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Introduction

Operads appear everywhere in mathematics and have been used by many peo-
ple in many fields since their introduction in the early 1970’s. In particular, there
is an operad P in the category CAT of (small) categories that captures familiar
structures. Recall that a permutative category is a symmetric strict monoidal cate-
gory, so that its product is strictly associative with a strict unit. Coherence theory
tells us that permutative categies are the strictest possible structured categories
equivalent to symmetric monoidal categories.

2020 Mathematics Subject Classification. Primary 55P42, 55P43, 55P91;
Secondary 18A25, 18E30, 55P48, 55U35.
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thm1

Theorem 0.1. The category P[Cat] of P-algebras in CAT is isomorphic to the
category of permutative categories. The category Pps[Cat] of P-pseudoalgebras in
CAT is equivalent to the category of symmetric monoidal categories.

In the first case, we require morphisms to be strict monoidal. In the second we
only require them to be lax monoidal. We shall not go into detail about pseudo-
functors in this paper. There are other ways of dealing directly with general (small)
symmetric monoidal categories, but I prefer to rely on the standard categorical
result that symmetric monoidal categories can be functorially strictified to permu-
tative categories.

Symmetric bimonoidal categories V , with two products ⊕ and ⊗ related as in
the common examples, such as sets (or spaces or categories) with disjoint union and
cartesian products, that is coproducts and products, or modules over a commuta-
tive ring with direct sums and tensor products, are also ubiquitous. The categorical
literature about them is far less extensive than their importance warrrants. The
only treatments that I have found are LaPlaza’s from 1972 [Lap72], a 2020 gen-
eralization (from symmetric to braided) of Blass and Gurevich [BG20], and the
encyclopedic recent work of Johnson and Yau [JY].

The main purpose of this paper is to introduce the new concepts of multiplicative
operads, or “moperads”, and of “bioperads”. We shall define bioperads and their
algebras, produce a canonical bioperad Pbi in Cat, and prove the following result.
Here symmetric bimonoidal categories are as first defined by LaPlaza (with mild
caveats as in JY), and bipermutative categories are the strictest possible equivalent
analog, as first defined in [May77, Definition VI.3.3].

thm2

Theorem 0.2. The category Pbi[Cat] of Pbi-algebras in CAT is isomorphic to
the category of bipermutative categories. The category Pbi

ps[Cat] of Pbi-pseudo-
algebras in CAT is equivalent to the category of symmetric monoidal bicategories.

It is very easy to generalize moperads and bioperads equivariantly. We give the
first definition of bipermutative and symmetric bimonoidal G-categories here. Our
focus is on finite groups, but the definition is general.

We then generalize bioperads to “moperad pairs”, which consist of an additive
classical operad and a moperad, related by a distributivity diagram. In a sequel
[May], we shall use this general categorical theory to (re)develop multiplicative
equivariant infinite loop space theory. There we shall use [KMZ24] to give a quite
elementary construction of E∞ ring G-spectra from bipermutative G-categories.
For example, for a Galois extension L of K with Galois group G, this gives an E∞
ringG-spectrumRL/K whoseH fixed point spectrumRH

L/K is the classicalK-theory

spectrum of the fixed field LH . This achingly elementary operadic construction
should lend itself to calculations.

We have separated out the very general categorical definitions given here from
their use in algebraic topology since the history of operads in mathematics strongly
suggests that the general theory will have many examples and applications that
have nothing to do with algebraic topology.

The new topological theory is more general and, even nonequivariantly, much
simpler than the earlier theory, which used operad pairs. Those consist of two
classical operads related by a distributivity diagram. Both notions feed into the
axiomatically redeveloped foundations of infinite loop space theory developed by
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Hana Kong, Foling Zou, and myself [KMZ24]. It is the passage from bipermutative
bicategories to a new version of E∞ ring spaces that simplifies. We warn the reader
that the new notions of E∞ ring spaces and E∞ ring spectra have not yet been
fully compared with the old notions. We prove in the sequel that the new notion
of an E∞ ring spectrum is equivalent to the one first introduced in the 1970’s and
therefore to all of its equivalent modernizations. In the ringlike case, it will follow
that the two notions of E∞ ring space are also equivalent. However, more direct
“exponential and logarithmic” categorical comparisons are not yet in place.

We think of the symmetric groups as giving the starting model of our theory.
Taking M (j) = Asso(j) = Σj and using the product Σm × Σn −→ Σm+n, we
obtain the associativity operad M in the category SET of sets. Its algebras are
the monoids. Writing n for the set {1, · · · , n}, that product between symmetric
groups is obtained by identifying m⨿ n with m+ n.

Using lexicographic ordering of pairs, we can also identify m×n with mn. That
gives a product Σm × Σn −→ Σmn.

1 With this as a guide, we define moperads
by replacing sums by products in the definition of operads and making a number
of other changes to make sense of the new notion. In particular, that leads to the
moperad M×. Adding in distributivity, we obtain the bioperad M bi. These are
all in SET.

We categorify by applying the functor E : SET −→ CAT that sends a set S
to the indiscrete, or chaotic, category with objects the elements of S and a unique
morphism between each pair of objects. Since every object of E (S) is initial and
terminal, the classifying space functor given by BE (S) = |NE (S)|, where N is
the nerve functor from CAT to the category sSET of simplicial sets, lands in
contractible spaces. Visibly, BE (Σj) has a free (right) action by Σj .

In more detail, the functors E and N are right adjoints and | − | also preserves
products. Therefore E takes operadic structures in SET to operadic structures in
CAT, N takes them from CAT to sSET, and |−| takes them from sSET to TOP.
If Σj acts freely on the jth term of an operad in SET, then Σj acts freely on the
jth term of the resulting operads in CAT, sSET, and TOP. Since these terms are
all contractible, we obtain E∞ operads, moperads, and bioperads P, P×, and Pbi

in each of CAT, sSET, and TOP by applying our functors to M , M×, and M bi.
(When it seems necessary for clarity, we add a superscript to indicate where P
lives; the default is CAT). While it is a bit finicky to write down the full algebraic
structures explicitly, they are clearly there since the symmetric groups are there.

We generalize equivariantly by applying the functor CAT(E (G),−) from cate-
gories to G-categories before applying N and | − |. Applied to P, P×, and Pbi,
this gives equivariant variants PG, P×

G , and Pbi
G . It has long been understood that

PG-algebras give the right notion of a permutative G-category. We therefore define
bipermutative G-categories to be Pbi

G -algebras. Applied to permutative and biper-
mutative categories, the functor CAT(E (G),−) gives lots of examples. Applying
the machine of [May], this will give lots of concrete constructions of G-spectra and
E∞ ring G-spectra, including those of equivariant algebraic K-theory.

1. A review of operads and their algebras
opsandacts

We recall the classical definition of an operad, which we think of as “additive”,
before defining the new analog that we think of as “multiplicative”. In this section

1This product was used operadically in [GM11], but not in the way we shall use it here.
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and the next, we let V be a symmetric monoidal category. However, we return
to this assumption later, just noting here that it needs thought when V has more
than one symmetric monoidal structure. We denote the product on V by ⊗, again
provisionally, and its unit by u. Additively, we will later think of u as 0.

operads

1.1. The definition of operads.
operad

Definition 1.1. An operad C in V consists of objects C (j), j ≥ 0, of V , a unit
id : u → C (1), a right action by the symmetric group Σj on C (j) for each j, and
product maps

γ : C (k)⊗ C (j1)⊗ · · · ⊗ C (jk) −→ C (j+)

for k ≥ 0 and jr ≥ 0, where j+ = j1 + · · ·+ jk. Usually C (0) = u, and when k = 0
we then interpret γ as the identity map of C (0). The γ are required to be unital,
associative, and equivariant in the following senses.

(i) The following unit diagrams commute:

C (k)⊗ uk

Id⊗idk

��

∼= // C (k) u⊗ C (j)

id⊗ Id

��

∼= // C (j)

C (k)⊗ C (1)k

γ

88

C (1)⊗ C (j)

γ

99
.

(ii) The following associativity diagrams commute. Here we reorder the finite set
{t|1 ≤ t ≤ j+} in blocks as {(r, q)|1 ≤ r ≤ k, 1 ≤ q ≤ jr} and we set

Σk
r=1jr = j+, Σj

t=1it = i+ = Σk
r=1hr, where hr = Σjr

q=1ir,q

C (k)⊗
(
⊗k

r=1 C (jr)
)
⊗
(
⊗j+

t=1 C (it)
)

Id⊗shuffle

��

γ⊗Id // C (j)⊗
(
⊗j+

t=1 C (it)
)

γ

��
C (i+)

C (k)⊗
(
⊗k

r=1

(
C (jr)⊗ (⊗jr

q=1C (ir,q)
))

Id⊗γk

// C (k)⊗
(
⊗k

r=1 C (hr)
)
.

