈N

σn =: π

Such that each σi extends σi−1. Ultimately, the string π will be the low string
we are looking for through the construction of each σn. I will also define a subtree
Tn ⊂ T such that every path through Tn extends σn, this is a ’tree of possibilities’
from σn: a subtree of all of its possible extensions in T .

At even stages, e ∈ N0, 2e, I will lengthen σn to find a τ that extends σn by one
digit such that there are infinitely many nodes above τ in Tn. I can do this with the
computational power of 0′ in the following way. The question: ”are there infinitely
many nodes above τ?” can be rephrased in the following way: for every n-length
extension of the path τ , such that τ1 is any path in T that extends τ by one digit,
and τn is an n-length extension of τ in T , does there always exist a τn for all n? We
can rephrase this question further into an algorithm, ϕ. ϕ on input k considers the
finite k-length extensions τk and asks if any of them are in T . For each finite value
n this is a computable algorithm, since we only have a finite computable (since T
is) subtree to check. It halts whenever it finds this τk on input k, we don’t care
about its output, just set it to 1. Since ϕ is computable, as it runs a finite algorithm
for each n, the question on whether is halts or not is 0′-effective. We know ahead
of time that for some option τ , the answer is no, because of WKL. We choose τ
where ϕ doesn’t halt. So our choice of τ , and assigning τ := σn+1 at even stages
results in an infinite path.

At odd stages 2e+ 1 consider the set Ue = {τn ∈ Tn|Φτ
e (e) does not halt in |τn|

steps} and ask: is this set infinite? Where τn are n ∈ N length strings in Tn+1

as defined in the previous even step. Again, 0′ can answer this. Consider the two
variable Turing function ϕe(τn, s) := Φτn

e,s(e), which is running the Turing functional
with oracle τn and running through s from 1 to |τn| as steps in the Turing function,
once it does this, if it still hasn’t halted anywhere, we have our answer that τn
should be in the set, and if it has, then τn should not be in the set. Since this is a
question about the halting of a finitary Turing program, 0′ can answer it. Setting
a finite number of steps makes sure we are never actually asking questions about
the jump of any set but 0, since we will stop computing when we get to |τn| many
steps no matter what. However because of WKL and our choice of Tn, we know
that no matter what n is, we can always find a τn as we know an infinite string
exists in Tn.

Now, we can talk about what these answers imply. If yes, that Ue is infinite,
we assign Tn+2 = Ue, and we have determined that for this e, since we can follow

SEPARATING FORMAL SYSTEMS: RCA0, WKL0, AND ACA0 17

an infinite path through Ue as it is itself infinite, that Φπ
e (e) ↑. This implies that

e /∈ π′. If no, and Ue is finite, we won’t touch Tn+1, and let Tn = Tn+2, and then
we know that eventually, the infinite path we know exists through Tn will leave Ue,
so Φπ

e (e) ↓. This implies that e ∈ π′

We have fully determined the members of π′ using only the power of 0′, so we
know π is low. □

We remark that this fact, combined with the fact that there exist trees with
no computable path, imply that there exists a path of said tree which is low yet
non-computable. This fact adds sets that ”fill the gap” between RCA0 andWKL0.

Before we move on to our next system, ACA0, we’ll introduce some of the
work that is done with all of this machinery with an example proof of a well-
known mathematical fact that only needs the power of WKL0 to prove, as well as
impliesWKL0. This ’implication of axioms’ half is exactly where the name ’reverse
mathematics’ comes from, instead of solely working from the axioms, we see which
axioms are necessary and sufficient for a given mathematical principle. This allows
us to determine a ’spectrum of strength’ across mathematics, where this ’strength’
is its location in the arithmetic hierarchy. We will be doing this with Heine-Borel
as a good example case.

