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Abstract

This purpose of this paper is to investigate some concepts of commu-
tative rings. Its goal is to give the reader a thorough introduction to the
study of rings and their ideals. We begin from the most basic definition
of the ring and proceed to investigate the various ideals that pertain to
these structures. There will be a thorough treatment of the properties of
each type of ideal, particularly prime ideals and maximal ideals, which
are central tools in commutative algebra and algebraic geometry. We will
conclude the paper by exploring some applications of rings and ideals in
algebraic geometry.
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1 Introduction

This paper is meant for readers who are encountering commutative rings for
the first time. A fundamental knowledge of group theory is assumed as well
as a familiarity with important theorems such as the Isomorphism Theorems
and Zorn’s Lemma. The contents of this paper are fairly abstract, and though
examples for each structure are provided, we recommend that readers keep
in mind the sets Z and R[x] (both of which are rings) in order to convince
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themselves of the truth of the properties and theorems. This paper primarily
draws its contents from M.F. Atiyah and I.G. MacDonald’s Introduction to
Commutative Algebra [1]. A list of all the resources used in compiling this
paper are included in the citations for those wishing to immerse themselves
deeper in the subject.

2 Rings

We begin by defining a ring in the most general terms.

Definition 1 (Ring). A ring A is a set equipped with two binary operations
called addition and multiplication such that:

• A is an Abelian group with respect to addition (namely, A has a zero
element (0), and for each x ∈ A, there exists −x ∈ A ; A is closed under
addition)

• Multiplication is associative [(xy)z = x(yz)] and distributive over addition
[x(y + z) = xy + xz, (y + z)x = yx+ yz].

A ring is commutative with identity if

• xy = yx (commutativity)

• there exists 1 ∈ A such that x · 1 = 1 · x = x for all x ∈ A (multiplicative
identity)

As this paper focuses on commutative rings, we will only consider commuta-
tive rings with an identity element. Thus, from this point forward, the term ring
will be used to describe a commutative ring, and will be denoted by A. Unless
otherwise stated, addition and multiplication will be defined in the natural way.

Example 1.1. Some basic examples of rings:

• The set of rational integers Z

• The set of real numbers R

• The set of complex numbers C

• The set of rational numbers Q

It is important to note that A = (0) is also a ring where 0 is both the
additive identity and the multiplicative identity. We call this ring the zero ring.
Furthermore, if A is a commutative ring, the set A[x] = {a0 + a1x+ ...+ anx

n :
n ∈ N, ai ∈ R} is also a commutative ring. We call this ring the ring of
polynomials of a single variable. If A is a commutative ring, A[x1, x2, ..., xn]
is also a commutative ring. We call this ring the ring of polynomials of
multiple variables. Note that in the cases of the polynomial rings, we assume
that x0 = 1. One final example worth mentioning is the set of functions that
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map the elements from a given set to the real numbers. More precisely, let S
be any set, and define F(S) by F(S) = {f : S −→ R}. Defining addition by
(f + g)(x) = f(x) + g(x) and multiplication by (fg)(x) = f(x)g(x), the above
set forms a commutative ring.

As is the case with groups, rings also have substructures called subrings.

Definition 2 (Subring). Let A be a ring. A subset B ⊆ A is a subring of A if
B itself is a ring with respect to the same binary operations on A.

Example 2.1. Some intuitive examples of subrings:

• Z is a subring of Q

• Q is a subring of R

• R is a subring of C

• A is a subring of A[x]

• {0̄, 3̄} is a subring of Z/6Z

Similar to groups, we can compare the structure of two rings using ring
homomorphisms.

Definition 3 (Ring Homomorphism). Let A and B be rings. A map f : A −→
B is a ring homomorphism if

• f(x+ y) = f(x) + f(y) for all x, y ∈ A

• f(xy) = f(x)f(y) for all x, y ∈ A

• f(1A) = 1B

Because ring homomorphisms preserve both addition and multiplication, we
can observe that the image of f is a subring of B. Perhaps a more surprising
fact is that the kernel of f is a subring of A.

Proposition 1. Let f : A −→ B be a ring homomorphism. Then, ker(f) =
{a ∈ A : f(a) = 0} is a subring of A.