γ

OO

(iii) The following equivariance diagrams commute, where σ ∈ Σk and τr ∈ Σjr .
The permutation σ(j1, . . . , jk) ∈ Σj permutes k blocks of letters as σ permutes
k letters and τ1⊕· · ·⊕τk ∈ Σj is the block sum (with some historical ambiguity
in the phraseology sorted out in in Remark 1.2 below):

C (k)⊗ C (j1)⊗ · · · ⊗ C (jk)

γ

��

σ⊗σ−1

// C (k)⊗ C (jσ(1))⊗ · · · ⊗ C (jσ(k))

γ

��
C (j)

σ(jσ(1),...,jσ(k))
// C (j)
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Here σ acts from the right on C (k) but acts from the left on tuples.

C (k)⊗ C (j1)⊗ · · · ⊗ C (jk)

γ

��

Id⊗τ1⊗···⊗τk // C (k)⊗ C (j1)⊗ · · · ⊗ C (jk)

γ

��
C (j)

τ1⊕···⊕τk
// C (j).

con1

Remark 1.2. The original definition of an operad [May72, Definition 1.1] used
equations more than diagrams and in particular used the equation

γ(c; d1, · · · , dk) = γ(c; δσ−1(1), · · · , δσ−1(k))σ(j1, · · · , jk)

for the first equivariance diagram. Our transcription to a diagram follows [May97,
Definition 1]. The permutations σ(j1, · · · , jk) and τ1⊕· · ·⊕τk are precisely defined
by commutative diagrams of finite sets, in which all actions of permutations are
from the right:

jσ−1(1) ⨿ · · · ⨿ jσ−1(k)
σ //

∼=
��

j1 ⨿ · · · ⨿ jk

∼=
��

j+
σ(j1,··· ,jk)

// j+

and j1 ⨿ · · · ⨿ jk
τ1⨿···⨿τk//

∼=
��

j1 ⨿ · · · ⨿ jk

∼=
��

j+ τ1⊕···⊕τk
// j+

Here the vertical arrows are the respective block sum identifications. With the right
action by σ at the top of the left diagram here converted to a left action by σ−1 and
with the target then converted to seeing (1, . . . , k) rather than (jσ−1(1), · · · , jσ−1(k)),

we obtain the first equivariance diagram as written in Definition 1.1.2

Using just right actions, these diagrams say that γ is Σk and (Σj1 × · · · × Σjk)-
equivariant. Conceptually, we are using block sums to transport the coproduct on
the Σ-category of finite ordered sets to a coproduct on its canonical skeleton, where
Σ is the category

∐
Σn of symmetric groups.

opact

1.2. The definition of algebras over an operad. Thinking of elements as op-
erations, we think of γ(c; d1, · · · , dk) as the composite of the operation c with the
“product” of the operations dr. Let X

j denote the j-fold ⊗ power of an object X,
with Σj acting on the left. By convention, X0 = u.

Addact

Definition 1.3. Let C be an operad. A C -algebra is an (unbased) object X of V
together with maps

θ : C (j)⊗Xj → X

for j ≥ 0 that are unital, associative, and equivariant in the following senses.
We now require C to be unital (alias reduced) meaning that C (0) = u. Then
θ : C (0) ⊗ u −→ X gives X a base element u −→ X, which we will later think of
as 0; if X comes with a base element, we insist that it is the base element built in
by the operad action.

2Our definition of σ(j1, · · · , jk) follows the history and is consistent, but a renaming

of σ(j1, · · · , jk) here as σ(jσ−1(1), · · · , jσ−1(k)) would result in σ(j1, · · · , jk) rather than

σ(jσ(1), · · · , jσ(k)) appearing in the first equivariance diagram. I thank Isiaiah Daily for help-

ing me sort this out.
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(i) The following unit diagram commutes:

u⊗X
∼= //

id⊗ Id

��

X

C (1)⊗X.

θ

::

(ii) The following associativity diagram commutes, where j+ =
∑

jr:

C (k)⊗ C (j1)⊗ · · · ⊗ C (jk)⊗Xj+

Id⊗shuffle

��

γ⊗Id // C (j+)⊗Xj+

θ

��
X

C (k)⊗ C (j1)⊗Xj1 ⊗ · · · ⊗ C (jk)⊗Xjk
Id⊗θk

// C (k)⊗Xk.

θ

OO

(iii) The following equivariance diagrams commute, where σ ∈ Σj :

C (j)⊗Xj

γ
$$

σ⊗σ−1

// C (j)⊗Xj

γ
zz

X.

The following elementary example is central.
sym1

Example 1.4. For the associativity operad M = ASSO, we take V = SET to be
the cartesian monoidal category SET and take M (j) = Σj , thought of as recording
all permutations of j-fold iteration of an associative product on an M -algebra, alias
monoid, X. Here the “product” ⊕ is given by maps

(1.5)
prod1prod1

Σj1 × · · · × Σjk −→ Σj1+···+jk = Σj+ .

This product gives γ(ek; τ1, · · · , τk). The γ(σ; τ1, · · · , τk) for other σ ∈ Σk are then
determined by the first equivariance formula.

additive

Remark 1.6. Conceptually, we are thinking of permutations as automorphisms of
finite sets, and passage from sets to their automorphisms sends disjoint unions to
cartesian products. This point of view allows us to think of M as “additive”.

2. Multiplicative operads, alias “moperads”, and their algebras
mopactsmoperads

2.1. The definition of moperads. The definition of multiplicative operads is
motivated in part by the multiplicative analog of Example 1.4 to be given in Ex-
ample 2.9. The definition is nearly as simple as that of an operad and should be
just as old, but I believe that it is new. The cited analog uses cartesian products
rather than disjoint unions of finite sets with jr elements, together with the iden-
tification of the lexicographically ordered product of such sets with the ordered set
j× = j1 × · · · × jr. That gives a “product”, which we denote by ⊗,

(2.1)
prod2prod2

Σj1 × · · · × Σjk −→ Σj1···jk = Σj× .
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In precise analogy with the additive theory, we define permutations σ < j1, · · · , jk >
and τ1 ⊗ · · · ⊗ τk by commutative diagrams of finite sets, with all group actions
from the right3:

jσ−1(1) × · · · × jσ−1(k)
σ //

∼=
��

j1 × · · · × jk

∼=
��

j×
σ<j1,··· ,jk>

// j×

and j1 × · · · × jk
τ1×···×τk//

∼=
��

j1 × · · · × jk

∼=
��

uyj× τ1⊗···⊗τk
// j×

The vertical arrows are the respective lexicographic identifications.
Let (V ,⊗, v) be a symmetric monoidal category. We have changed the name of

the unit object to v, and we will later think of it as 1. To handle unit conditions in
moperads, we also require an analog of the contravariant functor C : Λ −→ V that
appears in handling basepoints in operad theory.

opmop

Definition 2.2. Let Λ>0 denote the category of unbased finite sets n = {1, · · · , n}
and injections. A Λ>0-functor C× in a symmetric monoidal category V is a covari-
ant functor Λ>0 −→ V .4 For k ≥ 1 and 1 ≤ r ≤ k+1, let ιr be the ordered injection
k −→ k+ 1 that misses the rth letter. Then C× has maps ιr : C×(k) −→ C×(k+1)
that, together with (right) actions of symmetric groups, generate C× as a functor.
Note that we do not require and do not want objects C×(0) in this definition.

Not1

Notation 2.3. Suppose given a Λ>0-functor C× and a unit map ι0 : v −→ C (1).
We need implied maps to express the unit and associativity conditions in the fol-
lowing definition. For any j, we write ι : v −→ C×(j) for any (ordered) injection
obtained by composing ι0 with iteration of maps ιr.

For 1 ≤ r ≤ k + 1, in addition to the maps ιr : C×(k) −→ C×(k + 1), we define

ιr,0 : ⊗k
s=1 C×(js) −→ ⊗r−1

s=1C
×(js)⊗ C×(1)⊗⊗k

s=r+1C
×(js)

by inserting ι : v −→ C (1) in the rth slot.
Suppose given numbers ir,q for 1 ≤ r ≤ k and 1 ≤ q ≤ jr. Identify the numbers

j+ and j× as the ordered sets j1 ⨿ · · · ⨿ jk and j1 × · · · × jk, with block sum and
lexicographic ordering. Assume that j+ ≤ j×, as always holds if all jr > 1. Observe
that the lexicographically ordered set of k-tuples

Q = (q1, · · · , qk) =
(
(1, q1), · · · , (k, qk)

)
, 1 ≤ qs ≤ js,

can be identified with the ordered set {1 ≤ t ≤ jx}. With these notations, the
evident ordered inclusion of j+ in j× sends (r, q) to the sequence (1r−1, q, 1k−r).
We then obtain maps, denoted ιr,q,

C×(ir,q) = vr−1 ⊗ C×(ir,q)⊗ vk−r

ιr,q=ιr−1⊗Id⊗ιk−r

��
⊗r−1

s=1C (is,1)⊗ C (ir,q)⊗⊗k
s=r+1C (is,1).

