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Introduction

A finite space is a topological space that has only finitely many points. At first
glance, it seems ludicrous to think that such spaces can be of any interest. In fact,
from the point of view of homotopy theory, they are equivalent to finite simplicial
complexes. Therefore they support the entire range of invariants to be found in
classical algebraic topology. For a striking example that sounds like nonsense, there
is a space with six points and infinitely many non-zero homotopy groups. That is
like magic: it sounds impossible until you know the trick, when it becomes obvious.
We usually restrict attention to finite T0-spaces1, and those are precisely equivalent
to finite posets (partially ordered sets). Therefore finite spaces are also of interest
in combinatorics. In fact, there is a large and growing literature about finite spaces
and their role in other areas of mathematics and science.

My own interest in the subject was aroused by 1966 papers by McCord [50] and
Stong [65] that are the starting point of this book. However, I should admit that I
came upon these papers while casting about for material to teach in Chicago’s large
scale REU, which I organize and run. I wanted something genuinely fascinating,
genuinely deep, and genuinely accessible, with lots of open problems. Finite spaces
provide a perfect REU topic for an algebraic topologist. Most experts in my field
know nothing at all about finite spaces, so the material is new even to the experts,
and yet it really is accessible to smart undergraduates. This book will feature several
contributions made by undergraduates, some from Chicago’s REU and some not.

When I first started talking about finite spaces, in the summer of 2003, my
interest had nothing at all to do with my own areas of research, which seemed
entirely disjoint. However, it has gradually become apparent that finite spaces can
be integrated seamlessly into a global picture of how posets, simplicial complexes,
simplicial sets, topological spaces, small categories, and groups are interrelated by
a web of adjoint pairs of functors with homotopical meaning. The undergraduate
may shudder at the stream of undefined terms!

The intention of this book is to introduce the algebraic topology of finite topo-
logical spaces and to integrate that topic into an exposition of a global view of a
large swathe of modern algebraic topology that is accessible to undergraduates and
yet has something new for the experts. A slogan of our REU is that “all concepts
will be carefully defined”, and we will follow that here. However, proofs will be se-
lective. We aim to convey ideas, not all of the details. When the results are part of
the mainstream of other subjects (group theory, combinatorics, point-set topology,
and algebraic topology) we generally quote them. When they are particular to our
main topics and not to be found on the textbook level, we give complete details.

These notes started out entirely concretely, without even a mention of things
like categories or simplicial sets. Chicago students won’t stand for oversimplifica-
tion, and their questions always led me into deeper waters than I intended. They
were also impatient with the restriction to finite spaces and finite simplicial com-
plexes, one reason being that as soon as their questions forced me to raise the level
of discourse, the restriction to finite things seemed entirely unnatural to them.

The infinite version of finite topological spaces is readily defined and goes back
to a 1937 paper of Alexandroff [2]. We call these spaces Alexandroff spaces, and we
use the abbreviation A-space for Alexandroff T0-space. To go along with this, we

1The T0 property means that the topology distinguishes points.
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also use the abbreviation F -space for finite T0-space. Just as F -spaces are equiva-
lent to finite posets, so A-spaces are equivalent to general posets. Similarly, from
the point of view of homotopy theory, F -spaces are equivalent to finite simplicial
complexes and A-spaces are equivalent to general simplicial complexes.

Roughly speaking, the first part of the book focuses on the homotopy theory of
F -spaces and A-spaces. A central theme is the difference between weak homotopy
equivalences and homotopy equivalences. A continuous map f : X −→ Y is a
homotopy equivalence if there is a map g : Y −→ X such that the composite g ◦ f
is homotopic to the identity map of X and the composite f ◦ g is homotopic to the
identity map of Y . The map f is a weak homotopy equivalence (usually abbreviated
to weak equivalence) if for every choice of basepoint x ∈ X and every n ≥ 0, the
induced map f∗ : πn(X,x) −→ πn(Y, f(x)) is an isomorphism (of sets if n = 0, of
groups if n = 1, and of abelian groups if n ≥ 2).

Every homotopy equivalence is a weak homotopy equivalence. A map between
nice spaces, namely CW complexes, is a homotopy equivalence if it is a weak homo-
topy equivalence. All of the spaces that one encounters in standard introductions
to algebraic topology are nice, so that the distinction seems parenthetical and of
minor interest. It is by now very well understood by algebraic topologists that the
definitively “right” notion of equivalence is weak equivalence, not homotopy equiv-
alence. However, to get a feel for the strength of the distinction, one needs to see
serious examples where the two notions are genuinely different.

The first half of the book offers just such a perspective. The work of Stong
makes it very easy to understand homotopy equivalences of finite spaces. The work
of McCord relates weak equivalences of Alexandroff spaces to weak equivalences,
and therefore homotopy equivalences, of simplicial complexes. As we shall explain,
a reinterpretation in terms of finite spaces of a conjecture of Quillen about the poset
of non-trivial elementary subgroups of a finite group illuminates precisely this dis-
tinction between weak homotopy equivalences and actual homotopy equivalences.
Another open problem also illuminates the distinction. The problem of enumer-
ating homotopy equivalences of finite spaces combinatorially has been solved by a
pair of Chicago undergraduates, Alex Fix and Stephan Patrias. The problem of
enumerating weak homotopy equivalences combinatorially is still open.

The second half of the book guides the reader through the following oversim-
plified diagram of categories and functors between them (Chapter 14).
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The connections among these categories are remarkably close. It has been
understood since the 1950’s that topological spaces and simplicial sets can in prin-
ciple be used interchangeably in the study of homotopy theory. In fact, except that
groups only model very special spaces, called K(π, 1)’s, all of these categories can
in principle be used interchangeably in the study of homotopy theory. We’d like
people outside algebraic topology to become more aware of these interconnections.

One thing that is largely new is a careful combinatorial analysis of exactly
how subdivision ties together the categories of simplicial sets, (small) categories,
and posets, alias A-spaces. This is due in large part to Rina Foygel, a recent
Chicago PhD and now faculty member in Statistics, and her work is included with
her permission. In particular, we give a careful explanation of the classical result
that the second subdivision of a suitably well-behaved simplicial set is a simplicial
complex and the folklore result that the second subdivision of any (small) category
is a poset. One striking result is that, when regarded as a simplicial set, any classical
(ordered) simplicial complex is the nerve of a category. As far as I know, that has
never before been noticed. We ask the novice not to be intimidated. We will go
slow! We ask the expert to be patient. There will be new things along the way.

There are all sorts of possible choices of material and presentation for a book
on this general topic, and I’ll explain, but not justify, my choices rather flippantly.
The main justification is that the REU is supposed to be fun, and so is this book.

It is a standard saying that one picture is worth a thousand words. It is a
defect of the (senior) author that he is not good at drawing pictures and is too
lazy to learn. That is one among many reasons that this book, although started by
the senior author, the one who is writing this introduction, has been joined by his
friend and student Elle Pishevar as a coauthor. She has drawn all of the pictures,
edited all of the contributions by REU participants, and helped in countless other
ways. Mistakes that remain are due to the senior author.

In mathematics, it is perhaps fair to also say that one good definition is worth a
thousand calculations. The author likes to make up definitions and to see relations
between seemingly unrelated concepts, so we will do lots of that. However, to quote
a slogan from a T-shirt worn by one of the author’s students, “calculation is the way
to the truth”. There is a need for more calculational understanding of the subject
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here, and the author, being too lazy to compute himself, hopes that readers will be
inspired.

In fact, the author’s notes on this subject have been online since 2003, and a
number of people have been inspired by them. In particular, Gabriel Minian, in
Buenos Aires, and his students have followed up problems in my notes. His student
Jonathan Barmak wrote a 2009 thesis, now a book [7], that has a good deal of
overlap with the first half of this book.2 I’ll content myself with the basic theory
and refer to Barmak’s book for more recent advances made in Argentina.

Pedagogically, I’ve been using this material as a device to offer beginning un-
dergraduates capsule introductions to point-set topology, algebraic topology, and
category theory. I’ve also used the evolution of concepts as a means to help students
gain an intuition for abstraction and conceptualization in modern mathematics.3

These twin purposes pervade and guide the exposition.
Elle and I have drawn inspiration from a number of REU papers over the years.

With the permission of their authors, we have included several, sometimes edited
so as to fit into the context of the book. The topics were often suggested during
REUs, and several are original related research. We will highlight contributions as
they appear, but here is a list of contributors, with the title of their REU paper, a
link to it on the senior author’s web page, and a reference to where their contribu-
tion appears in the book.

Adam Black.
The Euler Characteristic of Finite Topological Spaces.
http://math.uchicago.edu/ may/REU2015/REUPapers/Black.pdf (2015), [Chapter 4].

Cathy (Xi) Chen.
Cores of Alexandroff Spaces.
http://math.uchicago.edu/ may/REU2015/REUPapers/Chen,Xi(Cathy).pdf (2015),
[Chapter 17].

Alex Fix and Stephen Patrias.
Enumeration of Homotopy Classes of Finite T0 Topological Spaces.
https://math.uchicago.edu/ may/VIGRE/VIGRE2008/REUPapers/Fix.pdf (2008),
[Section 2.5, Chapter 18].

Isaac Friend.
Finite Connected H-Spaces are Contractible.

2I’ll quote from his introduction. “In 2003, Peter May writes a series of unpublished notes in
which he synthesizes the most important ideas on finite spaces until that time. In these articles,
May also formulates some natural and interesting questions and conjectures which arise from his

own research. May was one of the first to note that Stong’s combinatorial point of view and the
bridge constructed by McCord could be used together to attack algebraic topology problems using

finite spaces. Those notes came to the hands of my PhD advisor Gabriel Minian, who proposed
me to work on this subject. May’s notes and problems, jointly with Stong’s and McCord’s papers,
were the starting point of our research on the Algebraic Topology of Finite Topological Spaces
and Applications.”

3Entirely independent of this book, an advertisement for just such a use of the subject of
finite spaces as a pedagogical tool has been published by two students of a student of mine [32].
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http://math.uchicago.edu/ may/REU2015/REUPapers/Friend.pdf (2015), [Chap-
ter 12].

Doron L. Grossman-Naples.
Finite Manifolds and Minimal Finite Models of Closed Surfaces.
https://math.uchicago.edu/ may/REU2018/REUPapers/Grossman-Naples.pdf (2018),
[??].

Ryan Hopkins.
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http://math.uchicago.edu/ may/REU2018/REUPapers/McSpirit.pdf (2018), [Def-
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CHAPTER 1

Alexandroff spaces and posets

1.1. The basic definitions of point set topology

The intuitive notion of a set in which there is a prescribed description of near-
ness of points is obvious. So is the intuitive notion of a function that takes nearby
points to nearby points. However, formulating the “right” general abstract notion
of what a “topology” on a set should be and what a “continuous map” between
topological spaces should be is not so obvious. Since, intuitively, nearness is thought
of in terms of distance, the most immediate way to make the intuition precise is
to use distance functions. That leads to metric spaces and the ε-δ description of
continuity, which is how we usually think of spaces and maps. Hausdorff came up
with a much more abstract and general notion that is now universally accepted.

Definition 1.1.1. A topology on a set X consists of a set U of subsets of X,
called the “open sets of X in the topology U ”, with the following properties.

(i) The empty set ∅ and the set X are in U .
(ii) A finite intersection of sets in U is in U .

(iii) An arbitrary union of sets in U is in U .

A neighborhood of a point x ∈ X is an open set U such that x ∈ U .

We write (X,U ) for the set X with the topology U . More usually, when the
topology U is understood, we just say that X is a topological space. We say that
a topology U is finer than a topology V if every set in V is also in U (U has
more open sets). We then say that V is coarser than U . We have two obvious and
uninteresting topologies on any set X.

Definition 1.1.2. The discrete topology on X is the topology in which all sets
are open. It is the finest topology on X. The trivial or coarse or indiscrete topology
on X is the topology in which ∅ and X are the only open sets. It is the coarsest
topology on X. We write Dn and Cn for the discrete and coarse topologies on a
set with n elements. These are the largest and the smallest possible topologies (in
terms of the number of open subsets).

Example 1.1.3. In pictures, we shall display non-empty open sets as the set of
points interior to circles drawn on a space. We only draw circles around the smallest
open sets, remembering that the union of open sets is open. The following figure
depicts D3 and C3, each contained within a large circle for ease of presentation.

3
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D3 C3

Definition 1.1.4. Let X be a topological space. A subset of X is closed if its
complement is open. The closed sets satisfy the following conditions.

(i) The empty set ∅ and the set X are closed.
(ii) An arbitrary intersection of closed sets is closed.

(iii) A finite union of closed sets is closed.

We shall make little or no use of the following definition, but it may help make
clear how the abstract definitions correspond to common notions in calculus.

Definition 1.1.5. Let A be a subset of a topological space X. The interior Å
of A is the union of the open subsets of X contained in A. The closure Ā of A is
the intersection of the closed sets containing A. A point x ∈ X is a limit point of A
if every neighborhood of x contains a point a ̸= x of A. A is dense in X if Ā = X.

We shall omit proofs of many standard results that are part of basic point-set
topology, such as the next one. While this result is not too hard and can safely be
left as an exercise, other omitted proofs will be more substantial.

Proposition 1.1.6. A point x ∈ X is in Ā if and only if every neighborhood
of x contains a point of A, and Ā is the union of A and the set of limit points of
A. The set A is closed if and only if it contains all of its limit points.

1.2. Alexandroff and finite spaces

It is very often interesting to see what happens when one takes a standard
definition and tweaks it a bit. The following tweaking of the notion of a topology
is due to Alexandroff [2], except that he used a different name for the notion1.

Definition 1.2.1. A topological space X is an Alexandroff space if the set U
is closed under arbitrary intersections, not just finite ones.

Remark 1.2.2. The notion of an Alexandroff space has a pleasing complemen-
tarity. If X is an Alexandroff space, then the closed subsets of X give it a new
topology in which it is again an Alexandroff space. We write Xop for X with this
opposite topology. Then (Xop)op is the space X back again.

A space is finite if the set X is finite. Since any intersection in a finite space is
finite, the following observation is immediate.

Lemma 1.2.3. A finite space is an Alexandroff space.

1His name was Diskrete Räume, which translates as discrete spaces.
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It turns out that a great deal of what can be proven for finite spaces applies
equally well more generally to Alexandroff spaces, with exactly the same proofs.
When that is the case, we will prove the more general version. However, finite
spaces have recently captured people’s attention. Since digital processing and image
processing start from finite sets of observations and seek to understand pictures that
emerge from a notion of nearness of points, finite topological spaces seem a natural
tool in many such scientific applications. There are quite a few papers on the
subject, although few of much mathematical depth, starting from the 1980’s.

There was a brief early flurry of beautiful mathematical work on this subject.
Two independent papers, by McCord and Stong [50, 65], both published in 1966,
are especially interesting. We will work through them. We are especially interested
in questions that are raised by the union of these papers but are answered in
neither. These questions have only recently been pursued. We are also interested
in calculational questions about the enumeration of finite topologies.

There is a hierarchy of “separation properties” on spaces, and intuition about
finite spaces is impeded by too much habituation to the stronger of them.

Definition 1.2.4. Let (X,U ) be a topological space.

(i) X is a T0-space if for any two points of X, there is an open neighborhood
of one that does not contain the other. That is, the topology distinguishes
points.

(ii) X is a T1-space if each point of X is a closed subset.
(iii) X is a T2-space, or Hausdorff space, if any two points of X have disjoint

open neighborhoods.2

Example 1.2.5. The following are examples of 2 point spaces with or without
the aforementioned separation properties; keep in mind that the smallest open sets
are pictured in the interiors of the drawn circles.

not T0 T0, not T1 T1 and T2

Lemma 1.2.6. If X is a T2-space, then it is a T1-space. If X is a T1-space,
then it is a T0-space.

There are still stronger separation properties. In most of topology, the spaces
considered are at least Hausdorff. For example, metric spaces are Hausdorff. We
discuss them briefly in the final section. Observe that discrete spaces are clearly
Hausdorff. Conversely, the following commonly used property implies that a finite
Hausdorff space is discrete.

2The terminology is due to a 1935 paper of Alexandroff and Hopf [3]. The German word for

separation is “Trennung”, hence the letter T for the hierarchy of separation properties.
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Proposition 1.2.7. Let A be a subset of a Hausdorff space X and let x ∈ X
but x /∈ A. Then x is a limit point of A if and only if every neighborhood of x
contains infinitely many points in A.

Obviously, intuition gained from thinking about Hausdorff spaces is likely to
be misleading when thinking about finite spaces! In fact, the following result shows
more generally that Hausdorff Alexandroff spaces are discrete. In fact, there are no
interesting spaces that are both Alexandroff and T1, let alone T2.

Lemma 1.2.8. If an Alexandroff space is T1, then it is discrete. Therefore an
Alexandroff T1-space is a T2-space.

Proof. Every subset of any set is the union of its subsets with a single element.
In an Alexandroff space, all unions of closed subsets are closed. In a T1-space, all
singleton subsets are closed. If both of these conditions hold, every subset is closed.
Therefore every subset is open. □

Thus Alexandroff spaces are Hausdorff, or equivalently T1, if and only if they
are discrete. They are of no topological interest. In contrast, Alexandroff T0-spaces
are very interesting. The following warm-up problem might seem a bit difficult
right now, but its solution will shortly become apparent.

Exercise 1.2.9. Show that a finite T0-space has at least one point which is a
closed subset.

Notation 1.2.10. As in the introduction, we define an F -space to be a finite
T0-space and an A-space to be an Alexandroff T0-space.

1.3. Bases and subbases for topologies

Alexandroff spaces have canonical minimal bases, which we describe in this
section. We first recall the notions of a basis and a subbasis for a topology. The
idea is that one often has a preferred collection of “small” or canonical open sets,
a“basis” from which all other open sets are generated.

Definition 1.3.1. A basis for a topology on a set X is a set B of subsets of
X such that

(i) For each x ∈ X, there is at least one B ∈ B such that x ∈ B.
(ii) If x ∈ B′ ∩ B′′ where B′, B′′ ∈ B, then there is at least one B ∈ B such

that x ∈ B ⊂ B′ ∩B′′.

The topology U generated by the basis B is the set of subsets U such that, for
every point x ∈ U , there is a B ∈ B such that x ∈ B ⊂ U . Equivalently, a set U is
in U if and only if it is a union of sets in B.

In the definition, we did not assume that we started with a topology on X. If
we do start with a given topology U , then it usually admits many different bases.
We can easily characterize which subsets of U give bases.

Lemma 1.3.2. Let (X,U ) be a topological space. A subset B of U is a basis
that generates U if and only if for every U ∈ U and every x ∈ U , there is a B ∈ B
such that x ∈ B ⊂ U .

We can generate bases for topologies from subbases.
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Definition 1.3.3. A subbasis for a topology on a set X is a set S of open
subsets of X whose union is X; that is, S is a open cover of X. The set of finite
intersections of sets in S is the basis generated by S . If (X,U ) is a topological
space, a subbasis S for the topology U is a subset of U such that every set in U
is a union of finite intersections of sets in S .

Example 1.3.4. The set of singleton sets {x} is a basis for the discrete topology
on X. The set of open balls B(x, r) = {y|d(x, y) < r} is a basis for the topology
on a metric space X.

Returning to Alexandroff spaces, we find that such a space has a canonical
basis which is minimal in the strong sense that the open sets in the canonical basis
are open sets in any basis for the topology on X.

Definition 1.3.5. Let X be an Alexandroff space. For x ∈ X, define Ux to be
the intersection of the open sets that contain x. Define a relation ≤ on the set X
by x ≤ y if x ∈ Uy or, equivalently, Ux ⊂ Uy. Write x < y if the inclusion is proper.

Lemma 1.3.6. The set of open sets Ux is a basis B for X. If C is any other
basis, then B ⊂ C . Therefore B is the unique minimal basis for X.

Proof. The first statement is clear from the definitions. If C is another basis
and x ∈ X, then there is a C ∈ C such that x ∈ C ⊂ Ux. This implies that C = Ux,
so that Ux ∈ C . □

As you may have guessed, we can detect whether or not an Alexandroff space
is T0 in terms of its minimal basis. This is formalized as follows.

Lemma 1.3.7. Two points x and y in X have the same neighborhoods if and
only if Ux = Uy. Therefore X is T0 if and only if Ux = Uy implies x = y.

Proof. If x and y have the same neighborhoods, then obviously Ux = Uy.
Conversely, suppose that Ux = Uy. If x ∈ U where U is open, then Uy = Ux ⊂ U
and therefore y ∈ U . Similarly if y ∈ U , then x ∈ U . Thus x and y have the same
neighborhoods. □

Exercise 1.3.8. Identify the inclusion relations among Ua, Ub, Uc, and Ud in
the following pictured topology.

(c) (d)(a) (b)
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1.4. Operations on spaces

There are many standard operations on spaces that we shall have occasion to
use. We record four of them now and will come back to others later.

Definition 1.4.1. The subspace topology on A ⊂ X is the set of all intersections
A ∩ U for open sets U of X.

Subspace topologies are defined for injective functions. There is a perhaps less
intuitive analogue for surjective functions.

Definition 1.4.2. Let X be a topological space and q : X −→ Y be a surjective
function. The quotient topology on Y is the set of subsets U such that q−1(U) is
open in X.

Definition 1.4.3. The topology of the union on the disjoint union X ⨿ Y has
as open sets the unions of an open set of X and an open set of Y . More generally,
for a set {Xi|i ∈ I} of topological spaces, the topology of the union on the disjoint
union

∐
i∈I Xi has as open sets the unions of open sets Ui ⊂ Xi. Note that a subset

is closed if and only if it intersects each Xi in a closed subset.

Definition 1.4.4. The product topology on the cartesian product X ×Y is the
topology with basis the products U×V of an open set U in X and an open set V in
Y . More generally, for a set {Xi|i ∈ I} of topological spaces, the product topology
on the product set

∏
i∈I Xi is the topology generated by the basis consisting of all

products
∏
i∈I Ui where Ui is open in Xi and Ui = Xi for all but finitely many i.

There is a consistency observation relating the subspace and product topologies.

Proposition 1.4.5. If A ⊂ X and B ⊂ Y , then the subspace and product
topologies on A×B ⊂ X × Y coincide.

Exercise 1.4.6. Verify the following properties of Alexandroff spaces.

Proposition 1.4.7. A subspace of an Alexandroff space is an Alexandroff
space. A quotient of an Alexandroff space is an Alexandroff space. A disjoint
union of Alexandroff spaces is an Alexandroff space. A product of finitely many
Alexandroff spaces is an Alexandroff space.

Here is a thought exercise.

Problem 1.4.8. Is the product of infinitely many Alexandroff spaces an Alexan-
droff space?

1.5. Continuous functions and homeomorphisms

Definition 1.5.1. Let X and Y be spaces. A function f : X −→ Y is contin-
uous if f−1(U) is open in X for all open subsets U of Y . A continuous function is
often called a map.

It suffices that f−1(U) be open for each U in a basis for the topology on Y , or
even for each U in a subbasis. The reader is encouraged to use that to verify that
the abstract definition of continuity just given coincides with the usual ε-δ definition
of continuity on metric spaces (see Section 19.1). By passage to complements, a
function f is continuous if and only if f−1(C) is closed in X for all closed subsets
C of Y . This can be reinterpreted in terms of closures (and thus in terms of limit
points).
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Lemma 1.5.2. A function f : X −→ Y is continuous if and only if, for all
A ⊂ X, f(Ā) ⊂ f(A).

Lemma 1.5.3. Let A be a subspace of a space X. A continuous function from A
to a Hausdorff space Y admits at most one extension to a continuous map Ā −→ Y .

Identity functions and composites of continuous functions are continuous.

Lemma 1.5.4. Let X be a space, let A ⊂ X, and give A the subspace topology.
Then the inclusion i : A −→ X is a continuous function. If B is a space and
j : B −→ A is a function such that i ◦ j is continuous, then j is continuous.

Lemma 1.5.5. Let X be a space, let q : X −→ Y be a surjective function, and
give Y the quotient topology. Then q is a continuous function. If Z is a space and
r : Y −→ Z is a function such that r ◦ q is continuous, then r is continuous.

Lemma 1.5.6. Let Xi be spaces and let ιi : Xi −→
∐
Xi be the inclusion. Then

ιi is a continuous function. If Z is a space and ηi : Xi −→ Z are continuous func-
tions, then the unique function

∐
Xi −→ Z that restricts to ηi on Xi is continuous.

Lemma 1.5.7. Let Xi be spaces and let πi :
∏
iXi −→ Xi be the projection.

Then πi is a continuous function. If Y is a space and ρi : Y −→ Xi are continuous
functions, then the unique function Y −→

∏
Xi with i

th coordinate ρi is continuous.

The four previous propositions state that the subspace, quotient, union, and
product topologies satisfy certain “universal properties”. In each of these results,
the specified topology is the only topology for which the last statement is true.

Continuity is a local condition on a function.

Lemma 1.5.8. A function f : X −→ Y is continuous if and only if for each
x ∈ X and each neighborhood V of f(x), there is a neighborhood U of x such that
f(U) ⊂ V .

Lemma 1.5.9. A function f : X −→ Y is continuous if and only if its restriction
to each set in an open cover of X is continuous.

There is an analogue for finite closed covers.

Lemma 1.5.10. A function f : X −→ Y is continuous if and only if its restric-
tion to each set in a finite closed cover of X is continuous.

In particular, if X = A ∪ B where A and B are closed subsets of X, then
continuous functions A −→ Y and B −→ Y that agree on A∩B induce a continuous
function X −→ Y .

Definition 1.5.11. A continuous bijection f : X −→ Y is a homeomorphism
if its inverse f−1 is also continuous. That is, a homeomorphism is a continuous
bijection with a continuous inverse. Equivalently, a map f : X −→ Y is a homeo-
morphism if there is a map g : Y −→ X such that g ◦ f = idX and f ◦ g = idY . An
inclusion or embedding is a continuous injection that is a homeomorphism onto its
image. We write X ∼= Y to indicate that X is homeomorphic to Y .

Intuitively, homeomorphism is the topological counterpart of the algebraic no-
tion of isomorphism. Topologists are interested in properties of spaces that are
invariant under homeomorphism. We shall later (Lemma 1.7.1, Theorem 19.2.7)
give conditions on X and Y that ensure that a continuous bijection is a homeomor-
phism.
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1.6. Alexandroff spaces, preorders, and partial orders

Here we relate Alexandroff spaces to the combinatorial notions of preorder and
partial order.

Definition 1.6.1. A preorder on a set X is a reflexive and transitive relation,
denoted ≤. This means that x ≤ x and that x ≤ y and y ≤ z imply x ≤ z. A
preorder is a partial order if it is antisymmetric, which means that x ≤ y and y ≤ x
imply x = y. Then (X,≤) is called a poset. A poset is totally ordered if for all
x, y ∈ X, either x ≤ y or y ≤ x.

Recall from Definition 1.3.5 that, in an Alexandroff space X, x ≤ y means that
Ux ⊂ Uy.

Lemma 1.6.2. The relation ≤ on an Alexandroff space X is reflexive and tran-
sitive, so that the relation ≤ is a preorder. The relation is also antisymmetric, so
that (X,≤) is a poset, if and only if the space X is T0.

Proof. The first statement is clear and the second holds by Lemma 1.3.7. □

Lemma 1.6.3. A preorder (X,≤) determines a topology U on X with basis the
set of all sets Ux = {y|y ≤ x}. It is called the order topology on X. The space
(X,U ) is an Alexandroff space. It is a T0-space if and only if (X,≤) is a poset.

Proof. If x ∈ Uy and x ∈ Uz, then x ≤ y and x ≤ z, hence x ∈ Ux ⊂ Uy ∩Uz.
Therefore {Ux} is a basis for a topology. The intersection U of a set {Ui} of open
subsets is open since if x ∈ U , then Ux ⊂ Ui for each i and therefore U is the union
of these Ux. Therefore (X,U ) is an Alexandroff space with minimal basis {Ux}.
Since Ux = Uy if and only if x ≤ y and y ≤ x, Lemma 1.3.7 implies that (X,U ) is
T0 if and only if (X,≤) is a poset. □

We put things together to obtain the following conclusion.

Proposition 1.6.4. For a set X, the Alexandroff space topologies on X are in
bijective correspondence with the preorders on X. The topology U corresponding
to ≤ is T0 if and only if the relation ≤ is a partial order.

Remark 1.6.5. If ≤ is a preorder on X, the opposite preorder is given by
x ≤op y if and only if y ≤ x. The corresponding Alexandroff space is Xop.

The real force of the comparison between Alexandroff spaces and preorders
comes from the fact that continuous maps correspond precisely to order-preserving
functions.