Proof. Let f : A −→ B be a ring homomorphism. Observe that (ker(f),+A) is
a subgroup of (A,+A). Let x, y ∈ ker(f). Because f is a ring homomorphism,
f(x·Ay) = f(x)·Bf(y). By the definition of the kernel, f(x)·Bf(y) = 0B ·B0B =
0B . Hence, x·Ay ∈ ker(f). Thus, the conditions for a subring a fulfilled, so that
ker(f) is a subring of A.

Note that in the above proposition, the statement is true even though ker(f)
does not necessarily have an identity element.

We now define a substructure of a ring called an ideal. Ideals are to rings
what normal subgroups are to groups. They allow for the formation of quotient
rings, which bear a striking resemblances to quotient groups.
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2.1 Ideals

Definition 4 (Ideal). A subset I ⊆ A is an ideal of A if (I,+) is an Abelian
group and, for each a ∈ A and each x ∈ I, ax ∈ I.

Example 4.1. Some examples of ideals:

• nZ is an ideal of Z

• A is an ideal of A itself

• The set of polynomials with a constant term of zero is an ideal of A[x]

Note that if I ̸= A, then I is called a proper ideal.

Proposition 2. If f : A −→ B is a ring homomorphism, then ker(f) is an
ideal of A.

Proof. Let f : A −→ B be a ring homomorphism. Let k ∈ ker(f) and let x ∈ A.
Then, f(xk) = f(x)f(k) = f(x) · 0 = 0. Thus, xk ∈ ker(f). Therefore ker(f)
is an ideal of A.

We can now use the concept of an ideal to define an equivalence relation
a ∼ b ⇐⇒ a − b ∈ I. We denote the set of all equivalence classes by A/I.
By defining addition by (a + I) + (b + I) = (a + b) + I and multiplication by
(a+I) ·(b+I) = ab+I, we give A/I a ring structure. We call this the quotient
ring. Note that addition defined this way is well-defined because A is an Abelian
group and I is a normal subgroup under addition. It it is straightforward to
prove that the multiplication operation is also well-defined, and we omit the
proof for the sake of brevity The operations above are identical to ones defined
for modular arithmetic using the rational integers.

There exists a natural map φ : A −→ A/I defined by φ(a) = a + I for
all a ∈ A. In fact, this map is a ring homomorphism, and is by its definition
surjective.

Theorem 1 (Isomorphism Theorem). If f : A −→ B is a ring homomorphism,
then im(f) ∼= A/ker(f).

Given how we have defined the notion of an ideal, it seems natural to ask
what the ideals of A/I itself are. As we shall see, the ideals of A/I are precisely
in one-to-one correspondence with the ideals of A containing I.

Throughout the rest of the paper, we will make use of the following elemen-
tary fact:

Proposition 3. There is a one-to-one, order-preserving correspondence between
the ideals J of A which contain I, and the ideals J ′ of A/I, given by J =
φ−1(J ′).

We now proceed to define the features of certain elements found in commu-
tative rings.
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Definition 5 (Zero-divisor). An element x ∈ A is a zero-divisor if there exists
a nonzero y ∈ A such that xy = 0.

Definition 6 (Nilpotent). An element x ∈ A is nilpotent if there exists n ≥ 1
such that xn = 0.

Definition 7 (Unit). An element x ∈ A is a unit if there exists y ∈ A such
that xy = 1. Since x is uniquely determined by y, we denote y by x−1.

Note that if an element is nilpotent, it is always a zero-divisor. Furthermore,
by definition, an element cannot be both a unit and a zero-divisor.

Definition 8 (Integral Domain). Let A be a commutative ring with identity. If
the only zero-divisor of A is 0, then A is called an integral domain.

Example 8.1. Some examples of integral domains: Q, R, C, Z.

We denote the multiples of an element x ∈ A by (x). These multiples form
an ideal, which we call the ideal generated by x. For elements x1, ..., xn ∈ A,
we denote by (x1, ..., xn) the smallest ideal containing x1, ..., xn. We say this is
the ideal generated by x1, ..., xn. Note that if x is a unit in A, then the ideal
generated by x, is equal to the whole ring.