Theorem 2.14. The following is provable in WKL0. Given sequences of real
numbers (ci)i∈N, (di)i∈N, if

∀x(0 ≤ x ≤ 1 → ∃i(ci < x < di))

then,

∃n∀x(0 ≤ x ≤ 1 → ∃i ≤ n(ci < x < di))

This corresponds to the traditional notion of Heine-Borel wherein one proves
that every open cover of [0, 1] has a finite subcover. Where the cis and dis are the
endpoints of the intervals forming said open cover.

Proof. We will first prove the claim for sequence of rational numbers, and extend
the claim to reals with a later argument. For each string s ∈ 2<N put

as =
∑

i<length(s)

s(i)

2i+1

and

bs = as +
1

2length(s)
.

Thus, for each n ∈ N we have partitioned the unit interval 0 ≤ x ≤ 1 into 2n

sub-intervals of length 2−n, namely, as ≤ x ≤ bs, where length(s) = n, as for
a given n there are 2n different finite binary sequences of length n. Form a tree
T ⊆ 2<N by putting s ∈ T iff (̸ ∃i ≤ length(s))(ci < as < bs < di) T exists by Σ0

0

comprehension since ci, di, as, bs ∈ Q. T is also clearly a tree since membership of
s ∈ T implies all the initial segments of s are also in T , as well as nonmembership
in T of any s implying that no initial segments of s are in T .

Assuming that ∀x(0 ≤ x ≤ 1 → ∃i(ci < x < di)), we claim that T has no path.
To see this, let f ∈ 2N and f : N → {1, 0}, put x such that

x =

∞∑
j=0

f(j)

2j+1

18 JUDSON BUCHKO

i.e. the unique x such that af [n] ≤ x ≤ bf [n] where f [n] is defined as the sequence
(f(1), f(2), ..., f(n)) for all n ∈ N. We see that x is unique in this role in the infinite
limit as n → ∞ and bf [n] → af [n]. Let i be such that ci < x < di and let n be so
large that n ≥ i and ci < af [n] < bf [n] < di. And then f [n] ̸∈ T , since the function
was arbitrary, this proves the claim.

By weak Konig’s lemma it follows that T is finite. Let n be such that ∀s(s ∈
T → length(s) < n). Then ∀s(length(s) = n → ∃i ≤ n(ci < as < bs < di)). Hence
∀x(0 ≤ x ≤ 1 → ∃i ≤ n(ci < x < di)).

We have proved the theorem under the restraints that ci, di ∈ Q. Expanding this
to R, we consider the Σ0

1 formula ϕ(q, r) which says that q ∈ Q ∧ r ∈ Q ∧ ∃i(ci <
q < r < di). By Theorem 1.39 there exists a function f : N → Q × Q such that
∀q∀r(ϕ(q, r) ↔ ∃j(f(j) = (q, r))), we can fit f to the conditions of Theorem 1.39
as we can find a bijection between Q × Q and N since the space is countable. We
thus replace the sequence ((ci, di) : i ∈ N) by the sequence ⟨qj , rj⟩ : j ∈ N⟩ where
(qj , rj) = f(j). This reduces to the special case which has already been proved. □

We end our discussion of WKL0 with a taste of reverse mathematics. That be-
ing reversing the implication in the above proof. Is Heine-Borel sufficient to prove
the axioms of WKL0? This provides a definitional link between Heine-Borel and
WKL0, and stratifies Heine-Borel along the computability-theoretic strength hier-
archy at WKL0. We are gauging the strength of our mathematics and quantifying
the idea of, say, the phrase mathematicians like to use when ’complex’ mathemat-
ics are used to prove a theorem when ’simpler’ mathematics could also be used–
’heavy’ vs. ’light’ machinery.

Theorem 2.15. WKL0 is equivalent to Heine-Borel over [0, 1].

Proof. We will reason in RCA0 as our base system. Assume Heine-Borel, i.e. the
result of the previous theorem. Consider the Cantor middle-thirds set C ⊆ [0, 1]
which consists of all real numbers of the form:

∞∑
i=0

2f(i)

3i+1
, f ∈ 2N.