We allow any choices of the maps ι. Again allowing any choices of the maps ι, we
also have maps

ι = ιk : v = vk −→ ⊗k
s=1C

×(is,qs)

3As in the previous footnote, we could clean up the first equivariance diagram by renaming

the permutation σ < j1, · · · , jk >.
4Covariance gives a left action of Σn on C (n), but we use the corresponding right action.
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for each sequenceQ. For each (r, q), write q = qr. For 1 ≤ r ≤ k and 1 ≤ qr ≤ jr, we
have maps ιr,qr . Using these maps on indexing sequences Q = (1r−1, (r, qr), 1

k−r)
and using maps ι on all other index sequences Q, we obtain maps

ι : ⊗k
r=1 ⊗

jr
q=1C

×(ir,q) −→ ⊗k
r=1 ⊗Q=(q1,··· ,qk) C (i1,q1)⊗ · · · ⊗ C (ik,qk).

The intuition is that the various maps ι insert identity operations in appropriate
positions.

moperad

Definition 2.4. A multiplicative operad, or moperad,5 C× in V consists of a
Λ>0-functor C× together with a unit map ι0 : v → C×(1) and product maps

(2.5)
equ3equ3

γ× : C×(k)⊗ C×(j1)⊗ · · · ⊗ C×(jk) → C×(j×)

for k ≥ 1 and jr ≥ 1, where j× = j1 · · · jk. (We do not allow k or any jr to be zero).
Our maps must be unital, associative, and equivariant in the following senses.

(i) The following unit and unit element diagrams commute:

C×(1)⊗ v

Id⊗ι0

��

∼= // C×(1) v ⊗ C×(j)

ι0⊗Id

��

∼= // C×(j)

C×(1)⊗ C×(1)

γ×

77

C×(1)⊗ C×(j)

γ×

77

C×(k)⊗⊗k
s=1C

×(js)
γ×

//

ιr⊗ι0,r

��

C×(j×)

C×(k + 1)⊗
(
⊗r−1

s=1 C×(js)
)
⊗ C×(1)⊗

(
⊗k

s=r+1 C×(js)
)γ×

33

(ii) The following associativity diagrams commute when j+ ≤ j×.

C×(k)⊗
(
⊗k

r=1 C×(jr)
)
⊗
(
⊗Q ⊗k

r=1C (ir,qr )
) γ×⊗Id // C×(j×)⊗⊗j×

t=1C
×(it)

γ×

��
C×(k)⊗

(
⊗k

r=1 C×(jr)
)
⊗
(
⊗k

r=1 ⊗
jr
q=1C

×(ir,q)
)Id⊗(⊗r Id⊗ι)

OO

C×(i×)

C×(k)⊗⊗k
r=1C

×(jr)⊗⊗jr
q=1C

×(ir,q)
Id⊗(γ×)k

//

Id⊗ shuffle

OO

C×(k)⊗⊗k
r=1C

×(ir,×)

γ×

OO

We can use the third diagram in (i) to get around the limitation j+ ≤ j×. In
effect, that diagram increases j+ without changing j× or γ×. We can use ιr
in that diagram for any r, iterating as needed.

(iii) The following equivariance diagrams commute:

C×(k)⊗ C×(j1)⊗ · · · ⊗ C×(jk)

γ×

��

σ⊗σ−1

// C×(k)⊗ C×(jσ(1))⊗ · · · ⊗ C×(jσ(k))

γ×

��
C×(j×)

σ<jσ(1),··· ,jσ(k)>
// C×(j×)

5Clumsy attempt at wit: moperads help mop up the multiplicative theory.
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and

C×(k)⊗ C×(j1)⊗ · · · ⊗ C×(jk)

γ×

��

Id⊗τ1⊗···⊗τk // C×(k)⊗ C×(j1)⊗ · · · ⊗ C×(jk)

γ×

��
C×(j×) τ1⊗···⊗τk

// C×(j×).

mactions

2.2. The definition of algebras over a moperad. Again let Xj denote the
j-fold ⊗ power of an object X, with Σj acting on the left. We need an analog of
Notation 2.3 to obtain the associativity diagram in the following definition.

Not2

Notation 2.6. Let X ∈ V be an object with a unit map ι0 : v −→ X. Viewing
Xj+ as ⊗k

r=1X
jr and Xj× as the ⊗ product of copies of X indexed on the lexico-

graphically ordered set of k-tuples Q = (q1, · · · , qk), where 1 ≤ qr ≤ jr, we define
ι : Xj+ −→ Xj× as follows. For 1 ≤ r ≤ k, define Qr to be the ordered set of those
k-tuples Q such that qs = 1 if s ̸= r. Since 1 ≤ qr ≤ jr, this set has jr elements.
We define Xr to be the product of copies of X indexed on the ordered set Qr. This
gives an identification νr : X

jr −→ Xr. For any choices of jr, define ι by extending
the resulting identification

⊗rνr : ⊗r X
jr −→ ⊗rXr

by taking the coordinates of Xj× indexed on Q not in any Qr to be 1k.
Multact

Definition 2.7. Let C× be a moperad. A C×-algebra is an (unbased) object X
of V together with maps

ι0 : v −→ X and θ× : C×(j)⊗Xj → X

for j ≥ 1 that are unital, associative, and equivariant in the following senses.

(i) The following unit and unit element diagrams commute:

v ⊗ v ∼= v
id //

ι0⊗ι0

��

X C×(j)⊗Xj θ×
//

ιr⊗ιr

��

X

C×(1)⊗X

θ×

::

C×(j + 1)⊗Xj+1.

θ×

88

Here 1 ≤ r ≤ j + 1 and ιr inserts id : v −→ X in the rth coordinate.
(ii) The following associativity diagram commutes, where j+ ≤ j×.

C×(k)⊗ C×(j1)⊗ · · · ⊗ C×(jk)⊗Xj×
γ×⊗Id // C×(j×)⊗Xj×

θ×

��
C×(k)⊗ C×(j1)⊗ · · · ⊗ C×(jk)⊗Xj+

Id⊗ι

OO

X

C×(k)⊗ C×(j1)⊗Xj1 ⊗ · · · ⊗ C×(jk)⊗Xjk

Id⊗(θ×)k
//

shuffle

OO

C×(k)⊗Xk.

θ×

OO

We can use the second diagram in (i) to get around the limitation j+ ≤ j×.
In effect, that diagram increases j+ without changing θ×. We can use ιr in
that diagram for any r, iterating as needed.
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(iii) The following equivariance diagram commutes, where σ ∈ Σj :

C×(j)⊗Xj

θ×
%%

σ⊗σ−1

// C×(j)⊗Xj

θ×
yy

X.
ass

Remark 2.8. The associativity diagram in (ii) can be viewed as a parametrization
of the equality

x1,1 · · ·x1,j1 · · ·xk,1 · · ·xk,jk = (x1,1 · · ·x1,j1) · · · (xk,1 · · ·xk,jk)

for elements (xr,1 · · ·xr,jr ) for 1 ≤ r ≤ k in a monoid. We see the product on the
left by going up, right, and down from the bottom left vertex and see the product
on the right by going right and up. In particular, when k = 2 and j1 = j2 = 2, the
diagram can be thought of as parametrizing the equation wxyz = (wx)(yz), and
then (i) shows that we can take any of the variables to be 1 to obtain a parametrized
associativity relation. Note the distinction between the unit element ι0 = 1 ∈ X
and the identity operation coming from ι0 : v −→ C×(1).

sym2

Example 2.9. We define M×(j) = Σj . The product (2.1) defines γ
×(ek; τ1, · · · , τk)

and the first equivariance formula extends it to give γ×(σ; τ1, · · · , τk) for σ ∈ Σk.
The remaining axioms are verified by the elementary verifications that motivated
Definition 2.4 in the first place. Thinking of operations on sets, we are identifying
the partially ordered cartesian product of finite sets with jr elements, again denoted
jr, with the ordered finite set j× with j1 · · · jk elements. Here ιr : Σk −→ Σk+1 is
induced by the ordered injection k −→ k + 1 that skips r.

3. Bioperads and their algebras
biopsactbioperads

3.1. The definition of bioperads. As said before, the definition of bioperads is
inspired by the earlier definition of an operad pair, which is recalled in Section 8
for comparison. Our theme now, however, is the optimal melding of operads and
moperads into single structures. In particular, we extend M to a bioperad M bi by
combining M and M×. We now work in a cartesian monoidal category V , such
as SET, CAT, or TOP, since distributivity requires use of both diagonal maps ∆
and maps to u, which appear automatically when u is a terminal object. We will
need the following notations to define the permutativity diagram6 central to the
definition.

Not3

Notation 3.1. As in Notations 2.3 and 2.6, let Q run over the set of sequences
(q1, · · · , qk) such that 1 ≤ qr ≤ jr, ordered lexicographically. There are j× such Q.
Given non-negative ir,q for 1 ≤ r ≤ k and 1 ≤ q ≤ jr, let

iQ = ×k
r=1ir,qr and hr = Σjr

q=1ir,q

and let ν = ν({k, jr, ir,q}) be that permutation of

ΣQ iQ = ×1≤r≤k hr

6I thank Isaiah Daily for helping work out the diagram from a formula.
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elements which corresponds under block sum and lexicographic identifications on
the left and right to the distributivity isomorphism

(3.2)
disteqdisteq

∐
Q

(
∏

1≤r≤k

ir,qr )
∼=

∏
1≤r≤k

(
∐

1≤q≤jr

ir,q).