Proposition 4. An ideal I of ring A is equal to A if and only if I contains a
unit.

Proof. The forward direction is trivial, because if I = A, then I contains all of
the units in A. We seek to prove the backwards direction. Let I be an ideal of
A, and let u ∈ I, where u is a unit. By definition, u−1 is also a unit. Let x ∈ A.
Because A is closed, x · u−1 ∈ A. By the definition of an ideal, (x · u−1) · u ∈ A.
Thus, x ∈ I. Therefore A ⊆ I. Since I ⊆ A by definition, we get that I = A.

The notion of ideals allows us to write a characterization of fields.

Definition 9 (Field). A field is a ring A in which 1 ̸= 0 and every nonzero
element is a unit.

Proposition 5. Let A be a ring. Then, the following are equivalent:

• A is a field

• The only ideals of A are (0) and A

• Any ring homomorphism from A to a nonzero ring B is injective

Proof. (i) → (ii) Assume A is a field. Let I be a nonzero ideal. Then, I contains
a unit (because all elements of a field have inverses), and therefore I = A.

(ii) → (iii) Assume the only ideals of A are (0) and A. Let φ : A −→ B
be a ring homomorphism. Then ker(φ) is an ideal of A that does not equal A.
Therefore ker(φ) = 0, and thus φ is injective.

(iii) → (i) Assume that any ring homomorphism from A to a nonzero ring
B is injective. Let x be a nonzero element in A. If x is not a unit, then (x) is
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a proper ideal of A. Now, let φ : A −→ A/(x) be the natural map. Since φ
is injective, ker(φ) = (x) = (0), which is a contradiction. Thus, x is a unit.
Therefore, A is a field.

We now introduce the fundamental concepts of prime ideals and maximal
ideals.

2.2 Prime and Maximal Ideals

Definition 10 (Prime Ideals). Let A be a ring. A proper ideal I of A is a
prime ideal if for all a, b ∈ A where ab ∈ I, either a ∈ I or b ∈ I.

Example 10.1. Some examples of prime ideals.

• pZ ⊆ Z

• (0) ⊆ any integral domain

• (x) ⊆ R[x]

Definition 11 (Maximal Ideals). An ideal I is a maximal ideal if there does
not exist an ideal J ⊂ A such that I ⊆ J .

Equivalently, an ideal p is prime if and only if A/p is an integral domain, and
an ideal m is maximal if and only if A/m is a field. [3] Thus, a maximal ideal is
always a prime ideal, though the converse is not necessarily true. Another fairly
straightforward property is that if φ : A −→ B is a surjective homomorphism
and p ⊆ A is a prime ideal, then φ(p) is a prime ideal.

Theorem 2. Every nonzero ring A has at least one maximal ideal.

Proof. Let Σ be the set of all proper ideals of nonzero ring A. Since (0) ∈ Σ,
Σ is nonempty. Let I1 ⊆ I2 ⊆ ... be a chain in Σ. Because I1 ⊆ I2 ⊆ ... is an
increasing chain,

⋃∞
i=1 In is an ideal. If

⋃∞
i=1 In = A, then 1 ∈

⋃∞
i=1 In so that

1 ∈ Ij for some j. Then Ij = A, which contradicts the assumption that Ij is
proper. Thus,

⋃∞
i=1 In ∈ Σ and is an upper bound for the chain I1 ⊆ I2 ⊆ ....

Therefore, by Zorn’s Lemma, Σ has a maximal elementm. Ifm is not a maximal
ideal, then there exists a proper ideal J such that m ⊂ J . Then, J ∈ Σ and
m ⊂ J , which contradicts the maximality of m. Thus, m is a maximal ideal.

Corollary 2.1. If A is a ring and I is a proper ideal of A, then there exists a
maximal ideal of A containing I.

Corollary 2.2. Let x ∈ A be a nonunit. Then, there exists a maximal ideal
containing x.

Proposition 6. Let A be a ring and let I ̸= A be an ideal of A such that every
x ∈ A− I is a unit in A. Then I is the unique maximal ideal of A.
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Proof. Let A be a ring and let I ̸= A be an ideal of A such that every x ∈ A− I
is a unit in A. By definition, I is the set of all nonunits in A. Every ideal which
is not equal to the ring itself consists of nonunits, and is thus contained in I.
Therefore, I is the only maximal ideal of A.