Where f ∈ 2N means that f = {(⟨i, s⟩)i∈N
s∈S |S ∈ 2N0 } where f(i) = (i+ 1)th element

in the binary string S, since our enumeration starts at 0.
The proof structure will be that the paths through 2<N can be identified with

elements of C, so the Heine-Borel compactness of 2N follows from the Heine/Borel
compactness of the unit interval 0 ≤ x ≤ 1. By utilizing a compactness argument,
we can move from infinite binary strings to finite binary strings. For each S ∈ 2<N

put

aS =
∑

i<length(S)

2S(i)

3i+1

and

bS = aS +
1

3length(S)

Thus, we can see that for the empty string ⟨⟩, we see that a⟨⟩ = 0, and b⟨⟩ = 1,
and for the general closed interval aS ≤ x ≤ bS , aS⌢⟨0⟩ ≤ x ≤ bS⌢⟨0⟩ is the left
third of that interval, and aS⌢⟨1⟩ ≤ x ≤ bS⌢⟨1⟩ is the right third. Thus, for any
x ∈ C, there exists a unique f : N → {0, 1}, such that for some n, the binary string
f [n] = (f(1), f(2), ..., f(n)), we have af [n] < x < bf [n]. Since we can specify any

SEPARATING FORMAL SYSTEMS: RCA0, WKL0, AND ACA0 19

interval we would like in the Cantor middle-thirds set construction given infinite
precision up to n ∈ N. If x ̸∈ C then at some finite point in the Cantor middle-
thirds set construction we ’throw away’ this point, so we know there is a unique
S ∈ 2<N such that bS⌢⟨0⟩ < x < aS⌢⟨1⟩. We also put

a′S =
∑

i<length(S)

2S(i)

3i+1
− 1

3length(S)+1
= aS − 1

3length(S)+1

b′S = bS +
1

3length(S)+1

Note that the open intervals a′S < x < b′S and a′R < x < b′R are disjoint unless
S ⊆ T or T ⊆ S, where the subset notation denotes a sub-string. Let T ⊆ 2<N be
a tree with no path. We will use Heine Borel to prove that T is finite, therefore
implying Weak Konig’s Lemma. Let T̄ be the set of U ∈ 2<N such that U /∈
T ∧∀R(R ⊂ U → R ∈ T). T̄ is thus a pairwise disjoint collection of strings, and the
set {U ∈ T̄ |(a′U , b′U)} covers C, since we include all the endpoints by making each
’kept’ interval wider. By Heine Borel, since {U ∈ T̄ |(a′U , b′U)} ∪ {S ∈ 2<N|bS⌢⟨0⟩ <
x < aS⌢⟨1⟩} cover [0, 1], we know there exists a finite subcover of this set. The
removed middle thirds (the latter set) are disjoint from C, and no proper subset of
the set {U ∈ T̄ |(a′U , b′U)} covers C, this therefore implies that the set T̄ itself must
be finite, and therefore T as well. □

This concludes our discussion ofWKL0, and now we move on to ACA0, an even
more powerful system.

3. Arithmetic Comprehension and ACA0

We first remind the reader of the definition of an arithmetic formula, that is,
a formula which does not quantify over set variables. Thus, something like Weak
Konig’s Lemma, which quantifies over all binary trees, in other words, quantifying
over sets, would not be an arithmetic formula.

ACA0 is a more natural extension of RCA0, in the sense that it just modifies
the definition of RCA0 in the following way.

Definition 3.1. ACA0 is P0 together with a general comprehension axiom such
that for any arithmetic formula ϕ such that ϕ has no bound set variable X,
∀x[ϕ(x)] → ∃X∀x[x ∈ X ↔ ϕ(x)].

This comprehension axiom is known as the Arithmetic Comprehension Axiom,
the namesake of ACA0.

While it may seem that we have made a large jump from RCA0, which only
allowed for very basic restricted comprehension, the two systems are closer than
they appear.