Definition 1.6.6. Let X and Y be preorders. A function f : X −→ Y is
order-preserving if w ≤ x in X implies f(w) ≤ f(x) in Y .

Lemma 1.6.7. A function f : X −→ Y between Alexandroff spaces is continuous
if and only if it is order preserving.

Proof. Let f be continuous and suppose w ≤ x. Then w ∈ Ux ⊂ f−1Uf(x)
and thus f(w) ∈ Uf(x). This means that f(w) ≤ f(x). For the converse, let f be
order preserving and let V be open in Y . If f(x) ∈ V , then Uf(x) ⊂ V . If w ∈ Ux,

then w ≤ x and thus f(w) ≤ f(x) and f(w) ∈ Uf(x) ⊂ V , so that w ∈ f−1(V ).

Thus f−1(V ) is the union of these Ux and is therefore open. □
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1.7. Finite spaces and homeomorphisms

In this section we specialize the theory above to finite spaces. Thus let X be
a finite space and write |X| for the number of points in X. One might think that
finite spaces are uninteresting since they are just finite preorders in disguise, but
that turns out to be far from the case.

Topologists are only interested in spaces up to homeomorphism, and we proceed
to classify finite spaces up to homeomorphism.

Lemma 1.7.1. A map f : X −→ X is a homeomorphism if and only if f is
either one–to–one or onto.

Proof. By finiteness, one–to–one and onto are equivalent; either means that
f is a bijection, as holds for a homeomorphism If f is a bijection, then f induces a
bijection 2f from the set 2X of subsets of X to itself. Since f is continuous, if f(U)
is open, then so is U . Therefore the bijection 2f must restrict to a bijection from the
topology U to itself. Alternatively, observe that the function f is a permutation
of the set X and the set of permutations of X is a finite group. Therefore fn is the
identity for some n, and the continuous function fn−1 is f−1. □

The previous lemma fails if we allow different topologies on X: there are con-
tinuous bijections between different topologies. We proceed to describe how to
enumerate the distinct topologies up to homeomorphism. We say that two topolo-
gies U and V on X are equivalent if there is a homeomorphism (X,U ) −→ (X,V ).
There are quite a few papers on this enumeration problem in the literature, although
some of them focus on enumeration of all topologies, rather than homeomorphism
classes of topologies [14, 20, 24, 24, 37, 38, 39, 41, 59, 60]. The difference
already appears for two point spaces, where there are four distinct topologies but
three inequivalent topologies, that is three non-homeomorphic two point spaces.
Here is a table lifted from Wikipedia that gives an idea of the enumeration.

n Distinct Distinct Inequivalent Inequivalent
topologies T0-topologies topologies T0-topologies

1 1 1 1 1
2 4 3 3 2
3 29 19 9 5
4 355 219 33 16
5 6942 4231 139 63
6 209,527 130,023 718 318
7 9,535,241 6,129,859 4,535 2,045
8 642,779,354 431,723,379 35,979 16,999
9 63,260,289,423 44,511,042,511 363,083 183,231
10 8,977,053,873,043 6,611,065,248,783 4,717,687 2,567,284

Through n = 9, a published source for the fourth column is [39]. However, this
is not the kind of enumeration problem for which one expects to obtain a precise
answer for all n. Rather, one expects bounds and asymptotics. There is a precise
formula relating the second column to the first column, but we are really only
interested in the last column. In fact, we are far more interested in refinements of
the last column that shrink its still inordinately large numbers to smaller numbers
of far greater interest to an algebraic topologist.
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We shall explain how to reduce the determination of the third and fourth
columns to a matrix computation, using minimal bases. For this purpose, it is
convenient to describe minimal bases for a topology on X without reference to
their enumeration by the elements x ∈ X, since the latter can give redundant in-
formation when the space is not T0. The following sequence of lemmas applies to
the study of general Alexandroff spaces, not necessarily finite.

Lemma 1.7.2. A set B of nonempty subsets of X is the unique minimal basis
for an Alexandroff topology U if and only if the following conditions hold.

(i) Every point of X is in some set B in B.
(ii) The intersection of two sets in B is a union of sets in B.
(iii) If a union of sets Bi in B is again in B and if x ∈ B ⊂ ∪Bi with B ∈ B,

then B = Bi for some i.

Proof. Conditions (i) and (ii) are equivalent to saying that B is a basis for
a topology, which we call U . We suppose this topology is Alexandroff. Then each
B in B must be a union of sets of the form Ux and each Ux must be in B by
Lemma 1.3.6. If B is the minimal basis {Uy}, then each given set Bi in (iii) must
be Uy for some y ∈ X. If the union of these Uy is also in B, then the union must be
Ux for some x ∈ X. But then x is in Uy for some y and thus Ux = Uy, so that (iii)
holds. If B is a possibly larger basis, we still have that any open set B is a union
of sets Uy. If that union is in B and not of the form Ux for any x, then B \ {B} is
still a basis, so that B is not minimal. □

This result implies the following relationships between minimal bases and sub-
spaces, quotients, disjoint unions, and products of Alexandroff spaces.

Lemma 1.7.3. If A is a subspace of X, the minimal basis of A consists of the
intersections A ∩ U , where U is in the minimal basis of X.

Lemma 1.7.4. If Y is a quotient space of X with quotient map q : X −→ Y ,
the minimal basis of Y consists of the subsets U of Y such that q−1(U) is in the
minimal basis of X.

Lemma 1.7.5. The minimal basis of X ⨿ Y is the union of the minimal basis
of X and the minimal basis of Y .

Lemma 1.7.6. The minimal basis of X ×Y is the set of products U ×V , where
U and V are in the minimal bases of X and Y .

Returning to finite spaces X, we shall show how to enumerate the homeo-
morphism classes of spaces with finitely many elements. This is meant only to
illustrate how such an enumeration problem can be reduced to computationally
accessible form. To allow spaces that are not T0, the finite number to focus on is
not the number of elements in X but rather the number of elements in the minimal
basis for the topology on X. These numbers are equal if and only if X is a T0-space.

Definition 1.7.7. Consider square matrixes M = (ai,j) with integer entries
that satisfy the following properties.

(i) ai,i ≥ 1.
(ii) ai,j is −1, 0, or 1 if i ̸= j.

(iii) ai,j = −aj,i if i ̸= j.
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(iv) ai1,is = 0 if there is a sequence of distinct indices {i1, · · · , is} such that
s > 2 and aik,ik+1

= 1 for 1 ≤ k ≤ s− 1.

Say that two such matrices M and N are equivalent if there is a permutation matrix
T such that T−1MT = N and let M denote the set of equivalence classes of such
matrices.

Theorem 1.7.8. The homeomorphism classes of finite spaces are in bijective
correspondence with M . If the homeomorphism class of X corresponds to the equiv-
alence class of an r × r matrix M , then r is the number of sets in a minimal basis
for X, and the trace of M is the number of elements of X. Moreover, X is a
T0-space if and only if the diagonal entries of M are all one.

Proof. We work with minimal bases for the topologies rather than with ele-
ments of the set. For a minimal basis U1, · · · , Ur of a topology U on a finite set
X, define an r × r matrix M = (ai,j) as follows. If i = j, let ai,i be the number of
elements x ∈ X such that Ux = Ui. Define ai,j = 1 and aj,i = −1 if Ui ⊂ Uj and
there is no k (other than i or j) such that Ui ⊂ Uk ⊂ Uj . Define ai,j = 0 otherwise.
Clearly (i)–(iv) hold, and a reordering of the basis results in a permutation matrix
that conjugates M into the matrix determined by the reordered basis. Thus X
determines an element of M .

If f : X −→ Y is a homeomorphism, then f determines a bijection from the
basis for X to the basis for Y . This bijection preserves inclusions and the number
of elements that determine corresponding basic sets, hence X and Y determine
the same element of M . Conversely, suppose that X and Y have minimal bases
{U1, · · · , Ur} and {V1, · · · , Vr} that give rise to the same element of M . Reordering
bases if necessary, we can assume that they give rise to the same matrix. For each
i, choose a bijection fi from the set of elements x ∈ X such that Ux = Ui and the
set of elements y ∈ Y such that Vy = Vi. We read off from the matrix that the
fi together specify a homeomorphism f : X −→ Y . Therefore our mapping from
homeomorphism classes to M is one–to–one.

To see that our mapping is onto, consider an r× r-matrix M of the sort under
consideration and let X be the set of pairs of integers (u, v) with 1 ≤ u ≤ r and
1 ≤ v ≤ au,u. Define subsets Ui of X by letting Ui have elements those (u, v) ∈ X
such that either u = i or u ̸= i but u = i1 for some sequence of distinct indices
{i1, · · · , is} such that s ≥ 2, aik,ik+1

= 1 for 1 ≤ k ≤ s − 1, and is = i. We see
that the Ui give a minimal basis for a topology on X by verifying the conditions
specified in Lemma 1.3.6.

Condition (i) is clear since (u, v) ∈ Uu. To verify (ii) and (iii), we observe that
if (u, v) ∈ Ui and u ̸= i, then Uu ⊂ Ui. Indeed, we certainly have (u, v) ∈ Ui for
all v, and if (k, v) ∈ Uu with k ̸= u, then we must have a sequence connecting k to
u and a sequence connecting u to i. These can be concatenated to give a sequence
connecting k to i, which shows that (k, v) is in Ui. To see (ii), if (u, v) ∈ Ui ∩ Uj ,
then Uu ⊂ Ui∩Uj , which implies that Ui∩Uj is a union of sets Uu. To see (iii), if a
union of sets Ui is a set Uj , there is an element of Uj in some Ui and then Uj ⊂ Ui,
so that Uj = Ui. A counting argument for the diagonal entries and consideration of
chains of inclusions show that the matrix associated to the topology whose minimal
basis is {Ui} is the matrix M that we started with. □
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1.8. Spaces with at most four points

We describe the homeomorphism classes of spaces with at most four points,
with just a start on taxonomy. Recall from Definition 1.1.2 that Dn and Cn denote
the discrete and coarse topologies on an n-element set.

• There is a unique space with one point, namely C1 = D1.
• There are three spaces with two points, namely C2, P2 = CD1, and D2.

Proper subsets of X are those not of the form ∅ or X. Since ∅ and X are in
any topology, we often restrict to proper subsets when specifying topologies. The
following definitions prescribe the two names for the second space in the short list
just given.

Definition 1.8.1. We define certain topologies on a set Sn with n elements.
Let Pn = P1,n be the space (unique up to homeomorphism) which has only one
proper open set, containing only one point s ∈ Sn; for 1 < m < n, let Pm,n be the
space whose proper open subsets are all of the non-empty subsets of a given subset
Sm of Sn with m elements.

Definition 1.8.2. For a space X define the non-Hausdorff cone by CX :=
X
∐
{∗}, where {∗} is a disjoint added basepoint. We let the open subsets of CX

be the open subsets of X along with the set X ∪ {∗}.

Example 1.8.3. We observed earlier that P1,2 = CD1. That is the start of a
pattern. We claim that CDn−1 is homeomorphic to Pn−1,n for any n. We see that
by identifying Dn−1 with Sn−1 ⊂ Sn and identifying the cone point + with the
point of Sn not in Sn−1.

D1 D2

CD1

+

CD2

+

We shall see that CX is contractible in Lemma 2.3.2 below. This means that
it is a point to the eyes of homotopy theory or algebraic topology.
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Here is a table of the nine homeomorphism classes of topologies on a three point
set X = {a, b, c}. All of these spaces are disjoint unions of contractible spaces. A
space that is not the disjoint union of proper open and closed subspaces is connected.

Proper open sets Name T0? connected?
all D3 yes no

a, b, (a,b), (b,c) D1 ⨿ P2 yes no
a, b, (a,b) P2,3

∼= CD2 yes yes
a P3 no yes

a, (a,b) CP2
∼= (CP2)op yes yes

a, (b,c) D1 ⨿ C2 no no
a, (a,b), (a,c) (CD2)op yes yes

(a,b) CC2
∼= P op3 no yes

none C3 = Dop
3 no yes

Exercise 1.8.4. Check that the spaces said to be homeomorphic in the above
list are in fact homeomorphic.

We tabulate the proper open subsets of the thirty-three homeomorphism classes
of topologies on a four point space X = {a, b, c, d}. That is, these topologies are
obtained by adding in the empty set and the whole set. The list is ordered by
decreasing number of singleton sets in the topology, and, when that is fixed, by
decreasing number of two-point subsets and then by decreasing number of three-
point subsets.3

3I thank Mark Bowron for sending me a correction and suggesting a reordering.
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1 all
2 a, b, c, (a,b), (a,c), (b,c), (a,d), (a,b,c), (a,b,d), (a,c,d)
3 a, b, c, (a,b), (a,c), (b,c), (a,b,c), (a,b,d)
4 a, b, c, (a,b), (a,c), (b,c), (a,b,c)
5 a, b, (a,b), (a,c), (a,d), (a,b,c), (a,b,d), (a,c,d)
6 a, b, (a,b), (a,c), (b,d), (a,b,c), (a,b,d)
7 a, b, (a,b), (a,c), (a,b,c), (a,b,d)
8 a, b, (a,b), (a,c), (a,b,c), (a,c,d)
9 a, b, (a,b), (c,d), (a,c,d), (b,c,d)
10 a, b, (a,b), (a,c), (a,b,c)
11 a, b, (a,b), (a,b,c), (a,b,d)
12 a, b, (a,b), (a,b,c)
13 a, b, (a,b), (a,c,d)
14 a, b, (a,b)
15 a, (a,b), (a,c), (a,d), (a,b,c), (a,b,d), (a,c,d)
16 a, (a,b), (a,c), (a,b,c), (a,b,d)
17 a, (a,b), (a,c), (a,b,c)
18 a, (a,b), (c,d), (a,c,d)
19 a, (a,b), (a,b,c), (a,b,d)
20 a, (b,c), (a,b,c), (b,c,d)
21 a, (a,b), (a,b,c)
22 a, (a,b), (a,c,d)
23 a, (b,c), (a,b,c)
24 a, (a,b)
25 a, (a,b,c)
26 a, (b,c,d)
27 a
28 (a,b), (c,d)
29 (a,b), (a,b,c), (a,b,d)
30 (a,b), (a,b,c)
31 (a,b)
32 (a,b,c)
33 none

Problem 1.8.5.

(1) Determine which of these spaces are T0 and which are connected.
(2) Give a taxonomy in terms of explicit general constructions that accounts

for all of these topologies. That is, determine appropriate “names” for all
of these spaces.

(3) How many are not contractible spaces or disjoint unions of contractible
spaces? (Hint: there is one connected 4-point space that is not contractible;
which one of the 33 is it?)



CHAPTER 2

Homotopy equivalences of Alexandroff and finite
spaces

2.1. Connectivity and path connectivity

We begin the exploration of homotopy properties of Alexandroff spaces by
discussing connectivity and path connectivity. We recall the general definitions. We
let I = [0, 1] denote the unit interval with its usual metric topology as a subspace
of R. A path in a space X is a map f : I −→ X; it is said to connect the points
f(0) and f(1).

Definition 2.1.1. Let X be a space.

(i) X is connected if the only subspaces of X that are both open and closed
are ∅ and X.

(ii) X is path connected if any two points of X can be connected by a path.

A path connected space is connected, but not conversely. The following results
can be found in any text in point-set topology, such as [54]. They also make good
exercises.

Lemma 2.1.2. Let Y be a subspace of a space X and let Y = A ∪ B. Then A
and B are both open and closed in Y if and only if Ā∩B and A∩ B̄ are both empty
or, equivalently, A contains no limit point of B and B contains no limit point of
A. We then say that Y = A ∪B is a separation of Y . Thus Y is connected if and
only if it has no separation.

The following consequence is used very frequently.

Proposition 2.1.3. Let X = A ∪ B be a separation. If Y ⊂ X is connected,
then Y is contained in either A or B.

Proposition 2.1.4. A union of connected or path connected spaces that have
a point in common is connected or path connected.

Proposition 2.1.5. If f : X −→ Y is a continuous map and X is connected
or path connected, then the image of f is connected or path connected.

For example, I is a connected space, hence the image of a path in X is a
connected subspace of X.

Proposition 2.1.6. Any product of connected or path connected spaces is con-
nected or path connected.

Definition 2.1.7. Define two equivalence relations ∼ and ≈ on X.

(i) x ∼ y if x and y are both in some connected subspace of X. A component
of X is an equivalence class of points under ∼. Let π′

0(X) denote the set
of components of X.

17
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(ii) x ≈ y if there is a path connecting x and y. A path component of X is
an equivalence class of points under ≈. Let π0(X) denote the set of path
components of X.

If x ≈ y, then x ∼ y since the image of a path connecting x and y is a
connected subspace. Therefore each component of X is the union of some of its
path components. For nice spaces, components and path components are the same.

Definition 2.1.8. Let X be a space.

(i) X is locally connected if for each x ∈ X and each neighborhood U of x,
there is a connected neighborhood V of x contained in U .

(ii) X is locally path connected if for each x ∈ X and each neighborhood U of
x, there is a path connected neighborhood V of x contained in U .

Proposition 2.1.9. Let X be a space.

(i) X is locally connected if and only if every component of an open subset U
is open in X.

(ii) X is locally path connected if and only if every path component of an open
subset U is open in X.

(iii) If X is locally path connected, then the components and path components
of X coincide.

Now return to a finite or, more generally, Alexandroff space X. At first sight,
one might imagine that there are no continuous maps from I to a finite space, but
that is far from the case. The most important feature of finite spaces is that they
are surprisingly richly related to the “real” spaces that algebraic topologists care
about.

Lemma 2.1.10. Let X be an Alexandroff space. Then each Ux is connected. If
X is connected and x, y ∈ X, there is a finite sequence of points zi, 1 ≤ i ≤ q, such
that z1 = x, zq = y and either zi ≤ zi+1 or zi+1 ≤ zi for i < q.

Proof. Suppose that Ux = A⨿B, where A and B are open and disjoint. We
may as well assume that x is in A. Then Ux ⊂ A and therefore B = ∅ and Ux = A.
Therefore Ux is connected. Now assume that X is connected. Fix x and consider
the set A of points y that are connected to x by some sequence of points zi, as in
the statement. We see that A is open since if z is in A then the open set Uz of
points w ≤ z is contained in A. We see that A is closed since if y is not connected
to x by a finite sequence of points, then neither is any point of Uy, so that the
complement of A is open. Since X is connected, it follows that A = X. □

Lemma 2.1.11. If x ≤ y in an Alexandroff space X, then there is a path p : I −→
X connecting x and y.

Proof. Define p(t) = x if t < 1 and p(1) = y. We claim that p is continuous.
Let V be an open set of X. If neither x nor y is in V , then p−1(V ) = ∅. If x is in
V and y is not in V , then p−1(V ) = [0, 1). If y is in V , then x is in Uy ⊂ V since
x ≤ y, hence p−1(V ) = I. In all cases, p−1(V ) is open. □

Proposition 2.1.12. An Alexandroff space is connected if and only if it is path
connected.

Proof. The previous two lemmas, the second generalized by concatenation of
paths to finite sequences as in the first, imply that x ∼ y if and only if x ≈ y. □



2.2. FUNCTION SPACES AND HOMOTOPIES 19

2.2. Function spaces and homotopies

An open cover of a space X is any set of open subsets whose union is all of X.
The following notion is fundamental to point-set topology. It is discussed in more
detail in Chapter 19.

Definition 2.2.1. A space is compact if every open cover has a finite subcover.

For example, a classical result called the Heine-Borel theorem says that a sub-
space of Rn is compact if and only if it closed and bounded.

Definition 2.2.2. Let X and Y be spaces and consider the set Y X of maps
X −→ Y . The compact–open topology on Y X is the topology in which a subset is
open if and only if it is a union of finite intersections of sets

W (C,U) = {f |f(C) ⊂ U},
where C is compact in X and U is open in Y . This means that the set of all
W (C,U) is a subbasis for the topology.

Ignoring topology, for sets X, Y , and Z, functions f : X × Y −→ Z are in

bijective correspondence with functions f̂ : X −→ ZY via the relation

f(x, y) = f̂(x)(y).

Returning to topology, and so restricting ZY to consist only of the continuous

functions Y −→ Z, one would like to have that f is continuous if and only if f̂
is continuous. The compact-open topology, which at first sight seems to be un-
motivated, is designed to minimize conditions on X, Y , and Z which force this
conclusion. In fact, there are several different criteria which guarantee the conclu-
sion. We recall one due to Fox [25] which applies to both Alexandroff spaces and
metric spaces.

Definition 2.2.3. A space is first countable if every point x has a countable
neighborhood basis Bx. This means that if U is a neighborhood of x, then there is
a B ∈ Bx such that x ∈ B ⊂ U .

Example 2.2.4. An Alexandroff space X is first countable since the singleton
set {Ux} is a neighborhood basis for x. A metric space is first countable since the
ε-neighborhoods B(x, ε) = {y|d(x, y) < ε} for positive rational numbers ε form a
countable neighborhood basis.

Proposition 2.2.5. Let X and Y be first countable spaces. Then a function

f : X × Y −→ Z is continuous if and only if f̂ : X −→ ZY is continuous.

We shall use function spaces to study the notion of homotopy.

Definition 2.2.6. A homotopy h : f ≃ g is a map h : X × I −→ Y such that
h(x, 0) = f(x) and h(x, 1) = g(x). Two maps are homotopic, written f ≃ g, if
there is a homotopy between them.

It is impossible to overstate the importance of this notion. We will be studying
the homotopy theory of finite topological spaces. For finite spaces, the use of
function spaces allows us to recognize homotopic maps in a very simple way. The
first statement of the following result is clear, and the reader should check the
second statement from the definitions. The conclusion reduces the determination
of whether or not two maps are homotopic to the determination of whether or not
they are in the same path component of Y X .



20 2. HOMOTOPY EQUIVALENCES OF ALEXANDROFF AND FINITE SPACES

Corollary 2.2.7. If X is first countable, then homotopies h : X × I −→ Y
correspond bijectively to paths j : I −→ Y X via h↔ j if h(x, t) = j(t)(x). Therefore
the homotopy classes of maps X −→ Y are in canonical bijective correspondence
with the path components of Y X .

When Y is Alexandroff, we can use its preorder to compare maps X −→ Y for
any space X.

Definition 2.2.8. If Y is Alexandroff, define the pointwise ordering of maps
X −→ Y by f ≤ g if f(x) ≤ g(x) for all x ∈ X.

Proposition 2.2.9. If Y is Alexandroff, then the intersection Vg of the open
sets in Y X that contain a map g is {f |f ≤ g}.

Proof. Let f ∈ Vg and x ∈ X. Since g ∈ W ({x}, Ug(x)) and {x} is compact,
f ∈ W ({x}, Ug(x)), so f(x) ∈ Ug(x) and f(x) ≤ g(x). Since x was arbitrary, f ≤ g.
Conversely, let f ≤ g. Consider any W (C,U) that contains g and let x ∈ C. Then
g(x) ∈ U and, since f(x) ≤ g(x), f(x) ∈ Ug(x) ⊂ U . Therefore f ∈W (C,U) and f

is in all open subsets of Y X that contain g. □

Unfortunately, however, Vg need not be open in Y X in general. This problem
is addressed in work of Kukie la [42]. Since our primary interest is in finite spaces,
we shall not go into detail, but the following remarks indicate the subtleties here.

Remark 2.2.10. Micha l Kukie la [42] studied the behavior of the compact open
topology on Y X when X and Y are possibly infinite Alexandroff spaces.1 He
showed that Y X is rarely an Alexandroff space. In particular XX is never an
Alexandroff space if X is infinite, which contradicts an assumption made by Arenas
[4]. However, Kukie la proved that Y X is Alexandroff if X is finite. For any X we
have an ordering on the set Y X , hence we have the Alexandroff topology on Y X

that it determines. However the Alexandroff topology is generally finer (has more
open sets) than the compact open topology.

When X and Y are both finite, so is Y X , and then Proposition 2.2.9 has the
following interpretation.

Corollary 2.2.11. If X and Y are finite, then the pointwise ordering on Y X

coincides with the preordering associated to its compact open topology.

Here, finally, is our easy way to recognize homotopic maps between finite spaces.
Part of the result holds for all Alexandroff spaces.

Proposition 2.2.12. If X and Y are Alexandroff spaces and f ≤ g, then f ≃ g
by a homotopy h such that h(x, t) = f(x) for all t and all points x ∈ X such that
f(x) = g(x). Conversely, if X and Y are finite and f ≃ g, then there is a sequence
of maps {f = f1, f2, · · · , fq = g} such that either fi ≤ fi+1 or fi+1 ≤ fi for i < q.

Proof. For the first statement, we have the path p connecting f to g in Y X

that is specified by p(t) = f if t < 1 and p(1) = g. By Lemma 2.1.11, it is
continuous if we give Y X the Alexandroff topology associated to ≤. Since that
topology has more open sets than the compact open topology, by Kukie la’s result

1Kukie la made his contribution as an undergraduate at Nicolaus Copernicus University, in
Toruń, Poland. Quoting from an email from him, “my study of Alexandroff spaces was in a great

degree inspired by your notes on finite spaces”.
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just mentioned, it is also continuous if we give Y X the compact open topology.
By Proposition 2.2.9, the corresponding function X × I −→ Y is also continuous,
giving us the claimed homotopy. For the second statement, Corollary 2.2.7 shows
that homotopies between maps X −→ Y are paths in Y X , hence two maps are
homotopic if and only if they are in the same path component. Now Lemma 2.1.10
and Corollary 2.2.11 give the conclusion. □

2.3. Homotopy equivalences

We have seen that enumeration of finite sets with reflexive and transitive rela-
tions ≤ amounts to enumeration of the topologies on finite sets. We have refined
this to consideration of homeomorphism classes of finite spaces. We are much more
interested in the enumeration of the homotopy types of finite spaces. We will come
to a still weaker and even more interesting enumeration problem later, one which
is still unsolved.unsolvable?!

Definition 2.3.1. Two spaces X and Y are homotopy equivalent if there are
maps f : X −→ Y and g : Y −→ X such that g ◦ f ≃ idX and f ◦ g ≃ idY . A space
is contractible if it is homotopy equivalent to a point.

This relationship can change the number of points. We have a first example.

Lemma 2.3.2. If X is a space containing a point y such that the only open
(or only closed) subset of X containing y is X itself, then X is contractible. In
particular, the non-Hausdorff cone CX is contractible for any X.

Proof. This is a variation on a theme we have already seen twice. Let ∗ denote
a space with a single point, also denoted ∗. Define r : X −→ ∗ by r(x) = ∗ for all
x and define i : ∗ −→ X by i(∗) = y. Clearly r ◦ i = id. Define h : X × I −→ X
by h(x, t) = x if t < 1 and h(x, 1) = y. Then h is continuous. Indeed, let U be
open in X. If y ∈ U , then U = X and h−1(U) = X × I, while if y /∈ U , then
h−1(U) = U × [0, 1). The argument when X is the only closed subset containing y
is the same. Clearly h is a homotopy id ≃ i ◦ r. □

Definition 2.3.3. A point x of an Alexandroff space X is maximal if there is
no y > x in X; minimal points are defined similarly.

Corollary 2.3.4. If X is an Alexandroff space and x ∈ X, then Ux is con-
tractible. If X is finite and has a unique maximal point or a unique minimal point,
then X is contractible.

Proof. The only open subset of Ux that contains x is Ux itself. If X is finite
and x is the unique maximal point in X, then X = Ux. If x is the unique minimal
point in X, then the only closed set containing x is X. □

A result of McCord [50, Thm. 4] says that, when studying finite or, more
generally, Alexandroff spaces up to homotopy type, there is no loss of generality if
we restrict attention to T0-spaces, that is, to posets. The proof is based on use of
the Kolmogorov quotient of a space.

Definition 2.3.5. Let X be any space. Define an equivalence relation ∼ on X
by x ∼ y if x and y have the same open neighborhoods. The Kolmogorov quotient
X0 of X is the quotient space X/(∼) obtained by identifying equivalent points. It
is a T0 space. Let qX : X −→ X0 be the quotient map.
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The Kolmogorov quotient satisfies a universal property.

Lemma 2.3.6. Let Z be a T0-space and f : X −→ Z be a map. Then there is a
unique map f0 : X0 −→ Z such that f0 ◦ qX = f . Therefore, if f : X −→ Y is any
map, there is a unique map f0 : X0 −→ Y0 such that qY ◦ f = f0 ◦ qX .

Proof. Since the topology on Z separates points, f must take equivalent
points to the same point. Therefore f factors through a function f0 : X0 −→ Y0,
and f0 is continuous by the universal property of the quotient topology. □

Theorem 2.3.7. For an Alexandroff space X, the quotient map qX : X −→ X0

is a homotopy equivalence.