The proof of the proposition above implies that there are some rings with
multiple maximal ideals, and some rings with only one. We say that rings that
only have one maximal ideal are local rings.

Definition 12 (Local Ring). A ring is said to be a local ring if it has only one
maximal ideal.

Example 12.1. Examples of local rings:

• every field is a local ring with maximal ideal (0)

• Z/pnZ where p is prime is a local ring whose maximal ideal contains all
multiples of p

We can further characterize unique maximal ideals with the following propo-
sition:

Proposition 7. Let A be a ring and let m be a maximal ideal of A. If 1+x ∈ m
is a unit for all x ∈ m, then m is the unique maximal ideal of A.

Proof. Let x be a nonunit. If x /∈ m, then m + (x) = A. Then, there exists
u ∈ m and r ∈ A such that u + rx = 1. Thus, 1 − u = rx. Thus, 1 − u
is a unit which means rx is a unit. This in turn means x is a unit, which is
a contradiction. Therefore x ∈ m. Thus, m contains all nonunits of A. By
Proposition 6, m is the unique maximal ideal of A.

2.3 Nilradical

Definition 13 (Nilradical). The nilradical N of a ring A is the set of all nilpo-
tent elements in A.

Proposition 8. The nilradical N of a ring A is an ideal of A.

Proof. Let N be the nilradical of A. If x, y ∈ N , then there exist n,m ∈ N such
that xn = 0 and ym = 0. Then, (x + y)n+m = 0 so that x + y ∈ N . If x ∈ N
and r ∈ A, then because xn = 0, (rx)n = 0 so that rx ∈ N . Therefore, N forms
an ideal.

Proposition 9. The nilradical of a ring A is the intersection of all the prime
ideals of A.

Proof. Let
⋂
p denote the intersection of all the prime ideals of A. Let x ∈ A

be nilpotent, and let p be a prime ideal. Then, xn ∈ p for some n > 0 and hence
x ∈ p (because p is prime). Therefore x ∈

⋂
p. Conversely, suppose x is not

nilpotent. Let Σ be the set of ideals with the property xn /∈ I for each ideal I
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and for all n > 0. Because 0 ∈ Σ, Σ is nonempty. Let I1 ⊆ I2 ⊆ ... be a chain in
Σ. Thus,

⋃∞
i=1 In is a proper ideal and I ∈ Σ. Thus,

⋃∞
i=1 In is an upper bound

for the chain. By Zorn’s Lemma, Σ has a maximal element p. Let xy ∈ p. If
x /∈ p and y /∈ p, then p + (x) /∈ Σ and p + (y) /∈ Σ. Thus, there exist n,m so
that xn ∈ p+ (x) and xm ∈ p+ (y). It follows that xn+m ∈ p+ (xy), hence the
ideal p+(xy) /∈ Σ and therefore xy /∈ p. Thus, there exists a prime ideal p such
that x /∈ p, so that x /∈

⋂
p. Therefore, the nilradical N =

⋂
p.

2.4 Jacobson Radical

Now that we know that the intersection of a ring’s prime ideals is its nilradical,
a natural question is what can we say about the intersection of all its maximal
ideals? We call this intersection the Jacobson radical, and we characterize it as
follows.

Definition 14 (Jacobson Radical). The intersection of all maximal ideals J =⋂
m is an ideal and is called the Jacobson Radical

Proposition 10. x ∈ J if and only if 1− xy is a unit in A for all y ∈ A.

Proof. (=⇒) Let x ∈ J . Then x ∈ m for all maximal ideals m. For any y ∈ A,
1− xy /∈ m for all m. Thus, 1− xy is a unit in A.

(⇐=) Let 1 − xy be a unit in A for all y ∈ A. Suppose x /∈ m for some
maximal ideal m. Then, m + (x) = A. Then, there exist, u ∈ m and y ∈ A
such that u + xy = 1. Therefore u = 1 − xy so that u is a unit, which is a
contradiction. Thus x is in all maximal ideals. Therefore, x ∈ J .