Here we again write i for both the number i and the set {1, 2, · · · , i}. Note that
for each q, 1 ≤ q ≤ jr, the number ir,q appears once on the right but n(r) = j×/jr
times on the left. Let i+× denote the number of elements in the sets displayed in
(3.2). In specifying ν, both sets are identified with the set i+×.

biop

Definition 3.3. A bioperad C in V is an additive operad C as in Definition 1.1
and a multiplicative operad C× as in Definition 2.4 such that C (j) = C×(j) for
all j ≥ 1 together with an isomorphism 0: u ∼= C (0). We write γ and γ× for the
structure maps of C and C×. We regard γ× as both the multiplicative product
and a distributivity map, when it might be denoted λ.7 (Anticipating Remark 4.3
below, we can also interpret C×(0) to be u). We codify our remaining conditions.

(i) Under γ, the additive operad conditions of Definition 1.1 hold.
(ii) Under γ×, the multiplicative operad conditions of Definition 2.4 hold.
(iii) The following distributivity diagram commutes:

C×(k)×
(
×k

r=1 C (jr)
)
×
(
×Q C (iQ)

) γ××Id // C (j×)×
(
×Q C (iQ)

)
γ

��
C×(k)×

(
×k

r=1 C (jr)
)
×
(
×Q C×(k)×k

r=1 C (ir,qr )
)Id×(γ×)j×

OO

C (i+×)

ν

��
C×(k)j×+1 ×

(
×k

r=1

(
C (jr)× (×jr

q=1C (ir,q)
n(r)

))shuffle

OO

C (i+×)

C×(k)×
(
×k

r=1

(
C (jr)× (×jr

q=1C (ir,q)
))

Id×γk

//

∆×(×r Id×∆)

OO

C×(k)×
(
×k

r=1 C (hr)
)γ×

OO

Our motivation comes from the following concrete example.
sym3

Example 3.4. With M and M× as in Examples 1.4 and 2.9, M is a bioperad.
We use the notation M bi for M regarded as a bioperad.

Proof. We need only verify the distributivity law, and that holds by combinatorial
inspection. Intuitively, this is just passage to skeleta from the evident distributivity
law connecting disjoint unions and cartesian products of finite sets. □

biaction

3.2. The definition of algebras over a bioperad. The following definition par-
allels the earlier definition of an algebra over an operad pair, which is recalled in
Definition 8.3 below. Here Xj denotes the cartesian product of j copies of X.
Bipermutative categories will give examples.

biopact

Definition 3.5. An action of a bioperad C bi on X consists of an action θ of C
on X as in Definition 1.3 (with basepoint 0) and an action θ× of C× on X as in
Definition 2.7 (with unit element 1) for which 0 is a strict 0, so that θ×(g; y) = 0 if

7I thank Agnes Beaudry for helping me see that this is correct.
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any coordinate of y ∈ Xj is 0, and for which the following distributivity diagram
commutes:

C×(k)×
(
×k

r=1 C (jr)
)
×Xj×

λ×Id // C (j×)×Xj×

θ

��
C×(k)×

(
×k

r=1 C (jr)
)
×
(
×Q

(
C×(k)×Xk

))Id×(θ×)j×

OO

X

=

��
C×(k)j×+1 ×

(
×k

r=1 C (jr)×Xj×
)shuffle

OO

X

C×(k)×
(
×k

r=1 C (jr)×Xjr
)

Id×θk

//

∆××r Id×∆

OO

C×(k)×Xk

θ×

OO

DistDia

Remark 3.6. The last diagram is a parametrized version of the right distributivity
law. In a rig space X, for variables (xr,1, · · · , xr,jr ) ∈ Xjr , 1 ≤ r ≤ k, we set
zr = xr,1 + · · ·+ xr,jr and find that

z1 · · · zk =
∑
Q

x1,q1 · · ·xk,qk ,

where the sum runs over the set of sequences Q = (q1, · · · , qk) such that 1 ≤ qr ≤ jr,
ordered lexicographically as above. The bottom two left vertical arrows in the
diagram of Definition 3.5 give an operadic parametrization of the implicit map

(3.7)
deltadelta

δ : Xj+ −→ ×QX
k ∼= (Xk)j×

whose Qth coordinate sends an element of Xj+ = ×1≤r≤kX
jr with rth coordinate

(xr,1, · · ·xr,jr ) to the element with Qth coordinate (x1,q1 , · · · , xk,qk).

4. Monads associated to operads, moperads, and bioperads

Operads were originally defined so that an operad C in V has an associated
monad C in the category V∗ of based objects in V . Again let Λ be the category
of based finite sets n = {0, 1, · · · , n}, with basepoint 0, and based injections. Then
C restricts to a contravariant functor Λ −→ V , insertions of basepoints gives a
covariant functor X∗ with nth value Xn, and CX is the categorical tensor product
C ⊗Λ X∗. The unit η and product µ of C are induced by the unit and structure
maps of C . The unit and associativity diagrams required of a monad are then
immediate from the unit and associativity diagrams in Definition 1.1. Similarly,
the unit and action maps of a C -algebra X determine the unit and structure maps
of a C-algebra structure on X, and the categories of C -algebras and C-algebras are
isomorphic. This was a key motivation for the definition of operads, and the name
operad is a portmanteau word obtained from operation and monad.

We claim that an analogous, but perhaps less obvious, story applies to moperads
in a cocomplete symmetric monoidal category V .

mopmoncon

Construction 4.1. Just as for CX, we construct a monad C× from a moperad C×.
We again start with

∐
j C×(j) ⊗ Xj . Both C× and X∗ are covariant functors of

the category Λ>, hence so is C×⊗X∗ =
∐

j C×(j)⊗Xj . Writing n = {1, · · · .,n},
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the action by Λ> is defined by sending a morphism λ : m −→ n of Λ> to the
morphism λ ⊗ λ : C×(m) ⊗ Xm −→ C×(n) ⊗ Xn in V , using the identity on
other summands C (j) × Xj . Regarding the identity functor of C× ⊗ X∗ as the
contravariant functor on Λ> that sends every morphism λ to the identity morphism,
we can form the tensor product of Id and the covariant functor C×⊗X∗. We regard
this as a kind of categorical orbit functor (C×⊗X∗)/Λ>, and we denote it by C×X.
Concretely C×X is

∐
j C (j)⊗Σj

Xj modulo unit identifications that identify c⊗ y

with ιr(c)⊗ ιr(y) for all c ∈ C×(n) and y ∈ Xn for 1 ≤ r ≤ n+ 1.
mopmonprop

Proposition 4.2. With unit η× and product µ× induced by the unit v −→ C×(1)
and the structure maps γ× of C×, C× is a monad on V . The category of algebras
over the moperad C× is isomorphic to the category of algebras over the monad C×.

Proof. In more detail, the unit η : X −→ C×X is ι0×Id : X ∼= v⊗X −→ C×(1)⊗X
and the product µ : C×C×X −→ C×X is induced by the composite

C×(k)⊗ C×(j1)⊗Xj1 ⊗ · · · ⊗ C×(jk)⊗Xjk −→ C×(j×)⊗Xj×

from the bottom left to the top right in the diagram of Definition 2.7(ii). That
diagram then gives the commutativity of the diagram

C×C×X
µ //

C×θ×

��

C×X

θ×

��
C×X

θ×
// X

The unit diagram µη = Id: X −→ X is immediate from Definition 2.7(i). The
diagrams showing that C× is a monad are less obvious. It is immediate that the
left triangle commutes in the unit diagram

C×X
η //

Id %%

C×C×X

µ

��

C×X
C×ηoo

Idyy
C×X

However, since the sum of k copies of 1 is k and the product of k copies of 1 is 1,
the commutation of the right triangle requires use of the unit identification in the
definition of C×X, together with the third of the unit diagrams in Definition 2.4(i).
We insert

(ι1)
k ⊗ (ι1)

k : C (1)⊗X −→ C (k)⊗Xk

on the first factor C (1)⊗X that we see in the target C×(k)⊗ (C(1)⊗X)k of the
restriction of C×η to the kth summand C×(k)⊗Σk

Xk of C×X. We could equally
well use any other factor. The associativity relation µ ◦ µ = µ ◦ C×µ is implied by
a rather horrendous diagram chase using instances of Definition 2.4(ii). Again, the
identification in Construction 4.1 is needed to handle the cases where j+ > j× and
the identification ensures that these cases present no problems. We have seen that
a C×-algebra gives rise to a C×-algebra. Conversely, if (X, θ×) is a C×-algebra, it
is a C×-algebra with action induced by the evident maps

C×(j)⊗Xj //C×X
θ×
//X.
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The unit and associativity diagrams commute by the corresponding monadic dia-
grams. □

zero

Remark 4.3. We can modify Construction 4.1 by adding disjoint basepoints 0 to
all C×(j), taking C×(0) ∼= u, thought of as 0. This will lead to new examples
of Beck’s two monad distributivity theory [Bec69, May09]. We then interpret γ×

on C×(0) to be the map u −→ C×(1) that sends u to 0 and allow jr = 0 in the
definition of γ×; when any jr = 0, we require γ× to take the value 0 in C×(0).
In C×

0 -algebras, or C×-algebras with 0, we require X to have a strict 0 element
(formally 0: u −→ X), so that θ×(g; y) = 0 if any coordinate of y ∈ Xj is 0.