Theorem 3.2. The axioms of RCA0 with Σ0
1 comprehension are equivalent to

ACA0.

Proof. Since each arithmetical formula is reducible to some Σ0
k formula for some

k ∈ ω by definition, it suffices to prove that Σ0
1 comprehension implies Σ0

k compre-
hension. We prove by induction on k. For k ≤ 1 the implication is trivial. For

20 JUDSON BUCHKO

k ≥ 1. let ϕ(n) be Σ0
k+1. Write ϕ(n) as ∃jψ(n, j) where ψ(n, j) is Π0

k. By Σ0
k

comprehension let Y be the set of all (n, j) such that ¬ψ(n, j) holds. Then by Σ0
1

comprehension let X be the set of all n such that ∃j((n, j) ̸∈ Y). Thus, n ∈ X iff
∃jψ(n, j), so ϕ(n), this completes the proof. □

Corollary 3.3. The existence of a range set for injective functions f : N → N is
equivalent to ACA0

Proof. Since ACA0 implies Σ0
1 comprehension, and we can phrase the existence of

the range set as a Σ0
1 comprehension sentence: there exists a set X ⊂ N such that

∀n(n ∈ X ↔ ∃m(f(m) = n)), we have the first direction. The opposite direction
is obtained by considering Theorem 1.39, since we can re-express satisfaction of
a Σ0

1 formula by the membership in a range set of an injective function equiva-
lently, the existence of a range set for every injective N → N function implies Σ0

1

comprehension. □

Corollary 3.4. For an omega model M that supports ACA0, for all n > 0, the
set 0(n) ∈ S

Proof. For each n, the set 0(n) can be defined arithmetically by iterating on the
definition of the Turing jump. □

To separate WKL0 from ACA0, we construct a model that supports WKL0

consisting entirely of low sets and therefore does not include 0′.
To do this, we need to slightly improve on our low basis theorem.

Theorem 3.5 (Improved Low Basis Theorem). If T is a low infinite binary tree,
T has a path π such that T ⊕ π is low.

Proof. The proof here is mechanically identical to the proof of the normal low basis
theorem, and is left out for the sake of brevity and non-redundancy. □

Now, we have the tools we need to construct a Scott ideal of low sets, that is, a
class of sets S which has the closure properties of the Turing ideal, along with an
additional closure property that for an infinite tree T ∈ S, there is a path through
T in S. These are the ideals which model WKL0 by having Weak Konig’s Lemma
as its defining property. Scott Ideals play a similar role in the construction of ω-
models that modelWKL0 to Turing ideals and ω-models of RCA0. By constructing
a Scott ideal with the property that all sets in the ideal are low, we prove that we
can model WKL0 using the low Scott ideal as the collection of sets S that exist in
the model. Thus, providing a model which supports WKL0 yet does not support
ACA0, since it only contains low sets.

Theorem 3.6. There is a Scott ideal consisting entirely of low sets.

Proof. We shall construct a sequence of low sets: X0 ≤T X1 ≤T X2 ≤T ... and let
S = {Y |∃n Y ≤T Xn}. Let Φ0,Φ1,Φ2, ...,Φe, ... be an enumeration of oracle Turing
machines such that every oracle Turing machine occurs infinitely often. We begin
the construction assigning X0 = ∅, and considering the oracle Turing machine ΦX0

0 ,
we ask the question: Is this a low infinite binary tree? If no, let X1 = X0, if yes,
it has a low path. Let X1 be such a path ⊕ ΦX0

0 . Induct on this strategy to Xn,
and ask ”is ΦXn

n a tree?”, and proceed as before, joining the path and ΦXn
n to form

Xn+1 when the answer is yes, so as the improved low basis theorem, states, each
Xn will be low and increasing in the Turing degrees. We have thus constructed

SEPARATING FORMAL SYSTEMS: RCA0, WKL0, AND ACA0 21

a Scott ideal consisting of low sets, S and proved the distinction of WKL0 and
ACA0, since we include a path of all the infinite binary trees that are included in
the Scott ideal, and can properly support WKL0, while not supporting ACA0. □

We end this section, and this paper, with a similar preview of reverse mathe-
matics as in the WKL0 section:

Theorem 3.7. ACA0 is equivalent to the principle that ’every countable vector
space over a countable field has a basis.’