Corollary 2.3. Let m be a maximal ideal and let 1+x be a unit for all x ∈ m.
Then, A is a local ring.

Proof. Let 1+x be a unit for all x ∈ m. Let y be a nonunit in A. Then xy ∈ m
so that 1+xy is a unit. Then, x ∈ J so that m = J . Thus, A is a local ring.

Note: 1 /∈ p for any prime ideal p.

2.5 Properties of Ideals

Now that we have investigated the properties of various ideals, we can per-
form operations on them. For the sake of brevity, we omit the proofs of these
properties. [6]

Proposition 11. Let I and J be ideals of ring A.

• I ∪ J is an ideal if and only if I ⊆ J or J ⊆ I

• I + J = {x+ y : x ∈ I, y ∈ J} is an ideal of A

• I ∩ J = {x ∈ A : x ∈ I, x ∈ J} is an ideal of A

• IJ is defined to be the smallest ideal containing the set {xy : x ∈ I, y ∈ J}
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Examples of operations on two ideals:

• mZ+ nZ = gcd(m,n)Z

• (mZ+ nZ)(mZ ∩ nZ) = mnZ

Definition 15 (Coprime Ideals). Let I and J be ideals of ring A. If I+J = A,
then I and J are called coprime.

Definition 16 (Direct Product). Let A1,...,An be rings. Their direct product∏n
i=1 Ai is the set of all sequences x = (x1, ..., xn) with xi ∈ Ai and compo-

nentwise addition and multiplication. The direct product forms a commutative
ring.

Let A be a ring and let I1,...,In be ideals of A. We will define a homomor-
phism ϕ : A −→

∏n
j=1 A/Ij by the rule ϕ(x) = (x+ I1, ..., x+ In).

Proposition 12. Let A be a ring and let I1,...,In be ideals of A.

• If Ii and Ij are coprime whenever i ̸= j, then
∏

Ii =
⋂

Ii

• ϕ is surjective ⇐⇒ Ii, Ij are coprime whenever i ̸= j

• ϕ is injective ⇐⇒
⋂
Ii = (0)

Proof. Let A be a ring and let I1,...,In be ideals of A.
(i) We proceed by induction n. The statement is clearly true for n = 2.

Suppose n > 2 and the result is true for I1,...,In−1, and let J =
∏n−1

i=1 Ii =⋂n−1
i=1 Ii. Since Ii+ In = A = (1), we have equations xi+ yi = 1 for xi ∈ Ii, yi ∈

In. Therefore,
∏n−1

i=1 xi =
∏n−1

i=1 1 − yi ≡ 1 mod In. Hence, In + J = (1) and
so

∏n
i=1 Ii = J · In = J ∩ In = ∩n

i=1Ii.
(ii) (=⇒) Let us show that I1 and I2 are coprime. Assume ϕ is surjective.

There exists x ∈ A such that ϕ(x) = (1, 0, ..., 0). Thus x ≡ 1 mod I1 and x ≡ 0
mod I2 so that 1 = (1− x) + x ∈ I1 + I2.

(⇐=) Assume Ii and Ij are coprime whenever i ̸= j. It is enough to show
that there exists an element x ∈ A such that ϕ(x) = (1, 0, ..., 0). Since I1+ Ij =
A = (1) for j > 1, we have equations ui + vi = 1, where ui ∈ I1, vi ∈ Ij . Take
x =

∏n
i=2 vi. Then, x =

∏
1 − ui ≡ 1 mod I1 and x ≡ 0 mod Ij . Thus,

ϕ = (1, 0, ..., 0).
(iii) The proof is trivial, since

⋂
Ii is the kernel of ϕ.

2.6 Properties of Prime Ideals

We now investigate two interesting properties of prime ideals.