Definition 3.5 and Remark 3.6 lead to the following result. Passing to monads,
it says that (C,C×

0 ) is a monad pair in the sense of Beck [Bec69]; see also [May09,
Appendix B] or [KMZ24, Section 8.1].

YES

Theorem 4.4. Let X be a C bi-algebra. As k and the jr vary, the composites from
the bottom left to the top right in the distributivity diagram of Definition 3.5 induce
a natural action θ× of C× on CX such that θ is a map of C×-algebras. The monad
C on the category V restricts to a monad on the category of C×-algebras in V .

Proof. The cited distributivity diagram induces the commutative diagram

(4.5)
WOWWOW

C×(k)× (CX)k

Id×θ

��

θ×
// CX

θ

��
C×(k)×Xk

θ×
// X

Diagram chasing proves that the top arrow as k varies gives CX an action of C×
0

such that, with the added 0 as in Remark 4.3, θ is a map of C×
0 -algebras, as claimed.

Monadically, the unit η : X −→ CX and product µ : CCX −→ CX are seen to be
maps of C×

0 -algebras by further diagram chasing. □

5. Permutative and bipermutative categories
biperms

We prove Theorem 0.2 here, and we first construct the bioperad Pbi in CAT.
Again let E : SET −→ CAT be the chaotic (or indiscrete) category functor, so
that E (S) is the category with object set S and a unique morphism between each
pair of objects. We abuse notation by letting E (S) also denote its classifying space
BE (S) = |N(E (S)|, which is contractible. The functor E is right adjoint to the
object functor Ob that sends a category to its set of objects. As said before, E
sends operads in SET to operads in CAT and B sends those to operads in spaces.8

This is also true for moperads and bioperads.

Definition 5.1. Let P = E (M ), let P× = E (M×), and let Pbi denote P
regarded as a bioperad. Then Ptop = BP is an E∞ operad since for each j the
free Σj-action on M gives a free Σj-action on the contractible space Ptop(j).

A permutative category is a symmetric strict monoidal category, and Theo-
rem 0.1 is standard, maybe first noticed in [May74]. The idea is that P sends a
permutative category A to its “unbiased” version with a canonical j-fold product

8Spaces are understood to be compactly generated and weak Hausdorff.
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for each j. Then BA is an E∞-space, hence has an associated spectrum EBA
whose zeroth space is a group completion of BA [May74, GM17, KMZ24].

Before turning to bipermutative categories, we recall the precise definition of a
permutative category and prove a multiplicative analog of Theorem 0.1.

perm

Definition 5.2. A permutative category (A , ∗, c) is a category with a product
functor ⊙ : A × A −→ A which is strictly associative and unital (with unit ∗)
and has a natural symmetry isomorphism c : A ⊙ B −→ B ⊙ A such that c is the
identity A = A⊙∗ −→ ∗⊙A = A, c ◦ c = Id, and the following diagram commutes
for objects A,B,C.

A⊙B ⊙ C
c //

Id⊙c ''

C ⊙A⊙B

A⊙ C ⊙B

c⊙Id

77

thm1mult

Theorem 5.3. The category P×[Cat] of P×-algebras in CAT is isomorphic
to the category of permutative categories. The category P×

ps[Cat] of P×-pseudo-
algebras in CAT is equivalent to the category of symmetric monoidal categories.

Proof. We prove Theorems 0.1 and 5.3 the same way. The idea is that P-algebras
and P×-algebras give two different unbiased descriptions of permutative categories.
In the first, the product ⊙ is given on objects A,B by θ(e;A,B), with unit ∗ = θ(0),
where 0 ∈ P(0); we will think of ∗ as 0 later. In the second, the product is given by
θ×(e;A,B), with unit ∗ = θ(1), where 1 ∈ P×(1); we will think of ∗ as 1 later. The
strict unit and associativity conditions are built into the definitions of actions, with
Remark 2.8 explaining this in the case of P×. The permutativity isomorphism

c : A⊙B = θ(e;A,B) −→ θ(σ;A,B) = θ(e;B,A) = B ⊙A

is induced by the unique morphism e → σ in P(2) or P×(2), where σ ∈ Σ2 is the
non-identity element. The uniqueness of morphisms between objects of the P(j)
and P×(j) ensures that c has the required properties.

Starting instead with a permutative category A , we construct actions of P and
P× on A such that θ(e;A1, · · · , Aj) and θ×(e;A1, · · · , Aj) are both the j-fold
⊙-product of the Ai, in order. For σ ∈ Σj , the actions on (σ;A1, · · · , Aj) are
determined by equivariance. The diagrams ensuring that these give a P-algebra
and a P×-algebra again follow from the uniqueness of morphisms between objects
of the P(j) and P×(j). Said another way, they result from coherence isomorphisms
in A . If we apply the construction back to CAT, we get A back. Similarly, if we
start from an algebra, construct a permutative category from it, and construct an
algebra from that, what we get is isomorphic to the algebra we started with.

Using pseudofunctors and understanding that we require our coherence mor-
phisms to be isomorphisms, the pseudoalgebra version is proven analogously but
again, we shall not go into detail here. □

To prove Theorem 0.2, we first recall the definition of bipermutative categories
from [May77, Definition VI.3.3].

biperm

Definition 5.4. A bipermutative category A is a pair of permutative categories
(A ,⊕, 0, c) and (A ,⊗, 1, c̃), where c and c̃ are the commutativity isomorphisms,
which satisfy the following three conditions.
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(i) 0 is a strict zero object for ⊗.
(ii) The right distributivity law is strictly satisfied and the following diagram

commutes for objects A,B,C:

(A⊕B)⊗ C

c⊗Id

��

(A⊗ C)⊕ (B ⊗ C)

c

��
(B ⊕A)⊗ C (B ⊗ C)⊕ (A⊗ C)

(iii) Define a left distributivity isomorphism ℓ by the commutative diagram

(A⊕B)⊗ C (A⊗ C)⊕ (B ⊗ C)

c

��
c̃⊗c̃

��
C ⊗ (A⊕B)

c̃

OO

ℓ
// (C ⊗A)⊕ (C ⊗B)

Then the following diagram commutes for objects A,B,C,D.

(A⊕B)⊗ (C ⊕D)

ℓ

��

(A⊗ (C ⊕D))⊕ (B ⊗ (C ⊕D))

ℓ⊗ℓ

��
(A⊗ C)⊕ (A⊗D)⊕ (B ⊗ C)⊕ (B ⊗D)

Id⊕c⊕Id

��
((A⊕B)⊗ C)⊕ ((A⊕B)⊗ C) (A⊗ C)⊕ (B ⊗ C)⊕ (A⊗D)⊕ (B ⊗D)

It should be clear that both distributivity laws will not generally hold strictly.
Our choice is dictated by our use of lexicographic ordering in earlier definitions.

Proof of Theorem 0.2. We first show that if A is a Pbi-algebra, then it is a biper-
mutative category. Its permutative categories (A ,⊕, 0, c) and (A ,⊗, 1, c̃) are given
by Theorems 0.1 and 5.3. Consider the diagram in Definition 3.5 with k = 2, j1 = 2
and j2 = 1 and with operadic coordinate objects e ∈ P(2) and e ∈ P(1). Writing
A⊗B = AB, we find for objects A,B,C that (A⊕B)C = AC⊕BC. Taking k = 2,
j1 = 1 and j2 = 2, we get the left distributivity law and taking k = 2, j1 = 2, and
j2 = 2, we get the four variable diagram in Definition 5.4. If A is a bipermutative
category, then coherence gives that the unbiased redefinition gives an action of P
on A . Again, these operations are inverse to each other. □

6. Equivariant permutative and bipermutative categories
Gpiperm

Let G be a group. Our interest is in finite groups but the categorical ideas work
in general. We start work in any cartesian monoidal category V , taking GV to
be the cartesian monoidal category of G-objects in V and G-maps between them.
Let CAT(V ) be the category of categories internal to V ; it generalizes categories
enriched in V by allowing object and morphism objects of V and insisting that
source, target, identity, and composition be maps in V . Theorems 0.1, 5.3 and 0.2
directly generalize to characterizations of permutative and bipermutative categories
internal to V .
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Definition 6.1. Define G-categories in V to be categories internal to GV , giving
us the category GCAT(V ) = CAT(GV ) of G-categories in V . We omit V from
the notation when V = U is the category of spaces. Define classical9 permutative
and bipermutative G-categories to be permutative and bipermutative categories
internal to GV . Then Theorems 0.1, 5.3 and 0.2 show that these can be viewed as
either P-algebras or P×-algebras in GCATV and as Pbi-algebras in GCATV .

