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Abstract. Representation theory is a way of studying the structure of groups

using the tools and ideas of linear algebra. The goal of this paper is to demon-

strate the power of representation theory to derive nontrivial properties about
group structure. The culminating result of this paper will be a proof of all of

Hall’s theorems regarding solvable groups. These theorems serve as a natural

extension to the Sylow theorems which apply in the case of solvable groups.
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1. Introduction

Representation theory was invented by Frobenius to understand a bizarre pat-
tern. If one takes the Cayley table of a group and considers each element as a
variable xg, then the determinant is a product of irreducible polynomials with de-
gree equal to their multiplicity. Representation theory seeks to use the tools and
insights of linear algebra to study a wide range of diverse mathematical structures
by “representing” them in a form that is easier to understand. This turns out to
be an extremely fruitful endeavor, and today representation theory is extremely
widespread. In this paper, I will define the basic notions and results of representa-
tion theory as well as character theory. Finally, I will use these results to provide a
complete treatment of Hall’s theorems regarding solvable groups. Along the way, I
will use representation theory to prove Burnside’s theorem, as well as a weakened
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version of Schur-Zassenhaus, both of which are extremely famous and powerful
results.

2. Representation Theory

2.1. Basic Representation Theory. Throughout this paper, we will assume the
base field to be C, all groups are finite, and all vector spaces are finite dimensional.
Furthermore, if g is an element of some group which acts linearly on a vector space
V via a group action, I will denote g|V ∈ End(V ) as the linear transformation
defined by g. We start by fixing a finite group G.

Definition 2.1. An associative algebra A over C is a ring with a ring homomor-
phism ψ : C → Z(A).

Definition 2.2. The group algebra C[G] is the set of all linear combinations of
elements in G with coefficients in C. Multiplication and addition are defined in the
natural way: ∑

g∈G

zgg +
∑
g∈G

z′gg =
∑
g∈G

(zg + z′g)g∑
g∈G

zgg

∑
g∈G

z′gg

 =
∑

g,g′∈G

(zgz
′
g′)(gg′)

Note that C[G] is a associative algebra with ψ : C → C[G] as ψ(z) = ze.

Definition 2.3. A (complex) representation of G consists of the data of a pair
(ρ, V ), where V is a finite dimensional vector space over C and ρ is a group homo-
morphism ρ : G → GL(V ) from G to the automorphism group of V . Using ρ, we

give an action of C[G] over V as
(∑

g∈G zgg
) ∣∣

V
=

∑
g∈G zgρ(g)

• A subrepresentation (ρ|W ,W ) of (ρ, V ) consists of the data of a vector
subspace W of V and group homomorphism ρ|W : G → GL(W ) given by
restriction of ρ to W , i.e. for any g ∈ G, we have ρ|W (g) = ρ(g)|W .

• We say that the representation (ρ, V ) is irreducible if it only has trivial
subrepresentations, i.e. the zero representation (ρ|0, 0) and (ρ, V ) itself.

One may think of a group representation more simply as an action of C[G] on
V . For this reason, we sometimes only denote V for the representation (ρ, V ). In
this way, we can view a subrepresentation W of V as a vector subspace which is
stable under the action of C[G]. We often don’t need to invoke the larger structure
of the group algebra, and in many of our proofs we will only consider the actions
of elements of G.

Example 2.4. Consider the Klein four group ⟨a, b|a2 = b2 = (ab)2 = e⟩. It has
this representation:

a 7→
[
−1 0
0 1

]
b 7→

[
1 0
0 −1

]
This representation has a subrepresentation which consists of the vector subspace
of C2 spanned by (1, 0). In this subrepresentation our map looks like:

a 7→ −1
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b 7→ 1

This representation is trivially irreducible because it is one dimensional and there-
fore has no nontrivial vector subspaces.

Lemma 2.5. If V is a representation of G over C and g ∈ G, we have the following
lemmas:

(1) e|V = Id
(2) g|V is diagonalizable.
(3) The eigenvalues of g|V are roots of unity.

Proof. We use the spectral theorem

(1) ρ : G → GL(V ) is a group homomorphism hence it must map the identity
to the identity.

(2) Since G is a finite group, g has finite order and we must have g|V |g|
= Id.

Then g|V satisfies the polynomial equation X |g| − 1 = 0, which has no re-
peated roots. The minimal polynomial of g|V must divide this polynomial,
and therefore it also has no repeated roots. Therefore by spectral theorem
g|V is diagonalizable.

(3) Since the roots of X |g| − 1 are the |g|-th roots of unity and the minimal
polynomial of g|V divides X |g| − 1, the eigenvalues of g|V must be |g|-th
roots of unity.

□

Now that we have defined what a representation is, and identified a particu-
larly useful type of representation (irreducible representations), we will study maps
between representations.

Definition 2.6. Given two representations V and W , a homomorphism between
them is a linear operator ϕ : V →W which commutes with the action of G, i.e. for
any v ∈ V and g ∈ G, ϕ(gv) = gϕ(v). The set of homomorphisms from V to W is
denoted HomG(V,W ).

If ϕ is an isomorphism of vector spaces then it is an isomorphism of represen-
tations. Two representations are isomorphic if there is an isomorphism between
them.

The following result, Schur’s Lemma, is extremely powerful and fundamental to
the study of representation theory.