Proof. The equivalence relation ∼ on X is given by x ∼ y if Ux = Uy, or,
equivalently, if x ≤ y and y ≤ x. The relation ≤ on X induces a relation ≤ on
X0. We claim that q(Ux) = Uq(x) for all x ∈ X. To see this, observe first that

q−1q(Ux) = Ux since if q(y) = q(z) where z ∈ Ux, then y ∈ Uy = Uz ⊂ Ux.
Therefore q(Ux) is open, hence it contains Uq(x). Conversely, Ux ⊂ q−1(Uq(x)) by
continuity and thus q(Ux) ⊂ Uq(x).

We conclude that the quotient topology on X0 agrees with the topology deter-
mined by ≤. It follows that q(x) ≤ q(y) if and only if x ≤ y. Indeed, q(x) ≤ q(y)
implies q(x) ∈ Uq(y) = q(Uy). Thus q(x) = q(z) for some z ∈ Uy and Ux = Uz ⊂ Uy,
so that x ≤ y. Conversely, if x ≤ y, then Ux ⊂ Uy and therefore Uq(x) ⊂ Uq(y), so
that q(x) ≤ q(y).

To prove that q is a homotopy equivalence, let f : X0 −→ X be any function
such that q ◦ f = id. That is, we choose a point from each equivalence class. By
what we have just proven, f preserves ≤ and is therefore continuous.2 Let g = f ◦q.
We must show that g is homotopic to the identity. We see that g is obtained by
first choosing one xu with Uxu = U for each U in the minimal basis for X and then
letting g(x) = xu if Ux = U . Thus Ug(x) = Ux and g(x) ∈ Ux, which means that
g ≤ id. Now Proposition 2.2.12 gives the required homotopy h : id ≃ g. Note that
h(g(x), t) = g(x) for all t. □

We conclude that to classify Alexandroff spaces up to homotopy equivalence,
it suffices to classify A-spaces up to homotopy equivalence.

2.4. Cores of finite spaces

Stong [65, §4] has given an interesting way of studying homotopy types of
finite spaces. An attempt to extend his results to Alexandroff spaces was made by
Arenas [4], but his work had a mistake that was noticed and corrected by Kukie la
[42]; see Remark 2.2.10. Since the generalization is not an immediate one, we give
proofs for the finite space case in this section, turning to Alexandroff spaces in
Chapter 17. However, we give the basic definitions in full generality. We change
Stong’s language a bit in the following exposition. We first single out an especially
nice class of homotopy equivalences.

Definition 2.4.1. Let Y be a subspace of a space X, with inclusion denoted by
i : Y −→ X. We say that Y is a deformation retract of X if there is map r : X −→ Y

2I have seen it claimed in an undergraduate thesis (not at the University of Chicago, which
does not have undergraduate theses) that Theorem 2.3.7 holds for any space X, not necessarily

Alexandroff. However, there need not be a continuous function f : X0 −→ X such that q ◦ f = id.
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such that r ◦ i is the identity map of Y and there is a homotopy h : X × I −→ X
from the identity map of X to i ◦ r such that h(y, t) = y for all y ∈ Y and t ∈ I.

Definition 2.4.2. Let X be a finite space.

(a) A point x ∈ X is upbeat if there is a y > x such that z > x implies z ≥ y.
Note that y is unique if X is T0.

(b) A point x ∈ X is downbeat if there is a y < x such that z < x implies
z ≤ y.

(c) A point x ∈ X is a beat point if it is either an upbeat point or a downbeat
point.

X is a minimal finite space if it is a T0-space and has no beat points. A core of
a finite space X is a subspace Y that is a minimal finite space and a deformation
retract of X.

Remark 2.4.3. If we draw a graph of a poset by drawing a line downwards
from y to x if x < y, we see that, above an upbeat point x, the graph of those edges
with y as a vertex looks like

z1 z2 · · · zn

y

x

For a more complicated example, both x1 and x2 are upbeat points in the poset

z1 z2 · · · zn

y

x1 x2

w1 w2

Turning the pictures upside down, we see what the graphs below downbeat points
look like. The essential point is that a beat point has either exactly one edge
connecting to it from above or exactly one edge connecting to it from below.

Intuitively, identifying x and y and erasing the line between them should not
change the homotopy type. We say this another way in the proof of the following
result, looking at inclusions rather than quotients in accordance with our definition
of a core.

Theorem 2.4.4. Any finite space X has a core.

Proof. With the notations of the proof of Theorem 2.3.7, identify X0 with its
image f(X0) ⊂ X. The proof of Theorem 2.3.7 shows that X0, so interpreted, is a
deformation retract of X. Thus we may as well assume that X is T0. Suppose that
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X has an upbeat point x. We claim that the subspace X − {x} is a deformation
retract of X. To see this define f : X −→ X − {x} ⊂ X by f(z) = z if z ̸= x and
f(x) = y, where y > x is such that z > x implies z ≥ y. Clearly f ≥ id. We
claim that f preserves order and is therefore continuous. Thus suppose that u ≤ v.
We must show that f(u) ≤ f(v). If u = v = x or if neither u nor v is x, there is
nothing to prove. When u = x < v, f(u) = y and f(v) = v ≥ y. When u < x = v,
f(u) = u < x < y = f(v). Now Proposition 2.2.12 gives the required deformation.
A similar argument applies to show that X − {x} is a deformation retract of X
if x is a downbeat point. Starting with X0, define Xi from Xi−1 by deleting one
upbeat or downbeat point. After finitely many stages, there are no more upbeat or
downbeat points left, and we arrive at the required core. □

Theorem 2.4.5. If X is a minimal finite space and f : X −→ X is homotopic
to the identity, then f is the identity.

Proof. First suppose that f ≥ id. For all x, f(x) ≥ x. If x is a maximal point,
then f(x) = x. Let x be any point of X and suppose inductively that f(z) = z for
all z > x. Then, by continuity, z > x implies z = f(z) ≥ f(x) ≥ x. If f(x) ̸= x,
this implies that x is an upbeat point, contradicting the minimality of X. Therefore
f(x) = x. By induction, f(x) = x for all x. A similar argument shows that f ≤ id
implies f = id. By Proposition 2.2.12, it now follows that the component of the
identity map in the finite space XX consists only of the identity map. That is, any
map homotopic to the identity is the identity. □

Corollary 2.4.6. If f : X −→ Y is a homotopy equivalence of minimal finite
spaces, then f is a homeomorphism.

Proof. If g : Y −→ X is a homotopy inverse, then g ◦ f ≃ id and f ◦ g ≃ id.
By the theorem, g ◦ f = id and f ◦ g = id. □

Corollary 2.4.7. Finite spaces X and Y are homotopy equivalent if and only
if they have homeomorphic cores. In particular, the core of X is unique up to
homeomorphism.

Proof. This is immediate since the cores of X and Y are minimal finite spaces
that are homotopy equivalent to X and Y . □

Remark 2.4.8. In any homotopy class of finite spaces, there is a representative
with the least possible number of points. This representative must be a minimal
finite space, since its core is a homotopy equivalent subspace. The minimal rep-
resentative is homeomorphic to a core of any finite space in the given homotopy
class.

In an appendix ( Chapter 17) is an exposition on cores of Alexandroff Spaces,
included from an REU paper written by Xi (Cathy) Chen in 2015.

2.5. Hasse diagrams and homotopy equivalence

This section is taken from an REU paper written by Alex Fix and Stephen
Patrias in 2008. While this portion of their paper is expository, they went on to
do original research on the enumeration of homotopy types of finite spaces. That
portion of their work will appear in the appendix Chapter 18. Their remarkable
conclusion is that, as n grows large, the number of homotopy classes of F -spaces
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is asymptotically equivalent to the number of homeomorphism classes of F -spaces.
We urge the skeptical reader to read the final paragraph of Chapter 18.

Conceptually, the reason for this is that homotopy equivalence of finite spaces,
in contrast to homotopy equivalence between the usual spaces of algebraic topology,
is far too strict. The notion of weak homotopy equivalence, studied in the following
chapter is the right one.

2.5.1. Hasse diagrams. The correspondence between F -Spaces and partial
orders leads to a graphical visualization of F -spaces.

Definition 2.5.1. For a partial order P , we define its associated Hasse diagram
H, a directed graph which captures all of the relevant order information of P . Let
the vertices of H be the points of P and let there be a directed edge from y to x
whenever x < y but there is no other vertex z such that x < z < y. We then say
that y is a predecessor of x and x is a successor of y.

If there is a path y −→ x1 −→ · · · −→ xk −→ x then y > x1 > x2 > . . . >
xk > x so y > x. Conversely, if y > x and x is not a sucessor y, then we can
find z so that y > z > x and by doing this recursively (since the graph is finite),
we can find y > x1 > . . . > xk > x so that each step is to a successor, and thus
there is a path y −→ x1 −→ · · · −→ xk −→ x in H. From this, we also see
that the Hasse diagram is necessarily acyclic, that is, there are no directed cycles
x −→ x1 −→ · · · −→ xk −→ x or else we would have x > x.

We can also go the other way, from a directed acyclic graph G back to a partial
order P , by saying y ≥ x in P whenever there is a path (including trivial paths)
from y to x in G. However, to do this uniquely, we need the following definitions.

Definition 2.5.2. We say that an edge y −→ x is a shortcut in a directed
graph G if there is also a path y −→ x1 −→ · · · −→ xk −→ x with at least two
edges between x and y. We say that a directed acyclic graph is a partial order
diagram if it has no shortcuts.

Theorem 2.5.3. The above construction of the Hasse diagram gives a bijection
from partial orders to partial order diagrams. Furthermore, there is an isomor-
phism of partial orders between two posets P and Q if and only if there is a graph
isomorphism between the associated diagrams HP and HQ.

Proof. It is easy to check that these two constructions are in fact inverses of
each other, so that we have a bijection on objects. Then, a bijection σ : P −→ Q
is order-preserving if and only if it preserves successors and predecessors, that is it
preserves edges in the graph. Therefore σ is an isomorphism of posets if and only
if it is also a graph isomorphism of the associated Hasse diagrams. □

Corollary 2.5.4. We have a bijection between F -space topologies and Hasse
diagrams, so that homeomorphism of F -spaces is equivalent to graph isomorphism
of their diagrams.

It is also useful to have a convention for drawing these diagrams, as having an
orderly presentation allows both a consistent visual understanding of their structure
and an additional handle for computation with these graphs.

Definition 2.5.5. The height h(X) of a poset X is the maximal length k of
a chain x1 < · · · < xk in X. If we fix a vertex v, we define the level ℓ of v as the
maximal length of the chain that ends at v.
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We have the following important facts about levels:

(1) The level of a vertex v is the length of the longest downward path begin-
ning at v.

(2) There is always an edge from a point v with level ℓ to some v′ with level
ℓ− 1.

(3) There is never an edge from a point v with level ℓ to any v′ in level ℓ′ ≥ ℓ.
(4) Level 1 consists of precisely the minimal points of the graph.

Remark 2.5.6. When drawing the Hasse diagram of a poset, we always draw
level 1 at the bottom, and each subsequent level ℓ immediately above its predecessor,
level ℓ− 1. Thus, all edges in the graph point downwards in the graph, allowing us
to omit specifying the directions of edges.

Our theorems about cores and minimal finite spaces have the following imme-
diate corollary:

Corollary 2.5.7. In order to enumerate all the finite spaces with n points up
to homotopy equivalence, it suffices to enumerate the minimal spaces with at most
n points up to homeomorphism.

Proof. Since any finite space X on n points has a core, and this core is a
deformation retract of the original space, X is homotopy equivalent to a minimal
space on no more than n points. Thus, there is at least one minimal space in every
homotopy equivalence class. Additionally, if there are two minimal spaces X and Y
in the same class, then there is a homotopy equivalence f : X −→ Y . But then f is
a homeomorphism. So if we enumerate the minimal spaces up to homeomorphism,
we pick exactly one representative from each homotopy class. □

2.5.2. Minimal Spaces as Graphs. We now begin the process of converting
these topological notions into graph theory, from which actual computations can
be made. Primarily, we wish to categorize minimal spaces via a property of the
associated Hasse diagram. We start first with a description of upbeat and downbeat
points as they appear in the graph.

Theorem 2.5.8. A point x in a finite space X is an upbeat point if and only
if it has in-degree one in the associated Hasse diagram (that is, it has only one
incoming edge). Similarly, x is downbeat if and only if it has out-degree one (it has
only one outgoing edge).

Proof. Assume that x is upbeat. Then there exists y > x such that for all
z > x, z ≥ y. First, we have that y is a successor of x, since there cannot be any
z with y > z > x. Thus, there is an edge y −→ x in the Hasse diagram. We claim
that there is no other edge y′ −→ x with y′ ̸= y. If there were, then y′ > x so
since x is upbeat, y′ > y. But since > is equivalent to the existence of a path,
we have that there exists a path y′ −→ · · · −→ y. Hence there is both a path
y′ −→ · · · −→ y −→ x and an edge y′ −→ x which violates the requirement that
the Hasse diagram have no shortcuts. Thus, x has exactly one incoming edge.

Conversely, assume there is exactly one y such that y −→ x. Then for any
z > x we have that there is a path z −→ · · · −→ x. But since there is only one
vertex y such that y −→ x, this path must actually be z −→ · · · −→ y −→ x so
there is also a path from z to y so z ≥ y. Thus x is upbeat.

The proof for the second claim is exactly symmetric. □
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Corollary 2.5.9. A space is minimal if and only if for every vertex in its
associated Hasse diagram, the in-degree and out-degree are both not equal to one.

Definition 2.5.10. Henceforth, we will refer to such a graph as a minimal
graph for brevity.

We can derive several useful consequences from this classification. For starters,
be can begin enumerating the minimal spaces by explicitly constructing graphs
which satisfy the above condition (which we will do in Chapter 18). However, we
can also use this theorem to derive additional facts about the structure of minimal
graphs which might otherwise be difficult to derive using only topological argu-
ments.

Proposition 2.5.11. Let G be a minimal graph with at least two vertices. Then
each level of G contains at least two vertices.

Proof. Assume first that level 1 has exactly one vertex v. Then, since G has
at least two vertices, there is some vertex v′ in level 2. But every vertex in level 2
has an edge to a vertex in level 1, so v′ −→ v is an edge in the graph. But then v′

has exactly one downwards edge, contradicting the minimality of G.
Now, assume that some level ℓ > 1 has exactly one vertex v. This vertex has a

neighbor v′ on level ℓ−1, so v −→ v′ is an edge in the graph. Now, assume there is
some other w ̸= v such that w −→ v′ is also an edge in the graph. Since all edges
proceed downwards, we have that w is on some level k > ℓ− 1. Level ℓ has exactly
one vertex and w is not it, so k > ℓ. We claim that this implies that there is in fact
a path w −→ · · · −→ v in the graph, so that the edge w −→ v′ is a shortcut of the
path w −→ · · · −→ v −→ v′, which is not allowed.

To prove this claim, we induct on k: for a vertex w on level k = ℓ+ 1, w must
have a neighbor on level ℓ, so w −→ v is an edge in the graph, and hence also a
path. Then, for w on level k > ℓ+ 1, we again have that w has a neighbor on the
next lowest level, so there is some w′ on level k − 1 such that w −→ w′ is an edge.
By induction, there is a path w′ −→ · · · −→ v in G, so w −→ w′ −→ · · · −→ v is
also a path in G. □





CHAPTER 3

Homotopy groups and weak homotopy
equivalences

3.1. Homotopy groups

We recall the definition of the homotopy groups πn(X,x) of a space X at
x ∈ X. We shall not give adequate motivation here. This is the first of several
places where the first author will advertise his book [48] as a source for a more
complete treatment, but in fact all standard textbooks in algebraic topology treat
these definitions. For n = 0, we define π0(X) to be the set of path components of
X, with the component of x taken as a basepoint (and there is no group structure).
When n = 1, we define π1(X,x), or π1(X) when the basepoint is assumed, to be
the fundamental group of X at the point x.

For all n ≥ 0, πn(X) can be described most simply by considering the standard
sphere Sn with a chosen basepoint ∗. One considers all maps α : Sn −→ X such
that f(∗) = x. One says that two such maps α and β are based homotopic if there
is a based homotopy h : α ≃ β. Here a homotopy h is based if h(∗, t) = x for all
t ∈ I. If n = 1, the map α is a loop at x, and we can compose loops to obtain a
product which makes π1(X,x) a group. The homotopy class of the constant loop at
x gives the identity element, and the loop α−1(t) = α(1− t) represents the inverse
of the homotopy class of α. There is a similar product on the higher homotopy
groups, but, in contrast to the fundamental group, the higher homotopy groups are
abelian.

A path p from x to x′ induces an isomorphism πn(X,x) −→ πn(X,x′). On the
fundamental group, it maps a loop α to the composite p ◦α ◦ p−1, where p−1 is the
reverse path p−1(t) = p(1− t) from x′ to x.

A map f : X −→ Y induces a function f∗ : πn(X,x) −→ πn(Y, f(x)). One just
composes maps α and homotopies h as above with the map f . If n ≥ 1, f∗ is a
homomorphism.

3.2. Weak homotopy equivalences

Definition 3.2.1. A map f : X −→ Y is a weak homotopy equivalence if

f∗ : πn(X,x) −→ πn(Y, f(x))

is an isomorphism for all x ∈ X and all n ≥ 0. If n = 0, this means that components
are mapped bijectively. Two spaces X and Y are weakly homotopy equivalent if
there is a finite chain of weak homotopy equivalences Zi −→ Zi+1 or Zi+1 −→ Zi
starting at X = Z1 and ending at Zq = Y .

The definition may seem strange at first sight, but it has gradually become
apparent that the notion of a weak homotopy equivalence is even more important
in algebraic topology than the notion of a homotopy equivalence. The notions

29
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are related. We state some theorems that the reader can take as reference points.
Proofs can be found in [48]. We mention CW complexes in the following result
because they give the appropriate level of generality. They will be defined later, in
Definition 6.1.1. However, all the reader needs to know here is that the geometric
realizations of simplicial complexes, which will be defined in Definition 6.2.6, are
special cases of CW complexes.

Theorem 3.2.2. A homotopy equivalence is a weak homotopy equivalence.
Conversely, a weak homotopy equivalence between CW complexes (for example,
between simplicial complexes) is a homotopy equivalence.

Theorem 3.2.3. Spaces X and Y are weakly homotopy equivalent if and only
if there is a space Z and weak homotopy equivalences Z −→ X and Z −→ Y .
Moreover, there is such a Z which is a CW complex.

That is, the chains that appear in the definition need only have length two. For
those who know about homology and cohomology, we record the following result.

Theorem 3.2.4. A weak homotopy equivalence induces isomorphisms of all
singular homology and cohomology groups.

3.3. A local characterization of weak equivalences

An essential point in our work, which we will take for granted, is that weak ho-
motopy equivalence is a local notion in the sense of the following theorem. McCord
[50] relies on point-by-point comparison with arguments in the early paper [22]
which proves the result using quasifibrations. More modern references are [47, 69].

Theorem 3.3.1. Let f : A −→ B be a continuous map. Suppose that B has
a basis O such that for each U ∈ O, the restriction f : f−1(U) −→ U is a weak
homotopy equivalence. Then f is a weak homotopy equivalence.

proof?

3.4. The non-Hausdorff suspension

The suspension is one of the most basic constructions in all of topology. Fol-
lowing McCord [50], we show that it comes in two weakly equivalent versions, the
classical one and a non-Hausdorff analogue that preserves finite spaces. For the
purposes of this book, we shall use the following unbased variant of the classical
suspension.

Definition 3.4.1. Define the cone CX of a topological space X to be the
quotient space X × I/X × {1} obtained by identifying X × {1} to a single point,
denoted +. Define the suspension SX of X to be the quotient space obtained from
X × [−1, 1] by identifying X × {1} to a single point + and identifying X × {−1}
to another single point, denoted −. Thus SX can be thought of as obtained by
gluing together the bases of two cones on X. For a map f : X −→ Y , define
Sf : SX −→ SY by (Sf)(x, t) = (f(x), t).

It should be clear that CX is contractible to its cone point +. We defined the
non-Hausdorff cone CX by adjoining a new cone point ∗ and letting the proper open
subsets of CX be all of the open subsets of X, and we saw that CX is contractible.
We now change the notation for the cone point ∗ and call it +.
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Definition 3.4.2. The non-Hausdorff suspension of X is defined to be

SX := X ⨿ {+} ⨿ {−}.

Here {+} and {−} are new points disjoint from X. We let all of the proper open
sets of SX be the open subsets of X along with the sets X ∪ {+} and X ∪ {−}.

Remark 3.4.3. A visualization of CS1 gives geometric meaning to the descrip-
tion of the cone construction. In fact, if we let X := S1, the unit circle, we can
visualize and compare all of the constructions just defined.

CS1 +

S1

+

S1

CS1

+

−

S1

SS1 +

−

S1

SS1

Example 3.4.4. Observe that if X is a T0-space, then so are CX and SX.
If, for example, X = D3, the finite space of 3 points endowed with the discrete
topology, then the above constructions produce the following T0 spaces (pictured
left), while the associated Hasse diagram is shown on the right.
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D3

+

CD3

+

Remark 3.4.5. When X is an A-space, x < +and x < − for all x ∈ X. Notice
that the only open set containing both of the points {+} and {−} in SX is the
entire space. In the language of posets, the non-Hausdorff suspension just adds two
elements on top of the Hasse diagram of X.

Given a map f : X −→ Y , we construct a map Sf : SX −→ SY by defining

Sf(x) =


f(x) if x ∈ X
+ if x = +

− if x = −

Exercise 3.4.6. Check that Sf is continuous since f is continuous.

With these definitions in hand, we can relate the classical suspension of a space
with the non-Hausdorff suspension by defining the following comparison map.

Definition 3.4.7. Define γX : SX −→ SX by

γ(x, t) =


x if − 1 < t < 1

+ if t = 1

− if t = −1

Exercise 3.4.8. We’ve defined γ so that it is continuous and γY ◦Sf = Sf ◦γX .
Check that these statements are true.

Lemma 3.4.9. The map γX : SX −→ SX is a weak homotopy equivalence.
For any weak homotopy equivalence f : X −→ Y , the maps Sf : SX −→ SY and
Sf : SX −→ SY are weak homotopy equivalences.

Proof. This is an application of Theorem 3.3.1. Take the three subspaces X,
X∪{+}, and X∪{−} as our open cover of SX. This is a basis since the intersection
of any two of these open sets is X. The inverse images under γ of these open subsets
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are X× (−1, 1), X× [−1, 1), and X× (−1, 1]. We claim that if we restrict γ to each
of these subspaces, γ becomes a homotopy equivalence and, therefore, γ is a weak
homotopy equivalence. The proof of this claim is clear: γ(X × (−1, 1)) = X and
the domain and target are both contractible in the other two cases.

Similarly, taking the three subspaces Y , Y ∪ {+}, and Y ∪ {−} as our basis of
SY , their inverse images under Sf are X, X∪{+}, and X∪{−}, and the restrictions
of Sf on these three subspaces are weak homotopy equivalences. Finally, take the
images in SY of Y × (−1/2, 1/2), Y × [−1, 1/2), and Y × (−1/2, 1] as our basis of
SY . Their inverse images under Sf are the corresponding subspaces of SX, and
the restrictions of Sf to these subspaces are weak homotopy equivalences. □

Definition 3.4.10. The nth non-Hausdorff suspension of X is SnX := S(Sn−1X).
The nth classical suspension of X is SnX := S(Sn−1X). Inductively, we have a
map γn : SnX −→ SnX.

Theorem 3.4.11. For a space X, the map γn : SnX −→ SnX is a weak
homotopy equivalence.

Proof. We appeal to the diagram

SnX
Sγn−1

//

γ

��

γn

&&

SSn−1X

γ

��
SSn−1X

Sγn−1

// SnX

.

The commutativity of the diagram follows from Exercise 3.4.8. We may assume in-
ductively that γn−1 is a homotopy equivalence. It follows that Sγn−1 and Sγn−1 are
also weak homotopy equivalences by the preceding lemma. By the commutativity
of the diagram, we have that γn is also a weak homotopy equivalence. □

We apply the previous theorem to a simple example. Consider S0, which is
just a two-point space. Building SS0 is a process that’s pictured below. Namely,
we first cross the two points with the unit interval, obtaining:

(−1, 1)

−1

(−1, 0)

(+1, 1)

+1

(+1, 0)

We then identify (+1, 1) ∼ (−1, 1) and (+1, 0) ∼ (−1, 0), which produces what’s
pictured in the following diagram.
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(+1, 1) ∼ (−1, 1)

(+1, 0) ∼ (−1, 0)

−+

It’s then pictorially clear that SS0 ≃ S1. A little visualization, gluing two
hollow cones onto a circle (one upwards, one downwards), will convince the reader
that SS1 ∼= S2. This then gives that SS1 = S2S0 ≃ S2. This result holds in fact
for all n: the n-fold classical suspension of S0 is homeomorphic to Sn.

The non-Hausdorff suspension of a finite space is easy to visualize, and we can
draw the iteration of this process as follows in the case X = S0.

S0

−1 +1
SS0

−1 +1

+−

S2S0

−1 +1

+−

+′−′

S3S0

−1 +1

+−

+′−′

+′′−′′

. . .

Thus, n iterations of the non-Hausdorff suspension of S0 yields a finite space with
2n new points, in addition to the 2 that we started with. The clear implication is
stated as follows.

Theorem 3.4.12. Each SnS0 is a finite minimal space with 2n+ 2 points.

The minimality holds since SnS0 has no upbeat or downbeat points. Instead,
each point has incomparable points above and below it in the partial ordering.

We then have the following result.

Theorem 3.4.13. The n-sphere Sn is weak homotopy equivalent to the finite
minimal space SnS0 with 2n+ 2 points.

Proof. By Theorem 3.4.11, we have that γn : SnS0 −→ SnS0 is a weak
homotopy equivalence. As mentioned before, SnS0 ∼= Sn. □

It is classical that infinitely many of the homotopy groups of S2 are non-zero.
Thus we have a six point space with infinitely many non-zero homotopy groups!

The following example gives two weakly equivalent five point spaces that are
not homotopy equivalent.
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Example 3.4.14. Consider the Hasse diagram of SD3, as shown in Exam-
ple 3.4.4, and the opposite space SD3 (pictured below), which has two minimal
points.

SD3 (SD3)op

We can check that SD3 is homotopy equivalent to the wedge, or one-point union,
of two circles. We know that γD3

: SD3 −→ SD3 is a weak homotopy equivalence,
and we have a very similar weak equivalence SD3 −→ (SD3)op. It will later become
clear that X and Xop have the same weak homotopy type for any finite space X.
However, a comparison of the minimal Hasse diagrams of (SD3)op and SD3 shows
that the two spaces are not homotopy equivalent.

Thus, our five point example gives two weakly homotopy equivalent minimal
finite spaces with the same number of points that are not homotopy equivalent.
Moreover, there is no direct weak homotopy equivalence from one to the other: one
needs a chain, like SD3 SD3

oo //(SD3)op .

Example 3.4.15. There are minimal finite spaces with more than 2n+2 points
that are also weakly homotopy equivalent to Sn. For example, consider the four-
point circle and the six point space pictured below. Both X and Y can be seen to
be minimal, and they are clearly not homeomorphic and therefore not homotopy
equivalent. However, these spaces are weak homotopy equivalent.

X :
b d

ca

Y :
b′ d′

c′a′ e′

f ′

Take the unit circle in the complex plane. Let f : S1 −→ X and g : S1 −→ Y be
given by

f(x) =


a if x = 1

b if x = eiθ, 0 < θ < π

c if x = −1

d if x = eiθ, π < θ < 2π

and

g(x) =



a′ if x = 1

b′ if x = eiθ, 0 < θ < 2π/3

c′ if x = e2πiθ/3

d′ if x = eiθ, 2π/3 < θ < 4π/3

e′ if x = e4πiθ/3

f ′ if x = eiθ, 4π/3 < θ < 2π
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One can verify both f and g are weak homotopy equivalences, and thus X and Y
are both finite models of the circle. It should be clear that X is the unique minimal
finite model of the circle.

3.5. 6-point spaces and height

Up to homeomorphism, the only minimal connected spaces with at most five
points are the one point space, the 4-point circle, and the two 5-point minimal
spaces described in Example 3.4.14.

Proposition 3.5.1. Up to homeomorphism, there are seven connected minimal
6-point spaces X, and none of them are weakly contractible. One is the six point
two sphere S2S0, two are SD4 and its opposite. The remaining four have three
maximal and three minimal points.