When V = U , these give rise to classical (alias naive) G-spectra or classical E∞-
ring G-spectra as in [May82, May09, KMZ24]. In [GM17, Section 4], we defined a
genuine permutative G-category to be a PG-category A for a certain operad PG

in GCAT . We gave categorical justification for the definition, showing for example
that P is a suboperad of PG such that A G is a P-algebra. We gave topological
justification by proving that PG-algebras give rise to genuine G-spectra.

Using bioperads, we can now give a precisely parallel definition of (genuine)
bipermutative G-categories. We formalize using the following “genuinification”
functor, which is discussed in greater detail in [GM17, Section 3.2]. In particular,
its close relationship to equivariant bundle theory is discussed there. I believe it
was first defined in [Tho83], where it plays a central role.

Definition 6.2. Define G : GCAT −→ GCAT by

G (A ) = CAT(E (G),A ).

The target is the category of functors and natural transformations from the chaotic
category EG to A , with G acting by conjugation. Via

CAT(C × E (G),A ) ∼= CAT(C ,G (A)),

G is a right adjoint. The projection E (G) −→ ∗ induces a natural map

ι : A −→ G (A ).

When A = E (S) for a set S, regarded as a G-trivial G-set, ι is the inclusion of the
G-fixed category (G (E (S)))G = GCAT(E (G),E (S)), and this holds more generally
for spaces [GS16, Lemma 4.3].

Since G preserves products, it preserves operadic structures.

Definition 6.3. Define PG = G (P), P×
G = G (P×), and Pbi

G = G (Pbi). These
are an operad, a moperad, and a bioperad in GCAT. Define genuine bipermutative
G-categories to be Pbi

G -algebras in GCAT. We can define genuine symmetric
bimonoidal G-categories to be Pbi

G -pseudoalgebras in GCAT, but I will not go into
that here. The map ι induces on inclusion ι : Pbi = (Pbi

G )G −→ Pbi
G of bioperads of

G-categories, hence the G-fixed subcategory of a genuine bipermutative G-category
is a bipermutative category.

As in [GM17, Proposition 4.6], application of G gives lots of examples, although
presumably not all.

Proposition 6.4. The action of Pbi on a classical permutative G-category A
induces an action of Pbi

G on G (A ). Therefore G restricts to a functor from classical
bipermutative G-categories to genuine bipermutative G-categories.

In particular, since the given action of G can be trivial, G gives a functor from
nonequivariant bipermutative categories to (genuine) bipermutative G-categories.

9The word naive was used in [GM17, Section 4]. Classical seems preferable.
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7. Moperad pairs
moppairs

Bioperads and their algebras are special cases of moperad pairs and their alge-
bras. Examples of the more general notion will be given in [May], where they will
be central to a new approach to multiplicative infinite loop space theory.

pair

Definition 7.1. A moperad pair (C ,J ) consists of a classical operad C as in
Definition 1.1 and a moperad J as in Definition 2.4 together with maps

(7.2)
eqj3eqj3

λ : J (k)× C (j1)× · · · × C (jk) → C (j×)

which satisfy the following properties.

(i) The following unit diagram for λ commutes.

J (k)× uk

Id⊗idk

��

// u

id

��
J (k)× C (1)k

λ
// C (1).

(ii) Taking C (0) be an object 0 ∼= u, λ maps J (k)××k
r=1C (jr) to 0 if any jr = 0.

(iii) Taking J (0) to be an object 1 ∼= u, λ is interpreted as λ(1) = id: 1 −→ C (1).
(iv) For the associativity law, we order the finite set {t|1 ≤ t ≤ j×} as the lexico-

graphically set of tuples {(r, q)|1 ≤ r ≤ k, 1 ≤ q ≤ jr} and we set

×j×
t=1it = i× = ×k

r=1hr, where hr = (ir)× = ×jr
q=1ir,q.

The following diagram commutes.

J (k)×
(
×k

r=1 J (jr)
)
×
(
×j×

t=1 C (it)
)

shuffle

��

γ××Id //J (j×)×
(
×j×

t=1 C (it)
)

λ

��
C (i×)

J (k)×
(
×k

r=1

(
J (jr)× (×jr

q=1C (ir,q)
))

Id×λk

//J (k)×
(
×k

r=1 C (hr)
)
.

λ

OO

(v) For the distributivity law, reusing the notations of Definition 3.3(v), the fol-
lowing analogous diagram commutes.

J (k)×
(
×k

r=1 C (jr)
)
×
(
×Q C (iQ)

) λ×Id // C (j×)×
(
×Q C (iQ)

)
γ

��
J (k)×

(
×k

r=1 C (jr)
)
×
(
×Q J (k)×k

r=1 C (ir,qr )
)Id×λj×

OO

C (i+×)

ν

��
J (k)j×+1 ×

(
×k

r=1

(
C (jr)× (×jr

q=1C (ir,q)
n(r)

))shuffle

OO

C (i+×)

J (k)×
(
×k

r=1

(
C (jr)× (×jr

q=1C (ir,q))
))

Id×γk

//

∆×(×r Id×∆)

OO

J (k)×
(
×k

r=1 C (hr)
)λ

OO
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(vi) The following equivariance diagrams for λ commute:

J (k)× C (j1)× · · · × C (jk)

λ

��

σ×σ−1

//J (k)× C (jσ(1))× · · · × C (jσ(k))

λ

��
C (j×)

σ<jσ(1),··· ,jσ(k)>
// C (j×)

and

J (k))× C (j1)× · · · × C (jk)

λ

��

id×τ1×···×τk //J (k)× C (j1)× · · · × C (jk)

λ

��
C (j×)

τ1⊗···⊗τk // C (j×).

Pairact

Definition 7.3. An action of (C ,J ) on X consists of an action θ of C on X
(with basepoint 0) and an action ξ of J on X (with unit element 1) for which 0
is a strict zero, so that ξ(g; y) = 0 if any coordinate of y is 0, and for which the
following parametrized left distributivity law holds.

J (k)×
(
×k

r=1 C (jr)
)
×Xj×

λ×Id // C (j×)×Xj×

θ

��
J (k)×

(
×k

r=1 C (jr)
)
×
(
×Q

(
J (k)×Xk

))Id×ξj×

OO

X

=

��
J (k)j×+1 ×

(
×k

r=1 C (jr)×Xj×
)shuffle

OO

X

J (k)×
(
×k

r=1 C (jr)×Xjr
)

Id×θk

//

∆×(×r Id×∆)

OO

J (k)×Xk

ξ

OO

The bottom two left vertical arrows build in the map δ defined in Remark 3.6.

8. Operad pairs
oppair

Part of the motivation for bioperads and moperad pairs comes from the much
earlier understanding of operad pairs. The reader can skip this section if it is viewed
as a digression, but the (still mysterious) comparison is at the heart of our ideas.10

pair2

Definition 8.1. An operad pair (C ,J ) consists of classical operads C and J ,
both as in Definition 1.1, together with maps

(8.2)
eqj3tooeqj3too

λ : J (k)× C (j1)× · · · × C (jk) → C (j×)

which satisfy the following properties.

10We used the notation (C ,G ) in earlier work, but that leads to conflicts in equivariant situa-
tions. We also used formulas rather than diagrams, out of sheer author laziness.



20 J. PETER MAY

(i) The following unit diagrams commute:

J (k)× uk

Id⊗idk

��

// u

id

��

u× J (j)

id× Id

��

∼= //J (j)

J (k)× C (1)k
γ
// C (1) J (1)× J (j)

γ

88
.

(ii) Taking C (0) be an object 0 ∼= u, λ maps C (k)××k
r=1C (jr) to 0 if any jr = 0.

(iii) Taking J (0) to be an object 1 ∼= u, λ is interpreted as λ(1) = id: 1 −→ C (1).
(iv) For the associativity law, we order the finite set {t|1 ≤ t ≤ j+} as the set of

tuples {(r, q)|1 ≤ r ≤ k, 1 ≤ q ≤ jr} ordered as k blocks of jr letters, and we
set

Σk
r=1jr = j+, ×j+

t=1it = i× = ×k
r=1hr, where hr = ×jr

q=1ir,q.

J (k)×
(
×k

r=1 J (jr)
)
×
(
×j+

t=1 C (it)
)

shuffle

��

γ×Id //J (j+)×
(
×j+

t=1 C (it)
)

λ

��
C (i×)

J (k)×
(
×k

r=1

(
J (jr)× (×jr

q=1C (ir,q)
))

Id×λk

//J (k)×
(
×k

r=1 C (hr)
)
.