Theorem 2.7 (Schur’s Lemma). Suppose V and W are representations of G and
ϕ : V →W is a nonzero homomorphism between them. Then:

(1) If V is irreducible then ϕ is injective.
(2) If W is irreducible then ϕ is surjective.
(3) If W = V is irreducible then ϕ = λId for some λ ∈ K.

Proof. We use the defining property of irreducible representations.

(1) Consider the subspace ker(ϕ) of V . Because ϕ commutes with the action of
G, ker(ϕ) is invariant under the action of G and hence is a subrepresentation
of V . Therefore, since V is irreducible and ϕ is nonzero, we must have
ker(ϕ) = 0 and ϕ is injective.
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(2) Similarly, consider the subspace im(ϕ) ofW . Because ϕ commutes with the
action of G, im(ϕ) is invariant under the action of G and is a subrepresen-
tation of W . Therefore, since W is irreducible and ϕ is nonzero, we must
have im(ϕ) =W and ϕ is surjective.

(3) Choose an eigenvalue λ of ϕ and note that ϕ−λ Id is singular. If ϕ−λ Id is
nonzero, then by parts (1) and (2), ϕ− λ Id will be an isomorphism, which
contradicts it being singular. Therefore ϕ− λ Id = 0, i.e. ϕ = λ Id.

□

Now we will generalize Schur’s lemma to a more powerful form.

Lemma 2.8. If A =
⊕

i V
ni
i and B =

⊕
i V

ri
i are two sums of distinct irreducible

representations Vi with multiplicity then HomG(A,B) =
⊕

iMri×ni
(C).

Suppose that ϕ : A → B is a homomorphism of representations. We denote aij
as the projection onto the jth copy of Vi in A and likewise bij as the projection onto
the jth copy of Vi in B. For some i, j, k, l note that bij ◦ ϕ ◦ akl can be considered
as a homomorphism of irreducible representations Vkl → Vij . Therefore by Schur’s
lemma:

bij ◦ ϕ ◦ akl : Vkl → Vij =

{
λ Id i = k

0 otherwise

Suppose that bij ◦ ϕ ◦ ail = λijl IdVil→Vij . Now note that ϕ =
∑

i,j,k,l bij ◦ ϕ ◦ akl
by linearity. Hence:

ϕ =
∑
i,j,k,l

bij ◦ ϕ ◦ akl

=
∑
i,j,l

bij ◦ ϕ ◦ ail

=
∑
i,j,l

λijl IdVil→Vij

=
∑
i

∑
j,l

λijl IdVil→Vij

=
⊕
i

Mi

Where Mi : V
ni
i → V ri

i is the ri × ni matrix with coefficients (Mi)kl = λikl.

2.2. The Significance of Irreducible Representations. Now we will prove
some theorems which should establish the importance of the irreducible represen-
tations. In particular, we will eventually show that arbitrary representations fac-
tor uniquely (up to permutation) into a direct sum of irreducible representations
(Krull-Schmidt theorem). In this way, irreducible representations are analogous to
the prime numbers of representation theory.

Lemma 2.9. If V is a representation of G, there exists a Hermitian inner product
⟨−,−⟩ on V which is invariant under the action of G. More specifically, for each
g ∈ G and v1, v2 ∈ V , ⟨gv1, gv2⟩ = ⟨v1, v2⟩

Proof. Take some arbitrary Hermitian innner product [−,−] on V and let ⟨v1, v2⟩ =∑
g∈G[gv1, gv2]. This inner product is invariant under the action of G because each

element of G defines an automorphism on G by right multiplication. □
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Theorem 2.10 (Maschke’s Theorem + Krull-Schmidt Theorem). Any representa-
tion decomposes uniquely into a direct sum of irreducible representations.

Proof. Suppose V is a representation G. We first prove that V decomposes into a
direct sum of irreducible representations (Maschke’s theorem), and then prove any
two such decompositions are unique (Krull-Schmidt theorem).

Maschke’s theorem: By Lemma 2.9 we can fix a Hermitian inner product on V
which is invariant under the action of G. If V is irreducible we are done. Other-
wise, V must have a subrepresentationW ⊂ V . Since our inner product is invariant
under the action of G, the vector subspace W⊥ (the subspace of vectors orthogonal
to all the vectors in W ) is invariant under the action of G and is therefore a sub-
representation of V . By construction V =W ⊕W⊥. We can continue decomposing
V recursively until we are left with a direct sum of irreducible representations by
finite dimensionality.

Krull-Schmidt theorem: Suppose that V =
⊕

i V
ni
i =

⊕
i V

ri
i are two decomposi-

tions of V into distinct irreducible representations Vi with multiplicity. Consider
the inclusion map

⊕
i V

ni
i →

⊕
i V

ri
i . By Lemma 2.8 this map looks like

⊕
iMi

where each Mi : V
ni
i → V ri

i is a ri × ni matrix. This map must be invertable and
therefore ri = ni for each i and we are done. □

Lemma 2.11. If V = V p1

1 ⊕· · ·⊕V pn
n is a sum of distinct irreducible representations

(with multiplicity) and W ⊆ V is a subrepresentation of V then W is isomorphic
to V r1

1 ⊕ · · · ⊕ V rn
n where ri ≤ pi.

