
SUM OF TWO SQUARES
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Abstract. We will first recall the work of B. Riemann on the meromorphic continuation
of Riemann zeta function, which is ultimately related to the Poisson summation formula of
Jacobi theta function.

It turns out that the Fourier expansion of the square of Jacobi theta function is related
to the following classical problem in number theory:
• In how many different ways can one represent a positive integer n as the sum of two

squares?
Let this number be r(n). C. Jacobi first expressed r(n) as generalized divisor sums which is
easy to compute. We will establish the result of Jacobi via an identity between the square
of Jacobi theta function and a suitable Eisenstein series.

The identity between theta function and Eisenstein series was later generalized by C.
Siegel, polished by A. Weil, and refined by S. Kudla-S. Rallis and many others. We hope
the talk can be a motivational introduction to the formula of Siegel-Weil and its variants.
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1. Meromorphic continuation of Riemann zeta function

One of the most notorious conjectures in number theory is the Riemann hypothesis, which
conjectures that the nontrivial zeros of the Riemann zeta function

(1) ζ(s) =
∞∑
n=1

1

ns

all lie on the line Re(s) = 1
2
.

It is known from L. Euler, which is a straightforward exercise in calculus that the power
series in (1) is absolutely convergent only for Re(s) > 1 and defines a holomorphic function
on the right half plane {s ∈ C | Re(s) > 1}. Moreover, using the fact that any positive
integer can be uniquely written as a product of prime numbers, ζ(s) admits the following
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local-global factorization where p runs over all the prime numbers

(2) ζ(s) =
∏
p

(1− p−s)−1.

In particular one can expect that the analytical properties of ζ(s) are ultimately related to
the distribution of prime numbers.

To make sense of the value of ζ(s) at Re(s) = 1
2
, we need to find a meromorphic continu-

ation of ζ(s), which was first discovered by B. Riemann in [R].
In the following, we will introduce the following variant of ζ(s):

ξ(s) := π− s
2 · Γ(s

2
) · ζ(s).

Here Γ(s) is defined by the following absolutely convergent integral when Re(s) > 0

Γ(s) =

∫ ∞

0

e−tts−1 dt, Re(s) > 0.

Using integration by parts, one can verify
(3) s · Γ(s) = Γ(s+ 1)

In particular (3) extends Γ(s) to a meromorphic function on s ∈ C with simple poles at
non-positive integers.

Remark 1.0.1. Following the factorization identity (2), π− s
2 · Γ( s

2
) can be viewed as the

completion of ζ(s) by the archimedean local factor. For details see [T].

When Re(s) > 0, by a simple change of variable

π− s
2 · Γ(s

2
) · n−s =

∫ ∞

0

e−πn2tt
s
2
−1 dt.

Therefore for Re(s) > 1,

(4) ξ(s) = π− s
2 · Γ(s

2
) · ζ(s) =

∞∑
n=1

∫ ∞

0

e−πn2t · t
s
2
−1 dt.

Set
(5) θ(t) =

∑
n∈Z

eiπn
2t, Im(t) > 0.

By direct calculation, the power series defining θ(t) is absolutely convergent for Im(t) > 0
and defines a holomorphic function on the upper-half plane. The function (5) is usually
called the Jacobi theta function.

In particular, (4) can be transformed to be

(6) ξ(s) =

∫ ∞

0

(
θ(it)− 1

2

)
· t

s
2
−1 dt, Re(s) > 1.

Theta function reminds us the Poisson summation formula, which claims that for any
ϕ ∈ S(R), the space of Schwartz functions on R consisting of rapidly decay smooth functions
on R, ∑

n∈Z

ϕ(n) =
∑
n∈Z

F(ϕ)(n).
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Here we recall that the classical Fourier transform F gives a bijective map from S(R) to itself

F(ϕ)(x) =

∫
y∈R

ϕ(y) · e2πixy dy, ϕ ∈ S(R).

By direct calculation, for Re(t) > 0, the Fourier transform of Gt(x) = e−πx2t is equal to
t−

1
2 ·G 1

t
(x). Therefore

(7) θ(it) = t−
1
2 · θ

(
i

t

)
, Re(t) > 0.

Plugging (7) into (6),

ξ(s) =

∫ ∞

0

(
θ(it)− 1

2

)
· t

s
2
−1 dt

=

∫ ∞

1

(
θ(it)− 1

2

)
· t

s
2
−1 dt+

∫ 1

0

(
θ(it)− 1

2

)
· t

s
2
−1 dt.

