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Abstract. The Fundamental Theorem of Algebra, as the name suggests, is

one of the most important theorems in all of mathematics. While its seemingly
obvious statement is intuitive to most, proving it is quite involved and may

be done through somewhat disconnected areas of mathematics. In this paper,

we will explore how developing the fundamental machinery of Galois Theory
can yield a rather simple proof of the theorem. Hence, while the Fundamental

Theorem of Algebra is seemingly unrelated to the theory of groups and fields,

the following paper illustrates the power of Galois Theory as a uniting force
of groups and fields in solving often seemingly unrelated problems.
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1. Introduction

In this paper, we will develop the main results of Galois Theory, which allows
us to examine relations between field theory and finite group theory. Specifically,
it allows us to associate Galois Extensions, a special type of algebraic extension,
to a group, namely the Galois Group. Using these notions, the Fundamental
Theorem of Algebra boils down to proving that any nontrivial Galois extension of
C must be C itself - which is somewhat straightforward.

2. Basic Group Theory

Central to Galois Theory is the idea of a special type of algebraic field extension
called the Galois Extension, and these are related to a group called the Galois
Group. To fully develop the results of Galois Theory, we must first develop some
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results in basic group theory, as well as field theory, which will be covered in the
next section.

Recall that a Group is an algebraic structure consisting of a set and a binary
operation (G, ⋆). All groups have the following properties:

(1) ⋆ is associative. Namely, for any a, b, c ∈ G, we have (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c).
(2) The group is closed under ⋆. In other words, for any a, b ∈ G, a ⋆ b ∈ G.
(3) Every element g ∈ G has an inverse g−1, and there always exists an identity

element e in G, such that g ⋆ g−1 = e, and g ⋆ e = g for all g ∈ G.

We say that a group is abelian if ⋆ is commutative, and that it is finite if it
has a finite number of elements. Note that the number of elements in a group is
denoted as its order.

Next, given two groups G and H, we define a homomorphism between the
groups as a mapping f : G → H that preserves the relationships between elements.
Specifically, for any homomorphism f , f(g1 ⋆ g2) = f(g1) ⋆ f(g2).

If f is a bijection, then we say that it is an isomorphism. Importantly, we say
that two groups G and H are isomorphic if there exists an isomorphism between
them. We’ll use the notation G ∼= H to denote this relation.

If f is a bijection whose domain and codomain are the same group, then we
say that f is an automorphism. Specifically, for any group G, an isomorphism
f : G → G is an automorphism.

Example 2.1. Consider the cyclic group G = {gk | 1 ≤ k ≤ n}, where gn = e
(here, we use exponentiation to denote repeated composition of ⋆).

An automorphism f : G → G would be any mapping such that f(g) = gℓ, where
gcd(ℓ, n) = 1. Otherwise, the image of G under f would be some smaller subgroup
of G.

Example 2.2. Consider the group G of all permutations of {1, 2, · · ·n}. Then,
for any permutation {a1, a2, · · · an}, the function f(i) = ai that maps elements in
index i to index ai is an automorphism.

Automorphisms are highly important in Galois Theory. As we will see later, the
aforementioned Galois Group is actually a group of automorphisms.

Definition 2.3. For any group, field, or ring R, we denote by Aut(R) the set of
all automorphisms f from R → R. Moreover, this set forms a group.

Example 2.4. Consider the cyclic group G = {gk | 1 ≤ k ≤ n}. We will describe
the automorphism group of G.

As seen above, any valid automorphism f maps the generator g of G to some
element gℓ, where gcd(ℓ, n) = 1. This is because, for any k, f(gk) = f(g)k = gℓk.
It suffices to show that the set {ℓ, 2ℓ, · · ·nℓ} (where elements are taken modulo n)
is a permutation of {1, 2, . . . n}.

Indeed, if two elements iℓ and jℓ were equal, then (i−j)ℓ ≡ 0 (mod n). However,
this cannot be the case as this would imply i ≡ j (mod n). This implies that the
set {ℓ, . . . nℓ} has n distinct elements modulo n, which in turn implies that it is a
permutation of {1, 2, . . . n}.