Proof. We must have at least two minimal and at least two maximal points.
Indeed, if we have just one intermediate point y, any point greater or less than
it is upbeat or downbeat. If we have two intermediate points, they cannot be
comparable without again contradicting minimality, and if they are incomparable
we arrive by minimality at S2S0, which is homeomorphic to its opposite. The only
remaining cases have all points either minimal or maximal. By the minimality of
X, each minimal point must be less than at least two maximal points and each
maximal point must be greater than at least two minimal points. There is only one
example with two minimal points, and its opposite is the only example with four
minimal points. We are left with the case when there are three minimal and three
maximal points. Here each minimal point must be less than at least two maximal
points and zero, one, two, or all three of them can be less than all three maximal
points. In all four cases, the resulting space is homeomorphic to its opposite. □

Recall that, by definition, minimal finite spaces can contain neither upbeat nor
downbeat points. As said before, any non-maximal point in the Hasse diagrams of
such models must have at least two points below, and similarly any non-minimal
point must contain two points above. When the senior author first taught finite
spaces in the REU, in 2003, he asked if 2n+ 2 was the least number of points in a
finite space of the weak homotopy type of Sn. Barmak and Minian [8] proved that
using homology, but we shall give a direct elementary proof. Recall the definition
of the height h(X) of a poset X (definition Definition 2.5.5).

Proposition 3.5.2. Let X ̸= ∗ be a minimal finite space. Then X has at least
2h(X) points. It has exactly 2h(X) points if and only if it is homeomorphic to
Sh(X)−1S0 and therefore weakly homotopy equivalent to Sh(X)−1.

Proof. Let x1 < · · · < xh be a maximal chain in X. Since X cannot have
a minimimum point, there is a y1 which is not greater than x1. Since no xi is an
upbeat point, 1 ≤ i < h, there must be some yi+1 > xi such that yi+1 is not greater
than xi+1. The points yi are easily checked to be distinct from each other and from
the xj . Now suppose that X has exactly these 2h points. By the maximality of
our chain, the xi and yj are incomparable. For i < j, we started with xi < xj , and
we check by cases from the absence of upbeat and downbeat points that yi < xj ,
yi < yj , and xi < yj . Comparing with the iterated suspension, we see that this
implies that X is homeomorphic to Sh−1S0. □
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Drawing posets, and thinking about them, leads to lots of eliminations from
the list of F -spaces that might not be contractible or weakly contractible (weakly
homotopy equivalent to a point).

It presents a rather challenging exercise to determine the least number of points
n giving an n-point weakly contractible space that is not contractible. The reference
([17]) gives the answer as n = 9 with the following example.

a1 a2 a3

b1 b2 b3

c1 c2 c3
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CHAPTER 4

Elementary properties of finite spaces

4.1. The Euler characteristic of a finite space

The notion of the Euler characteristic is one that exists for any arbitrary topo-
logical space, not necessarily finite. For classical treatment of the Euler characteris-
tic of a simplicial complex, a notion which will be introduced in Chapter 6, section
4.4 of A Concise Course in Algebraic Topology gives a short explanation. For now,
we define the equivalent notion for finite spaces. It will soon become clear that the
notions of the Euler characteristic of a finite space and the Euler characteristic of
a simplicial complex are equivalent in a formal way.

Definition 4.1.1. The Euler characteristic of a finite T0-space is given by

χ(X) =
∑

C∈C(X)

(−1)♯C+1

where C(X) is the set of non-empty chains of X and ♯C is the cardinality of some
element of that set.

For ordinary topological spaces, the Euler characteristic is a homotopy invari-
ant. Using this last definition we can prove for finite spaces that the Euler charac-
teristic is also homotopy invariant.

Theorem 4.1.2. Let X and Y be finite T0-spaces that are homotopy equivalent.
Then χ(X) = χ(Y ).

Proof. Let Xc and Yc be the cores of X and Y respectively, which must exist
by 1.9. 1.10 implies that Xc and Yc are homeomorphic and thus χ(Xc) = χ(Yc).
As per 1.9, we may think of Xc as part of a sequence of subspaces of X, where each
successive element in the sequence is generated by removing a beat point. Thus, it
suffices to show that removing a beat point does not affect the Euler characteristic.
Let P be a finite poset with beat point p, where there must exist some q such that
if r is comparable with p then r is also comparable with q. We can then construct
a bijection

φ : {C ∈ C(P ) | p ∈ C, q ̸∈ C} → {C ∈ C(P ) | p ∈ C, q ̸∈ C}
C 7→ C ∪ {q}

We may thus write:

χ(P )− χ(P − {p}) =
∑

p∈C∈C(P )

(−1)♯C+1 =
∑

q ̸∈C∋p

(−1)♯C+1 +
∑

q∈C∋p
(−1)♯C+1 =

∑
q ̸∈C∋p

(−1)♯C+1 +
∑

q ̸∈C∋p

(−1)♯φ(C)+1 =
∑

q ̸∈C∋p

(−1)♯C+1 +
∑

q ̸∈C∋p

(−1)♯C = 0

□

39
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4.2. The Möbius function

The Euler characteristic of finite T0-spaces is particularly interesting because of
its relationship to the Möbius function of posets, a combinatorial object. To define
the Möbius function we first define an incidence algebra A on P . A(P ) is the set
of functions P × P → R such that for f ∈ A(P ), f(x, y) = 0 if x ̸≤ y. This forms a
vector space over R where we have a product defined as

fg(x, y) =
∑
z∈P

f(x, z)g(z, y)

We let ξp ∈ A be the function such that ξp(x, y) = 1 whenever x ≤ y. This function
has an inverse in A which we call the Möbius function and denote µp. Note that
ξp(x, y) is invertible according to [7] page 26. The identity of A is

δ(s, t) =

{
1 : s = t
0 : s ̸= t

Note that in equations where elements of A are added to some integer that integer
simply denotes a multiple of δ.
It follows directly from the definition of the multiplication that:

ξ2(s, u) =
∑
s≤t≤u

1

so we may deduce that ξ2(s, u) is the number of chains of length 2 between s and
u (note that the length is given as the number of elements minus 1). Similarly

ξk(s, u) =
∑

s=s0≤s1≤...≤sk=u

1

which is the number of chains of length k. Observing that

(ξ − 1)(s, u) =

{
1 : s < u
0 : s = u

we can use (ξ−1)k to count the number of strictly-increasing chains. Note further-
more that

(2− ξ)(s, t) =

{
1 : s = t
−1 : s < u

Proposition 4.2.1. (2− ξ)−1(s, t) gives the total number of strictly increasing
chains from s to t.

Proof. Let ℓ be the length of the longest chain between s and t so that
(ξ − 1)ℓ+1(u, v) = 0 for s ≤ u ≤ v ≤ t. For such u and v

(2− ξ)[1 + (ξ − 1) + (ξ − 1)2 + . . .+ (ξ − 1)ℓ](u, v) =

[1− (ξ − 1)][1 + (ξ − 1) + (ξ − 1)2 + . . .+ (ξ − 1)ℓ](u, v) =

[1− (ξ − 1)ℓ+1](u, v) = δ(u, v)

The equality from the second line to the third comes from multiplying out so that
all of the central terms cancel. Because δ is the identity,
(2− ξ)−1 = 1 + (ξ − 1) + (ξ − 1)2 + . . .+ (ξ − 1)ℓ when restricted to the elements
between some s and t. But as explained above, (ξ−1)k are just the chains of length
k between s and t so it follows that (2− ξ)−1 is the total number of chains from
s to t. □
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The following theorem connects the combinatorial notion of the Möbius func-
tion to the topological notion of the Euler characteristic:

Theorem 4.2.2 (Hall’s Theorem). Let P be a finite poset and let P̂ be P∪{0̂, 1̂}
where 0̂ and 1̂ are minimum and maximum elements. Let ci be the number of strictly
increasing chains between 0̂ and 1̂ of length i. Then

(4.2.3) µP̂ (0̂, 1̂) = c0 − c1 + c2 − c3 + . . .

Proof.

µP̂ (0̂, 1̂) = (1 + (ξ − 1))−1(0̂, 1̂)

= (1− (ξ − 1) + (ξ − 1)2 − . . .)(0̂, 1̂)

= 1(0̂, 1̂)− (ξ − 1)(0̂, 1̂) + (ξ − 1)2(0̂, 1̂)− . . .
= c0 − c1 + c2 − . . .

□

This expression is very close to the expression developed for the Euler charac-
teristic. Indeed the only difference is that when computing the Euler characteristic,
the empty-set is not regarded as a face of the simplicial complex whereas in this
expression it is, entering the sum as −1. Thus by defining the reduced Euler char-
acteristic, χ̃(X) = χ(X)− 1 we have the following remarkable fact: Rephrase with-

out reference to
simplicial complexes

Proposition 4.2.4. Let P be a finite poset.

µP̂ (0̂, 1̂) = χ̃(K (P )).

For more information on Hall’s theorem (Theorem 4.2.2) see [64][p.307-8].

4.3. The fundamental group of a finite space

4.3.1. H-loop groups. The following section outlines a method of computing
the fundamental group of a finite space. A second process is outlined in ?? after
the introduction of simplicial complexes, and we shall soon prove that the notions
are in fact equivalent. Broken reference

The following definitions are due to Barmak and Minian [8].

Definition 4.3.1. For any poset X with a base point x0, let H(X) be the
associated Hasse diagram. We call an ordered pair e = (x, y) an H-edge if (x, y) ∈
E(H(X)) or (y, x) ∈ E(H(X)). The point x is called the origin of e, denoted by
o(e) and the point y is called the end of e, denoted by e(e). The inverse of an
H-edge e = (x, y) is the H-edge e−1 = (y, x).

Definition 4.3.2. If we have a sequence of H-edges e1, e2, . . . , en with e(ei) =
o(ei+1) for all 1 ≤ i ≤ n − 1, we can connect them together to get an H-path
ξ = e1e2 . . . en. Typically we say the origin of this H-path is o(ξ) = o(e1) and the
end of this H-path is e(ξ) = e(en). The inverse of an H-path ξ = e1e2 . . . en is the
H-path ξ−1 = e−1

n e−1
n−1 . . . e

−1
1 .

Definition 4.3.3. An H-path ξ = e1e2 . . . en is said to be monotonic if either
ei ∈ E(H (X)) for all 1 ≤ i ≤ n or e−1 ∈ E(H (X)) for all 1 ≤ i ≤ n.

Definition 4.3.4. For two H-paths ξ1 = e1e2 . . . en and ξ2 = f1f2 . . . fm with
e(ξ1) = o(ξ2), it makes sense to define a composition of ξ1 and ξ2:

ξ1ξ2 = e1e2 . . . enf1f2 . . . fm.
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Definition 4.3.5. An H-loop at x0 is an H-path ξ such that o(ξ) = e(ξ) = x0.

Definition 4.3.6. Two H-loops ξ and ξ′ at x0 are said to be close if there exist
four H-paths ξ1, ξ2, ξ3, and ξ4 with ξ2 and ξ3 being monotonic, such that ξ = ξ1ξ4
and ξ′ = ξ1ξ2ξ3ξ4. Denote this close relation by ξ ≃ ξ′.

Two H-loops ξ and ξ′ at x0 are said to be H-equivalent if there exists a sequence
of loops at x0, ξ = ξ0, ξ1, ξ2, . . . , ξn = ξ′ such that ξi−1 ≃ ξi for each 1 ≤ i ≤ n.

It is not hard to verify that H-equivalence is actually an equivalence relation.
Therefore, we obtain the equivalence classes for H-loops at x0. Let us denote the
equivalence class of the H-loop ξ by ⟨ξ⟩ and collect all the equivalence classes into
the set H (X,x0). Similar to the way we handle the idea of fundamental group, we
can define a product on these equivalence classes by taking ⟨ξ1⟩⟨ξ2⟩ = ⟨ξ1ξ2⟩. It is
not hard to show that this product is well defined. This gives a group structure on
the set H (X,x0), which is called the H-loop group.

Remark 4.3.7. The H-loop group in the Hasse diagram provides a way to
compute the fundamental group of a topological space by just looking at its minimal
finite model. As we know, a minimal finite model is weak homotopy equivalent
to the original space, and hence all the information of every homotopy group is
carried by its minimal finite model. However, it is not known yet whether there is
an efficient way to extract the information of higher homotopy groups just from a
minimal finite model.

Reference to mini-
mal model chapter
later in the book

Finite graphs are a class of geometric objects whose minimal finite models have
been completely understood. One important fact about finite graphs that makes
it easier to find their minimal models is that a finite graph is a 1-dimensional CW
complex, i.e. a wedge sum of circles. Therefore, the weak homotopy type of a finite
graph is determined by its Euler characteristic, and from this we can work out a
way to compute minimal finite models of finite graphs.

Before we go into the actual argument, we would like to study the Hasse di-
agram a little further. As we know from the previous section, the H-loop group
H (x, x0) is isomorphic to the fundamental group of (X,x0). But what is more
about the Hasse diagram is that it can provide another way of looking at the fun-
damental group in terms of generators and relations. Here we first want to show
how to get the generators.

Proposition 4.3.8. Let (X,x0) be a poset. If x ∈ X is neither maximal nor
minimal and x ̸= x0, then the inclusion i : X−{x} −→ X induces an epimorphism

i∗ : H ((X − {x}), x0) −→H (X,x0).

Proof. Since every H-loop at x0 in X−{x} has a natural image as an H-loop
in X under inclusion, i∗ is naturally a homomorphism. Therefore, to show i∗ is an
epimorphism, it is sufficient to check that every H-loop in X that goes through x
is equivalent to an H-loop that does not go through x.

Suppose ϵ1ϵ2 . . . (y, x)(x, z) . . . ϵn is an H-loop. Then without loss of generality,
we can assume either y ≤ x ≤ z or y ≤ x and z ≤ x.

If y ≤ x ≤ z, then {x, y, z} is within a triangle and therefore we can deduce
that

ϵ1ϵ2 . . . (y, x)(x, z) . . . ϵn ≈ ϵ1ϵ2 . . . (y, z) . . . ϵn.
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If y ≤ x and z ≤ x, then since x is not maximal, we can find w ∈ X −{x} such
that w > x. Then

ϵ1ϵ2 . . . (y, x)(x, z) . . . ϵn ≈ ϵ1ϵ2 . . . (y, w)(w, x)(x,w)(w, z) . . . ϵn

≈ ϵ1ϵ2 . . . (y, w)(w, z) . . . ϵn.

□

We know that for a path connected space, the fundamental group does not
depend on the choice of the base point. Thus without loss of generality, we can
always choose the base point x0 to be one of the minimal points. Now imagine that
if we eliminate all the points that are neither maximal nor minimal in X, then we
will be left only with all the maximals and minimals. Call this subspace with only
maximals and minimals Y . Then we have the following corollary:

Corollary 4.3.9. For any finite poset (X,x0), let (Y, x0) be the subspace that
consists of only maximals and minimals in (X,x0). Then the inclusion induces an
epimorphism i∗ : π1(Y, x0) −→ π1(X,x0).

Remark 4.3.10. Note that since there are only maximals and minimals in Y
, h(Y ) ≤ 2. Typically, for a non-contractible space X, h(Y ) = 2. Also, if X
is connected, then removing middle points will not disconnect the space, i.e. Y
remains connected. standardize notation

for heightRemark 4.3.11. When h(Y ) = 2, we know that Y can be represented as a
finite 1-dimensional simplicial complex, i.e. a finite graph. Since a finite graph
is always homotopy equivalent to a wedge sum of circles, we can assume that the
graph is homotopy equivalent to ∨mi=1S

1. Therefore, we have

π1(Y, x0) ∼= H (Y, x0) ∼= π1

(
m∨
i=1

S1, s0

)
∼= Z∗m.

Now we can go into the search for minimal finite models of finite graphs:

Theorem 4.3.12. If X is a minimal finite model of ∨ni=1S
1, then h(X) = 2.

Proof. Take the subspace of maximals and minimals Y . Since X is a minimal
finite model of a noncontractible space, we know that h(Y ) = 2. By Remark 4.3.11,
π1(Y, x0) = Z∗m.

By Proposition 4.3.8, there is an epimorphism i∗ : π1(Y, x0) −→ π1(X,x0).
Note that since π1(X,x0) = Z∗n, thus we must have m ≥ n.

Consider the finite graph of a space Y . Since it is a wedge sum of m circles,
there are m edges that are not contained in any maximal tree of the graph. If we
remove m − n of these edges by forgetting the relations between the vertices, we
obtain a new finite space Z and the graph in question is homotopy equivalent to
∨ni S1. standardize notation

for cardinalityNote that #Z = #Y ≤ #X. But since X is a minimal finite model of ∨ni S1,
we also have #X ≤ #Z. Therefore, #Z = #Y = #X, which implies X = Y . □

The following theorem will conclude our search:

Theorem 4.3.13. Let j be the number of maximal points in X and k be the
number of minimal points in X. Then X is a minimal finite model of ∨ni S1 if and
only if h(X) = 2, #X = min{j + k|(j − 1)(k− 1) ≥ n} and the number of edges in
the graph of X is #X + n− 1.
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Proof. We have shown that if X is a minimal finite model of ∨ni S1, then
h(X) = 2. Since j is the number of maximal points and k is the number of minimal
points in X, we know that there can be at most jk many edges in the graph of X.
Let E be the number of edges in and V be the number of vertices, then the Euler
characteristic formula tells us that

1− n = V − E ≥ j + k − jk.
Therefore, we must have (j − 1)(k − 1) = jk − j − k + 1 ≥ n, and hence #X =
j + k ≥ min{j + k|(j − 1)(k − 1) ≥ n}.

Now suppose we have j and k such that (j − 1)(k − 1) ≥ n. Then consider
the finite poset W = {x1, x2, . . . , xj , y1, y2, . . . , yk} with xs > yt for any 1 ≤ s ≤ j

and 1 ≤ t ≤ k. As we can see, W is a finite model of ∨(j−1)(k−1)
i=1 S1. But then we

i = 1 can remove (j − 1)(k − 1) − n edges from the graph of W by forgetting the
corresponding relations, and the resulting finite poset would be a finite model of
∨ni S1.

Now since for any j and k with (j − 1)(k − 1) ≥ n we can find a finite model
with j + k points, we conclude that #X = min{j + k|(j − 1)(k − 1) ≥ n}, and the
number of edges just follows from the Euler characteristic formula.

Conversely, suppose we have a finite poset X with h(X) = 2, #X = min{j +
k|(j − 1)(k − 1) ≥ n} and the number of edges in the associated graph being
#X +n− 1. Note that if X is connected, then we are done, for the reason that the
graph of X will also be connected, and the three conditions will determine that it
is a finite graph with the Euler characteristic 1 − n. Therefore, the only thing we
need to show here is connectedness.

Suppose X is disconnected. Let X1, X2, . . . , Xl be distinct connected com-
ponents in X. Let Mi be the set of maximal points in Xi and mi be the set
of minimal points in Xi. Then j = Σli=1#Mi and k = Σli=1mi. Since #X =
min{j + k|(j − 1)(k − 1) ≥ n}, we must have (j − 2)(k − 1) < n. But at the same
time, n = E − j − k + 1 by the Euler characteristic formula. Therefore,

(j − 2)(k − 1) < E − j − k + 1

jk < E + (k − 1).

Note that jk is in fact the number of edges in the complete bipartite graph(⋃l
i=1mi,

⋃l
i=1Mi

)
. The inequality above shows that the graph of X differs from

the complete bipartite graph in less than k − 1 edges.
Since there are no edges between Mi and mr for i ̸= r, we have

k = 1 >

l∑
i=1

#Mi(k −#mi) ≥
l∑
i=1

(k −#mi) = (l − 1)k.

This forces l = 1 and hence X is connected. □

This theorem gives a method to compute minimal finite models of all finite
graphs. Unlike the n-spheres, some finite graphs have more than one minimal finite
model, with the same number of points but different arrangements. For example,
the following three are minimal finite models of ∨3i=1S

1:

Example 4.3.14.
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Up to this point are the minimal finite models that have been completely un-
derstood. But we want to push the frontier a little bit further to some slightly more
complicated spaces and investigate the possible size of their minimal finite models.

Hotlink to minimal
models chapter

4.4. Covers of finite spaces

One of the problems mathematicians face as they explore the new territory of
finite spaces is how to classify them. A useful way to differentiate between some
spaces is to calculate their fundamental groups. However, it is difficult to intuitively
understand what a loop in a finite space would look like, and it can be difficult to
calculate the fundamental groups of finite spaces.

Information about covers of finite spaces can be obtained through observing
similarity with covers of spaces we are accustomed to working with. For instance,
we investigate the relationship between the wedge of two circles and the 5-point
space weakly homotopy equivalent to it. Similarly, we suggest an intuitive way to
find covers for any height-2 poset by looking at other wedges of circles. Omit mention of Ga-

lois correspondence?Covering spaces share a deep connection to the fundamental group. If a space
X is path-connected, locally path-connected, and semi-locally simply connected,
there is a Galois correspondence between the covers of X and the subgroups of
its fundamental group. We will show that any connected finite space is also path-
connected and locally contractible. It follows that any connected finite space is
path-connected, locally path-connected, and semi-locally simply connected. Thus,
there exists a Galois correspondence for finite spaces.

Given a space X, a cover is intuitively a larger space X̃ which can be projected
neatly into X in such a way that locally X̃ can be regarded as a stack of pancakes.

Definition 4.4.1. A cover of a space X is a space X̃ and a map p : X̃ −→ X
such that for each point x in X, there is an open neighborhood U of x where
p−1(U) is the union of disjoint open sets in X̃, and p maps each of these sets
homeomorphically onto U .

Definition 4.4.2. A lift of f : X −→ Y along g : Z −→ Y is a map f̃ : X −→ Z
such that g ◦ f̃ = f .

Z

g

��
X

f̃
>>

f
// Y

Theorem 4.4.3. Given a cover p : X̃ −→ X, a homotopy ft : Y −→ X, and
a map f̃0 : Y −→ X̃ lifting f0, there exists a unique homotopy f̃t : Y −→ X̃ of f̃0
that lifts ft.

Proofs of this theorem and the ones below can be found in Allen Hatcher’s
Algebraic Topology [31] (p.60, 84-85). We will only need this theorem to lift paths,
not any larger spaces, because none of the objects we will be working with in this
paper will have dimension greater than 1.

Now, the Galois correspondence between the covers of a space X and the sub-
groups of its fundamental group gives us the following:
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Theorem 4.4.4. Suppose X is path-connected, locally path-connected, and semilo-
cally simply-connected. Then there is a bijection between the set of basepoint-
preserving isomorphism classes of path- connected covering spaces p : (X̃, x̃0) −→
(X,x0) and the set of subgroups of π1(X,x0). This bijection is obtained by associ-

ating each subgroup p∗(π1(X̃, x̃0)) to the cover (X̃, x̃0). If basepoints are ignored,
this correspondence gives a bijection between isomorphism classes of path-connected
covering spaces p : X̃ −→ X and conjugacy classes of subgroups of π1(X,x0).

Notice that if K is a subgroup of H, then the space corresponding to K will
cover the space corresponding to H. This means that the bijection in the previous
theorem is order reversing. Also note that the fundamental group of a space X
must have a trivial subgroup, which is a subgroup of every other subgroup, so there
must be a cover of X that covers every other cover. This is called the universal
cover of X, and it is unique up to isomorphism. In fact, a space need only be locally
path-connected and semi-locally simply connected to have a universal cover, and
the proof of the previous theorem actually uses the existence of a universal cover.

This theorem is also stated as an equivalence of categories, which will give us
a general relationship between the covers of any two weakly homotopy equivalent
spaces. However, the aim of this paper is to suggest an explicit geometric rela-
tionship between covers of weakly equivalent spaces. We will describe this explicit
relationship for the wedge of circles and the 5-point space weakly equivalent to it.

The following theorem will provide some intuition about the relationship be-
tween posets (which we will see are equivalent to finite spaces) and wedges of circles,
if both are considered as graphs.

Theorem 4.4.5. For a connected graph X with maximal tree T , π1(X) is a free
group with basis the classes of loops [fα] corresponding to the edges eα of X − T .

This makes sense intuitively because a tree has no non-trivial loops and can be
retracted to a single vertex. Collapsing a maximal tree in a connected graph leaves
one vertex with a bouquet of edges, forming a wedge of circles, and the fundamental
group of a wedge of κ circles is the free group on κ generators. Because trees are
contractible, collapsing a maximal tree is a homotopy equivalence. This means that
the fundamental group of X is the same as the fundamental group of the wedge of
circles made up of the edges left over when the maximal tree is collapsed. These
edges are exactly the edges eα of X − T .

Proposition 4.4.6. For any connected finite space X, there is a Galois corre-
spondence between the covers of X and the subgroups of its fundamental group.

Proof. Since X is connected, it is path-connected, and X is locally path-
connected because its connected components and path components coincide. By the
previous lemma, X is locally contractible and hence semi-locally simply connected,
so Theorem 4.4.4 applies. □

4.4.1. Covers of the 5-point space. Consider the following 5-point space,
W , which is weakly homotopy equivalent to the wedge of two circles.
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If we consider the two zigzags p < x > a < y > p and p < x > b < y > p, then
the first is a loop containing the red edge, and the second is a loop containing the
blue edge.

We can construct a 2-fold cover of W by connecting two copies of the space as
follows.

It is easy to imagine simply picking up one of the two W shapes, shifting it over
so that its points match up with the points in the other W shape, and flattening it
to get the original space.

Similarly, we can construct a 3-fold cover by taking three copies of W without
the blue zigzag b < x, and then connecting bi to xi+1 for i = 1, 2 and b3 to x1.
A 4-fold cover, shown below, can be constructed in the same way by taking four
copies of W without the blue zigzag and connecting them with the blue zigzags
bi < xi+1 for i = 1, . . . , 3 and b4 < x1. It is easy to see that an n-fold cover of this
space may be constructed by stringing together n of these W -shaped “beads” using
the blue edges.

The symmetry of this 4-fold cover is clearer if it is drawn planar:

Three more 4-fold covers follow:
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Now that we have found several 4-fold covers and a way to construct an n-
fold cover of W for any n, it makes sense to ask whether there is a simple way
to construct all covers of this space. To address this question, we will look at the
wedge of two circles.

4.4.2. Finding a relationship to the wedge of circles. Depicted below is
the wedge of two circles. Note that we have colored the edges to distinguish the
two generators α and β and have given them orientations.

Four 4-fold covers of the wedge of two circles are shows below.
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There are some immediate visual parallels between these covers and those of W
in the previous section. On one hand, looking at the covers of the wedge of circles as
graphs, each vertex has one red edge and one blue edge going in, and one red edge
and one blue edge going out. On the other hand, each zigzag ai < xi > pi < yi > bi
is connected to one red edge and one blue edge pointing in, and one red edge and
one blue edge pointing out.

If we think of collapsing the points in W along a < x > p < y > b, then a < y
and b < x would correspond to the red and blue generators of the wedge of two
circles. This fits with Theorem 4.4.5 because a < x > p < y > b is a maximal tree
in W ,and W has the same fundamental group as the wedge of two circles. Similarly,
we can collapse the black edges in covers A,B,C, and D above to get 1, 2, 3, and
4, respectively.

Now, if we think of the wedge of two circles and its covers as graphs, it becomes
clear that for every node, we will have a zigzag ai < xi > pi < yi > bi in the
corresponding poset cover of W . We already know that generator α corresponds to
the zigzag containing a < y in W , β corresponds to the zigzag containing b < x,
and the direction of each generator is preserved by which point is reached first in
the zigzag. Therefore, given a cover of the wedge of two circles, we need only turn
each point in the cover into five points, endow these points with the appropriate
ordering, and connect the colored edges to the correct points to create an analogous
cover of W . We shall turn to the formalism of category theory to show how this
correspondence between the covers of W and the covers of S1 ∨ S1 can be made
more precise.





CHAPTER 5

Minimal models

The following two chapters cover minimal models of various surfaces.
In characterizing finite manifolds, a comparatively well-understood class of fi-

nite spaces, the following definitions are useful.

Definition 5.0.1. If X is a topological space, a finite model of X is a finite
T0 space which is weak homotopy equivalent to X.

Since every space is weak homotopy equivalent to a regular CW complex1, this
implies that every space has a T0 Alexandroff model, and if the regular CW complex
is finite, so is the model.

We describe Stong minimality and absolute minimality of finite models of topo-
logical spaces, exhibit Stong minimal models of all closed surfaces, and derive several
elementary lower bounds for the size of absolutely minimal models. We define the
notion of a finite manifold and characterize finite surfaces, then use this character-
ization to show that a finite model of a closed surface is a finite surface if and only
if it is induced by a regular CW structure on the surface. Finally, we use this result
to deduce a better lower bound for the size of models which are finite surfaces and
construct minimal finite surface models of orientable surfaces whose genera satisfy
nice number- theoretic properties.

One basic example which illustrates the relationship between ordinary spaces
and finite models is that of the non-Hausdorff suspension. Recall that the non-
Hausdorff suspension of Sn produces a weakly equivalent version with 2n+2 points
for each n.