Proof. Consider W⊥ under the inner product defined in Lemma 2.9. Note that W
and W⊥ are both subrepresentations of V with V = W ⊕W⊥. The result follows
from the Krull-Schmidt theorem. □

Hopefully, these theorems have provided some insight as to why we care so much
about the irreducible representations. I will prove one more useful theorem which
is closely related to these.

Theorem 2.12 (Density Theorem). If V is an irreducible representation of G the
map ρ : C[G] → End(V ) is surjective.

Proof. Choose an arbitrary basis v1, . . . , vn of V and consider the map α : C[G] →
V n as α(a) = (av1, . . . , avn). It suffices to show that this map is surjective. Suppose
the contrary. Then the image of α is a proper subrepresentation of V n and by
Lemma 2.11 we have im(α) ∼= V r where r < n. Let ϕ : V r → V n be the inclusion
map. By Lemma 2.8 ϕ looks like an r × n matrix. Note that α(e) = (v1, . . . , vn),
therefore (v1, . . . , vn) is in the image of ϕ. However ϕ is not invertable since r < n,
a contradiction with the fact that the vis form a basis. □

The density theorem is a very useful result with many corollaries. For example,
one can prove that C[G] is isomorphic to

⊕
V ∈Irr End(V ) as an associative algebra,

the direct sum of endomorphism rings of the irreducible representations. We will
prove one corollary which will later be useful in proving Burnside’s theorem.

Lemma 2.13. If V is an irreducible representation of G and α ∈ Z(C[G]), then
α|V acts either by zero or by scaling on V .
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Proof. Note that the action of α on V must commute with the action of every
element in C[V ]. Therefore by the density theorem α|V commutes with every
operator in End(V ). Then by the spectral theorem α|V = λ Id and we are done. □

2.3. Class Functions and Characters. Now that we have introduced irreducible
representations, a natural question that arises is how many irreducible represen-
tations can be found for a given group? In this section, we will prove that the
number of irreducible representations a group has (up to isomorphism) is equal to
the number of conjugacy classes it contains.

Definition 2.14. Given a group G, a class function α : G→ C is a function which
preserves conjugacy classes. Specifically for each a, b ∈ G, α(aba−1) = α(a).

Note that the space of class functions on G is a vector space over C whose
dimension equals the number of conjugacy classes of G.

Definition 2.15. Given a representation V of a group G, we define the character
χV : C[G] → C of V as χV (a) = Tr a|V . This is a class function because the trace
is invariant under conjugation.

Definition 2.16. We define a Hermitian inner product on the vector space of class
functions as ⟨χW , χV ⟩ = 1

|G|
∑

G χW (g)χV (g).

As we will see, this is the most useful and natural inner product on the space
of class functions. We will utilize its nice properties extensively throughout the
rest of the paper. Remarkably, this inner product actually computes the dimension
of HomG(V,W ) as a vector space over C. Recall that HomG(V,W ) denotes the
homomorphisms of representations between V and W . We will prove a weaker
version of this result now.

Theorem 2.17. If V,W are irreducible representations of G, then V ∼= W if and
only if χV = χW .

Proof. By Schur’s lemma:

dimHomG(V,W ) =

{
1 V ∼=W

0 otherwise

Consider Hom(V,W ), the vector space of linear transformations from V to W .
We can define a group action of G on Hom(V,W ) as gτ = g|W ◦ τ ◦ g−1|V . G
acts linearily on Hom(V,W ), so we can consider the trace of g|Hom(V,W ). Fix an
eigenbasis v1, . . . , vn of V and w1, . . . , wr of W with respect to the g|V and g|W
respectively. Let their eigenvalues be λv1 , . . . , λvn and λw1

, . . . , λwr
. We construct

a basis of Hom(V,W ) as the transformations which take an eigenvector of V and
map it to an eigenvector of W and kill all others. Then g|Hom(V,W ) is a diagonal
matrix whose trace we can calculate:

Tr g|Hom(V,W ) =
∑ λwi

λvj

=
∑

λwi
λvj Lemma 2.5

=
(∑

λwi

)(∑
λvj

)
= Tr g|WTr g|V
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Now consider the linear transformation α : Hom(V,W ) → HomG(V,W ) as ατ =
1
|G|

∑
g∈G gτ . Since τ ∈ HomG(V,W ) implies ατ = τ , α is a surjection. α is then a

projection from Hom(V,W ) onto HomG(V,W ) and therefore dimHomG(V,W ) =
Trα. Now note that:

Trα =
1

|G|
∑
G

Tr g|W Tr g|V

=
1

|G|
∑
G

χW (g)χV (g)

= ⟨χW , χV ⟩

If χV = χW then this expression must be nonzero and therefore dimHomG(V,W ) ̸=
0 and V ∼=W by Schur’s lemma.

If V ∼=W then let ϕ be an isomorphism between them. Choose a basis v1, . . . , vn
for V and let ϕ(v1), . . . , ϕ(vn) be our basis for W . By the condition that for each
vi, ϕ(gvi) = gϕ(vi), g|V and g|W have identical matrices in these bases. Therefore
χV (g) = χW (g) and V and W have the same character. □

This idea of averaging over the action of G to create a G invariant map is an
extremely powerful problem solving technique. It is probably the single most useful
idea in this whole paper.