Hence, as the rest of the automorphism is uniquely determined by where we map
the generator, we may characterize the set of all automorphisms of G by where the
generator maps to. In this case, we have g → gℓ with gcd(ℓ, n) = 1.
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We’ll now show that the set Aut(G) forms a group. First, note that for any
σ1, σ2 ∈ Aut(G), σ1 ◦σ2 is also a bijection, and has domain G and range G. Hence,
σ1 ◦ σ2 ∈ G.

Moreover, for any σ ∈ Aut(R) that satisfies σ(gi) = gk, the function σ−1(gk) = gi
is also an automorphism, as is the identity function, and so Aut(R) is a group.

We have discussed functions between groups, so now we discuss cosets and La-
grange’s Theorem, which give us ways to ”split apart” groups into smaller sub-
groups.

Definition 2.5. LetH be a subgroup ofG and let g be a fixed element ofG. We say
that the set gH = {gh | h ∈ H} the left coset of H. Similarly, Hg = {hg | h ∈ H}
is called the right coset of H. We say that these are cosets of G modulo H.

Consider the set of all left cosets gH of G. It’s relatively simple to show that any
two cosets are disjoint, which in turn implies that the set of left cosets partitions
G. Similarly, the set of right cosets partitions G.

In general, the set of all left cosets of G modulo H is called the quotient G/H.
We denote the size of this set by [G : H], called the index of H in G.

Because the set of cosets partition G, and because each coset has |H| elements,
we have the following relation:

Theorem 2.6 (Lagrange’s Theorem). Let G be a finite group and H be a subgroup
of G. We have

|G| = [G : H]|H|.
In particular, this implies that the order of H divides the order of G for all subgroups
H of G.

While this is a really nice result and gives great insight into subgroups themselves,
the true power of taking the quotient of two groups arises when we introduce the
concept of a normal subgroup.

Definition 2.7. Let H ⊂ G be a subgroup and let g ∈ G. Then g−1Hg is a
subgroup, called a conjugate of H. We say that g normalizes H if g−1Hg = H. If
this property holds for all g ∈ G, then H is called a normal subgroup of G.

Normal subgroups are important for the following reason. Suppose that H ◁G,
and we consider G/H, i.e., the set of left cosets of G in H. Consider any two g1H
and g2H, and consider their product g1Hg2H. Because H is normal, gHg−1 = H
for any g ∈ G, meaning gH = Hg (that is, all left and right cosets are equal).

Hence, we may write

g1Hg2H = g1(Hg2)H = g1g2HH = g1g2H,

which is another coset. That is, the set of all cosets under a normal subgroup
is closed under composition. It’s easy to show that this resulting set of cosets
actually forms a group, and so we denote these groups as quotient groups, or
factor groups.

Importantly, when H is not a normal subgroup, the set of cosets G/H is not
necessarily a subgroup of G.

Definition 2.8 (Image and Kernel). Suppose f : G → H is a homomorphism.

(1) We denote the kernel of f as

ker(f) = {g ∈ G | f(g) = e},
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the set of elements of g that map to the identity of H under f .
(2) We denote the image of f as

Im(f) = {h ∈ H | h = f(g), g ∈ G}.
In other words, the image of f is the set of all elements in h ∈ H for which
there exists some g ∈ G satisfying f(g) = h.

Combining the above few notions gives the First Isomorphism Theorem.

Theorem 2.9 (First Isomorphism Theorem). Let f : G → H be a homomorphism.
Then, ker(f) is a normal subgroup of H, Im(f) is a subgroup of H. Moreover,

(1) G/ker(f) ∼= Im(f)
(2) Suppose further that H ◁ G. There now exists a homomorphism f : G →

G/H such that ker(f) = H and Im(f) = G/H.