Figure 1: Hasse diagrams for finite models of S0, S1 and S2.

Notice that a given space will have many finite models. For example, every finite
simplicial structure gives rise to a finite model, and we can always enlarge a model
by adding beat points. To avoid superfluous information, reduce complexity, and
gain a better understanding of these models, it is desirable to find finite models
which are minimal in one of two senses.

1Every space is weak homotopy equivalent to a CW complex, while every CW complex is
homotopy equivalent to a simplicial complex of the same dimension; see, for example, Theorem

2C.5 in [31].

51



52 5. MINIMAL MODELS

Definition 5.0.2. We say a finite T0 space is Stong minimal if its cardinality
is minimal in its homotopy class. We say a finite T0 space is absolutely minimal if
its cardinality is minimal in its weak homotopy class.2

Note that the second notion of minimality is stronger than the first; the sphere
is a rare case where the evident Stong minimal model is absolutely minimal. It is
also perhaps a more natural notion of minimality when it comes to the study of
finite models, since it is equivalent to being the smallest finite model of a space.
However, Stong minimality is easier to check, and Stong minimal models are easier
to find: two finite T0 spaces are homotopy equivalent if and only if their cores are
homeomorphic, so a space is Stong minimal if and only if it has no beat points, and
a Stong minimal model can be obtained from any finite model simply by removing
beat points. In contrast, at the time of the writing of this paper, there is no known
algorithm for reducing an arbitrary finite T0 space to an absolutely minimal space,
or even for determining whether a space is absolutely minimal.

For this reason, results regarding absolutely minimal models have typically
involved exhibiting a particular model for a space and showing that no smaller
space can have the same homotopy or homology groups. Barmak and Minian take
this approach in [8] in which they show that the finite models described above
are the unique absolutely minimal models of Sn for each n. Having found such
models for the most basic topological spaces, we turn next to another well-known
countable collection of spaces with simple homology: closed surfaces. Cianci and
Ottina exibit absolutely minimal models of the torus, the projective plane, and
the Klein bottle in [16], but their methods for bounding model size below are
not related to the genus of these surfaces, and hence do not generalize directly
to surfaces of higher genus. In this paper, we begin by describing Stong minimal
models for all closed surfaces. 3 We then find some lower bounds for the size
of arbitrary finite models of closed surfaces using results from [16] together with
some elementary combinatorial facts. Having derived some minor results for the
general case, we specialize to a particularly well-behaved class of finite T0 spaces
called finite manifolds, characterize them in dimension 2, and conclude by deriving
a much stronger bound for finite models of this type, which we use to find some
finite models which are minimal among finite surfaces.

5.0.1. Stong minimal models of closed surfaces. In this section, we con-
struct regular CW models for all closed surfaces and show that the associated posets
have no beat points, making them Stong minimal. These models are generalizations
of absolutely minimal models presented in [16].

Given an orientable surface S of genus g, the usual CW structure for S is a regu-
lar 4g-gon with edge identifications represented by the word a1b1a

−1
1 b−1

1 . . . agbga
−1
g b−1

g .
However, this structure is not regular. To fix this issue, we add in the perpen-

dicular bisectors of each edge with no new identifications, splitting each external
edge into two 1-cells attached by a 0-cell. We also gain one new vertex in the center
at the intersection of all the bisectors. This gives a regular CW structure for S

2These definitions are standard, but the terminology is not: the first is typically called

a “minimal finite space” or simply “minimal”, and the second a “minimal finite model”. This
nomenclature allows for such peculiar entities as spaces which are both minimal and finite models,

but are not minimal finite models. We use different terminology to avoid confusion.
3We assume throughout that our surfaces are connected, as all our results can be immediately

generalized to disconnected closed surfaces by taking coproducts.



5. MINIMAL MODELS 53

and thus a finite model (see Figure 2). It is easy to check that this model has
14g + 2 points. Note that every 0-cell is contained in at least two 1-cells, every
1-cell contains exactly two 0-cells and is contained in at least two 2-cells, and every
2-cell contains exactly two 1-cells. Consequently, no vertex in the Hasse diagram
of the model has in-degree or out-degree 1, so there are no beat points. Thus, this
model is Stong minimal.

c1 b3

a1

a3

c3

a4

c1

b7 b8

b2

c2
b4

c4

b6 c2

b7

c1 b3 c3

a2

b5 c1

b1b1

b5

c1 c2 c3 c4

b1 b2 b3 b4 b5 b6 b7 b8

a1 a2 a3 a4

Figure 2: The regular CW structure and associated finite model for the
orientable surface of genus 1. Taken from [16].

The construction of the models for nonorientable surfaces is similar. Given a nonori-
entable surface S of genus g, we begin with the usual CW model: the regular 2g-gon
with edge identifications given by the word a21 . . . a

2
g. To make this regular, we add

in both the perpendicular bisectors of the edges and the line segments between
opposing vertices. This yields a regular CW structure with 11g+ 2 points, and the
face poset is Stong minimal for the same reason as in the orientable case.

5.0.2. Elementary bounds. In this section, we use the weak homotopy in-
variance of Euler characteristic and several results from [16] to derive lower bounds
for the size of arbitrary finite models of closed surfaces other than S2 and RP 2,
whose absolutely minimal finite models are already known. We denote the Euler
characteristic of a space X by χ(X) and the cardinality of X by #X.

In [16], Cianci and Ottina define what they call a splitting property (S2) for
finite posets. The details are not relevant, but the following result they derive is.

Proposition 5.0.3. Let X be a finite T0 space which is Eilenberg-MacLane
of type (G, 1). If X satisfies (S2) then H1(X) is free abelian and Hn(X) = 0 for
n > 1.
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We obtain the following corollary.

Proposition 5.0.4. No closed surface other than S2 or RP 2 can have a model
satisfying (S2).

Proof. Let S be a closed surface that is not S2 or RP 2. Then S is covered by
R2, so it is Eilenberg-MacLane of type (π1(S), 1). If S is nonorientable, then H1(S)
is not free abelian, and if S is orientable, H2(S) is nontrivial. Since homology is a
weak homotopy invariant, the same is true of any finite model of S, so the result
follows by the previous proposition. □

There are two relevant consequences derived in [16] of not satisfying (S2).

Proposition 5.0.5. If X is a finite T0 space not satisfying (S2) that is con-
nected and Stong minimal, then #X ≥ 16.

Proposition 5.0.6. If X is a finite T0 space with at most two maximal points
or at most two minimal points, X satisfies (S2).

These give us our lower bounds.

Theorem 5.0.7. Let X be a finite model of a surface S other than S2 or RP 2.
Then #X ≥ max(16, log2(|χ(S)|)).

Proof. Since we can reduce any model to a Stong minimal model by removing
beat points, we may assume without loss of generality that X is already Stong
minimal. Furthermore, because path-connectedness is detected by homology, X
must be path-connected and thus connected. It follows that #X ≥ 16.

To obtain the other bound, note that since Euler characteristic is weak homo-
topy invariant, χ(S) = χ(K (X)), which is the alternating sum of the number of
chains in X of various lengths,

∑
k a chain(−1)#k+1. By the triangle inequality, the

absolute value of the Euler characteristic must be less than or equal to the total
number of chains in X,

∑
k a chain 1. Since chains are subsets of X, this is less than

or equal to the number of subsets of X, 2#X . The result follows. □

We can improve our logarithmic bound to a square root bound in the case
where X has height 3.

Proposition 5.0.8. Let X be a height-3 finite model of a surface other than
S2 or RP 2. Then #X ≥

√
2|χ(S)− 7|.

Proof. Let n = #X. The only negative contribution to χ(K (X)) is from
the edges, of which there are at most

(
n
2

)
since they are 2-chains in X. We know

that there are at least 6 vertices since X does not satisfy (S2): there are at least
three maximal points and three minimal points and no point can be both maximal
and minimal since X is connected. We also know there must be at least one
face because X is of height 3. Thus, there must be at least |χ(S) − 7| edges, so
n2 ≥ n2 − n = 2

(
n
2

)
≥ 2|χ(S)− 7|, from which the result follows. □

It is conceivable that this method could be extended to posets of greater height.
(It is trivial from the simplicial homology of K (X) that any finite model must have
height at least 3.)
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5.1. the Euler characteristic of finite representations of homology
manifolds

Define closed homol-
ogy manifold. Though the formula of the Euler characteristic of a finite T0 space X has already

been derived, there is more that can be said when the geometric realization of the
associated simplicial complex |(K)(X)| is a closed homology manifold.

Given a topological space X, let χ(X) be the Euler characteristic of X. If K
is a finite simplicial complex, it is clear that

χ(|K|) =
∑
σ∈K

(−1)dim(σ).

Let X be a finite T0 space. Since |(K)(X)| and X are weak homotopy equivalent,
their homology groups are isomorphic, and hence they have the same Euler char-
acteristic. Let C(X) be the set of non-empty chains of X. The definition of (K)
allows us to conclude

χ(X) =
∑

C∈C(X)

(−1)ht(C)

[7].
We can relate the Euler characteristic of a finite T0 space X to the Euler

characteristics of lower links in X with the following proposition.

Proposition 5.1.1. Let X be a finite T0 space. Then

χ(X) =
∑
x∈X

(1− χ(Ûx)).

Proof. Proof by induction on the cardinality #X of X. The case #X = 0
is trivial. Assume our hypothesis is true for #X = k. Let #X = k + 1, and let
x0 ∈ X be a maximal point. Since x0 /∈ Ûy for all y ̸= x0, we have

χ(X \ {x0}) =
∑

y∈X\{x0}

(1− χ(ÛXy ))

by our hypothesis. Furthermore,

χ(X) =
∑

C∈C(X)

(−1)ht(C)

=
∑

C∈C(X),x0∈C

(−1)ht(C) +
∑

D∈C(X),x0 /∈D

(−1)ht(D)

=
∑

C∈C(X),x0∈C

(−1)ht(C) + χ(X \ {x0}).

Clearly, if x0 ∈ C ⊂ X, then C ∈ C(X) if and only if C = {x0} or C\{x0} ∈ C(Ûx0
).

Hence, ∑
C∈C(X),x0∈C

(−1)ht(C) = 1−
∑

C∈C(Ûx0 )

(−1)ht(C)

= 1− χ(Ûx0
).

Our induction immediately follows. □
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Of course, this proof can be altered slightly to provide an analogous result for
upper links.

We now reach the main result.

Theorem 5.1.2. Let X be a finite T0 space. If |(K)(X)| is a closed homology
manifold, then

χ(X) =
∑
x∈X

(−1)ℓX(x)

Proof. Recall that a compact polyhedron M is a closed homology manifold if
its underlying simplicial complex K is such that for any simplex σ of K, the homol-
ogy groups of |lkK(σ)| are isomorphic to the homology groups of Sdim(M)−dim(σ)−14.
Note that the polyhedron condition implies that K is pure.

For x ∈ X, let C be a maximal chain in X containing x, and let C≥ = {y ∈
C|y ≥ x}. Since (K)(X) is pure, X is pure, so ht(C≥) = ht(F̂Xx )+1. Furthermore,

lkX(C≥) = ÛXx . Hence,

χ(ÛXx ) = χ(Sht(X)−ht(C≥)−1)

= 1 + (−1)ht(X)−ht(F̂X
x )

= 1 + (−1)ht(X)−ht(ÛXOP

x )

= 1 + (−1)ht(X)−ℓXOP (x)+1

= 1 + (−1)ℓX(x)+1

Our result follows from the above proposition □

With this result, we can now provide another proof of a well-known fact.

Corollary 5.1.3. All odd-dimensional polyhedral closed homology manifolds
have Euler characteristic 0.

Proof. Let M be an odd-dimensional polyhedral homology manifold with
underlying complex K. Then K∆ is a finite T0 space such that (K)(K∆) is a
triangulation of M . Thus,

χ(X) =
∑
x∈K∆

(−1)ℓK∆
(x).

But (K∆)OP is also a finite T0 space such that (K)((K∆)OP ) is a triangulation of
M , so

χ(X) =
∑

x∈(K∆)OP

(−1)
ℓ(K∆)OP (x)

.

Since ℓK∆
(x) = htK∆

(x) − ℓ(K∆)OP (x), and since ht(K∆) is odd, ℓK∆
(x) and

ℓ(K∆)OP (x) have different parities. Hence we conclude that χ(X) = −χ(X) = 0,

and thus that χ(M). □

4Note the similarity between this definition and piecewise-linear triangulations of a manifold,
in which the link of a simplex is homeomorphic to a sphere of appropriate dimension.



CHAPTER 6

Simplicial complexes

6.1. Abstract and ordered simplicial complexes

Simplicial complexes provide a general class of spaces that is sufficient for most
purposes of basic algebraic topology. There are more general classes of spaces, in
particular the CW complexes, that are more central to the modern development
of the subject, but they give exactly the same collection of homotopy types, as
we shall recall. We shall give a quick introduction to simplicial complexes here,
largely restricting ourselves to what we shall use later. More detail can be found
in many textbooks in algebraic topology (although not in my own book [48]).
However, it is hard to find as precise a demarkation between simplicial complexes
and ordered simplicial complexes as is needed for conceptual understanding, and
this will become increasingly important as we go on. We implicitly focus on finite
simplicial complexes, waiting for simplicial sets for full rigor in the infinite case.

Definition 6.1.1. An abstract simplicial complex K is a set V = V (K), whose
elements are called vertices, together with a set K of (non-empty) finite subsets
of V , whose elements are called simplices, such that every vertex is an element of
some simplex and every subset of a simplex is a simplex; such a subset is called a
face of the given simplex. We say that K is finite if V is a finite set. The dimension
of a simplex is one less than the number of vertices in it.

—–

Example 6.1.2. Abstract complexes can be understood in a diagrammatic
way. Consider for example, the abstract simplicial complex whose vertex set and
simplices are given by

V (K) = {a, b, c, d},K = {a, b, c; ab, bc, ac, cd; abc}.

The vertices contain one simplex, and thus have dimension zero. They can be
drawn simply as points. The simplices composed of two vertices can be drawn as
lines as they are one-dimensional objects. Finally, faces (simplices containing three
vertices) are shaded to indicate solidity. This produces the diagram pictured:

b c d

a

57
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Example 6.1.3. Notice that K must contain all points in the vertex set, as
well as all subsets of the vertices included in higher dimensional simplices. Thus,
we note the following examples that are NOT abstract simplical complexes.

(1) V = {a, b, c}, K = {a, b; ab}
(2) V = {a, b, c}, K = {a, b, c; ab, bc; abc}

Exercise 6.1.4. Write down the set of simplices of the simplicial complex X
given below:

a b

d

c

e

f

Definition 6.1.5. A map g : K −→ L of abstract simplicial complexes is a
function g : V (K) −→ V (L) that takes simplices to simplices. That is, for each set
S in K, the set g(S) is in L. We say that K is a subcomplex of L if the vertices and
simplices of K are some of the vertices and simplices of L. We say that K is a full
subcomplex of L if, further, every simplex of L whose vertices are in K is a simplex
of K.

As already said, there is a very important distinction to be made between
simplicial complexes as we have just defined them and ordered simplicial complexes.

Definition 6.1.6. An ordering of an abstract simplicial complex K is a partial
order on the vertices of K that restricts to a total order on the vertices of each sim-
plex of K. A map of ordered simplicial complexes is a map of simplicial complexes
that is given by an order preserving map on its poset of vertices.

While imposition of an ordering may seem artificial, since we have no canonical
choice, it is essential to a serious calculational theory. We shall later introduce
simplicial sets, which generalize simplicial complexes and elegantly systematize or-
derings. Many of the definitions below have evident ordered variants. We shall
not belabor the point. However, orderings will be essential to understanding the
relationship between simplicial complexes and finite spaces. Of course, this is not
surprising since finite spaces are essentially the same as finite posets.

Unless otherwise stated, simplicial complexes without an adjective (such as
ordered or geometric) means abstract simplicial complexes henceforward.

6.2. Geometric simplicial complexes

Following geometric intuition, we must first define geometric simplices.

Definition 6.2.1. Let {v0, . . . , vn} be a set of points in some RN such that
the vectors

{(v1 − v0), (v2 − v0) . . . (vn − v0)}
are linearly independent. The (geometric) n-simplex σ spanned by {v0, . . . , vn} is
the set of all points

∑n
t=0 tivi, where 0 ≤ ti ≤ 1 and

∑
ti = 1. The ti are called

the barycentric coordinates of the point x. When each ti = 1/(n+ 1), the point x is
called the barycenter of σ. The points vi are the vertices of σ. A simplex spanned
by a subset of the vertices is a face of σ; it is a proper face if the subset is proper.
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Definition 6.2.2. The standard n-simplex ∆[n] is the n-simplex spanned by
the standard basis of Rn+1. Thus the standard 0-simplex is the point 1 ∈ R, the
standard 1-simplex is the line{t, 1 − t} ⊂ R2, and so forth. Later, when neces-
sary for clarity, we will sometimes denote these topological n-simplices by ∆[n]t to
distinguish them from other kinds of n-simplices that will appear.

As we noticed before, n-simplices are easy to visualize for small n.

Example 6.2.3. Below are depictions of the standard ordered 0-, 1-, 2-, and
3-simplices ∆[0], ∆[1], ∆[2] and ∆[3].

0 0 1 0 1

2

0 1

2

3

Exercise 6.2.4. How many 0,1 and 2-dimensional simplices does the 3-dimensional
simplex shown above contain?

Definition 6.2.5. A geometric simplicial complex K is a set of simplices in
some RN such that every face of a simplex in K is a simplex in K and the intersec-
tion of two simplices in K is a simplex in K. The set of vertices of K is the union
of the sets of vertices of its simplexes. Note that although we require all vertices
to lie in some RN and we require each set of vertices that spans a simplex of K
to be geometrically independent, we do not require the entire set of vertices to be
geometrically independent. For example, we can have three vertices on a single line
in RN , as long as the two vertices furthest apart do not span a 1-simplex of K. A
subcomplex L of a simplicial complex K is a simplicial complex whose simplices
are some of the simplices of K. It is a full subcomplex if every simplex of K with
vertices in L is in L.

The simplices of a geometric simplicial complex are the building blocks of a
subspace of RN .

Definition 6.2.6. The geometric realization |K| of a geometric simplicial com-
plex K is the union of the simplices of K, each regarded as a subspace of RN , with
the topology whose closed sets are the sets that intersect each simplex in a closed
subset. If K is finite, but not in general otherwise, this is the same as the topol-
ogy of |K| as a subspace of RN . The open simplices of |K| are the interiors of its
simplices (where a vertex is an interior point of its 0-simplex), and every point of
|K| is an interior point of a unique simplex. The boundary ∂σ of a simplex σ is the
subcomplex given by the union of its proper faces. A space homeomorphic to |K|
for some K is called a polytope.

The dimension of a simplicial complex is the maximal dimension of its simplices,
and that of course corresponds to our geometric intuition.

Definition 6.2.7. Maps g : K −→ L of geometric simplicial complexes are
defined in the same way as maps of abstract simplicial complexes: g is a function
from the vertex set V (K) to the vertex set V (L) such that, for each subset S of



60 6. SIMPLICIAL COMPLEXES

V (K) that spans a simplex of K, the set g(S) is the set of vertices of a simplex
of L. Then g determines the continuous map |g| : |K| −→ |L| that sends

∑
tivi to∑

tig(vi). Note that although we do not require g to be one–to–one on vertices,
|g| is nevertheless well-defined and continuous. If g is a bijection on vertices and
simplices, we say that it is an isomorphism, and then |g| is a homeomorphism.

Example 6.2.8. An important example of a simplicial map is one that col-
lapses simplices. The introduction of simplicial sets later in the book preserves the
information given by all possible collapses of faces, such as the one pictured below.

Example 6.2.9. Inclusions of geometric simplicial complexes are easily visual-
ized since the image must be a subcomplex, as in the following picture.

v0 v1

v2

v0 v1

v2

v4

v3

It is usual to abbreviate |g| to g and to refer to it as a simplicial map, but for
now we prefer to keep the distinction between g and |g| clear.

Remark 6.2.10. The reader can and should object to our insistence that all
of the vertices of K are in some RN . Why not allow an infinite set of vertices with
no bound on the allowed size of the simplices? The idea is to take the topological
space given by the disjoint union of the simplices of a geometric simplicial complex,
ignoring their embeddings in Euclidean space, and to then form a quotient space
by glueing them together along their common faces. We might instead think of sets
of standard n-simplices ∆[n], and we might think of taking their disjoint union and
then gluing together along prescribed faces to construct the geometric realization
more abstractly. We shall allow ourselves to think of such infinite dimensional
simplicial complexes, but it is best not to take them too seriously for now. We shall
come back to them under the guise of simplicial sets, which are best treated later.
In that context, we will make the intuition precise and show how best to define
geometric realization in general.



6.4. CONES AND SUBDIVISIONS OF SIMPLICIAL COMPLEXES 61

6.3. Comparison of abstract and geometric simplicial complexes

Definition 6.3.1. The abstract simplicial complex aK determined by a geo-
metric simplicial complex K has vertex set the union of the vertex sets of the
simplices of K. Its simplices are the subsets that span a simplex of K. An abstract
finite simplicial complex K determines a geometric finite simplicial complex gK by
choosing any bijection between the vertices of K and a geometrically independent
subset of some RN . For specificity, we can take the standard basis elements of RN
where N is the number of points in the vertex set V (K). The geometric simplices
are spanned by the images of the simplices of K under this bijection. For an ab-
stract simplicial complex K, agK is isomorphic to K, the isomorphism being given
by the chosen bijection. Similarly, for a finite geometric simplicial complex K, gaK
is isomorphic to K.

We could remove the word finite from the previous definition by defining geo-
metric simplicial complexes more generally, without reference to a finite dimensional
ambient space RN , as in Remark 6.2.10. We also note that we do not have to realize
in such a high dimensional Euclidean space as a count of vertexes would dictate.
The following result holds no matter how many vertices there are. It is rarely used,
but it is conceptually attractive. A proof can be found in [34, 1.9.6].

Theorem 6.3.2. Any finite simplicial complex K of dimension n can be geo-
metrically realized in R2n+1.

Remark 6.3.3. Abstract and geometric simplicial complexes contain the same
combinatorial information and an abstract simplical complex can be constructed
from a geometric one without ambiguity. However, with our present definitions a
finite geometric simplicial complex can only be constructed up to homeomorphism
from an abstract one. Use of ordered simplicial complexes and simplicial sets will
later give an elegant way around this and will do so without the finiteness restriction.

In view of the discussion above, abstract and geometric finite simplicial com-
plexes can be used interchangeably. In particular, the geometric realization of a
finite abstract simplicial complex K is understood to mean the geometric realization
of any gK.

We need a criterion for when the geometric realizations of two simplicial maps
are homotopic.

Definition 6.3.4. Continuous maps f and g from a topological space X to the
geometric realization |K| of a simplicial complex are simplicially close if, for each
x ∈ X, both f(x) and g(x) are in a single simplex σ(x) of K.

Proposition 6.3.5. If f and g are simplicially close continuous maps from a
topological space X to some |K| ⊂ RN , then f and g are homotopic.

Proof. Define h : X × I −→ RN by

h(x, t) = (1− t)f(x) + tg(x).

Since simplices are convex, h(x, t) is in some σ(x) ⊂ |K|. From this, we see that h
is continuous and specifies a homotopy as required. □

6.4. Cones and subdivisions of simplicial complexes

We’ve so far seen cones on topological spaces, as well as cones on F−spaces. The
notion of a cone also exists for abstract and finite geometric simplicial complexes.
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Definition 6.4.1. The cone K ∗ x on an abstract simplicial complex K is
constructed by adding a new vertex x and taking the simplices to be all subsets of
all unions of x with a simplex in K.

Example 6.4.2. The geometric motivation behind the cone can be easily seen
in the case of |∆[2]| ∗ x. Notice that this does not again yield a simplicial complex,
as the faces of the simplex are no longer unique.

0 1

2 2

0,1

If K is instead a finite geometric simplicial complex in Rn, consider x as a
point of RN − K such that each ray starting at x intersects |K| in at most one
point. Observe that the union of {x} and the set of vertices of a simplex of K is a
geometrically independent set. Define the cone K ∗x on K with vertex x to be the
geometric simplicial complex whose simplices are all of the faces of the simplices
spanned by such unions.

Remark 6.4.3. Notice that K is a subcomplex of K ∗ x, x is the only vertex
not in K, and |K ∗ x| is homeomorphic to C|K|.

Example 6.4.4. A simplex is the cone of any one of its vertices with the
subcomplex spanned by the remaining vertices (the opposite face).

Subdivisions of simplicial complexes will play a central role in our work.

Definition 6.4.5. A simplicial complex L is a subdivision of a simplicial com-
plex K if V (K) ⊂ V (L), each simplex of K is contained in a simplex of L, and each
simplex of K is the union of finitely many simplices of L. If L is ordered, then the
partial order on V (L) restricts to a partial order on V (K) that gives K an ordering.

Definition 6.4.6. The canonical subdivision K ′ of an abstract simplicial com-
plex K is the ordered simplicial complex whose vertices are the simplices of K,
partially ordered by inclusion, and whose simplices are the totally ordered finite
subsets {σ0, . . . , σn} of simplices of K. With σ0 < · · · < σn we call σn the barycen-
ter of the simplex {σ0, . . . , σn}.

Definition 6.4.7. A subdivision L of a finite geometric simplicial complex K
is a geometric simplicial complex such that each simplex of L is contained in a
simplex of K and each simplex of K is the union of finitely many simplices of L.

The following observation should be clear.

Lemma 6.4.8. If L is a subdivision of K, then |L| = |K| (as spaces).

The n-skeleton Kn of K is the union of the simplices of K of dimension at
most n. It is a subcomplex. There are many ways to subdivide both abstract and
geometric simplicial complexes, and in applications there can be advantages to one
or another of them. However, we will focus on the standard canonical choices. We
have defined that already for abstract simplicial complexes. We give a somewhat
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pedantic inductive geometric construction for geometric simplicial complexes that
should make the idea clear and then reexpress the answer combinatorially, proving
that the canonical choices agree under the passages a and g back and forth.

Construction 6.4.9. We construct the barycentric subdivision K ′ of a geo-
metric simplicial complex K. We subdivide the skeleta of K inductively. Let
L0 = K0. Suppose that a subdivision Ln−1 of Kn−1 has been constructed. Let bσ
be the barycenter of an n-simplex σ of K. The space |∂σ| coincides with |Lσ| for a
subcomplex Lσ of Ln−1, and we can define the cone Lσ ∗ bσ. Clearly |Lσ ∗ bσ| = |σ|
and |Lσ ∗ bσ| ∩ |Ln−1| = |Lσ| = |∂σ|.

If τ is another n-simplex, then |Lσ ∗ bσ| ∩ |Lτ ∗ bτ | = |σ ∩ τ |, which is the
realization of a subcomplex of Ln−1 and therefore of both Lσ and Lτ . Define Ln to
be the union of Ln−1 and the complexes Lσ ∗ bσ, where σ runs over all n-simplices
of K. Our observations about intersections show that Ln is a simplicial complex
which contains Ln−1 as a subcomplex. The union of the Ln is denoted K ′ and
called the barycentric subdivision of K.

Example 6.4.10. The barycentric subdivision of a 2-simplex is easily visualized
pictorially.

The second barycentric subdivision of K is the barycentric subdivision of the
first barycentric subdivision, and so on inductively.

We can enumerate the simplices of K ′ explicitly rather than inductively.

Proposition 6.4.11. Define σ < τ if σ is a proper face of τ . Then K ′ is
the geometric simplicial complex whose vertices are the barycenters of simplices of
K and whose n-simplices σ′ are the spans of the geometrically independent sets
{bσ0

, · · · , bσn
}, where σ0 > · · · > σn. The vertex bσ0

is called the leading vertex of
the simplex σ′.

Proof. We show this inductively for the subcomplexes Ln. Since L0 = K0,
this is clear for L0. Assume that it holds for Ln−1. If τ is a simplex of Ln such that
|τ | is contained in |Kn| but not contained in Kn−1, then τ is a simplex in the cone
Lσ ∗bσ for some n-simplex σ. By the induction hypothesis and the definition of Lσ,
each simplex of Lσ is the span of a set {bσ0

, · · · , bσm
}, where σ > σ0 > · · · > σm.

Therefore τ is the span of a set {bσ, bσ0
, · · · , bσm

}. □

Proposition 6.4.12. There is a simplicial map ξ = ξK : K ′ −→ K whose
realization is simplicially close to the identity map and therefore homotopic to the
identity map.