Notice that for Re(s) > 1,∫ 1

0

(
θ(it)− 1

2

)
· t

s
2
−1 dt =

∫ 1

0

θ(it)

2
· t

s
2
−1 dt− 1

s
.

Changing variable t 7→ t−1 and applying (7) to the identity, we get for Re(s) > 1∫ 1

0

(
θ(it)− 1

2

)
· t

s
2
−1 dt =− 1

s
+

∫ ∞

1

θ(it)

2
· t

1−s
2

−1 dt

=− 1

s
− 1

1− s
+

∫ ∞

1

(
θ(it)− 1

2

)
· t

1−s
2

−1 dt.

It follows that we arrive at the following formula for Re(s) > 1,

ξ(s) +
1

s
+

1

1− s
=

∫ ∞

1

(
θ(it)− 1

2

)
·
(
t
s
2 + t

1−s
2

)
· dt
t
.(8)

It turns out that the right hand side of (8) admits a holomorphic continuation to s ∈ C. To
make it more precise, for t ≥ 1,∣∣∣∣θ(it)− 1

2

∣∣∣∣ = ∣∣∣∣ ∞∑
n=1

e−πn2t

∣∣∣∣ ≤ e−πt2 ·
∣∣∣∣ ∞∑
n=1

e−π(n2−1)t

∣∣∣∣ ≤ C · e−πt2

for some constant C independent of t. Moreover, (8) is invariant under s ←→ 1 − s. It
follows that we arrive at the following theorem

Theorem 1.0.2. ξ(s) admits a meromorphic continuation to s ∈ C with simple poles at
s = 0 and s = 1. Moreover, the following functional equation holds

ξ(s) = ξ(1− s).
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2. Theta function

Following the discussion as above section, the meromorphic continuation and functional
equation of ξ(s) is ultimately related to the symmetric property of theta function

θ(t) =
∑
n∈Z

eiπn
2t, t ∈ H = {z ∈ C | Im(z) > 0}.

We normalize θ(t) by
Θ(t) := θ(2t) =

∑
n∈Z

e2πin
2t

The right hand side can be viewed as the Fourier series expansion of Θ(t). In particular (7)
becomes

(−2it)
1
2 ·Θ(t) = Θ

(
− 1

4t

)
, t ∈ H.(9)

Set q = e2πit. Then
Θ(t) =

∑
n∈Z

qn
2

.

It turns out that
R(t) = Θ(t)2 =

(∑
n∈Z

qn
2

)
=

∑
k≥0

r(k) · qk

where
r(k) = #{(x, y) ∈ Z2 | x2 + y2 = k}.

In particular, the Fourier coefficients of R(t) carry arithmetic information.
Following (9), R(t) admits the following transformation rules

(10) (−2it) ·R(t) = R
(
− 1

4t

)
, t ∈ H.

Exercise 2.0.1. Prove the following facts:
(1) The special linear group SL2(R) acts transitively on H via

g =

(
a b
c d

)
∈ SL2(R) ↷ z ∈ H g · z =

az + b

cz + d
.

It enjoys the following property
g1
(
(g2(z))

)
= (g1 · g2)(z) g1, g2 ∈ SL2(R), z ∈ H;

(2) The stabilizer of i ∈ H is given by

SO2(R) =
{(

cos θ − sin θ
sin θ cos θ

)
| θ ∈ [0, 2π)

}
In particular, H can be identified as the quotient manifold SL2(R)/SO2(R);

By periodicity of q = e2πit,
(11) R(t) = R(t+ 1), t ∈ H.

Using (10), (
− 2i · t

4t+ 1

)
·R

( t

4t+ 1

)
= R

(
− 1− 1

4t

)
= (−2it) ·R(t)
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and hence

(12) R
( t

4t+ 1

)
= (4t+ 1) ·R(t).

In particular, (11) and (12) can be reformulated as

(13) R
((1 1

0 1

)
· t
)
= R(t), R

((1 0
4 1

)
· t
)
= (4t+ 1) ·R(t).

Let Γ1(4) be the subgroup of SL2(Z) generated by the following two matrices

Γ1(4) = 〈
(
1 1
0 1

)
,

(
1 0
4 1

)
〉.