Corollary 2.18 (First Orthagonality Relation). The characters of irreducible rep-
resentations are orthonormal with respect to the outlined inner product.

With this theorem, we have shown that the characters of the irreducible represen-
tations form a linearily independant orthonormal set. We have one more important
orthagonality relation to show. However, we have some important work to do before
we get there.

2.4. The Regular Representation. Now we wish to show that the characters of
the irreducible representations form a basis for the vector space of class functions.
For this, we introduce the regular representation. Just as examining action of G on
itself is often useful, examining the action of C[G] on itself proves extremely useful
in representation theory.

Note that C[G] is vector space over C spanned by the elements of G. Therefore,
we may consider it as a representation of G, with the group action defined by
left multiplication. Note that this representation is faithful on C[G] since we can
consider how two elements α, β ∈ C[G] act on the identity element e ∈ C[G].

This is a very important representation, called the regular representation.

Theorem 2.19. The characters of the irreducible representations form a basis of
the vector space of class functions.

Proof. Suppose the contrary, then there is some nonzero class function ϕ with
⟨ϕ, χV ⟩ = 0 for all irreducible representations. Fix some irreducible representation
V and define α = 1

|G|
∑

G ϕ(g)g. Since ϕ is a class function α|V : V → V commutes

with the action of G on V and defines a homomorphism of representations. Then
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by Schur’s lemma α|V = λ Id for some λ. However note that:

Trα|V =
1

|G|
∑
G

ϕ(g)χV (g)

= ⟨ϕ, χV ⟩

= ⟨ϕ, χV ⟩
= 0

Hence α acts by 0 on V . Therefore by Maschke’s theorem α acts by 0 on any
representation. Now consider the regular representation R. Since the elements of g
are linearly independent in C[G], α|R = 0 implies ϕ(g) = 0 for each g ∈ G. However
we stated that ϕ was nonzero, a contradiction. □

Corollary 2.20. The number of irreducible representations equals the number of
conjugacy classes.

This completes the brunt of the low level work. The rest is an application of
these theorems.

2.5. The Character Table. Now that we have proven Corollary 2.20, an ex-
tremely important result, we have enough machinery to define a very important
concept. That is the character table, a way to encode all the relevant informa-
tion about the characters of a group’s irreducible representations. Note that CG(g)
denotes the centralizer of g.

Definition 2.21. The character table X of a group is the matrix whose rows cor-
respond to irreducible representations and whose columns correspond to conjugacy
classes. If the irreducible representations are V1, . . . , Vn and the conjugacy classes
are C1, . . . , Cn then Xij = χVi(Cj). Note that the character table is only defined
up to permutation of rows and columns.

Example 2.22. The character table of the Klein four group ⟨a, b|a2 = b2 = (ab)2 =
e⟩ is as follows:

e a b ab
χ1 1 1 1 1
χ2 1 1 -1 -1
χ3 1 -1 1 -1
χ4 1 -1 -1 1

Theorem 2.23 (Second Orthagonality Relation). Suppose h, g ∈ G, then:

∑
Irr

χi(g)χi(h) =

{
|CG(g)|, if g and h are conjugate

0, otherwise

where the sum is over the characters of the irreducible representations.

Proof. Let C1, . . . , Cn be the conjugacy classes of our group. By the first orthag-
onality relation the character table X has orthonormal columns under our inner
product. Let ⟨−,−⟩ be as in Lemma 2.9. Using Corollary 2.18 and the definition
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of our inner product gives:

Id =

1 0 · · ·
0 1 · · ·
...

...
. . .


=

⟨χV1
, χV1

⟩ ⟨χV1
, χV2

⟩ · · ·
⟨χV2

, χV1
⟩ ⟨χV2

, χV2
⟩ · · ·

...
...

. . .


= X

|C1|/|G| 0 · · ·
0 |C2|/|G| · · ·
...

...
. . .

X†

X−1 =

1/|CG(c1)| 0 · · ·
0 1/|CG(c2)| · · ·
...

...
. . .

X†

Id =

1/|CG(c1)| 0 · · ·
0 1/|CG(c2)| · · ·
...

...
. . .

X†X

For any ci ∈ Ci. But (X
†X)ij =

∑
Irr χi(g)χi(h). This proves the result. □

3. Burnside’s Theorem

Now we will prove a big result, Burnside’s theorem, which states than any group
of order pαqβ is solvable. This theorem is the premier demonstration of the power
of representation theory to understand the structure of finite groups.

Theorem 3.1 (Burnside’s Theorem). All groups of order pαqβ for primes p, q are
solvable.

We proceed by contradiction, suppose that G is the smallest order not-solvable
group of order pαqβ . Notice that G must be a simple group. Otherwise there is
some normal subgroup N of G. Then G/N and N are solvable by minimality which
implies G is solvable, a contradiction.

We claim that G cannot have any conjugacy class of order pk or qk. If this
is true, then all the nontrivial conjugacy classes of G have order divisible by pq.
Writing the class equation for G yields:

|G| = |Z(G)|+
∑

C nontrivial

|C|

Where the sum is over the nontrivial conjugacy classes. This will imply that:

|Z(G)| = 0 (mod pq)

However |Z(G)| ≥ 1 because the identity lies in the center. This shows that the
center of G is nontrivial, a contradiction with the simplicity of G.