Proof. Let ξ map each vertex bσ of K ′ to any chosen vertex of σ. If σ′ is a
simplex of K ′ with leading vertex bσ0

, then all other vertices of σ′ are barycenters
of faces of σ0, hence are mapped under ξ to vertices of σ0. Therefore the images
under ξ of the vertices of σ′ span a face of σ0, so that ξ is a simplicial map. With
these notations, if x ∈ |K ′| is an interior point of the simplex σ′, then it is mapped
under |ξ| to a point of σ0 ⊃ σ′, and we let σ(x) = σ0. Since ξ maps every vertex of
σ′ to a vertex of σ0, x and ξ(x) are both in the closure of σ0. □
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Definition 6.4.13. Just as for abstract simplicial complexes, we say that a
geometric simplicial complex is ordered if its vertices are partially ordered and the
partial order restricts to a total order of the vertices of each simplex. For an ordered
geometric simplicial complex K, define the standard simplicial map ξ : K ′ −→ K
by letting ξ(bσ) be the maximal vertex xn of the simplex σ = {x0, · · · , xn}.

Remark 6.4.14. Observe that K ′ has a canonical ordering even when K does
not. Explicitly, the partial ordering of the set of vertices {bσ} of K ′ is given by
bσ ≤ bτ if σ is a face of τ . Notice for this that a vertex of K, regarded as a simplex,
is its own barycenter. This partial order clearly restricts to a total order on the
vertices of each simplex.

Proposition 6.4.15. If K is a geometric simplicial complex with canonical
subdivision K ′, then aK ′ is isomorphic to the canonical subdivision of aK.

Proof. Letting the vertex bσ in K ′ correspond to the vertex σ in aK, this is
an immediate comparison of definitions. □

Remark 6.4.16. The barycenters of the simplices of K that are not vertices
correspond to the vertices of aK ′ that are not vertices of aK. All simplices of aK ′

with more than one vertex have at least one vertex that is not in aK. Thus the only
simplices in aK ′ that are also simplices in aK are the vertices of aK. However, if
we think geometrically, then every simplex τ of K ′ is contained in a unique simplex
σ of K, as must be so since K ′ is a subdivision and is also clear from a picture of
the barycentric subdivision. The simplex σ is called the carrier of τ .

Proposition 6.4.17. A simplicial map g : K −→ L induces a subdivided sim-
plicial map g′ : K ′ −→ L′ whose realization is simplicially close to |g| and hence
homotopic to |g|. Moreover, g′ is order-preserving.

Proof. The images under g of the vertices of a simplex σ of K span a simplex
g(σ), of possibly lower dimension than σ, and we define g′(bσ) = bg(σ) on vertices.
If bσ0

is the leading vertex of a simplex σ′ of K ′, then all other vertices of σ′ are
barycenters of faces of σ0. Their images under g′ are barycenters of faces of g(σ0). If
x is an interior point of σ′, then both g(x) and g′(x) are in the closure of g(σ0). □

Remark 6.4.18. When K and L are ordered and g is an order-preserving
simplicial map, the following “naturality” diagram commutes if we use the standard
simplicial maps ξ for K and L.

K ′ //

ξ

��

g′ // L′

ξ

��
K

g
// L

6.5. The simplicial approximation theorem

The classical point of barycentric subdivision is its use in the simplicial ap-
proximation theorem, which in its simplest form reads as follows. Starting with

K(0) = K, let K(n) = K(n−1)′ be the nth barycentric subdivision of a sim-
plicial complex K. By iteration of ξ : K ′ −→ K, we obtain a simplicial map
ξ(n) : K(n) −→ K whose geometric realization is homotopic to the identity map.
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Theorem 6.5.1. Let K be a finite simplicial complex and L be any simplicial
complex. Let f : |K| −→ |L| be any continuous map. Then, for some sufficiently
large n, there is a simplicial map g : K(n) −→ L such that f is homotopic to |g|.

This means that, for the purposes of homotopy theory, general continuous maps
may be replaced by simplicial maps. Since this is proved in so many places, we shall
content ourselves with a slightly sketchy proof. It relies on the classical Lebesgue
lemma, whose proof is not hard but just a little far afield.

Lemma 6.5.2 (Lebesgue lemma). Let (X, d) be a compact metric space with a
given open cover U . Then there exists a number λ > 0 such that every subset of
X with diameter less than λ is contained in some set U ∈ U . The smallest such λ
is called the Lebesgue number of the cover.

Definition 6.5.3. For a vertex v of a simplicial complex K, define star(v) to
be the union of the interiors of all simplices of |K| that contain v as a vertex. For
a subcomplex L of K, define star(L) ⊂ |K| to be the union over v ∈ L of the open
spaces star(v).

Example 6.5.4. Consider the following simplicial complex. Below illustrates
examples of both the star of a vertex, as well as the star of a simplex.

v1 v3

v2

v4

v0 star(v2)

star({v1, v3})

Proof of the simplicial approximation theorem. We are given a map
f : |K| −→ |L|. Give |K| the open cover by the sets f−1(star(w)), where w runs over
the vertices of L. Since |K| is a compact subspace of a metric space, the Lebesgue
lemma ensures that there is a number λ such that any subset of |K| of diameter less
than λ is contained in one of the open sets f−1(star(w)). The diameter of a (closed)
simplex is easily seen to be the maximal length of a one-dimensional face. Each
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barycentric subdivision therefore has the effect of decreasing the maximal diameter
of a simplex. Precisely, the maximal diameter of the subdivision of a q-simplex
turns out to be q/q+ 1 times the maximal diameter of the given simplex (e.g. [63,
p.124], [34, p.24], [31, p. 120]), but the precise estimate is not important.

What is important is that, since K is finite, for any δ > 0 there is a large
enough n such that every simplex of K(n) has diameter less than δ/2. Then each
star(v) for a vertex v of K(n) has diameter less than δ, and we conclude that
f(star(v)) ⊂ star(w) for some vertex w of L. Define g : V (K(n)) −→ V (L) by
letting g(v) = w for some w such that f(star(v)) ⊂ star(w). One checks that g
maps simplices to simplices and so specifies a map of simplicial complexes. If u is
an interior point of a simplex σ of K, then f(x) is an interior point of some simplex
τ of L. One can check that g maps each vertex of σ to a vertex of τ . This implies
that |g| is simplicially close to f and therefore homotopic to f . □



CHAPTER 7

A concise introduction to categories

7.1. Categories

In order to properly understand how Alexandroff Spaces interact with the world
of classical algebraic topology, we must introduce the language of category theory.
The language of categories is utilized in many fields of mathematics, but in this
part of the book, we will primarily explore how category theory is used in the study
of finite spaces.

Definition 7.1.1. A category C is a collection of objects (X,Y, Z, ...), denoted
Ob(C ), together with, for each pair (X,Y ) of objects of C , a set of morphisms
(alias maps) f : X −→ Y , denoted C (X,Y ), satisfying the following: For each
object X of C there is a given identity morphism 1X : X −→ X and for each triple
(X,Y, Z) of objects of C and pair of morphisms f : X −→ Y , g : Y −→ Z there is
given a morphism g ◦ f : X −→ Z. This is viewed as a composition law:

◦ : C (Y,Z)× C (X,Y ) −→ C (X,Z).

We require 1Y ◦ f = f = f ◦ 1X and h ◦ (g ◦ f) = (h ◦ g) ◦ f for any morphism h
with domain Z.

Remark 7.1.2. We do not require that Ob(C ) be a set; it may be a proper
class. If it is a set, we say that the category is small.

Example 7.1.3. The collection of all sets is a category denoted S et. Its
morphisms are functions. For example, R ∈ Ob(S et) is just the set of all real
numbers, without any addition operation, multiplication operation or any topology.
A morphism in S et does not have to be continuous at all, it simply must be well-
defined for every point in its domain.

Example 7.1.4. The collection of all groups is a category denoted G rp. Its
morphisms are group homomorphisms. Given a group G, we can construct its
categorical version G by letting Ob(G ) be one object, namely {x}, and each element
g ∈ G correspond to a unique morphism g : x −→ x such that if gh = k for
g, h, k ∈ G, then gh = k as compositions of morphisms. Observe that for any
g ∈ G, its corresponding morphism in G has an inverse, namely the morphism
corresponding to g−1. This is another example of a small category.

Example 7.1.5. The collection of all topological spaces is a category denoted
T op. Its morphisms are continuous functions. Since the number of maps between
two space X and Y cannot exceed |X||Y |, we see that T op(X,Y ) is a set, implying
that T op is locally small.

Example 7.1.6. A poset P can also be understood as a category such that
each object in the category corresponds to a unique element of P , and a morphism

67
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f : x −→ y exists, where x, y ∈ P iff x ≤ y. In other words, the morphisms encode
all the information about the order relation on the poset. Since the number of
morphisms between two objects can be at most 2 and a poset is a set, we see that
P is a small category.

Example 7.1.7. We can also define the category of posets, denoted P. Ob(P)
is the collection of all posets. This is a large category. A morphism f : P −→ Q
for any two posets P,Q ∈ Ob(P) is an order preserving function. In order words
a morphism f : P −→ Q corresponds to a function such that for any x, y ∈ P with
x ≤ y, f(x) ≤ f(y). Since the number of morphisms between P and Q cannot
exceed |P ||Q|, we see that P is locally small.

Example 7.1.8. Moving in to the world of classical algebraic topology, we can
turn the collection of simplicial complexes into a category, denoted S C . Its objects
are simplicial complexes, and its maps are simplicial maps. By an argument made
in the previous example, this is also a locally small category.

Example 7.1.9. Similarly, we can define the locally small category of ordered
simplicial complexes, denoted OS C , where the objects are ordered simplicial com-
plexes, and the morphisms are simplicial maps that preserve the ordering on the
vertices. For a such a map f : K −→ L, where K and L are ordered simplicial
complexes, x ≤ y with x, y ∈ V (K) implies that f(x) ≤ f(y).

Example 7.1.10. F − spaces is the category whose objects are finite T0 topo-
logical spaces and morphisms are continuous maps between them. Observe that
F − spaces is clearly included in T op, in the sense that every object and mor-
phism that is in F − spaces is also in T op. In such a case, we see that F − spaces
is a subcategory of T op.

Example 7.1.11. Another notable subcategory of T op is that of A −Spaces,
where we restrict our objects to just T0 Alexandroff spaces, and the morphisms are
continuous maps between them. Since every finite space is an Alexandroff Space,
we can see that F − Spaces is a subcategory of A − Spaces.

Example 7.1.12. A monoid is a set M with an associative binary operation
and an identity element. Note that in a category C the composition law ◦ on the
set C (X,X) is just such a binary operation with identity element 1X . Therefore a
monoid is a category with one object. A category can be thought of as a “monoid
with many objects”.

In any category, there is a notion of isomorphism. It answers the sensible version
of the question “when are two things the same”. The nonsensical version would
have the answer “when they are equal”. The sensible version interprets “things” to
mean objects of a category” and the sensible answer is that we think of two objects
as essentially the same when they are isomorphic.

Definition 7.1.13. A morphism f : X −→ Y in a category C is called an
isomorphism if there is a morphism g : Y −→ X such that g ◦ f = 1X and
f ◦ g = 1Y .

Exercise 7.1.14. If a morphism f has a left inverse and a right inverse then
it is an isomorphism and the left and right inverses coincide.
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Definition 7.1.15. A groupoid is a category in which every morphism is an
isomorphism. Just as a monoid can be defined to be a category with just one object,
a group can be defined to be a groupoid with just one object. Similarly, a groupoid
can be thought of as a “group with many objects”.

Finally, in many instances, it becomes necessary to determine whether certain
objects in a category were constructed from other objects. In particular, it is valu-
able to realize when constructions exist in a particular category can be generalized
to an arbitrary category. For example, in S et, the Cartesian product of two sets
is defined in the familiar fashion:

S1 × S2 = {(s1, s2)|s1 ∈ S1, s2 ∈ S2}

. This notion is generalized in the following definition of a product.

Definition 7.1.16. Given any category C , the product X × Y of two objects
X,Y ∈ C such that for any A ∈ ObC there exists a unique map h : A −→ X × Y
making the following diagram commute.

A

X X × Y Y
f

g
∃!h

π1

π2

The following exercises test comprehension:

Exercise 7.1.17. (1) In T op, the product of two topological spaces is
nothing but the Cartesian product equipped with the product topology.
(Lemma 1.5.7)

(2) In P, the product of two posets P,Q exists and is the same product that
is defined in ??.

(3) In the category S C , the product exists and is the same as in ??.

Exercise 7.1.18. For a poset P regarded as a category, what is the product
of two elements x, y ∈ P?

7.2. Functors

In the previous chapters it was shown that A-spaces are in bijective correspon-
dence with posets. We can make a similar and formalized statement about their
respective categories. Thus, we introduce the following definitions. A morphism
of categories is called a functor.

Definition 7.2.1. Let C , D be categories. A functor F : C −→ D consists of
a rule that assigns to each object X of C an object FX of D , together with, for
each pair (X,Y ) of objects of C , a function

F : C (X,Y ) −→ D(FX,FY ),

written f 7→ Ff , such that F (1X) = 1FX and F (g ◦ f) = Fg ◦ Ff .

Exercise 7.2.2. If f is an isomorphism in C , then Ff is an isomorphism in
D .
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Example 7.2.3. The abelianization of a group G is the group G/[G,G] where
[G,G] is the commutator subgroup, that is, the subgroup generated by the set
{ghg−1h−1|g, h ∈ G}. Abelianization defines a functor A : G rp −→ A b where A b
is the category of abelian groups.

Example 7.2.4. The collection of all small categories is a category denoted
C at. Its morphisms F : C −→ D are the functors.

Remark 7.2.5. We insist that categories be small for the purposes of this
definition to ensure that we have a well-defined set and not just a proper class of
functors between any two categories.

Example 7.2.6. In C at, the product of two categories C × D is defined such
that Ob(C × D) = {(c, d)|c ∈ Ob(C ), d ∈ Ob(D)} and Mor(C × D) = {(f, g)|f ∈
Mor(C ), g ∈Mor(D)}.

Exercise 7.2.7. Let ∼= denote an isomorphism in C at. Prove the following:

(1) P ∼= A − Spaces
(2) F − Spaces ∼= FP (FP is the category of finite posets)

Exercise 7.2.8. Given two posets P and Q regarded as categories, describe a
functor F : P −→ Q. What properties must it satisfy?

Definition 7.2.9. A functor F : C −→ D is said to be faithful if the function

F : C (X,Y ) −→ D(FX,FY )

is injective for every pair (X,Y ) of objects of C .

Definition 7.2.10. A functor F : C −→ D is said to be full if the function

F : C (X,Y ) −→ D(FX,FY )

is surjective for every pair (X,Y ) of objects of C .

Definition 7.2.11. A functor F : C −→ D is said to be an isomorphism of
categories if there is a functor G : D −→ C such that FG is the identity functor
on D and GF is the identity functor on C .

Definition 7.2.12. A functor F : C −→ D is said to be essentially surjective
if, for every object Y of D , there is an object X of C and an isomorphism FX ∼= Y
.

Definition 7.2.13. A functor F : C −→ D is said to be an equivalence of
categories if it is full, faithful, and essentially surjective.

Definition 7.2.14. A subcategory of a category C is a category that consists
of some of the objects and some of the morphisms of C ; it is a full subcategory if
it contains all of the morphisms in C between any two of its objects. The skeleton
of a category C is a a full subcategory which contains exactly one object from each
isomorphism class of objects of C .

Proposition 7.2.15. The inclusion of a skeleton of C in C is an equivalence
of categories.

Proof. We understand a skeleton to be a full subcategory, so the inclusion is
full and faithful, and it is essentially surjective by definition. □
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7.3. Natural transformations

Naturally, there are also morphisms of functors. Let F, F ′ : C −→ D be func-
tors. A natural transformation η : F −→ F ′ is a collection of maps ηX : FX −→
F ′X, one for each object X of C , such that the following diagram commutes for
each map f : X −→ Y in C :

FX FY

F ′X F ′Y.

Ff

ηX ηY

F ′f

An example of a natural transformation arises when considering functors between
posets when viewed as categories.

Definition 7.3.1. Two functors F : C −→ D and G : D −→ C are adjoint if
there exists an isomorphism

D(Fc, d) ∼= C (c,Gd)

for every c ∈ C and d ∈ D that is natural in both variables. Precisely, for a map
[add commutative diagram]. In this case, we say that F is left-adjoint to G, and
that G is right-adjoint to F .

Proposition 7.3.2. Given two posets P and Q regarded as categories, and two
functors F,G : P −→ Q (order preserving functions from P to Q), there exists a
natural transformation η : F −→ G iff F ≤ G, i.e. for all x ∈ P , F (x) ≤ G(x).

Proof. Suppose there exists a natural transformation η : F −→ G. Then
for x ∈ Ob(P ), there exists ηX : F (x) −→ G(x), which implies that F (x) ≤ G(x).
Conversely, suppose that for all x ∈ P , F (x) ≤ G(x), where F andG are now viewed
as order preserving functions. As functors, this implies that for all x ∈ Ob(C ), there
always exists a morphism (let us call it ηx) from F (x) −→ G(x). Now, we can define
η : F −→ G using ηx as coordinate maps. Further, if x ≤ y with x, y ∈ Ob(C ),
then we combine the fact that F (x) ≤ F (y) and G(x) ≤ G(y) with F (x) ≤ G(x)
and F (y) ≤ G(y) via ηx and ηy to get the commutative diagram:

F (x) F (y)

G(x) G(y).

F (f)

ηx ηy

G(f)

□

An analogous notion of similar categories can be defined for functors as well.

Definition 7.3.3. A natural transformation η is said to be a natural isomor-
phism if each of the maps ηX is an isomorphism.

Simply by interpreting the results for Theorem 8.1.2 we observe another exam-
ple of a natural transformation.

Proposition 7.3.4. (Via Theorem 8.1.2) There exists a natural transformation
η : |K(−)| −→ idA −Spaces, where |K(−)|, idA −Spaces : A − Spaces −→ T op.



72 7. A CONCISE INTRODUCTION TO CATEGORIES

By Proposition 2.2.12, we observe the following:

Proposition 7.3.5. Given two finite posets P , Q regarded as categories, there
exists a natural transformation from F to G, where F,G : P −→ Q iff F ≤ G.

This proposition suggests that the concept of a natural transformation “gen-
eralizes” the concept of a homotopy between two maps between spaces. To make
this more precise, we introduce an equivalent definition of natural transformations.

Definition 7.3.6. Let J denote the interval category {0 −→ 1}; or the cate-
gory with the objects 0 and 1, along with only one non-trivial morphism 0 −→ 1.
A natural transformation between two functors F,G : C −→ D is a functor
H : C ×J −→ D such that, on objects H(x, 1) = F (x) and H(x, 0) = G(x),
where x ∈ Ob(C ), and on morphisms H(f, 1) = F (f) and H(f, 0) = G(f), where
f ∈Mor(C ).

Exercise 7.3.7. Check that the previous definitions of natural transformations
are equivalent.

Definition 7.3.8. A functor F : C −→ D is said to be an equivalence of
categories if there is a functor G : D −→ C and there are natural isomorphisms
FG −→ IdD and GF −→ IdC . Note that an isomorphism of categories is an
equivalence, but not conversely.

The senior author has a liking for theorems of the following form.

Proposition 7.3.9. An equivalence of categories is an equivalence of cate-
gories.

That is, the two definitions of what it means for a functor to be an equivalence of
categories are equivalent. It is easy to show that if F is an equivalence of categories
in our second sense, then F is certainly full, faithful, and essentially surjective. The
converse requires a little work and a use of the axiom of choice that the fastidious
set-theoretically minded reader may find distasteful: the first step is to choose an
object G(D) in C such that FG(D) is isomorphic to D for each object D of D .
The second is to choose an isomorphism η : FG(D) −→ D for each D. We then
define G on morphisms so as to make η a natural isomorphism by definition, using
that

F : C (G(D), G(D′)) −→ D(FG(D), FG(D′))

is a bijection. For a morphism g : D −→ D′ in D , we define Gg : G(D) −→ G(D′)
to be F−1 of the composite

FG(D)
η−−→ D

f−−→ D′ η−1

−−→ FG(D′).

The reader can see how composition must be defined in order to complete the proof.
Note that the proof of Proposition 7.2.15 is easy using our first definition of an

equivalence of categories, but not so easy using the second. Proposition 7.3.9 has
real force: it makes it easy to recognize equivalences of categories (in the second
sense) when we see them.

Exercise 7.3.10. Use Definition 7.2.13 to prove the natural equivalence OS C ≃
S C via the inclusion functor i : OS C −→ S C .
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7.4. The Yoneda lemma

Definition 7.4.1. Given an element C ∈ C for a locally small category C , we
can define a functor hC : C −→ S et such that for any object D ∈ C , hC(D) =
Hom(C,D). For a morphism f : D −→ E with E ∈ C , we can define a set
map hC(f) : Hom(C,D) −→ Hom(C,E) by post-composition i.e. hC(f) sends a
morphism f : C −→ D to f ◦ g : C −→ E.

Exercise 7.4.2. Show that for all all objects C ∈ C , the functor hC is well
defined.

Definition 7.4.3. A functor F : C −→ S et is representable if there exists an
object C ∈ C , such that F is naturally isomorphic to hC .

The Yoneda Lemma gives an ”upper bound” on the number of representable
functors can be assigned to a given hC .

Theorem 7.4.4. For any object C ∈ C , and any functor F : C −→ S et, the
set of natural transformations form hC to F , denoted Nat(hC , F ), is in bijective
correspondence with F (C) ∈ S et. In other words, Nat(hC , C) ≃ F (C) in S et.

Proof. Consider a natural transformation in Nat(hC , C) defined by the maps
ηA : Hom(C,A) −→ F (A).
Define the set map Θ : Nat(hC , C) −→ F (C) such that

Θ(η) = ηC(idC).

Further define the set map Ψ : F (C) −→ Nat(hC) such that every d ∈ F (C) gives
the natural transformation Ψ(d) := ηd : hC −→ C where

ηdX : (f : C −→ X) 7→ F (F )(d)

with F (f) : F (C) −→ F (X).
We will prove that Ψ = Θ−1. For η ∈ Nat(hC , C), we have that

Ψ(Θ(η)) = Ψ(ηC(idC)) = ηηC(idC).

Thus, any given morphism f : C −→ X is sent to F (f)(ηC(idC)) via η
ηC(idC)
X . In

addition, since η is a natural transformation from hC to F , the following diagram
commutes.

Hom(C,C) F (C)

Hom(C,X) F (X).

ηC

hC(f) F (f)

ηX

Thus, we have that ηX (hC(f)(idC)) = F (f)(ηC(idC)). By definition of hC ,

ηX (hC(f)(idC)) = ηX(f ◦ idC) = ηX(f),

and therefore η
ηC(idC)
X = ηX . Thus Ψ is a left inverse of Θ. Now for any d ∈ F (C) :

Θ(Ψ(d)) = Θ(ηd)

= ηdC(idC)

= F (idC)(d) = d.

Therefore, Ψ is also a right inverse of Θ. We can therefore conclude the set isomor-
phism Nat(hC , C) ≃ F (C). □
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A similar statement can be made for contravariant functors.

7.5. The fundamental groupoid of a space

We illustrate the idea of translating topology into algebra by explaining the
fundamental groupoid. This brief section will leave the drawing of relevant diagrams
to the reader.

We construct a functor Π : T op −→ G pd, where G pd is the full subcategory
of C at whose objects are groupoids. For a topological space X, the objects of the
category ΠX are the points of the space X. Let I = [0, 1] be the unit interval.
A path p : x −→ y is a continuous map p : I −→ X such that p(0) = x and
p(1) = y. Two paths p and p′ from s to y are said to be equivalent if there is a map
h : I × I −→ X such that, for all t ∈ I,

h(t, 0) = x, h(t, 1) = y, h(0, t) = p(t), and h(1, t) = p′(t).

h is said to be a homotopy from p to p′ through paths from x to y. The set of
morphisms x −→ y in

∏
X is the set of equivalence classes of paths x −→ y. For a

path q : y −→ z, the composite q ◦ p is defined by

(q ◦ p)(t) =

{
p(2t) if 0 ≤ t ≤ 1/2

q(2t− 1) if 1/2 ≤ t ≤ 1.

Define idx to be the constant path at x, idx(t) = x. Define p−1(t) = p(1− t). Com-
position is not associative or unital, but it becomes so after passage to equivalence
classes. Verifications that we leave to the reader (or the first chapter of [48]) show
that ΦX is a well-defined groupoid. For a map f : X −→ Y , we define Πf on
objects by sending x to f(x) and on morphisms by sending the equivalence class
[p] to the equivalence class [f ◦ p]. Then Π is a well-defined functor.

If we fix basepoints, we get a functor that is perhaps more familiar. The
fundamental group of X at the basepoint x is the group π1(X,x) given by the
morphisms x −→ x in the groupoid ΠX. If we define T op∗ to be the category
of spaces X with a chosen basepoint x and maps f : X −→ Y that preserve
basepoints, f(x) = y, then π1 gives a functor from based spaces to groups, called
the fundamental group functor. Its construction is the first step towards algebraic
topology.

Exercise 7.5.1. By definition, π1(X,x), regarded as a category with a single
object x, is a full subcategory of

∏
X. Show that if X is path connected, then

π1(X,x) is a skeleton of ΠX. Thus the essential information in ΦX is captured by
the fundamental group.



CHAPTER 8

The relation between A-spaces and simplicial
complexes

Following McCord [50], we are going to relate A-spaces, and in particular F -
spaces, with simplicial complexes, explaining how to go back and forth between
them. Since any Alexandroff space is homotopy equivalent to a T0-space, there is
no loss of generality if we restrict attention to A-spaces. As usual, the reader may
prefer to think only in terms of F -spaces.

8.1. The construction of simplicial complexes from A-spaces

Definition 8.1.1. Let X be an A-space. Define K (X) to be the abstract
simplicial complex whose vertex set is X and whose simplices are the finite totally
ordered subsets of the poset X; K (X) is often called the order complex of A.
Observe that the partial order of X gives an ordering of K (X), since it restricts to
a total order on each simplex. Observe too that if V is a subspace of X, then K (V )
is a full subcomplex of K (X) since any totally ordered subset of X whose points are
in V is a totally ordered subset of V . Since a map f : X −→ Y is an order–preserving
function, it may be regarded as a simplicial map K (f) : K (X) −→ K (Y ).

Theorem 8.1.2. For an A-space X, there is a weak homotopy equivalence

ψ = ψX : |K (X)| −→ X

such that the following diagram commutes for each map f : X −→ Y .

|K (X)|
|K (f)|//

ψX

��

|K (Y )|

ψY

��
X

f
// Y

Proof. Each point u ∈ |K (X)| is an interior point of a simplex σ spanned
by some strictly increasing sequence x0 < x1 < · · · < xn of points of X. We define
ψ(u) = x0. For f : X −→ Y , K (f)(u) is in the simplex spanned by the f(xi)
and f(x0) ≤ f(x1) ≤ · · · ≤ f(xn). Omitting repetitions, we see that f(x0) is the
minimal vertex of this simplex, so that ψ(f(u)) = f(x0) = f(ψ(u)), which proves
that the diagram commutes. We must still prove that ψ is continuous and that it
is a weak homotopy equivalence.

For x ∈ X, let star(x) denote the union of the interiors of the simplices of
K (X) that have x as a vertex; it is an open neighborhood of x in |K (X)|. For
an open subset V of X, define the open star, star(V ), to be the union over the
vertices v ∈ V of the open subspaces star(v). It is the complement of |K (X − V )|
in |K (X)|. To see that ψ is continuous, we show that ψ−1(V ) = star(V ). If
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ψ(u) = v ∈ V , then v is the initial vertex x0 of a simplex σ. Since a vertex v is the
unique interior point of the simplex {v}, u ∈ star(V ). Conversely, suppose that
u ∈ star(v), where v ∈ V . Then u is an interior point of a simplex σ determined
by an increasing sequence x0 < x1 < · · · < xn such that some xi = v ∈ V . Since
x0 ≤ v, x0 ∈ Uv. Since V is open, Uv ⊂ V . Thus ψ(u) = x0 is in V .

It remains to prove that ψ is a weak homotopy equivalence. We shall do so by
applying Theorem 3.3.1 to the minimal open cover {Ux} of X. If x is in Uy ∩ Uz,
then x is in both Uy and Uz, so that Ux is contained in both Uy and Uz. This verifies
the first hypothesis of the cited theorem. For the second hypothesis, we know that
each Ux is a contractible subspace of V . We also know that each |K (Ux)| is a
contractible space. In fact, K (Ux) is a simplicial cone, in the sense that for every
simplex σ of K (Ux) which does not contain x, σ ∪ {x} is a simplex of K (Ux).
The realization of such a simplicial cone is contractible to the cone vertex x since
h(y, t) = (1 − t)y + tx gives a well-defined contracting homotopy. Specializing the
following general result to L = K (Ux), we see that star(Ux) is also contractible.
Therefore each restriction ψ : ψ−1(Ux) −→ Ux is a weak homotopy equivalence and
Theorem 3.3.1 applies to show that ψ is a weak equivalence. □

Proposition 8.1.3. Let L be a full subcomplex of a simplicial complex K.
Then |L| is a deformation retract of its open star, starL, in |K|.