Exercise 2.0.2. Establish the following facts:
(1) Show that

Γ1(4) =

{
γ =

(
a b
c d

)
∈ SL2(Z) | γ ≡

(
1 ∗
0 1

)
mod 4

}
;

(2) Show that

R(γ · t) = (ct+ d) ·R(t), ∀γ =

(
a b
c d

)
∈ Γ1(4).

A holomorphic function F on upper-half plane with Fourier expansion

F(t) =
∑
n≥0

an · qn, t ∈ H, q = e2πit

satisfying (13) is called a modular form of weight 1 and level Γ1(4). For a detailed introduc-
tion to modular forms, see [DS].

3. Eisenstein series and its meromorphic continuation

In this section, we will construct another modular form of weight 1 and level Γ1(4) using
the so called Eisenstein series.

For any positive integer k, set

Gχ
k(t) =

∑
(0,0) ̸=(c,d)∈Z2,4|c

χ(d)

(ct+ d)k

where χ : (Z/4Z)× ' {±1} the unique nontrivial character and χ(d) is defined to be zero if
(4, d) = 0.

For t ∈ H, the series defining Gχ
k(t) is absolutely convergent for k ≥ 3 and hence defines

a holomorphic function on H. Moreover Gχ
k(t) is nontrivial only when k is odd since χ is

nontrivial.
By direct calculation, for any γ ∈ Γ1(4),

Gχ
k(γ · t) = (ct+ d)k ·Gχ

k(t), t ∈ H.

Therefore Gχ
k(t) is a modular form of weight k and level Γ1(4).

In the following, we are going to calculate the Fourier expansion of Gχ
k(t).
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Lemma 3.0.1. Fix k ≥ 3 an odd integer. For n an integer,∫ 1

0

Gχ
k(t) · e

−2πint dRe(t) =

{ 2 · L(k, χ) n = 0
0 n < 0

4·L(k,χ)
L(1−k,χ)

·
∑

d|n χ(d) · dk−1 n ≥ 1

Here for t = x+ iy ∈ H,∫ 1

0

Gχ
k(t) · e

−2πint dRe(t) =

∫ 1

0

Gχ
k(x+ iy) · e−2πin(x+iy) dx.

Proof. In the absolute convergence region, the integral is equal to

=
∑

(0,0) ̸=(c,d)∈Z2,4|c

χ(d) ·
∫ 1

0

e−2πint

(ct+ d)k
dRe(t)

=δn,0 ·
∑

0 ̸=d∈Z

χ(d)

dk
+

∑
0 ̸=c∈Z,4|c

1

ck

∑
d∈Z

χ(d) ·
∫ 1

0

e−2πint

(t+ d
c
)k

dRe(t)

=δn,0 ·
∑

0 ̸=d∈Z

χ(d)

dk
+

∑
0 ̸=c∈Z,4|c

1

ck
·
( ∑

d≡1 mod 4

∫ 1

0

e−2πint

(t+ d
c
)k

dRe(t)−
∑

d≡3 mod 4

∫ 1

0

e−2πint

(t+ d
c
)k

dRe(t)

)
.

Here δn,0 is the Kronecker delta. By definition∑
0 ̸=d∈Z

χ(d)

dk
= 2 ·

∑
n≥1

χ(d)

dk
= 2 · L(k, χ)

where L(s, χ) =
∑

n≥1
χ(n)
ns is the Dirichlet L-function. Following the same discussion as

Section 1, one can show that L(s, χ) admits a holomorphic continuation to s ∈ C.
Now ∑

d≡1 mod 4

∫ 1

0

e−2πint

(t+ d
c
)k

dRe(t) =
∑

d mod c
4

e2πin(
4d+1

c
) ·

∫
R

e−2πint

tk
dRe(t)

and ∑
d≡3 mod 4

∫ 1

0

e−2πint

(t+ d
c
)k

dRe(t) =
∑

d mod c
4

e2πin(
4d+3

c
) ·

∫
R

e−2πint

tk
dRe(t)

Exercise 3.0.2. Use residual calculus to show that for∫
R

e−2πint

tk
dRe(t) =

{
(−2πi)k

(k−1)!
· nk−1 n ≥ 1

0 n ≤ 0

Since ∑
d mod c

4

e2πin(
4d+1

c
) −

∑
d mod c

4

e2πin(
4d+3

c
) =

{
| c
4
| ·
(
e2πi

n
c − e2πi

3n
c

)
c
4
| n

0 c
4
∤ n

=

{ | c
4
| · (2i) n

c
≡ 1

4
mod Z

| c
4
| · (−2i) n

c
≡ 3

4
mod Z

0 otherwise
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it follows that when n ≤ 0, the resulting integral is equal to∫ 1