Now we use the following steps to prove that G does not have conjugacy class
of prime power order (Theorem 3.6).

Lemma 3.2. Suppose that ω1, . . . , ωn are roots of unity. If 1
n

∑
wi is an algebraic

integer either w1 = · · · = wn or
∑
wi = 0
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Proof. Let α = 1
n

∑
wi be algebraic with w1, . . . , wn not satisfying w1 = · · · = wn.

We take the field norm of α as:

NQ/Q(α) =
∏

σ∈Gal(Q/Q)

σ(α)

Because α is an algebraic integer and NQ/Q(α) ∈ Q, NQ/Q(α) must be an integer.

If the wis are not all the same this implies |σ(α)| < 1 for each σ by the triangle
inequality. Therefore |NQ/Q(α)| < 1 and NQ/Q(α) = 0. This forces α = 0. □

Lemma 3.3. Suppose V is an irreducible representation of group G and let C be

a conjugacy class of G. Then for c ∈ C, |C|χV (c)
dimV is an algebraic integer.

Proof. Consider α =
∑

c∈C c. Note that α is in the center of C[G]. Therefore by
Lemma 2.13 α|V = λ Id for some λ. Because Z[G] is finitely generated over Z, the
center of Z[G] is integral over Z. Therefore α ∈ Z(Z[G]) is integral over Z and λ is
an algebraic integer. Taking the trace of α yields:

|C|χV (c) = λ dimV

|C|χV (c)

dimV
= λ

□

Lemma 3.4. Suppose V is an irreducible representation of group G and C is
a conjugacy class of G with gcd(|C|,dimV ) = 1. Then for each c ∈ C either
χV (c) = 0 or c acts on V by scaling.

Proof. Choose some c ∈ C and let w1, . . . , wn be the eigenvalues of c|V . Note that

the eigenvalues of c|V are roots of unity by Lemma 2.5. By Lemma 3.3, |C|
dimV

∑
wi

is an algebraic integer. By the condition that gcd(|C|,dimV ) = 1, 1
dimV

∑
wi must

be algebraic. Then by Lemma 3.2 either w1 = · · · = wn and c acts by scaling, or∑
wi = 0 and χV (c) = 0. □

Lemma 3.5. Suppose G is a group with a conjugacy class C of order pk for some
prime p and k > 0. Then for each c ∈ C, there exists a nontrivial irreducible
representation whose dimension is not divisible by p with χV (c) ̸= 0.

Proof. Denote S as the set of irreducible representations whose dimension is di-
visible by p. Denote T as the set of nontrivial irreducible representations whose
dimension is not divisible by p.

Let c be an element in the conjugacy class C. Note that for each V ∈ S, 1
p dimV χV (c)

is an algebraic integer. Then

α =
1

p

∑
S

dimV χV (c)

is algebraic. Using the second orthogonality relation on the elements e and c gives:∑
Irr

dimV χV (c) = 0
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because they do not lie in the same conjugacy class. Splitting up the sum:

0 = χC(c) +
∑
S

dimV χV (c) +
∑
T

dimV χV (c)

= 1 + pα+
∑
T

dimV χV (c)

where χC denotes the trivial representation. Since α is an algebraic integer it either
has nonzero imaginary component or is an integer. Therefore

∑
T dimV χV (c) must

be nonzero. Hence there is at least one V ∈ T with χV (c) ̸= 0. □

Theorem 3.6. If a group G is simple, it has no conjugacy classes of prime power
order.

Proof. Suppose the contrary and let C be a conjugacy class of order pk. By
Lemma 3.5, pick a nontrivial irreducible representation V whose dimension is not
divisible by p and with χV (c) ̸= 0. By Lemma 3.4, each c ∈ C acts on V by scaling
by some λ. Consider the following subgroup of G:

H := {g ∈ G | g acts on V as identity}.

We claim that H is a proper nontrivial normal subgroup of G.

(1) Since V is nontrivial H is a proper subgroup.
(2) For any g ∈ G and h ∈ H (ghg−1)|V =g|V Id g|−1

V = Id, hence ghg−1 ∈ H.
H is therefore normal.

(3) Let K := {ab−1|a, b ∈ C} and note that since each c ∈ C scales by λ each
ab−1 acts by identity. Therefore K ⊆ H. Note that K is nontrivial because
C is nontrivial. Hence H is nontrivial.

This is a contradiction with the simplicity of G. □

4. Schur-Zassenhaus

The Schur-Zassenhaus theorem is an extremely deep result in finite group theory.
It essentially allows us to determine in certain cases that a group can be constructed
via a semidirect product. Most proofs use group cohomology, however it is possible
to prove this theorem very nicely using representation theory.

Theorem 4.1 (Schur-Zassenhaus). If |G| = ab where a and b are coprime, and
N is a normal subgroup of G with order a, then G contains a subgroup of order b.
Furthermore, all subgroups of order b are conjugate.

For our purposes, we may assume that N is an elementary abelian p-group (a
group in which every nonidentity element has order p). This simplifies the proof
slightly. Nonetheless, one may find a proof that the general case reduces to our
special case in Kargapolov and Merzljakov [6].