Proof. Again, starL, is defined to be the union of the open stars of the
vertices of L. This result is a standard fact in the theory of simplicial complexes,
and a more detailed proof than we shall given can be found in [62, 70.1 and p. 427].
Consider a simplex σ that is in the closure of star(L). Then σ has vertex set the
disjoint union of a set of vertices in L and a set of vertices in K − L. Each point
u of σ that is neither in the span s of the vertices in L nor in the span t of the
vertices not in L is on a unique line segment joining a point in t to a point in s.
Define the required retraction r by sending u to the end point in s ⊂ L of this line
segment, letting r be the identity map on L and thus on s. Deformation along such
line segments gives the required homotopy showing that i ◦ r is homotopic to the
identity, where i is the inclusion of |L| in its open star. □

Example 8.1.4. Suppose that |K (X)| is homotopy equivalent to a sphere Sn.
Then the dimension of |K (X)|, which is h(X) − 1, must be at least n. Thus
h(X) ≥ n + 1. Therefore, by Proposition 3.5.2, X has at least 2n + 2 points and,
if X has exactly 2n+ 2 points, then it is homeomorphic to SnS0.

8.2. The construction of A-spaces from simplicial complexes

Now let K be a finite geometric simplicial complex with first barycentric sub-
division K ′. Remember that |K| = |K ′|.

Definition 8.2.1. Define an A-space X (K) as follows. The points of X (K)
are the barycenters bσ of the simplices of K, that is, the vertices of K ′. The required
partial order ≤ is defined by bσ ≤ bτ if σ ⊂ τ . The open subspace Ubσ coincides with
X (σ), where σ (together with its faces) is regarded as a subcomplex of K. For a
simplicial map g : K −→ L, define X (g) : X (K) −→ X (L) by X (g)(bσ) = bg(σ),
and note that this function is order–preserving and therefore continuous. Using
the barycenters themselves to realize the vertices geometrically, we see from the
description of K ′ in Proposition 6.4.11 that K X (K) = K ′ and K X (g) = g′.



8.3. MAPPING SPACES 77

We use Theorem 8.1.2 to obtain the following complementary result.

Theorem 8.2.2. For a simplicial complex K, there is a weak homotopy equiv-
alence

ϕ = ϕK : |K| −→X (K)

such that the following diagram is commutative

|K ′|

ϕK

��

|g′| // |L′|

ϕL

��
X (K)

X (g)
// X (L)

Proof. Define

ϕK = ψX (K) : |K ′| = |K X (K)| −→X (K).

Then ϕK is a weak homotopy equivalence and the diagram commutes by Theo-
rem 8.1.2. Since |K| = |K ′| and |L| = |L′|, we can replace |g′| by |g| in the dia-
gram. By Proposition 6.4.17, |g′| is simplicially close to |g| and hence homotopic
to |g|. Therefore, after the replacement, the diagram would only be homotopy
commutative, in the sense that the two composite maps in the diagram would be
homotopic. □

8.3. Mapping spaces

For completeness, we record results of Stong [65, §6] that were obtained about Recheck: add?
Expository paper
topic?

the same time as the results of McCord recorded above and that give a quite
different approach to the relationship between finite simplicial complexes and finite
spaces. Since the proofs are fairly long and combinatorial in flavor, and since the
statements do not have quite the same immediate impact as those in McCord’s
work, we shall not work through the details here.

Rather than constructing finite models for finite simplicial complexes, Stong
studies all maps from the geometric realizations of simplicial complexes K into
finite spaces X by studying the properties of the function space XK ≡ X |K|.
More generally, he fixes a subcomplex L of K and a basepoint ∗ ∈ X and studies
the subspace (X, ∗)(K,L) of maps f : |K| −→ X such that f(|L|) = ∗. Homotopies
relative to |L| between such maps are homotopies h such that h(p, t) = ∗ for p ∈ |L|.

Theorem 8.3.1. Let L be a subcomplex of a finite simplicial complex K, let X
be a finite space with basepoint ∗, and let F = (X, ∗)(K,L) denote the subspace of
XK consisting of those maps f : |K| −→ X such that f(|L|) = ∗.

(i) For any f ∈ F , there is a map g ∈ F such that the set V = {h|h ≤ g} ⊂ F
is a neighborhood of f in F ; that is, there is an open subset U such that
f ∈ U ⊂ V .

(ii) If f ≃ f ′ relative to L, then there is a sequence of elements {g1, · · · , gs}
in F such that g1 = f , gs = f ′, and either gi ≤ gi+1 or gi+1 ≤ gi for
1 ≤ i < s.

The essential point of this analysis is the following consequence.

Corollary 8.3.2. The path components and components of F coincide. That
is, the homotopy classes of maps f : (K,L) −→ (X, ∗) are in bijective correspon-
dence with the components of F .
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8.4. Simplicial approximation and A-spaces

There are two papers, [29, 30], that start with the simplicial approximation
theorem and take up where McCord and Stong leave off. In view of the explicit
constructions of K (X) and X (K), the following definition is reasonable.

Definition 8.4.1. Define the barycentric subdivision of an A-space X to beearlier, in section
defining X , and
clarify what it
looks like without
barycenter terminol-
ogy

X ′ = X K (X). For a map f : X −→ Y , define f ′ : X ′ −→ Y ′ to be X K (f).
Iterating the construction, define X(n) = (X(n−1))′, where X(0) = X. Observe
inductively that K (X(n)) = K (X)(n) since K X (K) = K ′.

Proposition 8.4.2. There is a map ζ = ζX : X ′ −→ X that makes the follow-
ing diagram commute, and ζ is a weak homotopy equivalence.

|K X K (X)|

ψX K (X)

��

|K (X)′|
|ξK (X)|// |K (X)|

ψX

��
X ′ = X K (X)

ζX

// X.

The simplicial map ξK (X) coincides with K (ζX) : K (X ′) −→ K (X). The follow-
ing diagram commutes for a map f : X −→ Y .

X ′ f ′
//

ζX
��

Y ′

ζY
��

X
f
// Y

Proof. The points of X K (X) are the barycenters of the simplices of K (X).
These simplices σ are spanned by increasing sequences x0 < · · · < xn of elements of
X. Let ζ(bσ) = xn. Since bσ ≤ bτ implies σ ⊂ τ and thus ζ(bσ) ≤ ζ(bτ ), ζ is contin-
uous. We understand ξK (X) to be the standard choice specified in Definition 6.4.13.
Inspection of definitions shows that ξK (X) = K (ζX). The commutativity of the
first diagram follows from the “naturality” of ψ with respect to the map ζX . That
is, this diagram is a specialization of the commutative diagram of Theorem 8.1.2,
with f there taken to be ζX here. That ζX is a weak homotopy equivalence follows
from the diagram, since all other maps in it are weak homotopy equivalences. The
last statement is clear by inspection of definitions. □

Theorem 8.4.3. Let X be an F -space and Y be an A-space, and let f : |K (X)| −→
|K (Y )| be any map. Then for some sufficiently large n there is a map g : X(n) −→
Y such that f is homotopic to |K (g)|. We call g a finite approximation to f .

Proof. By the classical simplicial approximation theorem for simplicial com-
plexes, for a sufficiently large n there is a simplicial approximation

j : K (X(n−1)) = K (X)(n−1) −→ K (Y )

to f . Let g be the composite

X(n) = X K (X(n−1))
X (j) //X K (Y ) = Y ′ ζY //Y.

Then
K (g) = K (ζY ) ◦K X (j) = K (ζY ) ◦ j′.
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We have |j′| ≃ |j| by Proposition 6.4.17 and |j| ≃ f by assumption. Since we also
have |K (ζY )| = |ξK (Y )| ≃ id, we have |K (g)| ≃ f , as required. □

The point to emphasize here is that finite models for spaces have far too few
maps between them. For example, πn(Sn, ∗) = Z, but there are only finitely many
distinct maps from any finite model for Sn to itself. The theorem says that, after
subdividing the domain sufficiently, we can realize any of these homotopy classes
in terms of maps between (different) finite models for Sn.

8.5. Contiguity of maps between A-spaces

Remembering the definition of K (X), we may as well refer to points of an A-
space X as vertices and to finite ordered subsets of X as simplices. Thus “simplex”
is just a convenient abbreviation of “finite totally ordered subset”. We use that
language in translating the notion of contiguity from simplicial complexes to finite
spaces. If q > n, we agree to write ζ for the composite X(q) −→ X(n) determined
by iteration of maps ζ.

Definition 8.5.1. Let f, g : X −→ Y be continuous maps between A-spaces.
We say that f is contiguous to g if for every simplex σ of X, there is a simplex
of Y that contains both f(σ) and g(σ). More generally, let f : X −→ Y and
g : X(n) −→ Y be continuous maps. We say that f is contiguous to g if for each
simplex σ of X(n), there is a simplex of Y that contains both (f ◦ζ)(σ) and g(σ). If
q > n, a check of definitions shows that if f and g are continguous, then so are f and
g ◦ ζ. Similarly, if q > 0 and f and g are contiguous, then so are f ◦ ζ and g, where
now ζ : K(q) −→ K. The relation of contiguity is reflexive and symmetric, but it
is not transitive. We let ∼ denote the equivalence relation generated by contiguity.
Thus f ∼ g if there is a sequence of continuous maps {f = f1, · · · , fq = g} such
that fi is contiguous to fi+1 for i < q.

Proposition 8.5.2. If f : X −→ Y and g : X(n) −→ Y are contiguous maps
between A-spaces, then f ◦ ζ ≃ g : X(n) −→ Y .

The analogue for simplicial maps used the notion of simplicially close maps
from an arbitrary space to a simplicial complex. We have an analogous notion for
maps to A-spaces. The term “approximate map” is sometimes used for either of
these notions.

Definition 8.5.3. Let X be any space and let Y be an A-space. Two maps
f, g : X −→ Y are simplicially close if for each x ∈ X there is a simplex τ = τx of
Y such that f(x) and g(x) are both in τ .

Clearly contiguous maps between A-spaces are simplicially close in this sense.
Therefore the following result implies Proposition 8.5.2.

Proposition 8.5.4. At least if both X and Y are A-spaces, simplicially close
maps f, g : X −→ Y are homotopic.

Proof. Define h : X × I −→ Y by

h(x, t) = f(x) if 0 ≤ t < 1/2

h(x, 1/2) =

{
g(x) if f(x) ≤ g(x)
f(x) if g(x) ≤ f(x).

h(x, t) = g(x) if 1/2 < t ≤ 1
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Since f(x) and g(x) are both in a simplex τx, either f(x) ≤ g(x) or g(x) ≤ f(x).
Therefore h is well-defined, and it suffices to prove that h is continuous. One way
to study the problem is to introduce the three point space J = {0, 1/2, 1} whose
proper open subsets are {0}, {1}, and their union {0, 1}. Define π : I −→ J by

π([0, 1/2)) = 0, π(1/2) = 1/2, π((1/2, 1]) = 1.

Certainly π is continuous, hence so is id×π : X× I −→ X×J . There is an obvious
function j : X × J −→ Y such that h = j ◦ (id×π), namely

j(x, 0) = f(x), j(x, 1/2) = h(x, 1/2), j(x, 1) = g(x).

It suffices to prove that j is continuous. When X is an A-space, this can be done by
giving X×J the product order, namely (x, i) ≤ (x′, i′) if and only if both x ≤ x′ and
i ≤ i′, and checking that j is order-preserving since f and g are order preserving.
Since both 0 < 1/2 and 1 < 1/2 and since x ≤ x′ implies both f(x) ≤ f(x′) and
g(x) ≤ g(x′), the check is easy and can be left to the reader. □

Comparing our two definitions of simplicially close maps, for simplicial com-
plexes and for Alexandroff spaces, we see the following properties of the construc-
tions K and X .

Proposition 8.5.5. If f : K (X(m)) −→ K (Y ) and g : K (X(n)) −→ K (Y )
are contiguous maps of simplicial complexes, then ζY ◦X (f) : X(m+1) −→ Y and
ζY ◦ X (g) : X(n+1) −→ Y are contiguous maps of A-spaces. If f : X(m) −→ Y
and g : X(n) −→ Y are contiguous maps of A-spaces, then K (f) and K (g) are
contiguous maps of simplicial complexes.

Now the simplicial results in ?? and ?? have the following immediate conse-
quences.

Proposition 8.5.6. If g : X(m) −→ Y and g′ : X(n) −→ Y are finite approxi-
mations of the same map f : |K (X)| −→ |K (Y )|, then g and g′ are contiguous.

Theorem 8.5.7. If f and f ′ are homotopic maps |K X| −→ |K Y | and g and
g′ are finite approximations to f and f ′, then g is contiguous to g′. Therefore, for
every pair of homotopic maps f, f ′ : |K X| −→ |K Y |, there is a sufficiently large
n such that f and f ′ have contiguous finite approximations X(n) −→ Y .

We have focused on understanding homotopy classes of maps between finite
simplicial complexes in terms of contiguity classes of simplicial maps and conti-
guity classes of continuous maps between finite spaces, but one can also ask the
relationship between homotopy classes and contiguity classes of maps between fi-
nite spaces. We have seen that contiguous maps are homotopic, but the converse
is also true. To see that, we refine Proposition 2.2.12, following [7, 2.1.1].

Definition 8.5.8. Maps f, g : X −→ Y between Alexandroff spaces are very
close if f = g on all but one point x ∈ X, and either f(x) < g(x) or g(x) <
f(x). The maps f, g are closely equivalent if there is a sequence of maps {f =
f1, f2, · · · , fq = g} such that fi is very close to fi+1 for i < q.

Lemma 8.5.9. If f, g : X −→ Y are very close, then they are contiguous.

Proof. Without loss of generality, we may assume that f(x) < g(x) for the
unique point x on which f and g differ. For a simplex σ of X that does not contain
x, we have f(σ) = g(σ), which is clearly contained in a simplex of Y . If x is in a
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simplex σ = {x0 < x1 < · · · < xn}, then x = xi for some i and f(σ) ∪ g(σ) is the
simplex obtained by deleting repetitions from the ordered set

{f(x0) ≤ f(x1) ≤ · · · ≤ f(xi) ≤ g(xi) ≤ g(xi+1) ≤ · · · ≤ g(xn)} □

Theorem 8.5.10. If f, g : X −→ Y are homotopic maps between finite spaces,
then f and g are very closely equivalent and are therefore contiguous.

Proof. By Proposition 2.2.12, we may assume without loss of generality that
f ≤ g. Let A ⊂ X be the set of points x such that f(x) ̸= g(x). Of course, we may
assume that A is non-empty, and we let x be a maximal point in A, so that x′ > x
implies f(x′) = g(x′). Define f2 by f2(x′) = f(x′) for x′ ̸= x and f2(x) = g(x).
Certainly f2 is order–preserving and thus continuous. It differs from g at one less
point than f = f1 differs from g. Repeating the construction, we arrive at fq = g
after finitely many steps since X and Y are finite. □





CHAPTER 9

Homotopy Theory for Subdivision and A-Space
Models

The respective works of Clader and Thibault allow us to consider arbitrary
topological spaces as represented by a system of subdivided models. Formally, our
first result says that given a locally finite A-space X, its realization |K (X)| is
homotopy equivalent to the inverse limit of the directed system:

· · · (Sd2X)op (SdX)op Xop .inf inf inf

After establishing this result, we turn our attention away from topological spaces
and instead focus on modeling continuous functions. While we can associate to
every CW complex a partially ordered set, the category of posets suffers from a
“deficiency of morphisms” that limits our ability to model functions in the category
of topological spaces. To remedy this issue, we follow the work of Hardie and
Vermeulen as well as Thibault to formulate an elegant relationship between A-
spaces and their geometric realizations using the subdivision functor.

The main result establishes that, given a finite A-space X and an arbitrary
A-space Y , there is a natural bijection between the colimit of the system:

[X,Y ] [SdX,Y ] [Sd2X,Y ] · · ·sup∗ sup∗ sup∗

and [|K (X)|, |K (Y )|]. In plain terms, this result allows us to model continuous
maps between topological spaces with order-preserving maps between posets, up to
homotopy. These two results in conjunction effectively justify that the category of
A-spaces is an appropriate place in which to study algebraic topology.

To add algebraic importance to these results, we develop the final piece of this
result. In general, an isomorphism of sets is the strongest relationship we can hope
for between this colimit and the homotopy classes of maps between the realizations
of two A-spaces, since for arbitrary topological spaces X and Y , [X,Y ] need not be
a group. However, if we restrict our attention to basepoint-preserving homotopy
classes of the form ⟨ΣX,Y ⟩, where ΣX is the reduced suspension of a space X, we
have an important group structure. Here, we recover a group isomorphism between

colim
n
⟨Sdn(SopX), Y ⟩ and ⟨Σ|K (X)|, |K (Y )|⟩

by demonstrating an A-space model of the co-H-space structure on ΣX. We con-
clude by focusing on spheres as a particular class of suspensions that allow our
system to model the group structure of homotopy groups, as well as return some
results regarding the contractibility of particular spaces.

Recall Definition 3.2.1. It is important to note that weak equivalence of topo-
logical spaces is not transitive, so we must refrain from a notion of weak equivalence
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classes unless we undergo a process to formally invert these induced maps, which
will not be necessary for our purposes.

Definition 9.0.1. Given a topological space X, an A-space Y is said to be an
A-space model of X if there exists a chain of weak equivalences from X to Y . That
is, there is a finite collection consisting of both topological spaces and A-spaces Xi

along with weak equivalences fi : Xi → Xi+1 that give the chain

X = X0 X1 · · · Xn−1 Xn = Y
f0 f1 fn−2 fn−1

which in turn induces a bijection on all homotopy groups of X and Y .

Proposition 9.0.2. If Y is an A-space model of a CW-complex X, then
|K (Y )| ≃ X.

This is a direct application of Whitehead’s Theorem. In light of this result,
we see that once we have found a model or, looking ahead, a collection of related
models for a space, we may study them instead of our space directly, as they encode
the same homotopy-invariant information of the original space after realization.
Particularly, since every CW complex is homotopy equivalent to the geometric
realization of some poset, these relationships are sufficient to study the homotopical
properties of CW complexes. While many of the general theoretic results of this
section exist independent of these facts, the results presented here would be of little
use for studying recognizable topological spaces.

9.1. Modeling Topological Spaces

While the functors K and X give us a way to build subdivisions of posets and
simplicial complexes, it will also be useful for us to define a way to go from the
subdivision of an A-space back to the underlying space. With this in mind, we
define the following map.

Definition 9.1.1. Given an A-space X, let sup : SdX → X be the map such
that if σ = {x0, x1, ..., xk} is an element of SdX, then sup(σ) = xk.

Proposition 9.1.2. The map sup is continuous.

Proof. Suppose σ ≤ σ′. Since the ordering on SdX is induced by simplicial
inclusion in K (X), we have σ ⊆ σ′ when regarded as simplices of K (X). Inclusion
requires xi ∈ σ =⇒ xi ∈ σ′, so in particular xk ≤ x′k′ , and thus sup is continuous.

□

Proposition 9.1.3. The map sup is is a weak homotopy equivalence.

It is a straightforward check to see that |K (f)| : |K (SdX)| → |K (X)| is a homo-
topy equivalence. This implies f is a weak homotopy equivalence of A-spaces.

Definition 9.1.4. Let X be an A-space. Define inf : (SdX)op → Xop to be
the map that coincides pointwise with sup on SdX to X.

One should note that sup returns the largest element of a given chain, and
inf, the smallest. We will use this descriptive language in proofs, as it illuminates
the continuity of some maps and the commutativity of some diagrams that we will
introduce in the coming pages.



9.1. MODELING TOPOLOGICAL SPACES 85

To establish a concrete relationship between an A-space and its realization that
will allow us to regard X as an A-space model of |K (X)|, we present the following
theorem.

Definition 9.1.5. For an A-space X, let u be a point in |K (X)|. Then u
is in the interior of a unique simplex {x0, x1, ..., xk} of K (X). Define the map
p : |K (X)| → X by p(u) = x0.

Theorem 9.1.6. [50] For an A-space X, p : |K (X)| → X is a natural weak
homotopy equivalence.

We can in fact extend this result to see that there is a weak homotopy equiva-
lence pn : |K (X)| → (SdnX)op. While it may seem odd for us to pick the opposite
topology, one should note that each pn as defined above returns the maximal ele-
ment of the unique simplex in SdnX containing a point u. When composed with
the inf map as above, we generate the following commutative diagram. 1

|K (X)|

Xop (SdX)op (Sd2X)op · · ·

p0 p1
p2

inf inf inf

Given this diagram, we take the inverse limit of the system of the bottom row,
given by

X̃ =
∏
n

(SdnX)op/(∼)

where equivalence is generated by the inf map. We would like to imagine that the
increasingly fine subdivisions of a simplex “converge” to a point in |K (X)|. To
formalize this intuition, we offer the following setup:

We define the map p̃ : |K (X)| → X̃ by p̃(a) = (p0(a), p1(a), ...), which asso-
ciates to each point a in the realization of X the corresponding sequence of images
of a under each pn. One may note that this is a sequence of nested simplices all
containing a. Since the maps pi give a cone to our inverse system, so continuity
is clear. In tandem, we offer the following map that will act as an inverse up to
homotopy:

Definition 9.1.7. Let x = (x0, x1, ...) ∈ X̃, with each xi ∈ (SdiX)op. Pick
some ai ∈ p̃i−1(xi) for each xi ∈ x. Then {an} converges to a point a ∈ |K (X)|.
Let G : X̃ → |K (X)| denote this map.

The restriction in the following theorem that X be a locally finite A-space,
i.e. an A-space where each element has finite closure and a finite neighborhood,
is required to ensure G is continuous. These complete checks of continuity and
well-definedness can be found in [67], which additionally correct a detail on the

inherited topology of X̃ in Clader’s original proof.

Theorem 9.1.8. Let X be a locally finite A-space. Then X̃ and |K (X)| are
homotopy equivalent and |K (X)| is a deformation retract of X̃.

1Note the importance of the opposite topology and the substitution of the inf map to make

this a commutative diagram of continuous maps. For a more explicit construction of each pn,

which Thibault denotes p̃n, his thesis gives full details that make the checks on this diagram and
the inverse limit much more concrete. We elect to omit these here, and refer the skeptical and

intrigued reader to [67].
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Proof. First, observe that G ◦ p̃ is in fact the identity map on |K (X)|, so we

need only show p̃ ◦ G ≃ idX̃ . Suppose x, x′ ∈ X̃ and say x ∼ x′ if G(x) = G(x′).

If E denotes a subset of X̃ corresponding to one equivalence class partitioned by
(∼), define a homotopy hE : E × [0, 1]→ E by

hE(x, t) =

{
x t < 1

p̃(G(x)) t = 1 .

Thibault proves that this homotopy is continuous in [67], so we have an explicit
deformation retract of each equivalence class under (∼). These maps allow us to

define globally H : X̃ × [0, 1]→ X̃.

To show H itself is continuous, consider U ⊂ X̃ open. Suppose x ∈ E, and let
y = G(x) ∈ |K (X)|. Because of our partition, y is the same for all x ∈ E. Observe
that if p̃(y) /∈ (U ∩ E), then h−1

E (U ∩ E) = (U ∩ E) × [0, 1). Likewise, if (U ∩ E)

does contain p̃(y), then h−1
E (U ∩ E) = (U ∩ E)× [0, 1].

Define U ′ = {x ∈ U | p̃(G(x)) /∈ U}. Then H−1(U) = (U × [0, 1]) \ (U ′ × {1}).
Since p̃ and G are continuous, U ′ is closed in U . So H is continuous on all of X̃,
and gives a homotopy from the identity to p̃ ◦ G(X̃). Therefore, X̃ deformation

retracts onto p̃ ◦G(X̃), and since G is surjective, p̃ ◦G(X̃) = p̃(|K (X)|). □

It should be surprising that the inverse limit and geometric realization act
equivalently up to homotopy on a locally finite A-space X. This should not be
a readily accepted result, as these functors typically do not behave nicely with
one another. After all, the geometric realization functor is left adjoint, which in
general does not preserve limits. While the intuition laid out in this proof makes the
conclusion feel motivated, one should keep in mind the interesting mathematical
relationships at play.

9.2. Motivation and Colimit Setup

Now, we turn our attention to another system that, while similar in style to the
former, marks a departure from modeling topological spaces to instead modeling
continuous functions. The benefit of a model built similarly to our inverse limit
system is that with increasingly finer subdivisions of X, we are able to “fill in the
gaps” between morphisms, so to speak.

Given the way we will construct our directed system for a finite A-space X and
an arbitrary A-space Y , its colimit is given by∐

n

[SdnX,Y ]/(∼)

subject to the equivalence relation on homotopy classes generated by precomposi-
tion with the sup map. That is, elements, which for us are equivalence classes of
maps, [f ] ∈ [SdiX,Y ] and [g] ∈ [SdjX,Y ] are identified in the colimit if there exists

an N ≥ 0 such that [f ◦ supN−i] = [f ◦ supN−j ] ∈ [SdNX,Y ]. This relationship
based on the sup map simply consolidates extraneous information; the crux of the
result will come from the Simplicial Approximation Theorem.

To prove that this equivalence relation coincides precisely with those maps
whose realizations are homotopic, we introduce a basic vocabulary to understand
homotopy classes in the setting of A-spaces, and turn to the simplicial notion of



9.3. REVISITING CONTIGUITY 87

contiguity that provides us with precisely the tools necessary to prove that the
above colimit is a useful model.

9.3. Revisiting contiguity

With the understanding gained of function spaces and homotopies (Section 2.2),
we turn to a notion that is different from but related to homotopy that allows us to
compare maps residing in different components of our colimit, as well as characterize
the behavior of related maps under realization.

In order to create a formal relationship between maps with different subdivi-
sions as their domains, we utilize the concept of contiguity of simplicial maps to
generate a notion of equivalence of maps in distinct components in our colimit. We
conclude many of our intermediate results in the setting of simplicial complexes,
as the notion of contiguity does not extend perfectly to A-spaces. This will be
sufficient for our purposes. We now present an alternate definition of contiguity
using the supremum map.

Definition 9.3.1. Let K and L be simplicial complexes. Two simplicial maps
u : K → L and v : SdmK → L are contiguous if for each simplex σ ∈ SdmK, there
is a simplex τ ∈ L such that u(sup(m)(σ)) ⊂ τ and v(σ) ⊂ τ .

If we have an A-space X such that K (X) = K, we can somewhat extend
this definition to maps between A-spaces. However, it should be clear by this
definition that we are limited by the existence of simplices, which requires at least
one subdivision of X to be sensible. Thus, we say that two maps f and g between
A-spaces are contiguous if K (f) and K (g) are contiguous as simplicial maps.

Now that we have presented the notion contiguity as it pertains to simplicial and
A-space maps, we offer the following relationships between contiguity and homotopy
that link equivalence in the colimit to equivalence after realization.

Proposition 9.3.2. Suppose K (f) : K (X)→ K (Y ) and K (g) : K (SdnX)→
K (Y ) are contiguous. Then |K (f)| ≃ |K (g)|.

Since K (f) and K (g) are contiguous, they satisfy the definition of simplicial
closeness given in [48]. Thus, there is a linear homotopy connecting their realiza-
tions.

Theorem 9.3.3. [29] For a finite A-space X and arbitrary A-space Y , if f :
|K (X)| → |K (Y )| is continuous, then there exists an n ≥ 0 and a map g : SdnX →
Y with |K (g)| ∼ f .

Proof. By the classical Simplicial Approximation Theorem, there exists a
simplicial map u : Sdn−1K (X)→ K (Y ) such that |u| ≃ f . Noting Sdn−1K (X) =
K (Sdn−1X), define g = sup ◦X(u). Then g is a map from SdnX to Y , and given
σ = {S1, S2, ..., Sk}, an arbitrary simplex of K (Sdn(X)), we have

(K (sup ◦X)(u))(σ) = sup{u(S1), u(S2), ..., u(Sk)} = u(sup(σ)),

so by definition u and K (g) are contiguous. Following Proposition 9.3.2, this implies
|K (g)| ≃ |u|. Thus, |K (g)| ≃ f . □

We say any map g satisfying this condition is an A-space approximation of f .
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Proposition 9.3.4. [48] Let X and Y be A-spaces. If g : SdiX → Y and

g′ : SdjX → Y are both simplicial approximations of f : |K (X)| → |K (Y )|, then g
and g′ are contiguous.