In other words, if we consider the set of cosets of G with respect to the kernel
of f , this set is isomorphic to the image of f , which encapsulates the relationship
between image and kernel of any homomorphism. The second half of the theorem
follows from the first part, except with the reverse notion that H = kerf .

Although we do not need many fundamental results from Group Thoery, we’ll
introduce Sylow’s Theorem, which is useful in proving the Fundamental Theorem
of Algebra.

Theorem 2.10 (Sylow’s Theorem). Let G be a finite group of order pmα, such
that p is a prime and gcd(p, α) = 1. We call a p-Sylow subgroup a subgroup of G
of order pm, and a p-group a subgroup whose only prime divisor is p. Then,

(1) G necessarily has a p-Sylow subgroup
(2) All p-Slyow subgroups are conjugate. That is, for all p-Sylow groups H and

K, there exists g ∈ G satisfying g−1Hg = K.
(3) Any p-subgroup of G is contained in the p-Sylow subgroup
(4) The number of p-Sylow subgroups is congruent to 1 modulo p, and divides

|G|, meaning it divides α.

While this is a seemingly contrived theorem at first glance, Sylow’s theorem is
useful in a multitude of problems where we care about the orders of groups. As
seen later, this holds in the proof of the Fundamental Theorem of Algebra.

3. Necessary Theory on Field Extensions

Definition 3.1. (Ring) Recall that a ring is a set R, armed with two binary
operations (+,×), such that

(1) (F,+) is an abelian group
(2) × is associative
(3) For any x, y, z ∈ F , x(y + z) = xy + xz.
(4) There exists an element 1 ∈ F such that 1x = x1 = x, i.e., a multiplicative

identity.

A Field is a ring armed with the property that the set R−{0} is a group under
multiplication.

Importantly, for any ring R, we define the polynomial ring R[x] as the set of
all polynomials with coefficients in R.

For example, x2 + 2x+ 3 ∈ Z[x], but 0.5x2 + 2x+ 3 ∈ Q[x] and not Z[x].
We are concerned about the roots of such polynomials. For example,
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Example 3.2. Consider the roots of the polynomial f(x) = x2 + x+1 ∈ Z[x]. By
the quadratic formula, we find

x =
−1± i

√
3

2
̸∈ Z.

This has two complex roots, but no roots in Z.

This leads us to the following observation: for many polynomials with coefficients
in a certain field, there exist roots not in said field. To further explore these types
of relations, we must introduce the following notions.

Definition 3.3. Given a field K and a subfield k, we say that K is an extension
of K, and written K/k.

For example, R is an extension of Q. We can think of field extensions in the
following way: let’s say we start with a field, and call it the ground field. When
we try to extend this field, we would add an element, say, α, that’s not already in
the field. However, once we add α, we correspondingly add α−1, −α, and all linear
combinations of α with elements of the ground field.

In other words, we can think about adding elements to the field as adding a
vector space with element α and scalar multiplication supplied by the ground field.
This can be formalized in the following way.

Suppose we consider some field extension K/k as a vector space over k, i.e.,
where each element of K is a linear combination of the elements in k. We denote
the degree of the extension as the dimension of K over k, and use the notation
|K : k| to do so.

The previous notion is more clear with a few examples.

Example 3.4. We will consider Q(
√
2)/Q and C/R.

(1) If we denote by Q(
√
2) = {a+ b

√
2 | a, b ∈ Q}, then this field has degree 2

over Q, since the vector space has basis vectors {1,
√
2} over a scalar field

Q.
(2) Notice that every element in C can be written as x + yi, where x, y ∈ R.

This is a vector space with basis {1, i}, which has dimension 2, and scalar
multiplication supplied by R. In other words, C/R is a vector space of
dimension 2.

In this regard, we denote a finite field extension K/k as an extension such
that |K : k| < ∞. Note that an infinite field extension may be something like R/Q,
since no finite vector space of elements in R with scalar multiplication in Q span
R.