Proposition 13. Let P1 and P2 be prime ideals of ring A. If I is an ideal such
that I ⊆ P1 ∪ P2, then I ⊆ P1 or I ⊆ P2.
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Proof. Let x ∈ I. Assume I is an ideal such that I ⊆ P1 ∪P2. Suppose I ̸⊆ P1.
Then, there exists, y ∈ I \ P1. Since I ⊆ P1 ∪ P2, then y ∈ P2. Consider the
element x+ y ∈ I. Suppose x+ y ∈ P1. If x ∈ P1, then (x+ y)−x ∈ P1 so that
y ∈ P1, which is a contradiction. Thus x /∈ P1 and therefore x ∈ P2. Therefore
I ⊆ P2. Suppose that x + y /∈ P1. Then x + y ∈ P2 =⇒ (x + y) − y ∈ P2 =⇒
x ∈ P2. Therefore I ⊆ P2. Thus, I ⊆ P1 or I ⊆ P2.

This proof can be extended to n prime ideals using induction on n, which
we leave as an exercise to the reader.

Proposition 14. Let I1,...,In be ideals of a ring A, and let P be a prime ideal
containing ∩n

j=1Ij. Then P ⊇ Ij for some j.

Proof. Suppose P ̸⊇ Ij for all j. Then, there exists xi ∈ Ij so that xi /∈ P .
Therefore

∏
xi ∈

∏
Ij ⊆

⋂
Ij . But, because P is prime, P ̸⊇

⋂
Ij , which is a

contradiction. Therefore, P ⊇ Ij for some j.

Definition 17 (Ideal Quotient). Let I be an ideal and let S be any set in A.
The ideal quotient is defined by I : S = {x ∈ A : xS ⊆ I}.

In less formal terms, the ideal quotient takes an ideal I and ”divides” it by
the set S. Below are some properties of ideal quotients. We once again omit
the proofs for brevity.

Proposition 15. Let I be an ideal and let S be any set in A.

• If S ⊆ I, then I : S = A

• If x, y ∈ I : S, then x+ y ∈ I : S

• If x, y ∈ I : S, then xy ∈ I : S

• If x ∈ I : S and a ∈ A, then xa ∈ I : S

• I ⊆ I : S

• (I : J) : K = I : JK

• I(I : S) ⊆ I

• (I1 ∩ I2) : S = (I1 : S) ∩ (I2 : S)

By the third and fourth properties above, we can conclude that I : S forms
a subring of A and that I : S is an ideal of A.

Definition 18 (Radical of an Ideal). Let I be an ideal of ring A. The radical
of I is defined by r(x) = {x ∈ A : xn ∈ I, n ∈ N}

The radical of an ideal is itself an ideal of A.

Proposition 16. Some properties of the radical of an ideal:

• I ⊆ r(I)
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• If I ⊆ J , then r(I) ⊆ r(J)

• r(r(I)) = r(I)

• r(I) = A if and only if I = A

• r(IJ) = r(I ∩ J) = r(I) ∩ r(J)

• r(I + J) = r(r(I) + r(J))

• if P is prime, r(Pn) = P for all n > 0

Let f : A −→ B be a ring homomorphism. Let I be an ideal A. f(I) is not
always an ideal of B. To solve this dilemma, we use a tool known as extension,
which we define as follows:

2.7 Extension and Contraction of Ideals

Definition 19 (Extension). Let I be an ideal of A. We define the extension of
I by Ie = {Σn

i=1(ai · f(xi)) : ai ∈ B, xi ∈ I, n ∈ N}

In other words, the extension of ideal I is the ideal generated by f(I) in B.
We have already seen that if J ⊆ B is an ideal in B, then f−1(J) is an ideal

in A. We call f−1(J) the contraction of ideal J , and denote it by Jc.

Proposition 17. Let f : A −→ B be a ring homomorphism. Let I be an ideal
in A and J be an ideal in B. Then,

• (Ie)c ⊇ I

• (Jc)e ⊆ J

• Iece = Ie

• Jcec = Jc

• If C is the set of all contracted ideals of A and E is the set of all extended
ideals of B, then C = {I : Iec = I} and E = {J : Jce = J}

Proof. The first two facts are trivial, and the third and fourth follow from them.
For the fifth statement, let I ∈ C. Then I = Jc = Jcec = Iec. Conversely, if
I = Iec, then I is the contraction of Ie. The proof is similar for elements in
E.