λ

OO

(v) With notations as in Definition 3.3, the distributivity diagram that must
commute is similar to that there:

J (k)×
(
×k

r=1 C (jr)
)
×
(
×Q C (iQ)

) λ×Id // C (j×)×
(
×Q C (iQ)

)
γ

��
J (k)×

(
×k

r=1 C (jr)
)
×
(
×Q J (k)×k

r=1 C (ir,qr )
)Id×λj×

OO

C (i+×)

ν

��
J (k)j×+1 ×

(
×k

r=1

(
C (jr)× (×jr

q=1C (ir,q)
n(r)

))shuffle

OO

C (i+×)

J (k)×
(
×k

r=1

(
C (jr)× (×jr

q=1C (ir,q))
))

Id×γk

//

∆×(×r Id×∆)

OO

J (k)×
(
×k

r=1 C (hr)
)λ

OO

(vi) The following equivariance diagrams for λ commute:

J (k)× C (j1)× · · · × C (jk)

λ

��

σ×σ−1

//J (k)× C (jσ(1))× · · · × C (jσ(k))

λ

��
C (j×)

σ<jσ(1),··· ,jσ(k)>
// C (j×)
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and

J (k))× C (j1)× · · · × C (jk)

λ

��

id×τ1×···×τk //J (k)× C (j1)× · · · × C (jk)

λ

��
C (j×)

τ1⊗···⊗τk // C (j×).

Pairact2

Definition 8.3. An action of (C ,J ) on X consists of an action θ of C on X
(with basepoint 0) and an action ξ of J on X (with unit element 1) for which 0
is a strict zero, so that ξ(g; y) = 0 if any coordinate of y is 0, and for which the
following parametrized distributivity diagram commutes:

J (k)×
(
×k

r=1 C (jr)
)
×Xj×

λ×Id // C (j×)×Xj×

θ

��
J (k)×

(
×k

r=1 C (jr)
)
×
(
×Q

(
J (k)×Xk

))Id×ξj×

OO

X

=

��
J (k)j×+1 ×

(
×k

r=1 C (jr)×Xj×
)shuffle

OO

X

J (k)×
(
×k

r=1 C (jr)×Xjr
)

Id×θk

//

∆×(×r Id×∆)

OO

J (k)×Xk

ξ

OO

9. Monads associated to moperad pairs and operad pairs

For a moperad pair (C ,J ), we have the following generalization of Theorem 4.4.
YES2

Theorem 9.1. As k and the jr vary, the composites from the bottom left to the
top right in the distributivity diagrams of Definitions 7.1 and 7.3 induce a natural
action ξ of the moperad J on CX for J -algebras X such that if X is a (C ,J )-
algebra, then θ : CX −→ X is a map of J -algebras. The monad C on the category
V restricts to a monad on the category of J -algebras in V .

Proof. The distributivity diagram induces the commutative diagram

(9.2)
WOW2WOW2

J (k)× (CX)k

Id×θ

��

ξ // CX

θ

��
J (k)×Xk

ξ
// X

□

The following precise analog of Theorems 4.4 and 9.1 was the starting point of
the earlier multiplicative theory. Just as above, it was expressed in terms of pairs of
monads as in [Bec69, May09]. This old result is why the claims above are plausible.
The two theorems of this section explain why the general multiplicative theory of
[KMZ24] applies to both moperad pairs and operad pairs, as we will see in [May].
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YES3

Theorem 9.3. As k and the jr vary, the composites from the bottom left to the
top right in the distributivity diagrams of Definitions 8.1 and 8.3 induce a natural
action ξ of the operad J on CX for J -algebras X such that if X is a (C ,J )-
algebra, then θ : CX −→ X is a map of J -algebras. The monad C on the category
V restricts to a monad on the category of J -algebras in V .

Proof. The distributivity diagram induces the commutative diagram

(9.4)
WOW3WOW3

J (k)× (CX)k

Id×θ

��

ξ // CX

θ

��
J (k)×Xk

ξ
// X

□

10. Endomorphism operads, moperads, and bioperads

10.1. The endomorphism operad End(X). As said before, we think of elements
of the components C (j) of an operad as operations and think of γ(c⊗d1⊗· · ·⊗dk)
as the composite of the operation c with the tensor product of the operations ds.
Classically, one way of expressing this is in terms of endomorphism operads. We
assume that V has an internal Hom functor, denoted by V (−,−). In the separate
contexts of operads and of moperads, there is only one product ⊗ in sight, and it
is natural to assume that we have the tensor-hom adjunction

(10.1)
adjadj

V (X ⊗ Y,Z) ∼= V (X,Hom(Y,Z)).
critical

Remark 10.2. However, as we shall exploit later, endomorphism operads make
sense more generally. The definition of the operad requires only that we use the
same product ⊗ in taking powers Xj and in the operations denoted ⊗ below. For
example, ⊗ might in practice be the addition ⊕ of a symmetric bimonoidal category
V , in which case we would not have the adjunction (10.1).

For X ∈ V , we set

End(X)(j) = V (Xj , X).

The unit is given by the identity map X −→ X, the right actions by symmetric
groups are induced by their left actions on tensor powers, and the maps γ are the
composites

(10.3)
opgammaopgamma

End(X)(k)⊗ End(X)(j1)⊗ · · · ⊗ End(X)(jk)

Id⊗(⊗)

��
V (Xk, X)⊗ V (Xj+ , Xk)

◦
��

V (Xj+ , X) = End(X)(j+).

Here Xj denotes the j-fold ⊗-power of X. However other choices are possible.
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Rmod

Example 10.4. Take V to be modules over a commutative ring, regarded as sym-
metric monoidal under ⊕ rather than ⊗. Then applying ⊕ to tuples of modules
of R-homomorphisms gives a product ⊕. Thus in this case we have two endomor-
phism operads, End⊗(X), defined using only ⊗, and End⊕(X), defined using only
⊕. This dichotomy is present for any symmetric bimonoidal category V .

Given the adjunction (10.1), the map

⊗ : V (Xj1 , X)⊗ · · · ⊗ V (Xjk , X) −→ V (Xj+ , Xk)

is adjoint to the evident map given by ⊗ applied to evaluation maps (composed
with a shuffle isomorphism). The following result is then a standard consequence
of (10.1) and the definitions.

endoplus

Proposition 10.5. Assuming (10.1), an action of C on X can be redefined in
adjoint form as a morphism of operads

C −→ End(X).

Moreover, the evaluation maps ε : End(X)(j)⊗Xj −→ X of the adjunction (10.1)
specify an action of End(X) on X such that an action of C on X is the pullback
of the action of End(X).

10.2. The endomorphism moperad End×(X). We also have endomorphism
moperads. Letting V be symmetric monoidal as in Section 2.1 and again letting V
have an internal hom functor V (−,−), we now also let

End×(X)(j) = V (Xj , X).

We assume further that X is a unital and augmented object of V , meaning that
there are maps id: v −→ X and ε : X −→ v such that ε ◦ id = id. The existence of
ε holds trivially when v is a terminal object, as holds if V is cartesian monoidal.

Define ιr : X
j −→ Xj+1 by inserting ι0 : v −→ X in the rth coordinate and

define

ι : Xj+ −→ Xjx

as in Definition 2.7(ii). The augmentation ε applied to the rth coordinate of Xj

gives a map ζr : X
j+1 −→ Xj right inverse to ιr, and we have an analogous right

inverse ζ : Xj× −→ Xj+ to ι.
Applied to the domain variable of V (−,−), the ζr induce maps

ιr : End
×(X)(k − 1) −→ End×(X)(k)

that turn End× into a covariant functor Λ>0 −→ V . Similarly, we use ζ in the
domain variable to define the maps γ× as the composites
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(10.6)
mopgammamopgamma

End×(X)(k)⊗ End×(X)(j1)⊗ · ⊗ End×(X)(jk)

Id⊗(⊗)

��
V (Xk, X)⊗ V (Xj+ , Xk)

Id⊗V (ζ,Id)

��
V (Xk, X)⊗ V (Xj× , Xk)

◦
��

V (Xj× , X) = End×(X)(j×)

Inspection of definitions shows that these specifications give a moperad End×(X),
and we have the following analog of Proposition 10.5.

endotimes

Proposition 10.7. Assuming (10.1), an action of a moperad C× on X can be
redefined as a morphism of moperads

C× −→ End×(X).

Moreover, the evaluation maps ε : End×(X)(j) ⊗ Xj −→ X of (10.1) specify an
action of End×(X) on X such that an action of C× on X is the pullback of the
action of End(X).

Proof. With End×(X)(k) playing the role of C×(k) and ε playing the role of θ×(X),
direct inspection shows that the unit, associativity, and equivariance diagrams of
Definition 2.7 commute. The verification of the associativity diagram may be illu-
minating. □

We can compare γ for the endomorphism operad End(X) with γ× for the endo-
morphism moperad End×(X), where both are defined using only the product ⊗ of
V , both for ⊗-powers Xj and for the structure maps as in (10.3) and (10.6).

Proposition 10.8. The endomorphism operad End(X) is a restriction of the en-
domorphism moperad End×(X), and the moperad End×(X) is an extension of the
operad End(X) .

Proof. Defining ζ∗ = V (ζ, Id), we see that the following diagram commutes.