For a given field F and any finite field extension F ′ of degree n, we may write
F ′ = F (α1, . . . αn), where we add elements in the following manner:

(1) Start with F . Adjoin α1 as described before.
(2) Next, write F (α1, α2) = (F (α1))(α2), which means we adjoin α2 to F (α1).
(3) Do this iteratively. That is, keep adjoining elements to the field until we

have our desired extension.

Example 3.5. Consider Q(
√
2,
√
3). We know that Q(

√
2) = {a+ b

√
2 | a, b ∈ Q}.

We can now write any element z ∈ Q(
√
2)(

√
3) as

z = (x+ y
√
2) + (a+ b

√
2)
√
3 = x+ y

√
2 + a

√
3 + b

√
6,
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where x, y, a, b ∈ Q. Considering this as a vector space, this has basis {1,
√
2,
√
3,
√
6},

and so the extension has degree 4.

It would only make sense to adjoin elements to fields that are actually roots of
polynomials. As such, we introduce the following notion.

Definition 3.6. Given an extension F ′ of F , we say that α ∈ F ′ is algebraic if
there exists a nonconstant polynomial p(x) ∈ F [x] satisfying p(α) = 0.

For example, i is algebraic over Q, since it is a root to x2 +1. We say that F ′ is
an algebraic extension of F if every element of F ′ is algebraic over F . If α ∈ F
is not algebraic, then it is called transcendental, and the corresponding extension
is also transcendental. An example of a transcendental number over the integers
would be π.

Before returning to polynomials, we’ll first establish an important result regard-
ing algebraic extensions.

Theorem 3.7. Every finite extension F ′ of F is algebraic.

Proof. Take any α ∈ F ′, and let n = [F ′ : F ]. Note that any set of n + 1 ele-
ments in F ′ is linearly dependent, because the basis for F ′ has n elements. Hence,
{1, α, . . . αn} is a linearly dependent set, so there exist f0, . . . fn ∈ F such that

f0 + f1α+ · · ·+ fnα
n = 0.

This is a polynomial in F [x], meaning α is algebraic. □

We’ll also need an important lemma, which introduces the concept of a minimal
polynomial. Before this, however, we make the following clear.

Definition 3.8. A polynomial f(x) ∈ F [x] is irreducible if it has no roots in F .

For example, x2 + 2 is irreducible over Q, and so is x2 + x+ 1.

Lemma 3.9. If α ∈ F ′ is algebraic over F , then there exists a unique monic
irreducible polynomial p(x) ∈ F [x] of minimal degree such that p(α) = 0. This
polynomial will be denoted by irr(α, F ).

Proof. [2] Because α is algebraic, any polynomial p(x) ∈ F [x] with α as a root can
be factored into a product of irreducible polynomials in F . One of these polynomials
must have α as a root. Hence, assume that p is irreducible and monic. Suppose
now that there exists another monic irreducible polynomial g(x), with g(α) = 0.
We have deg p(x) ≤ deg g(x). Hence, we may write

g(x) = p(x)q(x) + r(x) ⇐⇒ g(α) = p(α)q(α) + r(α),

by the division algorithm. This, in turn, implies r(α) = 0. However, the degree
of r is less than the degree of p, contradicting minimality, which implies r(x) ≡ 0.
Hence, g(x) = p(x)r(x), meaning g is not irreducible. As such, p is unique. □

Next, let’s analyze the relationship between an algebraic number, its minimal
polynomial, and the corresponding finite extension given by adjoining said number
to a field, in essence unifying what we introduced above.

Theorem 3.10. Given a simple extension F ′ = F (α), where α is algebraic, let
n be the degree of its minimal polynomial irr(α, F ). Then, |F ′ : F | = n i.e., the
extension has degree n. This also implies that the extension is finite.
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Proof. Suppose we let

irr(α, F ) = f0 + f1α+ · · ·+ fnα
n = 0.