Definition 4.2. Let A,B be groups. We now define W = A ≀B the wreath product
of A and B. Let AB={set-theoretic functions B → A}. Note that AB is a group
under multiplication of functions. For each f ∈ AB and b ∈ B we define f b as:

f b(x) = f(bx)

One can check that each b ∈ B defines an automorphism on AB . This gives us an
action of B on AB . The wreath product A ≀ B is the semidirect product AB ⋊ B
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with the action of B on AB as defined. More explicitly, A ≀ B has the underlying
set B ×AB with group operation given by:

(4.3) bf · b′f ′ = bb′f b
′
f ′

There is some distinction between the restricted and unrestricted wreath prod-
ucts in mathematical literature. However, since we are only dealing with finite
groups we do not need to make this distinction.

Theorem 4.4. If N is a normal subgroup of G, then G is a subgroup of N ≀(G/N).

Proof. Define a function τ : G/N → G which chooses an element of G such that
τ(k)N = k. This is called a coset representative function. We define the map

ϕ : G→ N ≀ (G/N)

g 7→ (gN)fg
(4.5)

where fg : G/N → N is the function defined as fg(k) = τ(gk)−1gτ(k). Since τ(kg)
and gτ(k) land in the same coset of G/N this map is well defined. Furthermore,
we can check that this is indeed a homomorphism.

(aN)fa · (bN)fb = (abN)f bNa fb

= (abN)τ(ab−)−1aτ(b−)τ(b−)−1bτ(−)

= (abN)τ(ab−)−1abτ(−)

= (abN)fab

In this notation − denotes a placeholder for some element of G/N . We can fur-
thermore verify that ϕ is injective by computing fa, fb when a, b are members of
the same coset. □

Lemma 4.6. If τ1, τ2 : G/N → G are coset representation functions and ϕ1, ϕ2 :
G → W = N ≀ (G/N) are defined as in (4.5) using τ1 and τ2 respectively, then
ϕ1(G) and ϕ2(G) are conjugate in W .

Proof. We do some algebraic manipulations. Suppose Nf ∈W , g ∈ G and consider
ϕ2(g) conjugated by Nf :

(Nf)ϕ2(g)(Nf)
−1 = (Nf)((gN)f2g)(Nf)

−1 (4.5)

= ((gN)fgNf2g)(Nf)
−1 (4.3)

= ((gN)fgNf2g)(Nf
−1)

= (gN)fgNf2gf
−1 (4.3)

Now we expand fgNf2gf
−1 using the definition of f2g:

fgf2gf
−1 = (fgf2gf

−1)(−)

= f(g−)τ2(g−)−1gτ2(−)f(−)−1

We can similarily compute using (4.5) that ϕ1(g) = (gN)f1g = (gN)τ1(g−)−1gτ1(−).

From here we are motivated to fix f = τ−1
1 τ2 in order to make these functions equal

to eachother. Indeed:

f(g−)τ2(g−)−1gτ2(−)f(−)−1 = τ−1
1 (g−)τ2(g−)τ2(g−)−1gτ2(−)τ−1

2 (−)τ1(−)

= τ−1
1 (g−)gτ1(−)
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Since our choice of f did not depend on g, (Nf)ϕ2(g)(Nf)
−1 = ϕ1(g) for any

g ∈ G. Therefore ϕ1(G) and ϕ2(G) are conjugate in W . □

We have now proven all the necessary properties of the wreath product. Before
we prove Schur-Zassenhaus, I will introduce a few miscellaneous results without
proof.

Theorem 4.7 (Generalized Maschke’s Theorem). If V is a representation of G over
some field K whose characteristic does not divide |G|, and W is a subrepresentation
of V , then V has a subrepresentation Z such that V =W ⊕ Z. [1]

Theorem 4.8 (Characterization of Finite Fields). If F is a finite field, then its
order is pk for some prime p which is equal to its characteristic. Furthermore,
for every prime p and integer k there exists exactly one field of order pk up to
isomorphism. [3]

Corollary 4.9. Let M be an elementary abelian p-group of order pk. Then there
is a group isomorphism M → Fpk from M to the unique finite field of order pk. [3]

Now we have all the machinery we need to prove Theorem 4.10. One might
be able to guess the overarching structure of this proof by the results we have
introduced. Namely, we will consider NG/N as a vector space over the finite field
Fpk and then use representation theory to examine the structure of the wreath
product.

Theorem 4.10 (Weak Schur-Zassenhaus). If |G| = pkb where b is coprime to p and
N is an elementary abelian normal p-subgroup of G with order pk, then G contains
a subgroup of order b. Furthermore, all subgroups of order b are conjugate.

Proof. Consider W = N ≀ (G/N) = NG/N ⋊ (G/N) as above. We embed NG/N

into W as the elements of the form {Nf |f ∈ NG/N} and we embed G/N into W
as the elements of the form {ke|k ∈ G/N} where e : G/N → N is the function
that sends everything to the identity. Since N is an elementary abelian p-group,
by Corollary 4.9 we can think of it as the field Fpk . Then NG/N is a vector space
over Fpk with multiplication by scalar defined as (nf)(−) = n ∗ f(−) (where ∗
denotes multiplication in Fpk) and addition defined as (f1+f2)(−) = f1(−)+f2(−).