3 Applications of Rings in Algebraic Geometry

Having studied the properties of rings and their various ideals, we will now
present an application of this information in algebraic geometry. First we will
cover some useful topological definitions which allow us to reach the desired
applications. A knowledge of basic definitions in topology is assumed. [5]

Let A be a ring and let X be the set of all prime ideals of A. For each subset
E of A, let V (E) denote the set of all prime ideals of A which contain E.
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Proposition 18. If I is the ideal generated by E, then V (E) = V (I) = V (r(I))

Proof. By definition, I = (E), so that any prime ideal containing E also contains
I and vice versa. Thus, V (E) = V (I). Any prime ideal containing r(I) also
contains I, so it suffices to show that V (I) ⊇ V (r(I)). Let p ∈ V (I). If x ∈ r(I),
then xn ∈ I ⊆ p for some n. Because p is prime, x ∈ p, which completes the
proof.

Proposition 19. V (0) = X and V (1) = ∅.

Proof. V (0) = X is clear, as every ideal contains (0) as a subideal. Since no
prime ideal contains 1 as an element, V (1) = ∅ is also clear.

Consider the ideal generated by Ei, where i ∈ I is any family of subsets
of A. From the definitions of E and V , we can conclude that the set of all
prime ideals of A which contain the union of all such Ei is in fact equal to the
intersection of the sets of all prime ideals of A which contain Ei. More formally,
V (

⋃
i∈I Ei) =

⋂
i∈I V (Ei).

Proposition 20. If (Ei)i∈I is any family of subsets of A, then V (
⋃

i∈I Ei) =⋂
i∈I V (Ei).

Proof. Let prime ideal p contain
⋃

i∈I Ei. Then, p contains Ei for all I, and
thus p ∈

⋂
i∈I V (Ei). Conversely, let p ∈

⋂
i∈I V (Ei). Then p contains Ei for

all I, which completes the proof.

Proposition 21. Let I and J be ideals of A. Then, V (I ∩ J) = V (IJ) =
V (I) ∪ V (J).

Proof. The result follows immediately from the property of radicals r(IJ) =
r(I ∩ J) = r(I) ∩ r(J).

From propositions 18-21, we have shown that the sets V (E) satisfy the ax-
ioms for closed sets in a topological space. This topology is known as the Zariski
topology. [7] The topolocial space X is called the prime spectrum of A and
is denoted by Spec(A).

Let A be a ring. We will now consider the subspace of Spec(A) consisting of
the maximal ideals of A, which with the induced topology, is called themaximal
spectrum of A and is denoted by Max(A).

Having covered the topological definitions above, we will round out the paper
by looking by applying the concept of rings to elementary algebraic geometry.
Once again, we assume some basic familiarity with the subject on the part of
the reader. [4]

Let k be an algebraically closed field and let {fα(t1, ..., tn) = 0 : α ∈ I},
where I is an index set, be a set of polynomial equations in n variables with
coefficients in k. The set X of all points x = (x1, ..., xn) ∈ kn which satisfy
these equations is called an affine algebraic variety. Consider the set of all
polynomials g ∈ k[t1, ..., tn] with the property that g(x) = 0 for all x ∈ X.
This set is actually an ideal in the polynomial ring, called the ideal of the
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variety X, and is denoted by I(X). We can also observe that the quotient ring
P (X) = k[t1, ..., tn]/I(X) is the ring of polynomials functions on X. This is
because two polynomials g, h define the same polynomial function on X if and
only if g − h ∈ I(X) (i.e. g − h vanishes at every point of X). Let ϵi be the
image of ti in P (X). The ϵi are called the coordinate functions on X. That
is, if x ∈ X, then ϵi(x) is the ith coordinate of x. P (X) is thus generated as a
k-algebra by the coordinate function, and is referred to as the coordinate ring.
With this information, we will first prove a version of Hilbert’s Nullstellensatz,
which is given below.

Theorem 3 (Hilbert’s Nullstellentsatz). For each x ∈ X, let mx be the ideal
of all f ∈ P (X) such that f(x) = 0, which is a maximal ideal of P (X). There
exists a bijective map µ : X −→ Y , where Y equals Max(P (X)) and x 7→ mx.