This implies that the set {1, α, . . . , αn} is linearly dependent. However, A =
{1, α, · · ·αn−1} must be linearly independent, since the degree of the minimal poly-
nomial is n. In other words, A spans F ′ with scalars over F , and since A has n
elements, the extension has dimension n. □

Here are a few more short results. For proofs, refer to [2]

(1) Given algebraic numbers α and β, α± β, αβ, and α/β are all algebraic.
(2) Given an extension F ′/F , the set of elements in F ′ that are algebraic over

F is called the algebraic closure of F in F ′. This set is also a field. Note
that, if we consider a set generated by any set of algebraic numbers, every
element in the resulting generated set is also algebraic from (1), which gives
insight as to how field extensions contain purely algebraic numbers.

Now, we return to polynomials. From what we just established, field extensions
induce, in a sense, new roots. This was formalized by Kronecker.

Theorem 3.11. (Kronecker) Let F be a field and let f(x) ∈ F [x] be an irreducible
polynomial over F . Then there exists a finite extension F ′ of F where f(x) has a
root.

A relatively simple proof that uses quotient rings is presented in [1]. However,
for our purposes, we need not introduce the notion of a quotient ring, so we’ll leave
the proof in the references.

Importantly, Kronecker’s theorem shows that we can essentially adjoin roots to a
field. Specifically, given an algebraic integer α that is a root of some polynomial in
F [x], the extension F ′ = F (α) is the result of adjoining the root of some polynomial
to F . As such, we may say that polynomials induce algebraic extensions.

Specifically, if we can find an extension that contains one root of some polyno-
mial, then we may factor said polynomial into a product of a linear term and a
polynomial of smaller degree - for which we can again find some root. This process
of root discovery allows us to factor the polynomial into the product of n linear
terms, where the roots may or may not be within the ground field.

Definition 3.12. [3] Let k be a field and let f ∈ k[X] be a polynomial of degree
n. An extension K/k is called a splitting field if

f(x) = c

n∏
i=1

(X − αi),

for αi ∈ K and c ∈ k.

Example 3.13. The splitting field of R is C, by the Fundamental Theorem of
Algebra.

Furthermore, note that the Fundamental Theorem of Algebra is equivalent to
the statement that C is its own splitting field, or in other words algebraically
closed (we’ll use this terminology more in the next section). From here, we may
begin to get a sense of why such fields are of importance.

We are finally ready to introduce the necessary machinery of Galois Theory to
accomplish our proof.
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4. Galois Extensions

Recall from the introduction that Galois Theory formalizes the interplay be-
tween groups and fields. Specifically, we associate certain types of algebraic field
extensions called Galois Extensions to a Galois Group. We’ll introduce each
shortly. First, we build the necessary theory to define a Galois extension.

Definition 4.1. (Normality) We say that an extensionK/k is a normal extension
if K is a splitting field over k.

Note that this is just a difference in terminology. All normal extensions are
simply splitting fields. Next, define a simple root of a polynomial as a root α of
multiplicity 1. If this root has multiplicity > 1, then it is called a multiple root.

Definition 4.2. (Separability) Suppose K/k is a finite extension with α ∈ K.
Then α is separable over k if α is a simple root of irr(α, F ). If all α ∈ K are
separable over k, then K is called a separable extension of k.

In this regard, we may also extend this definition to polynomials. Specifically,
we say that a polynomial f(x) ∈ K[x] is separable if all of its roots have multiplicity
1 in the splitting field.

Example 4.3. Consider the following few polynomials [4]:

(1) f(x) = x2 − x is separable over R[x] because it has roots 0, 1.
(2) f(x) = x3 − 2 is separable over C since it has distinct complex roots.
(3) However, f(x) = x3 − 2 is not separable over F3[x] (i.e., the set of polyno-

mials with integer coefficients modulo 3), since f(x) = x3 − 2 ≡ (x + 1)3

over F3[x], which has multiple roots.

These examples make more clear the definition of separable extensions. Specifi-
cally, from [4],

Example 4.4.
√
2 and

√
3 are both separable over Q, since their minimal polyno-

mials x2 − 2 and x2 − 3 have distinct roots over Q. Note that this implies that the
extension Q(

√
2,
√
3)/Q is separable.