Because NG/N is an abelian normal subgroup of W , we can consider an action of
G/N ∼= W/(NG/N ) on NG/N by conjugation in W , or equivalently as defined in
the wreath product. NG/N is therefore a representation of G/N under this action.
Consider the embedding ϕ : G → W as defined in (4.5) and in this way we embed
N intoW . Note that G has elements in every coset ofW/(NG/N ). Therefore, since
N is normal in G it must be normal in W . By normality N is stable under the
action of G/N and is therefore a subrepresentation of NG/N .

Now, since p as the characteristic of Fpk does not divide the order of our group
|G/N | by assumption, we can apply (generalized) Maschke’s theorem to find a
subrepresentation C of NG/N such that NG/N = N ⊕ C. Since C is a vector
subspace of NG/N it is a subgroup of NG/N such that NG/N ∼= N×C. Furthermore
since C is stable under the action of G/N it is a normal subgroup of W .

Using this isomorphism we get W ∼= (N × C) ⋊ (G/N), implying that W/C ∼=
N ⋊ (G/N). We can see that |W/C| = |G| so we may guess that these groups are
isomorphic.
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Let ψ : W → W/C be the quotient map and consider their composition ψ ◦ ϕ :
G → W/C. Since ϕ and ψ are group homomorphisms, so is ψ ◦ ϕ, and we claim
that ψ ◦ ϕ gives us the isomorphism between G and W/C. Since we already know
that G and W/C have the same cardinality, it suffices to show that ψ ◦ϕ has trivial
kernel. Suppose that ψ ◦ ϕ(g) = e for some g ∈ G. We immediately have that
gN = N so g ∈ N . Finally, note that g ∈ N does not map to identity in W/C
unless g = e. Therefore ψ ◦ ϕ is an isomorphism and G ∼= W/C. Since we have
previously identified W/C ∼= N ⋊ (G/N), we can identify G/N as a subgroup of
order b in G. This completes the proof of the existence of such a subgroup.

Now we prove the conjugacy part. Suppose that H1, H2 ∈ G are two complement
subgroups toN . These both generate coset representation functions τ1 : G/N → H1

and τ2 : G/N → H2 which are also group homomorphisms. We can consider ϕ1
and ϕ2 as the maps G → W generated by τ1, τ2 as in Theorem 4.4. Because τ1, τ2
are group homomorphisms and N is abelian we can check that ϕ1(H1) = ϕ2(H2) =
G/N via direct computation. By Lemma 4.6, ϕ1(G) and ϕ2(G) are conjugate inW .
By transitivity this gives that ϕ1(H1) and ϕ1(H2) are conjugate in W . Therefore
ψ ◦ ϕ1(H1) and ψ ◦ ϕ1(H2) are conjugate in W/C. Since W/C ∼= G, this means H1

and H2 are conjugate in G. □

5. Hall’s Theorems

Hall’s theorems provide a very nice generalization to the Sylow’s theorems for the
case of solvable groups. Similar to how the Sylow’s theorems guarantee the existence
of subgroups of prime power order, Hall’s theorems guarantee the existence of
subgroups of certain orders in the special case of solvable groups. Their proof
makes use of Burnside’s theorem as well as Schur-Zassenhaus, however there is a
much more group theoretic flavor to these proofs. Most of the theorems are proven
by supposing the existence of a “minimal criminal”. This is a group of minimal
order satisfying the conditions of the theorem but not satisfying the statement. The
theorem is then proven by deriving a contradiction. This technique is essentially
equivalent to induction on the order of G. For these sections I will use Hg to denote
the subgroup gHg−1 and (a, b) to denote the greatest common divisor of a and b.

5.1. First Theorem. We wish to establish a sufficient condition for a group to
be solvable. We do this by combining Burnside’s theorem with a group theoretic
argument.

Definition 5.1. A Hall subgroup H of a group G is a subgroup with (|H|, [G :
H]) = 1.

Definition 5.2. Given a set of primes π dividing the order of group G, a π-subgroup
is a subgroup whose order is divisible by exactly the primes in π.

Definition 5.3. A Hall π-subgroup is a Hall subgroup which is also a π-subgroup.

Lemma 5.4. Suppose H and K are subgroups of G and ([G : H], [G : K]) = 1.
Then G = HK and [G : H ∩K] = [G : K][G : H].

Proof. Since H ∩K is a subgroup of both H and K, [G : H ∩K] is a multiple of
[G : H] and [G : K]. Therefore by the coprime condition [G : H ∩K] is a multiple
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of [G : H][G : K]. Therefore:

|G|
|H|

|G|
|K|

≤ |G|
|H ∩K|

|G| ≤ |H||K|
|H ∩K|

= |HK|

Therefore G = HK and all our inequalities are equalities. By the first line we are
done. □

Lemma 5.5. If H,K,L ⊆ G are solvable and [G : H], [G : K], and [G : L] are
coprime, then G is solvable.

Proof. Suppose for the sake of contradiction that G is a not-solvable group of min-
imal order satisfying the conditions of the theorem. We claim that G must have a
solvable normal subgroup N . Assuming the existence of N let ϕ : G→ G/N be the
standard quotient map and let G,H,K,L be the images of G,H,K,L under this
map. Note that G,H,K,L satisfy the conditions of the theorem and therefore by
minimality of G, G is solvable. Then because G/N and N are solvable G must be
solvable, a contradiction.