0

Gχ
k(t) · e

−2πint dRe(t) =

{
2 · L(k, χ) n = 0

0 n < 0

and when n ≥ 1,∫ 1

0

Gχ
k(t) · e

−2πint dRe(t) =
∑

0 ̸=c∈Z,4|c

1

ck
· (−2πi)

k

(k − 1)!
· nk−1 ·

{ | c
4
| · (2i) n

c
≡ 1

4
mod Z

| c
4
| · (−2i) n

c
≡ 3

4
mod Z

0 otherwise

=
(−1) k+1

2
+1 · πk

2k−1 · (k − 1)!
·

∑
0 ̸=c∈Z,4|c

(
4n

c

)k−1

· c

|c|
·

{
1 4n

c
≡ 1 mod 4

−1 4n
c
≡ 3 mod 4

0 otherwise

=
(−1) k+1

2
+1 · πk

2k−2 · (k − 1)!
·
∑
d|n

χ(d) · dk−1.(14)

Exercise 3.0.3. Establish the functional equation for L(s, χ). Deduce from the functional
equation of L(s, χ) that for a positive integer k,

L(k, χ) =
(−1) k−1

2 · πk

(k − 1)! · 2k
· L(1− k, χ).

Plugging Exercise 3.0.3 into (14), it follows that the lemma has been proved. □

Based on Lemma 3.0.1, the following Fourier expansion holds

(15) Gχ
k(t)

2 · L(k, χ)
= 1 +

2

L(1− k, χ)
·
∑
n≥1

(∑
d|n

χ(d) · dk−1

)
· qn, q = e2πit.

Although Gχ
k(t) is no longer absolutely convergent when k = 1, the right hand side of

(15) is still absolutely convergent when k = 1 and defines a holomorphic function on H. A
natural question is whether the right hand side of (15) defines a modular form of weight 1
and level Γ1(4) when k = 1. This is indeed the case. There are several ways to justify this
fact, one way is to consider the following continuous family of Eisenstein series

(16) Gχ
1 (t, s) =

∑
(0,0) ̸=(c,d)∈Z2,4|c

χ(d)

(ct+ d) · |ct+ d|2s
, t ∈ H

At prior Gχ
1 (t, s) is absolutely convergent for Re(s) > 1

2
and satisfies

(17) Gχ
1 (γ · t, s) = (ct+ d) · |ct+ d|2s ·Gχ

1 (t, s), γ ∈ Γ1(4).

We will calculate the Fourier expansion of Gχ
1 (t, s) and show that it admits a holomorphic

continuation to s ∈ C. In particular the value at s = 0 is exactly given by the right hand
side of (15).

Lemma 3.0.4. For Re(s) > 1
2

and an integer n,

(18)
∫ 1

0

Gχ
1 (t, s) · e−2πint dRe(t)
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admits a holomorphic continuation to s ∈ C, with∫ 1

0

Gχ
1 (t, s) · e−2πint dRe(t)

∣∣∣∣
s=0

=

{ 2 · L(1, χ) n = 0
0 n < 0

4·L(1,χ)
L(0,χ)

·
∑

d|n χ(d) n ≥ 1

Proof. In the absolute convergence region, the integral (18) is equal to

=2 · L(1 + 2s, χ) · δn,0 +
∑

0 ̸=c∈Z,4|c

1

c · |c|2s
·
∑
d∈Z

χ(d) ·
∫ 1

0

e−2πint

(t+ d
c
) · |t+ d

c
|2s

dRe(t).

For the second term above, following the same idea as Lemma 3.0.1,

=
∑

0 ̸=c∈Z,4|c

1

c · |c|2s
·
∑
d∈Z

χ(d) ·
∫ 1

0

e−2πint

(t+ d
c
) · |t+ d

c
|2s

dRe(t)

=
i

2
·

∑
0 ̸=c∈Z,4|c

|c|1−2s

c
·

{
1 4n

c
≡ 1 mod 4

−1 4n
c
≡ 3 mod 4

0 otherwise
·
∫
R

e−2πint

t · |t|2s
dRe(t)

=i ·
∑
d|n

χ(d) ·
(
4n

d

)−2s

·
∫
R

e−2πint

t · |t|2s
dRe(t).