V (Xk, X)⊗ V (Xj+ , Xk)

Id⊗ζ∗

��

◦ // V (Xj+ , X)

ζ∗

��
V (Xk, X)⊗ V (Xj× , Xk) ◦

// V (Xj× , X)

Comparing with (10.3) and (10.6), we see that the map γ× is the composite ζ∗γ,
hence γ = V (ι, Id)γ×. Chasing diagrams, we find compatibility diagrams relating
the operad End(X) and the moperad End×(X). Given either, we can reconstruct
the other from it. □

The intuition is that we are looking at the same multiplicative structure in
two ways. This applies, for example, when we start with the multiplication ⊗ of a
symmetric bimonoidal category V . Bringing in the addition ⊕, the picture changes.
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10.3. The endomorphism moperad pairs (End(X),End×(X)). Here we work
in a symmetric bimonoidal category V with operations ⊕ with unit object u, now
renamed 0, and ⊗ with unit object v, now renamed 1. Example 10.4 gives a
typical algebraic example. Other examples are sets, categories, simplicial sets, and
spaces, with disjoint union as the sum and cartesian product as the product. Note
for contrast that, with finitely many variables as in our structures here, cartesian
products appear as direct sums in the category of R-modules. In some algebraic
situations we can use that the tensor product is the categorical product in a category
of cocommutative coalgebras [GMR].

We assume that ⊗ is the categorical product, so we use the notation ×. We
write kX for the sum ⊕ of k copies of X and write X×k for the product × of k
copies of X. We write ι : 1 −→ X and ζ : X −→ 1 for the unique maps and have
ζ ◦ ι = id. We also assume that X has a zero base object 0 : 0 −→ X. We have an
iterated diagonal map ∆k : X −→ X×k for each k.

We define the endomorphism operad End(X) using only ⊕. Notice that use of
⊕ destroys the original (⊗, Hom) adjunction motivation of (10.1). That has the
effect that an action of a moperad pair will not be a map of moperad pairs into
an endomorphism moperad pair. We define the endomorphism moperad End×(X)
using only ×. To form a moperad pair we need an action λ of End×(X) on End(X).
We start from the natural distributivity isomorphism

j1X × · · · × jkX ∼= j×(X×k)

and exploit the diagonal map ∆: X −→ X×k.

Definition 10.9. Define λ to be the following composite:

End×(X)(k)× End(X)(j1)× · · · × End(X)(jk)

Id×(×)

��
V (X×k, X)× V ( j×(X×k), X×k)

V ( j×(∆k),Id)

��
V (X×k, X)× V ( j×X,X×k)

◦
��

V ( j×X,X) = End(X)(j×).

Proposition 10.10. With this definition, (End(X),End×(X)) is a moperad pair.

Proof. We must check the properties specified in Definition 7.1. Here (i) is an
easy verification and (ii) and (iii) are just interpretations; (iv) and (v) are tedious
diagram chases. We check (v) to give the idea. For any j, we can identify V (jX,X)
with the product of j copies of V (X,X) □

11. Appendix: alternative associativity conditions for moperads

The associativity conditions (ii) in Definitions 2.4 and 2.7 admit alternatives that
were found by Nico Marin Gamboa before the current conditions had been found.
We explain those alternatives here.
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Remark 11.1. We can replace the associativity diagram of Definition 2.4 with the
following diagram. Fix a sequence Jk = (j1, · · · , jk); write

Jk−1 = (j1, · · · , jk−1) and C×[Jk−1] = C×(j1)× · · · × C×(jk−1).

For 1 ≤ r ≤ k, define Jk,r = (j1, · · · , jr−1, 1, jr, · · · jk−1), define C×[Jk,r] by insert-
ing C×(1) into C×[Jk−1] in the rth slot, and define idr : C×[Jk−1] −→ C [Jk,r] by
inserting the unit map id: u −→ C×(1) in the rth slot.

C×(k − 1)× C×[Jk−1]
γ×
//

ιr×idr

��

C×(j×)

=

��
C×(k)× C×[Jk,r]

γ×
// C×(j×)

Fix another sequence Ij× = (i1, · · · , ij×) and break it into (j1 · · · jk−1)-blocks by
setting

C×[Ij× ] = C×(i1)× · · · ×C×(ij×) and C×[Ik,q] = C×(i(q−1)jk+1)× · · · ×C×(iqjk)

for 1 ≤ q ≤ i1 · · · ik−1. Also set hq = i(q−1)jk+1 · · · iqjk .

C×(k)× C×[Jk−1]× C×(jk)× C×[Ij× ]
γ××Id //

Id× idr ×∆×Id

��

C×(j×)× C×[Ij× ]

γ×

��
C×(k)× C×[Jk,r]× C×(jk)

j1···jk−1 × C×[Ij× ]

γ××shuffle
��

C (i×)

C×(j1 · · · jk−1)××j1···jk−1

q=1

(
C×(jk)× C×[Ik,q]

)
Id××qγ

×
// C×(j1 · · · jk−1)××qC×(hq)

γ×

OO

We call this last diagram the Marin Gamboa diagram.11 Using the equivariance,
we can give slots s, 1 ≤ s ≤ k − 1, the privileged role here given to s = k.P: Permutations? Check

whether this definition
is consistent, and correct
with added permutations
if necessary.

Remark 11.2. We can replace the associativity diagram of Definition 2.7 with the
following diagram; here we use notations from above and abbreviate notation by
letting h = j1 · · · jk−1.

C×(k)⊗ C×(j1)⊗ · · · ⊗ C×(jk)⊗Xj×

Id⊗ idr ⊗∆⊗Id

��

γ×⊗Id// C×(j×)⊗Xj×

θ×

��
C×(k)⊗ C×[Jk,r]⊗ C×(jk)

h ⊗Xj×

γ×⊗ shuffle

��

X

C×(h)⊗ (C×(jk)⊗Xjk)h
Id⊗(θ×)h

// C×(h)⊗Xh

θ×

OO

11This ingeniuous diagram is due to Nico Marin Gamboa, author of this appendix.
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ass2

Remark 11.3. This associativity diagram can be viewed as a parametrization of
the equality

x1,1 · · ·x1,j1 · · ·xk,1 · · ·xk,jk = x1,1 · · ·x1,j1 · · ·xk−1,1 · · ·xk−1,jk−1
(xk,1 · · ·xk,jk)

for elements (xr,1 · · ·xr,jr ) for 1 ≤ r ≤ k in a monoid. We see the product on the
left by going right, and down from the top left vertex and see the product on the
right by going down, then right, and then up. This gives a start to comparison of
this diagram with that of Definition 2.7. By downwards induction on k, we reach
a parametrization identical to that of Remark 2.8.

Spell out the trivial case k = 1 first. Spell out inductive conclusion. Check
for consistency with permutations. Then check the precise relationship with the
associativity diagrams of Definitions 2.4 and 2.7.

12. Appendix: towards a multicategorical generalization (old notes)

Curiously, it might be easier and clearer to first define a “parametrized multicat-
egory” and then specialize to define algebras over bioperads and, more generally,
over moperad pairs. Let C = C bi be a bioperad in a cartesian monoidal category
V , writing C× when its multiplicative structure is relevant. We define the mul-
ticategory of C -algebras. Its objects are the (additive) C -algebras X in V . Its
k-morphisms for k ≥ 1 are the maps in V (intuitively, the “maps of C -algebras”)

ξ : C×(k)×X1 × · · · ×Xk −→ Y

such that ξ takes the value 0 if any xr = 0 and the following distributivity diagram
commutes:

C×(k)×
(
×k

r=1 C (jr)
)
× Y j×

λ×Id // C (j×)× Y j×

θ

��
C×(k)×

(
×k

r=1 C (jr)
)
×
(
×Q

(
C×(k)×X1 × · · · ×Xk

))Id×ξj×

OO

Y

=

��
C×(k)j×+1 ×

(
×k

r=1 C (jr)×X
j×
r

)shuffle

OO

Y

C×(k)×
(
×k

r=1 C (jr)×Xjr
r

)
Id×θk

//

∆×(×r Id×∆)

OO

C×(k)×X1 × · · · ×Xk

ξ

OO

The lower two left vertical maps build in the appropriate generalization

Xj1
1 × · · · ×Xjk

k −→ ×QX1 × · · · ×Xk

of the lexicographic map Xj+ −→ ×QX
k.

Composites require more thought. Suppose given

ξr : C×(jr)×Xr,1 × · · · ×Xr,jr −→ Yr, 1 ≤ r ≤ k,

and

ξ : C×(k)× Y1 × · · · × Yk −→ Z
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We build definitions (of C -multicategories say) so that the following diagram makes
sense:

C×(k)××k
r=1

(
C (jr)××jr

s=1Xr,s

) Id××rξr //

Id××rId×∆

��

C×(k)××k
r=1Yr

ξ

��
C×(k)××k

r=1

(
C (jr)××jr

s=1X
n(r)
r,s

)
shuffle

��

Z

C×(k)××k
r=1C

×(jr)××QX1,q1 × · · · ×Xk,qk
γ××Id

// C×(j×)××QX1,q1 × · · ·Xk,qk

ξ

OO

Then its right upward arrow ξ wants to define composition. It seems possible via
the Gamboa diagrams or something that that arrow might somehow be determined
by the given ξr. Then need to check associativity, etc
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