Proof. We first show that µ is injective. If x ̸= y, then there must exist xi ̸= yi
for some i. Thus, ϵi − xi is in mx but not in my. Thus, mx ̸= my so that µ is
injective. To prove µ is surjective, we note that if k is an algebraically closed
field, and an ideal I of k[t1, ..., tn] is not the whole ring, then Z(I) ̸= ∅. Thus,
for a given maximal ideal m, there exists x ∈ Z(m), which means mx ⊇ m. By
the maximality of m, we can see that mx ⊆ m is also true, so that mx = m.
Now we let m be the maximal ideal of P (X). Notice that m is a maximal ideal
of k[t1, ..., tn] containing I(X). By the above result, we can say this maximal
ideal is mx for some x ∈ kn. Since I(X) ⊆ mx, that means x ∈ X. Thus, any
maximal ideal in P (X) is given by mx for some x ∈ X. Hence, µ is surjective,
which completes the proof.

The above version of Hilbert’s Nullstellantz is mainly used for the purposes
of commutative algebra. The more common form of the theorem is stated below
for reference.

Theorem 4. Let I be an ideal of the polynomial ring k[x1, ..., xn]. Let the
algebraic set V (I) of this ideal be defined by all n-tuples x = (x1, ..., xn) ∈ kn

such that f(x) = 0 for all f ∈ I. If p is a polynomial in k[x1, ..., xn] that
vanishes on the algebraic set V (I), then there exists n ∈ N such that pn ∈ I.

Let f1, ..., fm be elements of k[t1, ..., tn]. These elements determine a poly-
nomial mapping ϕ : kn −→ km given by the following: if x ∈ kn, then the
coordinates of ϕ(x) are f1(x), ..., fm(x). Let X and Y be affine algebraic vari-
eties in kn, km respectively. A map ϕ : X −→ Y is said to be regular if ϕ is the
restriction to X of a polynomial mapping from kn to km. If ς is a polynomial
function on Y , then ς ◦ ϕ is a polynomial function on X. Thus, ϕ induces a
k-algebra homomorphism P (Y ) −→ P (X), namely ς 7→ ς ◦ ϕ.

Proposition 22. There is a one-to-one correspondence between the regular
mappings X −→ Y and the k-algebra homomorphisms P (Y ) −→ P (X).

Proof. Let ϕ : X −→ Y be a regular mapping. Then, ϕ = (ϕ1, ..., ϕm), where
ϕi ∈ k[t1, ..., tn]. This is turn defines a mapping P (Y ) = k[t1, ..., tm] −→
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k[t1, ..., tm] = P (X) given by g 7→ g(ϕ1, ..., ϕm). Let φ : P (Y ) −→ P (X) be a k-
algebra homomorphism. We can now construct a regular map ϕ : X −→ Y given
by ϕ = (φ(t1), ..., φ(tn)). We now claim that these two maps are inverses, and
thus there is a one-to-one correspondence between regular maps and k-algebra
homomorphisms.

Observe that the image of the regular map ϕ is of the form g 7→ g(ϕ1, ..., ϕm).
In particular, ti is mapped to ϕi. Thus, if we use the definition ϕ = (φ(t1), ..., φ(tn))
to get a regular map X −→ Y , then the map will be ϕ itself. Now, if we are
given φ : P (Y ) −→ P (X), then we get the regular map (φ(t1), ..., φ(tn)), which
when composed with ϕ, is mapped to g 7→ g(φ(t1), ..., φ(tn)) = φ(g). Hence,
the maps are inverses of one another, and therefore there is a one-to-one corre-
spondence.

This proposition, though simple in its statement, demonstrates a profound
relationship between algebra and geometry. Given that there is a one-to-one
correspondence between the regular mappings and k-algebra homomorphisms,
we can conclude that there is a bijection that maps k-algebra homomorphisms
to regular mappings, and vice versa. Though this is just a set-theoretic bijection
so far, a remarkable result from algebraic geometry is that this statement can
be extended so that finitely generated k-algebras and affine algebraic varieties
are in fact categorically equivalent. This equivalence links algebraic operations
on rings to the geometric properties of varieties, and thus is a powerful bridge
between algebra and geometry themselves. Though the proof of this equivalence
is outside the scope of this paper [2], it demonstrates a link between algebraic
structures and geometric spaces which is fundamental for the field of algebraic
geometry.
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