It remains to estimate the function

(19) s ∈ {s ∈ C | Re(s) > 1

2
} 7→

∫
R

e−2πint

t · |t|2s
dRe(t).

It is clear that when n = 0 the above function is identically zero. Hence admits a holomorphic
continuation to s ∈ C. When n 6= 0, using integration by parts, the following identity holds
when Re(s1) + Re(s2) is sufficiently large

(20)
∫
R

e−2πint

ts1 · ts2
dRe(t) = − 1

2πin
·
(
s1 ·

∫
R

e−2πint

ts1+1 · ts2
dRe(t) + s2 ·

∫
R

e−2πint

ts1 · ts2+1 dRe(t)

)
In particular (20) provides a holomorphic continuation of (19) to s ∈ C.

Exercise 3.0.5. After holomorphic continuation via (20), show the following identity∫
R

e−2πint

t · |t|2s
dRe(t)

∣∣∣∣
s=0

=

{
0 n ≤ 0
−2πi n ≥ 1

The rest of the calculation is the same as Lemma 3.0.1 and we omit. □

Based on Lemma 3.0.4 and (20), the Fourier coefficients

n ∈ Z 7→
∫ 1

0

Gχ
1 (t, s) · e−2πint dRe(t)

are of moderate growth in variable n. Therefore the Fourier expansion

Gχ
1 (t, s) =

∑
n∈Z

(∫ 1

0

Gχ
1 (t, s) · e−2πint dRe(t)

)
· qn q = e2πit
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admits a holomorphic continuation to s ∈ C and its value at s = 0 is exactly given by the
right hand side of (15) when k = 1. In particular (17) shows that indeed Gχ

1 (t) := Gχ
1 (t, 0)

is a modular form of weight 1 and level Γ1(4). After normalization, let us set

Eχ
k(t) =

Gχ
k(t)

2 · L(k, χ)

4. Sum of two squares

The discussion from Section 2 and Section 3 provides two different modular forms of weight
1 and level Γ1(4):

R(t) = 1 +
∑
n≥1

r(n) · qn

Eχ
1 (t) = 1 + 4 ·

∑
n≥1

(∑
d|n

χ(d)

)
· qn

here we use the fact that L(0, χ) = 1
2
.

It turns out that the space of modular forms of weight 1 and level Γ1(4) is actually of
dimension 1 ([DS, §4]). In particular we arrive at the identity

R(t) = Eχ
1 (t).

Comparing the Fourier coefficients we arrive at the following theorem, which was first estab-
lished by C. Jacobi [J] using the theory of elliptic functions.

Theorem 4.0.1. Let n be a positive integer, then

r(n) = 4 ·
∑
d|n

χ(d).

As a corollary, let n = p be an odd prime number. Then
(21) r(p) = 8 resp. 0⇐⇒ p ≡ 1 resp. 3 mod 4.

This matches with what we learned from algebraic number theory. One can show that an
odd prime is split (resp. inert) in Z[i] if and only if p ≡ 1 (resp. 3) mod 4. This is
essentially equivalent to (21).

5. Further reading

As one may already observe, the Fourier expansion of k-th power of theta function is
ultimately related to the arithmetic problem of sum of k-squares. Following similar discussion
as above, One can try to find a similar expression for

r(n, k) = #{(x1, ...xk) ∈ Zk |
∑

x2
i = k}.

using Eisenstein series. For details see [DS].
C. Siegel generalized Theorem 4.0.1 from higher dimensional aspect [S1][S2][S3][S4][S5],

comparing Siegel theta function on Siegel upper-half plane and the special values of Siegel
Eisenstein series. Later the work of Siegel was polished by A. Weil using the so called Weil
representations [A] on metaplectic groups, and extended by S. Kudla-S. Rallis in a series
of works [KR1][KR2][KR3]. The identity between theta function and Eisenstein series is
usually called the Sigel-Weil formula.
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The meromorphic continuation of Eisenstein series is the fulcrum in the theory of auto-
morphic forms. It is really unfortunate that I do not have enough time to share my thoughts
on this extremely important topic. I will only refer the readers who have interst to the work
of R. Langlands [R], the recent work of J. Bernstein and E. Lapid [BL], and many related
works.
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