Now we prove the existence of N . LetM be a minimal normal subgroup ofH and
note thatM is an elementary abelian p-group for some prime p. Note that p cannot
divide both [G : K] and [G : L] so suppose without loss of generality that p does not
divide [G : K]. Then by the first Sylow theorem K contains a Sylow p-subgroup
P of G. By the second Sylow theorem we can choose some g ∈ G so that P g

contains M . Therefore M is contained in Kg. Note that by Lemma 5.4 G = KgH.
Suppose that m ∈ M and note for any kh ∈ G with k ∈ Kg and h ∈ H we have
(kh)m(kh)−1 = k(hmh−1)k−1. By normality of M in H (hmh−1) ∈ M ⊆ Kg

and therefore k(hmh−1)k−1 ∈ Kg. Therefore all the conjugates of elements in M
are contained in Kg. Now let N be the normal subgroup generated by M . By
the preceding argument N ⊆ Kg and is therefore a proper normal subgroup. N is
solvable since it is a subgroup of the solvable group Kg. □

Lemma 5.6. If G is a group with the property that there exist subgroups of order
a for each a such that (a, |G|/a) = 1, then all Hall subgroups of G have the same
property.

Proof. Suppose that |G| = pα1
1 . . . pαn

n and H is a subgroup of G. Let πi =
{p1, . . . , pi} and suppose without loss of generality that H is a Hall πr subgroup for
r ≤ n. By (permutation) symmetry it suffices to show that for each k ≤ r, H has
a Hall πk-subgroup. Let π = πk ∪ {pr+1, . . . , pn} and let K be a Hall π-subgroup
of G. Note that H and K have coprime indices in G so by Lemma 5.4:

[G : H ∩K] = [G : H][G : K]

|H ∩K| = |H||K|/|G|
= pα1

1 · · · pαk

k

Hence H ∩K is a Hall πk-subgroup and we are done. □
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Note that using this lemma and an induction or “minimal criminal” approach, we
can prove a stronger version of this lemma that applies to all subgroups. However
this is not necessary as this lemma is sufficient to prove this next theorem.

Theorem 5.7. If G is a group with subgroups of order a for each a such that
(a, |G|/a) = 1, then G is solvable.

Proof. Suppose that |G| = pα1
1 . . . pαn

n is a not-solvable group of minimal order
satisfying the conditions. If n ≤ 2 then G is solvable by Burnside’s theorem.
Otherwise let H,K,L be Hall subgroups of G with indices pα1

1 , pα2
2 , pα3

3 respectively.
By Lemma 5.6 each of these subgroups satisfies the conditions of the theorem so by
minimality of G they are all solvable. However note that they have coprime indices
in G, so by Lemma 5.5 G is solvable, a contradiction.

□

5.2. Second Theorem. Now that we have proven the first Hall theorem, we seek
to prove the converse. This will establish remarkable necessary and sufficient con-
ditions for a group to be solvable.

Theorem 5.8. If G is solvable, then for any a, b such that (a, b) = 1 and |G| = ab,
G contains a subgroup of order a.

Proof. Suppose that G is a solvable group of minimal order which does not satisfy
the theorem. Then let M be a minimal normal subgroup of G and let π be a set of
primes dividing the order of G. Note that M is an elementary abelian p-group for
some prime p. We have two cases:

(1) p ∈ π. Note that by minimality of G, G/M contains a Hall π-subgroup H.
The lift of H into G is a Hall π-subgroup of G and we are done with this
case.

(2) p /∈ π. Let π′ be the set of primes dividing the order of G but not in π. Let
H be a Hall π′-subgroup of G/M and let H be its lift into G. Note that
|M | and [H : M ] are coprime and therefore by Schur-Zassenhaus we can
find a complement K of M in H. By construction K is a Hall π-subgroup
and we are done.

□

5.3. Third Theorem. The final Hall theorem is analogous to the result that all
Sylow p-subgroups are conjugate to each other. It states that Hall π-subgroups are
conjugate and furthermore any π-subgroup is contained in a Hall π-subgroup. This
result gives us a great level of understanding of the structure of solvable groups.

Theorem 5.9. Suppose that G is a solvable group and π is a set of primes dividing
|G|. If H is a π-subgroup and K is a Hall π-subgroup, then there is some g ∈ G
such that H is a subgroup of Kg.

Proof. Suppose that G is a group of minimal order with subgroups H and K sat-
isfying the conditions but not having any g ∈ G such that H ⊆ Kg. Let M be a
minimal normal subgroup of G and note it must be an elementary abelian p-group
for some prime p. Then K = KM/M is a Hall π-subgroup of G = G/M and
H = HM/M is a π-subgroup of G. By minimality of G there is some g ∈ G such

that H ⊆ K
gM

. Taking the lifts we have HM ⊆ KgM . We have two cases:
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(1) p ∈ π. |KgM | must equal Kg since otherwise |KgM | is divisible by a higher
power of p than K. Therefore HM ⊆ Kg and H ⊆ Kg.

(2) p /∈ π. Then H and Kg ∩ (HM) are both complements to M in HM .
Therefore by Schur-Zassenhaus they are conjugate in HM . Hence for x ∈
HM we have H = (Kg ∩ (HM))x ⊆ Kgx.

□

Corollary 5.10. For a given set of primes π dividing G. All Hall π-subgroups are
conjugate.
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