If we try to test extensions of, say, Q, we find that it is difficult to actually
construct an extension that is not separable. As it turns out, separability is often
a nice consequence of a certain property of a field.

Definition 4.5. Suppose (1) is the multiplicative identity of a field. A field F has
characteristic n if n is the least positive integer such that (n)(1) = 0 in F . If no
n exists, then we say that F has characteristic 0.

Note that R Q, and C all have characteristic 0. The field F2 has characteristic 2,
since 1+1 ≡ 0+0 ≡ 0 (mod 2). Similarly, all fields of the form Fp = {0, 1, · · · p−1}
have characteristic p.

Theorem 4.6. In general, we have the following:

(1) The characteristic of any field is either 0 or prime.
(2) Any extension of a field of characteristic 0 must be separable. Specifically,

all extensions of Q,Z, or R are separable.

While not obvious why separability is of importance just yet, we’ll also need
one more theorem, called the Primitive Element Theorem. However, before
proving this theorem, we will need the following lemma.
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Lemma 4.7 (number of automorphisms fixing a ground field). Suppose K/F is a
finite separable field extension. Then the number of automorphisms of K fixing F
is equal to the degree |K : F |.

The proof of this lemma is quite involved. Consult [5] for a detailed explanation.

Theorem 4.8 (Primitive Element Theorem). If K is a finite separable extension
of F , then K is a simple extension. In other words, K = F (α) for some α ∈ K.

Proof. We’ll show that if K = F (α, β), then K = F (γ). Any more variables, and
we simply induct down.

Clearly, we must have γ = α + cβ for some c ∈ F , since F (α + cβ) ⊂ F (α, β).
Now, let |F (α, β) : F | = n. Now, from Lemma 4.7, are n distinct automorphisms
σ1, . . . σn that fix F .

Claim: There exists c > 0 such that σ1(α+ cβ), . . . σn(α+ cβ) are distinct.

To see this, consider

p(x) =
∏
i<j

(σi(α+ xβ)− σj(α+ xβ)).

Note that this is not zero unless σi(β) = σj(β) and σi(α) = σj(β). However, as
α, β, and F span K, it follows that σi = σj , which cannot be true.

Hence, for some c, σi(α + cβ) − σj(α + cβ) ̸= 0 for all pairs (i, j). It follows
that σi(α + cβ) is distinct for all 1 ≤ i ≤ n, meaning that there are n distinct
automorphisms that fix F over F (α+ cβ). However, this implies that |F (α+ cβ) :
F | = n, which means F (α+ cβ) ≡ F (α, β), as desired. □

Finally,

Definition 4.9. A Galois Extension of F is a finite, separable, normal extension.

In other words, any Galois extension K over F satisfies the following properties:

(1) The number of automorphisms over K fixing F is equal to |K : F |.
(2) K is a splitting field over F , and moreover every algebraic number in K is

a simple root of its minimal polynomial.

5. Galois Groups

In the previous section, we discussed automorphisms of field extensions, specifi-
cally, those that fixed their ground field. It turns out that these extensions have a
very special name.

Definition 5.1. If K is a Galois Extension of F , then the Galois Group of K
over F is equal to the set of automorphisms over K that fix F . This is denoted as
Gal(K/F ).

In a similar manner, it makes sense to ”go backwards”. Essentially, given a set
of automorphisms H, we denote by KH as the subfield of K that is fixed by H.
In the case of a Galois group, we have that Gal(K/KH) = H. This notation will
show up in later definitions, which is why we introduce it here.

Moreover, from Lemma 4.7, |Gal(K/F )| = |K : F |. We also have the following
lemma, where a proof can be found in [2]:

Lemma 5.2. Suppose F ⊂ E ⊂ K with K Galois over F (i.e., K/F is a Galois
extension). Then,
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(1) K is galois over E, and Gal(K/E) ⊂ Gal(K/F ). Note that as Gal(K/E)
is a group, the latter is actually a subgroup of the former.