Proof. We begin by proving that ACA0 implies this principle. We reason in ACA0.
Let V be a countable vector space over a countable fieldK. By Arithmetic Compre-
hension, there exists an S consisting of all finite sequences ⟨v0,vn−1, vn⟩, n ∈ N,
such that vn =

∑
i<n ai · vi for some a0,, an−1 ∈ K Using S as a parameter,

we apply primitive recursion (a simple kind of finitely halting algorithm supported
by RCA0 in the context of computability theory) to define a sequence of vectors
e0, e1, ..., en, ... where en = the least v ∈ V such that ⟨e0, ..., en−1, v⟩ ̸∈ S. Where we
order V by considering |V | ⊂ N, to obtain our meaning of ”least” in this context.
Thus, the set E = {e0, e1, ..., } is a basis for V .
To prove the opposite direction, we reason in RCA0. We will prove ACA0 with
the proposition that ’every countable vector space over Q has a basis’. The general
principle implies this principle, and proving the Q case implies ACA0 will com-
plete the chain of implications and imply the opposite direction. Let f : N → N
be a one-to-one function. By Corollary 3.3, it suffices to show the range of this
function exists to imply Arithmetic Comprehension. Let V0 be the set of sums∑

i∈I qi · xi where I ⊂ N , I is finite, and 0 ̸= qi ∈ Q. Thus V0 is a vec-
tor space over Q and X = {xn : n ∈ N} is a basis of V0. For each m ∈ N
put x′m = x2f(m) + m · x2f(m)+1, and let U be the subspace of V0 generated by

X ′ = {x′m : m ∈ N. U exists by ∆0
1 comprehension since

∑
i∈I qi · xi belongs to

U iff ∀n(q2f(n) ̸= 0 → q2f(n)+1/q2f(n) = n) and ∀n(q2n = 0 → q2n+1 = 0). We
note that in fact X ′ is a basis of U . Since U is a subspace of V0, we may form
the quotient space V = V0/U as follows. The elements of V are those v ∈ V0 such
that ∀w((w < b ∧ w ∈ V0) → v − w ̸∈ U), i.e., v is the minimal representative
of an equivalence class under the equivalence relation v − w ∈ U . We define the
vector space operations on V accordingly. Thus V is a vector space over Q. By
our assumption, V has a basis, call it X ′′. It follows that X ′ ∪X ′′ is a basis of V0.
Now we have that for any n ∈ N, we have ∃m(f(m) = n) if and only ifat least one
of the unique expressions for x2n and x2n+1 in terms of the basis X ′ ∪X ′′ involves
an element x′m from X ′ such that f(m) = n. So, by ∆0

1 comprehension the range
of f exists.

□

Acknowledgments

I would like to thank my advisor, Miles Kretschmer, for his unceasing help and
patience with the writing of this paper. I would also like to think Peter May for
organizing the REU in the first place.

References

[1] Denis R Hirschfeldt. Slicing The Truth. World Scientific Publishing Co. Pte. Ltd. 2015
[2] Robert I. Soare. Turing Computability. Springer-Verlag Berlin Heidelberg. 2016

22 JUDSON BUCHKO

[3] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Cambridge University Press.

2009

[4] Damir D. Dzhafarov and Carl Mummert. Reverse Mathematics. Springer Nature Switzerland
AG. 2022

	1. RCA0 and its Motivation
	1.1. Computability Theoretic Motivation
	1.2. Models of RCA0
	1.3. Proofs in RCA0

	2. Trees, Weak Kőnig's Lemma, and WKL0
	3. Arithmetic Comprehension and ACA0
	Acknowledgments
	References