(2) If H is a subgroup of Gal(K/F ), then E = KH satisfies F ⊂ E ⊂ K.
Recall also that we must have Gal(K/E) = H.

Since we have dealt extensively with polynomials, it also makes sense to define
the Galois Group for polynomials. Specifically,

Definition 5.3. Let f be irreducible over F and K be the splitting field of F .
Then, K is Galois over F , and the group Gal(K/F ) called the Galois Group of
the polynomial.

In other words, if we take the splitting field of some polynomial, then consider
the Galois Group of said splitting field over the ground field, we are left with the
Galois Group of the polynomial.

Now consider some arbitrary automorphism σ in Gal(K/F ). If we consider some
f ∈ K[x] with roots α1, . . . αn, then

σ(f) =

n∑
i=0

fi(σ(x))
i.

In other words, for any root αi, σ(αi) is also a root. Hence, σ must permute the
roots {α1, · · ·αn}.

Now, we are finally able to discuss the Fundamental Theorem of Galois
Theory.

6. The Fundamental Theorem of Galois Theory

Pretty much all of the fundamental results of Galois Theory can be united into
a singular theorem, which is as follows:

Theorem 6.1 (Fundamental Theorem of Galois Theory [2] ). Let K be a Galois
extension of F with Galois group G = Gal(K/F ). Then, for each intermediate field
K ⊂ E ⊂ F , let τ(E) be the subgroup of G fixing E. Then:

(1) τ is a bijection between intermediate fields containing F and subgroups of
G - in other words, we may biject some subgroup of G to some intermediate
field of K (recall that an intermediate field is a subfield of K that contains
F ).

(2) If H is a subgroup of G and E = KH , then τ(E) = H. Hence, the bijection
described above maps E to H.

(3) |G| = |K : F |
(4) |E : F | = |G : τ(E)|. That is, the degree of the intermediate field extension

is equal to the index of the corresponding subgroup (in this case, τ(E)) in
the Galois group.

(5) E is Galois over F if and only if τ(E) is a normal subgroup of G. In this
case,

Gal(E/F ) ∼= G/τ(E) ∼= Gal(K/F )/Gal(K/E).

The first part of the theorem is an excellent contextualization of the interplay
between groups and fields. Here, we are saying that there is a fixed function τ such
that we may map any subgroup of G to any intermediate field E. Note that when
E = KH , E is the subfield of K fixed by H, so τ(E) = H.
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Next, we recall that |G| = |K : F | by Lemma 4.7, and (4) is simply an extension
of 3 to a more general case.

Lastly, (5) follows from the First isomorphism theorem, discussed in section 2.
Note that the result in (4) follows from the left-hand isomorphism in (5)

While we won’t need (5) here, we’ll present a toy example that illustrates the
fundamental results of Galois Theory by relating automorphism groups to fixed
intermediate fields, from [2].

Example 6.2. Consider the group K = Q(
√
2,
√
3). Note that this is a Galois

extension since Q has characteristic 0. Next, note that |Q(
√
2,
√
3) : Q| has degree

4, since |Q(
√
2) : Q| = 2 (as it has minimal polynomial x2 − 2), and Q(

√
2,
√
3) =

Q(
√
2)(

√
3), which is also a degree 2 extension over Q(

√
2).

Hence, we would expect Gal(K/Q) to have degree 4. Indeed, let’s enumerate
them:

σ1 :
√
2 →

√
2,

√
3 →

√
3

σ2 :
√
2 → −

√
2,

√
3 → −

√
3

σ3 :
√
2 → −

√
2,

√
3 →

√
3

σ4 :
√
2 →

√
2,

√
3 → −

√
3

Now, note that σ2 = σ3 ◦ σ4, so if we let σ1 = e, the identity, σ3 = σ, and
σ4 = τ , then σ2 = στ . Hence, the group representation is Gal(K/Q) = {1, σ, τ, στ}.
Moreover, note that each element has order 2.

Next, let’s list subgroups, and their corresponding fixed fields:

(1) If we let H = {1}, then the fixed field is K.

(2) If we let H = {1, σ}, then the fixed field is Q(
√
3)

(3) Similarly, if we let H = {1, τ}, then the fixed field is Q(
√
2).

(4) Lastly, let us considerH = {1, στ}. This fixes neither
√
2 nor

√
3. However,

note that
√
6 = (−

√
2)(−

√
3), so Q(

√
6) is fixed, which is an extension of

order 2 over Q as expected.

The above example illustrates the relationship between Galois groups and inter-
mediate Galois extensions, which will be useful in providing proof for the Funda-
mental Theorem of Algebra.

7. The Fundamental Theorem of Algebra

Theorem 7.1 (Fundamental Theorem of Algebra). Every polynomial f(x) ∈ C[x]
has a root in C.

Before we begin the proof, let’s write this in the language of Galois Theory. If
we strictly consider polynomials f ∈ C[x] and their roots, we know that there exists
some extension of that contains all of the roots of f . However, if f has a root r
in C, then g(x) = f(x)/(x − r) is also a polynomial in C. By the hypothesis, this
must also have a root in C, and so on. Hence, every root in f must be in C.

In other words, if we consider a Galois extension K of C, it must be C itself.
This is what we will prove.

Proof. Before we look at extensions of C, let’s first look at extensions of R. Specif-
ically, let K be a Galois extension of R satisfying |K : R| = q, where q is odd.
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Because K is Galois and finite, it is also a simple extension, from the Primitive
Element Theorem.

Hence, we may write K = R(α) for some algebraic α. It follows that the minimal
polynomial of α has odd degree q. Write

irr(α,R) = aqx
q + · · ·+ a0.

If we take x → −∞, this polynomial tends to −∞ since xq is negative. On the
other hand, as x → ∞, irr(α,R) → ∞. Since the polynomial is continuous, some
x ∈ R is a root. However, this means that the polynomial is not irreducible over
R, a contradiction.

Hence, there exist no odd degree extensions over R. We now turn back to
extensions of C. Suppose K is a Galois extension of C. We may write K = C(α).
We note that if K has degree 2, then α is the root of a quadratic, but by the
quadratic formula, the roots of any quadratic are necessarily complex, which means
that the polynomial is not irreducible over C. Hence, K cannot have degree 2.

Now, we turn back to R. Let K be the Galois extension satisfying |K : R| = 2mq,
where m > 0 and gcd(q, 2) = 1. Then, the Galois group G = Gal(K/R) has order
2mq. Now recall Sylow’s Theorem (Theorem 2.9). From this, we note that G
necessarily has a subgroup G′ of order 2m.

However, recall that Galois Theory allows us to relate subgroups of the Galois
group to intermediate fields E satisfying R ⊂ E ⊂ K. Specifically, from part (4) of
the Fundamental Theorem of Galois Theory, we have

|E : R| = |G : τ(E)| = q,

because G/τ(E) has order 2mq
2m by Lagrange’s Theorem.

However, as q is odd, and no odd degree extensions exist over R, we must have
q = 1, i.e., E = R. Hence, |K : R| = 2m. It follows that |K : C| = 2m−1. If
m > 1, then by Sylow again, an intermediate field extension must exist of degree
2. However, we have already established that this is impossible. Hence, m = 1,
meaning K = C, as desired. □

This proof illustrates the power of Galois Theory in relating groups and fields.
Most importantly, we are able to relate respective degrees of extensions to orders
of quotient groups using the notion of automorphism groups. We have used these
relationships to prove the Fundamental Theorem of Algebra, but Galois Theory
can also be used to verify a multitude of other seemingly unrelated problems. For
example, Galois Theory was famously used to prove that there exists no closed form
solution to any polynomial of degree greater than 4, which came from
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