Proposition 9.3.5. Suppose f and g are maps from X to Y , where X is a
finite A-space and Y is an arbitrary A-space. If f ≃ g, then |K (f)| ≃ |K (g)|.

Proof. Since f ≃ g implies that there is a sequence of comparable maps
connecting the two, and since both Im(f) and Im(g) are finite, it suffices to show
the desired result for f and g such that f(x) = g(x) for all but one x′, where
f(x′) ≤ g(x′). For a simplex σ of X that does not contain x′, we have f(σ) = g(σ),
which is clearly contained in a simplex of Y . If x′ ∈ σ, then x′ = xi for some i and
both f(σ) and g(σ) are contained in the simplex given by

{f(x0), f(x1), ..., f(x′), g(x′), g(xi+1), ..., g(xk)}
after removing repetitions. By Proposition 9.3.2, |K (f)| ≃ |K (g)|. □

9.4. Modeling Homotopy Classes of Maps

We are ready to consider a method to model the homotopy classes of maps
between topological spaces based on the framework we have laid.

Theorem 9.4.1. Let X be a finite A-space and let Y be an arbitrary A-space.
Then there is a natural bijection between [|K (X)|, |K (Y )|] and the colimit of the
system

[X,Y ] [SdX,Y ] [Sd2X,Y ] · · ·sup∗ sup∗ sup∗

This bijection, which we denote K : colim
n

[SdnX,Y ] → [|K (X)|, |K (Y )|], maps

[f ] ∈ [SdiX,Y ] to [|K (f)|] ∈ [|K (X)|, |K (Y )|].

Proof. From Proposition 9.3.5, homotopies are preserved by each compo-
nent map from [SdnX,Y ] to [|K (X)|, |K (Y )|] so K is well-defined. Suppose [f ] ∈
[SdiX,Y ] and [g] ∈ [SdjX,Y ]. If [f ] and [g] are identified in the colimit, then
there exists an N such that f ◦ sup(N−i) ≃ g ◦ sup(N−j). Again by Proposi-
tion 9.3.5, |K (f ◦ sup(N−i))| ≃ |K (g ◦ sup(N−j))|. Thus, we need only check
that |K (f)| ≃ |K (f ◦ sup(N−i))| to ensure |K (f)| ≃ |K (g)|. Noting that f
and f ◦ sup(N−i) are tautologically contiguous, we have by Proposition 9.3.2 that
|K (f)| ≃ |K (f ◦ sup(N−i))|. Thus, |K (f)| ≃ |K (g)|.

By Theorem 9.3.3, each homotopy class of maps has associated to it at least
one A-space approximation, so K is surjective.

To prove injectivity, suppose |K (f)| ≃ |K (g)|. Then f and g are by def-

inition A-space approximations for, say, |K (f)|. Suppose [f ] ∈ [SdiX,Y ] and

[g] ∈ [SdjX,Y ]. Then by Proposition 9.3.4, f and g are contiguous. This is suffi-
cient co conclude [f ] = [g] in colim

n
[SdnX,Y ]. Thus, we have shown all necessary

criteria for the existence of this canonical bijection. □

While a bijection certainly creates a beautiful relationship here, the surjectivity
of this map should be regarded as the most interesting component of this result; It
means that given an arbitrary continuous map between |K (X)| and |K (Y )|, only
a finite number of subdivisions on the level of A-spaces are necessary to model this
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map up to homotopy. The fact that we can transfer the study of continuous maps
between topological spaces to that of order preserving maps between posets should
be startling. The rest of the framework and proof simply collapses down maps
redundant up to homotopy.

9.5. Suspensions and the Group Structure on ⟨X,Y ⟩

In this section, we narrow our focus to a particular class of topological spaces
that induce additional structure on homotopy classes of maps. For arbitrary topo-
logical spaces X and Y , [X,Y ] is in general simply a set, so a bijection is the
strongest relationship we can hope for. However, the fact that under certain con-
ditions based homotopy classes admit a group structure may raise the questions
as to whether our bijection can also be extended to a group isomorphism in these
cases. Keeping the motivating example of homotopy groups in mind, we widen our
attention to suspensions, of which spheres are an example, to demonstrate a way
to define a group structure on our colimit using subdivisions.

First, we show the bijection outlined in Section 7 can be modified to a cor-
respondence, to borrow Hatcher’s notation for pointed homotopy classes in [31],
⟨|K (X)|, |K (Y )|⟩ and the colimit of

⟨X,Y ⟩ ⟨SdX,Y ⟩ ⟨Sd2X,Y ⟩ · · ·sup∗ sup∗ sup∗

by noticing that fixing basepoints x0 ∈ X and y0 ∈ Y in partially ordered set allows
for a notion of based maps where we require f(x0) = y0. The corresponded totally
ordered subsets {x0} and {y0} indeed realize to points in |K (X)| and |K (Y )|
respectively, since they denote 0-simplices and thus realize to 0-subcomplexes. Our
choice of 0-cell for the basepoint is preserved as expected under subdivisions of X,
since there is a canonical inclusion map i : X → SdX that takes an element x to
the corresponding single element subset of {x} of X, which denotes an element of
SdX. Since under the sup map, {x0} 7→ x0, taking pointed spaces is compatible
with our colimit and our definition of contiguity, which importantly extends the
Simplicial Approximation Theorem to this new result.

However, to make this variation play well with the sup map and contiguity, we
must require that x0 is a maximal point of X, which is no trouble since we have
already assumed X is finite. This will agree with our methods in the following
section.

Now that we have sufficiently restricted our homotopy class bijection, we may
proceed with our group structure construction.

Recall that given a topological space X, we define the suspension of X, denoted
SX, to be the quotient space (X × I)/(∼), where (x, t) ∼ (y, s) if and only if
(x, t) = (y, s) or s = t = 0 or s = t = 1. We say the suspension is reduced if we
additionally identify all points of the form (x0, t) for t ∈ [0, 1]. For this, we write
ΣX. Clearly, this collapsing map gives a homotopy equivalence from SX to ΣX.

Definition 9.5.1. We define the finite analog of these constructions to be the
non-Hausdorff suspension SX, which is the resulting space after adding two points
+ and − to X such that the only open sets containing them are SX itself, {X ∪+},
and {X ∪ −}.
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In terms of posets, where we will set our following constructions, this amounts
to adding two new maximal points to the poset of X.

Theorem 9.5.2. [48] For any space X, the map γ : SX → SX is a weak
homotopy equivalence. For any weak homotopy equivalence f : X → Y , the maps
Sf : SX → SY and Sf : SX → SY are weak homotopy equivalences. Therefore
γn : SnX → SnX is a weak homotopy equivalence for any space X.

Further, this implies that there is a basepoint-preserving weak homotopy equiv-
alence γn : (ΣnX,x0)→ (SnX,x0).

Unfortunately, the non-Hausdorff suspension of a space will not give quite the
structure we need to make our desired map continuous. Thus, we define an alter-
native configuration:

Definition 9.5.3. For a topological space X, the non-Hausdorff opposite sus-
pension of X is given formally by (S(Xop))op, which we interpret as adding two
new minimal points to X, and denote SopX.

From this will arise a nice space intimately related to the classical suspension
that will allow us to model a defining property of suspensions of topological spaces.

There is a natural map from K (SX) to K (SopX) which, for example, takes
a simplex σ = {x0, x1, ..., xk,+} to the simplex {+, x0, x1, ..., xk} in K (SopX) and
preserves ordering. From this, it follows that |K (SX)| = |K (SopX)|, as the geo-
metric realization functor acts independently of the order on the underlying poset.

The map γ in Theorem 9.5.2 and the map p defined by McCord together gen-
erate a weak equivalence p̃ : Σ|K (X)| → SX. This, coupled with the above equiv-
alence, gives that Σ|K (X)| ≃ |K (SopX)|. Keeping this relationship in mind, we
digress to lay some mathematical framework that will help us make use of this
homotopy equivalence.

Definition 9.5.4. [5] A pointed topological space (X,x0) is a co-H-space if
there exists a map ψ : X → X ∨X such that p1ψ ≃ idX rel x0 and p2ψ ≃ idX rel
x0, where p1, p2 : X ∨X → X are the two projection maps. (X,x0) is a co-group if
it is co-associative and there is a co-inverse map ξ : X → X up to based homotopy
such that the co-group axioms are satisfied.

Above, we require that X ∨X be wedged at x0 and call x0 the identity of the
co-H-space.

Example 9.5.5. (ΣX,x0) is a co-group (and thus a co-H-space) for all pointed
topological spaces (X,x0).

We are particularly interested in suspensions and their properties because of
their presence in many important constructions in algebraic topology. For example,
the n-sphere is homeomorphic to n iterative suspensions of the 0-sphere, generating
a class of topological spaces central to algebraic topology. Additionally, the co-group
structure of a suspension plays an important role in the Eckmann-Hilton duality,
as understanding the loop spaces of certain topological spaces often gives a wealth
of information.

Given that our motivation for looking at A-spaces is to encode information
about topological spaces more generally, one may ask if we are able to model this
co-H-space structure using finite A-spaces. Unfortunately, following a dual result
for H-spaces from Stong, we have the following:
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Theorem 9.5.6. [33] Suppose X is a finite connected space. Then X admits
a co-H-space structure if and only if it is contractible.

Thus, any finite model that is also a co-H-space is a model of a space with only
trivial homotopy groups, which is both terribly narrow and uninteresting. This
seems to imply that we have no way to model such a structure using finite spaces.
For this reason, we turn to the colimit we have constructed for inspiration on how
to model the co-H-space structure of a suspension that makes use of the subdivision
functor in a way that strengthens the main result of Section 8.

Theorem 9.5.7. Suppose that X is a finite A-space. Then there exists an order-
preserving map ϕ : Sd(SopX)→ SopX ∨ SopX such that p1|K (ϕ)| ≃ idΣ|K(X)| and
p2|K (ϕ)| ≃ idΣ|K(X)|, where p1 and p2 are the respective projection maps.

Construction 9.5.8. We assume that the wedge of two copies of SX identifies
different minimal points (i.e. + ∼ −) in each copy of X to make the description of
our map cleaner, but the reader should check that a similar map exists regardless
of choice of minimal basepoint on each copy.

Let σ = {x0, x1, ..., xn} be an element of Sd(SopX). Define an equivalence
relation on Sd(SopX) by the following two generating conditions:

(i) Identify all such σ where x0 was an original element of X (in other words,
inf(σ) ̸= + or −).

(ii) σ ∼ σ′ if sup(σ) = sup(σ′) and inf(σ) = inf(σ′).

Call the identification space generated by this partition X ′, equipped with the
quotient topology (which corresponds to inheriting an order from SopX). Note that
if X is a finite A-space, X ′ is a finite A-space. Let ρ denote the identification map
from Sd(SopX) to X ′.

Proposition 9.5.9. X ′ ∼= SopX ∨ SopX.

Proof. Define a map f : X ′ → SopX ∨ SopX as follows. Given an element σ
of Sd(SopX) such that inf(σ) is not minimal in SopX, let f(σ) = ∗, the basepoint
of the wedge. Otherwise, inf(σ) is one of two minimal points of SopX. Let which
minimal point σ contains be regarded as a coordinate to denote one of the copies
of SopX. Then, restricted to that copy, let f(σ) = sup(σ).

That this map is surjective follows from the fact that sup is surjective. To
see that it is injective, consider σ and σ′ such that f(σ) = f(σ′). Then either
f(σ) = f(σ′) = ∗, in which case neither contained a minimal element of SopX
so they were identified together in X ′, or both the inf and sup map agree, which
implies σ ∼ σ′ in Sd Sn, so σ = σ′ in X.

To prove f is continuous, suppose σ ≤ σ′. Then ρ(σ) ≤ ρ(σ′) by the quotient
topology, and there are four cases to consider: first, that neither σ nor σ′ have a
minimal element. Then fρ(σ) = ∗ = fρ(σ′). Suppose σ does not have a minimal
element but σ′ does. Then fρ(σ) = ∗ which is tautologically less than or equal
to fρ(σ′). Then, suppose both contain a minimal element. If they do not agree
on the minimal element, they were not comparable subsets to begin with. Then
supposing they do, this means that ρ is determined by sup, which is continuous.
So f preserves order and is therefore continuous.

Let g : Sop∨Sop → X ′ be the map that sends the wedge point to the equivalence
class of all chains not containing a minimal element. Suppose x ∈ Sop ∨ Sop is not
the wedge point. Then define where x is sent by first noting which copy of Sop x
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belongs to (the copies correspond to the minimal points + and − respectively) and
which point in Sop maps to it under the inclusion i : Sop → Sop ∨ Sop into that
copy. Let the resulting + or − association determine the minimal point of the chain
and the preimage under inclusion the maximal point, completely determining an
element of X ′. This construction makes it a clear inverse, and checking continuity is
simply another process of checking assignment cases while recognizing the ordering
of X ′ is fully determined by that of Sd(SopX). □

We end by renaming the composition f ◦ ρ as ϕ for simplicity. For the next
checks, we will use the construction above with instead the assumption that the
points “+” were identified for the basepoint of the wedge. Again, one should check
that this choice is arbitrary and that the inconsistency in choice in this paper is
instead to give the reader the simplest and most elegant constructions, as should
be the point.

Proposition 9.5.10. Let

ϕ∗ : (|K (Sd(SopX)|, |K (+)|)→ (|K (SopX)| ∨ |K (SopX)|, |K (∗)|)

be the map induced by ϕ. Then p1ϕ∗ ≃ idΣ|K(X)| rel |K (+)| and p2ϕ∗ ≃ idΣ|K(X)|
rel |K (+)|, i.e. ϕ induces a co-H-space structure on (Σ|K (X)|, |K (+)|).

Proof. To show that ϕ induces a co-H-space structure on Σ|K (X)|, we must
show that the induced map ϕ∗ = |K (ϕ)| satisfies the co-H-structure properties
of ψ as above. Basepoint preservation comes from keeping track of its point-wise
assignment, so we omit that tracking. Since our map is symmetric, we demonstrate
the proof explicitly for only p1.

Since there is a canonical homeomorphism from |K (Sd(SopX))| to |K (SopX)|
[26], the homotopy equivalence |K (sup)| : |K (Sd(SopX))| → |K (SopX)| is in fact
a map homotopic to the identity. This simplifies our problem to showing that the
following diagram commutes up to homotopy:

Sdk+1(SopX) Sdk(SopX) ∨ Sdk(SopX) Sdk(SopX)
ϕ

sup

p1

We begin by demonstrating that p1ϕ ≃ sup. Let σ = {x0, x2, ..., xk} be an
element of Sd(SopX). We consider three cases. First, suppose x0 is not a minimal
element of SopX. Then ϕ(σ) is minimal in SopX ∨ SopX, which is preserved under
projection. If x0 is a minimal element, but is the minimal element associated with
the second copy of SopX, the projection map will ultimately crush σ to ∗, which
is minimal. In both of these cases, it trivially follows that p1ϕ(σ) ≤ sup(σ). If σ
contains the minimal point sent to “first” sphere, then p1ϕ sends σ to sup(σ), so
we tautologically have that p1ϕ(σ) ≤ sup(σ).

It follows from ?? that if p1ϕ(σ) ≤ sup(σ) is true for all σ, then p1ϕ ≃ sup.
By Proposition 9.3.5 we have that p1ϕ ≃ sup implies |K (p1ϕ)| ≃ |K (sup)|. Thus,
p1ϕ∗ ≃ id rel |K (+)|. □

Proposition 9.5.11. [5] Let (X,x0) and (Y, y0) be arbitrary topological spaces.
Then

(i) There is a unital binary operation on ⟨X,Y ⟩ if and only if X is a co-H-space.
(ii) ⟨X,Y ⟩ is a group if and only if X is a co-group.
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Given this result, we should expect ⟨|K (SopX)|, |K (Y )|⟩ to be a group since
|K (SopX)| is homotopic to the reduced suspension of the geometric realization
of X, a CW complex, and thus has a co-group structure. Below we will demon-
strate how our finite model of the co-H-space structure of SopX captures enough
information to model the group structure of these homotopy classes of maps.

Suppose [f ] ∈ ⟨Sdk(SopX), Y ⟩ and [g] ∈ ⟨Sdm(SopX), Y ⟩ with k ≤ m. Then we
may construct the following chain of maps:

Sdm+1(SopX) Sdm(SopX) ∨ Sdm(SopX)

Sdk(SopX) ∨ Sdm(SopX) Y ∨ Y Y ,

ϕ

sup ∨ id

f∨g ∇

where ∇ : Y ∨ Y → Y denotes the codiagonal map. Define the homotopy class of
the composition to be [f ] + [g]. Thus, this co-H-space model structure allows us to
define a unital binary operation in the colimit.

We would like our induced binary operation to be associative and have inverses,
as to model the full group structure on these homotopy classes. For this, we use
the construction of the bijection in the previous section to induce this additional
structure from the modeled homotopy class of maps.

Given [[f ] + [g]] + [h] in the colimit, we have [[f ] + [g]] + [h] 7→ K([[f ] + [g]]) +
K([h]), which we know equals K([f ]) + K([[g] + [h]]) by the associativity of the
group structure on [Sn, X]. Then via the existence of K−1, we get [[f ] + [g]] +
[h] = [f ] + [[g] + [h]], showing the operation is associative. Likewise, suppose
we have [f ] in the colimit. Define [f ]−1 as the unique element K−1((K([f ])−1),
whose existence and uniqueness is guaranteed by the existence and uniqueness of
inverses in ⟨Σ|K (X)|, |K (Y )|⟩ and our one-to-one correspondence. Therefore we
have constructed a model for the full group structure of ⟨Σ|K (X)|, |K (Y )|⟩ using
the result of Theorem 9.4.1.

9.6. Applications to Homotopy Groups

One very important place we can use the group structure induced from suspen-
sions is in the homotopy groups of a topological space X. Homotopy groups are
an essential element of algebraic topology, and the ability to model them using a
system built from A-spaces should be incredibly motivating. Since for n > 1, the
n-sphere is nothing more than the suspension of Sn−1, it should be unsurprising
that we will conclude this paper by discussing applications to homotopy groups.

For this section, we will restrict our attention to connected (and hence path-
connected) CW complexes X, and must pay some mind of based homotopy classes,
since we have the relation πk(X) ∼= ⟨Sk, X⟩. Thus, applying the above sections to
conclude homotopy-theoretic results is a natural extension.

Here, we omit the opposite suspension construction for the sphere, as SopSn ∼=
SSn because of the symmetric nature of the minimal finite model for Sn. Thus,
we simplify our notation by dropping the opposites, and leave the reader to check
that the same map ϕ suffices to give a map from Sd Sn to Sn ∨ Sn which in-
duces a co-H-space structure on Sn. Given that we demonstrated both a bijec-
tion and group homomorphism in the previous sections, and under the assumption
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that X is a connected A-space, we may conclude colim
n
⟨(Sdk Sn, ∗), (X,x0)⟩ ∼=

πn(|K (X)|, |K (x0)|) as groups for n ≥ 2.
We can say more about spheres, as we know that for n ≥ 2, we have a cocommu-

tative co-group that induces an abelian group structure on πn(X). We demonstrate
this below:

Proposition 9.6.1. [5] Let (X,x0) be a co-H-space. Then ψ : X → X ∨X is
cocommutative if and only if ⟨X,Y ⟩ is a cocommutative cogroup for all spaces Y .

Given [f ] + [g] in the colimit, we have [f ] + [g] 7→ K([f ]) + K([g]), which we
know is equal to K([g]) +K([f ]) in ⟨Sn, X⟩. Then [f ] + [g] = [g] + [f ].

Applying the results of this paper to homotopy-theoretic results, we begin by
showing that if a connected CW complex X admits an A-space model A with a
sole maximal (or minimal) point, then X is contractible.

Let ∗ denote this maximal (or minimal) point. Then any based map f :

Sdk(Sn) → A for some values k and n, the image consists of finitely many points,
and the constant map given by g(x) ≡ ∗ is always greater than or equal to f since
∗ ≥ Im(f) (or less than or equal to f since ∗ ≤ Im(f)). Thus, f ≃ g for all maps f
based at ∗. This gives that ⟨Sn, X⟩ is trivial in every grading, giving trivial homo-
topy groups by inclusion of πn. Since trivial homotopy groups imply contractibility
for CW complexes by Whitehead’s theorem, we conclude X is contractible.

Diverging to poset-theoretic results, this also implies that the geometric re-
alization of a lattice is contractible. For a similar but perhaps more intriguing
application, we set up the following definition:

Definition 9.6.2. The infinite sphere S∞ is defined to be the directed colimit
of Sn, where the map from Sn−1 to Sn is given by inclusion.

For our purposes, we would like to generalize the A-space model we have for Sn

to an A-space model for S∞. As we understand Sn as being n successive suspensions
of S0, the same construction applies here. In particular, we typically represent the
finite model of S2 by the Hasse diagram below:

• •

• •

• •
For S∞, we get much the same picture, except the tower stretches infinitely

upwards. The A-space corresponding to this Hasse diagram we will denote S∞.

Proposition 9.6.3. S∞ is contractible.

Proof. Given our A-space model for S∞, we can consider colim
n
⟨SdnSk,S∞⟩

to model the kth homotopy group of S∞. While working with a colimit does not
seem necessarily advantageous compared to working with a topological space itself,
it does allow us to conclude some important results here.

It is clear to see that for any n the image of a map f : SdnSk → S∞ will be finite
since SdnSk has only finitely many points. Since S∞ is infinite, and in particular
never attains maximal points in its poset representation, there will always exist an
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xK ∈ S∞ such that f(x) < xK for all x ∈ SdnSk. Then the constant map that
sends every element of SdnSk to xK is homotopic to f by ??. Further, given maps
f and g, we are ensured by the nonexistence of a maximal element that we can
always find some xK s.t. f and g are both dominated by the constant map to xK .
Thus, any two choices of f and g will be homotopic regardless of the number of
subdivisions we take, and therefore by the same argument involving basepoints as
above, πn(S∞) is trivial for all n. S∞ is also a CW complex, so this is sufficient to
conclude contractibility. □

While the applications of this section involve little calculation, the potential
applications of framing some homotopic information within the scope of combina-
torial computation could be used more broadly. While the computation of these
homotopy classes of maps between subdivided A-spaces remain unreasonably com-
putable at present, there is no theoretical barrier to this method of finding the the
homotopy classes of maps between spaces, particularly for finite homotopy groups.
It remains to be seen whether an upper bound on subdivisions for the bijection
to hold can be obtained in the case where [X,Y ] is a finite set, and additionally
whether the Freudenthal Suspension Theorem can be combinatorially concluded.





CHAPTER 10

Characterization of finite manifolds

We now describe a particularly well-behaved class of finite spaces and charac-
terize them in dimension 2.

Definition 10.0.1. A finite T0 space X is a finite n-manifold if |K (X)| is a
topological n-manifold.

The following definitions present useful towards this end. The familiar notions
in the theory of simplicial complexes of links and pure complexes can be similarly
connected to posets.

Definition 10.0.2. The height of X is given by

ht(X) = max
C∈C(X)

{ht(C)}.

Note that the height of a chain is equal to the dimension of its corresponding
simplex. It is immediate from invariance of dimension that a finite n-manifold must
be of height n+ 1. This notion can be also extended to the realm of finite spaces.

Definition 10.0.3. Let X be a finite T0 space, and let C(X) be the set of
non-empty chains of X. For C ∈ C(X), the height of C is given by

ht(C) = #C − 1.

Definition 10.0.4. Let X be a finite T0 space, and let x ∈ X. The level of x
in X is given by

ℓX(x) = ht(ÛXx ) + 1.

Equivalently, the level of x is the maximum height of all chains in X with x as its
greatest element.

Definition 10.0.5. Let K be an abstract simplicial complex, and let σ be a
face in K. Then the link of σ in K is given by

lkK(σ) = {x ∈ X|τ ∪ σ ∈ K, τ ∩ σ = ∅}.
In other words, the link consists of all faces of K whose union with σ is a face of K,
and whose intersection with σ is empty. Note that a link is always itself a simplicial
complex.

We now define an analogous term for finite T0 spaces.

Definition 10.0.6. Let X be a finite T0 space, and let C be a non-empty chain
of X. Then the link of C in X is given by

lkX(C) = {x ∈ X \ C|C ∪ {x} is a chain}.

We can easily see that these correspond in the expected manner.
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Proposition 10.0.7. Let X be a finite T0 space, and let C be a chain in X.
Then K (lkX(C)) = lkK (X)(C).

Proof. If D is a chain in lkX(C), then D ∪C is a chain in X and D ∩C = ∅.
Conversely, if v is a vertex in lkK (X)(C), then v /∈ C and C ∪ {v} is a chain in
X. □

Finally, we introduce a related concept for individual vertices.

Definition 10.0.8. Let X be a finite T0 space, and let x ∈ X. The lower link
of x in X is given by

ÛXx = {y ∈ X|y < x}
The upper link of x in X is given by

F̂Xx = {y ∈ X|y > x}

When it is clear from context where the lower or upper link comes from, we write
simply Ûx and F̂x.

We define lower and upper links for K (X) in the expected manner. Note

that Ûx ∪ F̂x = lkX({x}). Furthermore, we can extend x “upwards” into a chain

C such that Ûx = lkX(C), and similarly “downwards” into a chain D such that

F̂x = lkX(D). Finally, note that

ÛXx = F̂X
OP

x

and similarly

F̂Xx = ÛX
OP

x

10.1. Pure complexes

The first of the following definitions is standard, while the second extends the
idea of the first to finite T0 spaces.

Definition 10.1.1. An n-dimensional simplicial complex K is called pure if
every simplex in K is contained in an n-simplex.

Equivalently, we require all maximal faces have the same dimension.

Definition 10.1.2. A finite T0 space X of height n is called pure if every
maximal chain in X is of height n.

As suggested by the terminology, these notions are equivalent.

Proposition 10.1.3. A finite T0 space X is pure if and only if K (X) is pure,
and a finite simplicial complex K is pure if and only if X (K) is pure.

Proof. Suppose X is a finite T0 space of height n, so K (X) is a simplicial
complex of dimension n − 1. A k-simplex in K (X) is a chain of length k + 1, so
every simplex in K (X) is contained in an (n−1)-simplex if and only if every chain
in X is contained in a chain of length n.

Now suppose K is a finite simplicial complex of dimension n, so X (K) is a
poset of height n+ 1. The height of a maximal chain in X (K) is one greater than
the dimension of the largest simplex it contains, so every maximal chain is of height
n+ 1 if and only if every simplex in K is contained in an n-simplex. □
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Proposition 10.1.4. If X is a pure finite T0 space, then for all x ∈ X, the
level ℓX(x) of x can be presented as follows:

ℓX(x) = ht(X)− ℓXOP (x).

Proof. Let x ∈ X and let C be a maximal chain in X containing x. Since X
is pure, ht(C) = ht(X). Let C≤ = {y ∈ C|y ≤ x}, and C≥ = {y ∈ C|y ≥ x}. Then
ht(C) = ht(C≤) + ht(C≥). It must be the case that ht(C≤) = ℓX(x) (otherwise,

there would be some maximal chain longer than C), and using that F̂Xx = ÛX
OP

x , we
have that ht(C≥) = ℓXOP (x) for the same reasons. Our desired result immediately
follows. □

The reason for introducing pureness is that it plays an important role in the
characterization of finite surfaces.

Theorem 10.1.5. A finite T0 space X is a finite surface if and only if it satisfies
the following conditions:

(1) X is pure of height 3;
(2) For each height-2 point x, there are exactly two points greater than x and

two points less than x; and
(3) For each maximal point xm and each minimal point xn, the set (xm, xn) =
{x ∈ X|xn < x < xm} contains either zero or two points.

(4) For each extremal point x, the set of points other than x which are com-
parable to x is connected.

The bulk of the proof of this theorem is based on the corresponding result for
simplicial complexes. Stating it requires the following standard definition.

Definition 10.1.6. If v is a vertex in a simplicial complex K, the link of v,
Lk(v,K), is the undirected graph whose vertices are the 1-simplices of X with v
as a face, and where there is an edge between two vertices if they are faces of a
common 2-simplex.

Lemma 10.1.7. The geometric realization of a finite simplicial complex K is a
surface if and only if K satisfies the following conditions:

(1) K is pure and 2-dimensional;
(2) Each 1-simplex of K is a face of exactly two 2-simplices; and
(3) For each vertex v of K, |Lk(v,K)| is homeomorphic to S1.

Proof. If (1) fails, |K| is not a surface by invariance of dimension. If (2) fails,
removing a line from any sufficiently small connected neighborhood of a point in the
edge yields three components, so it is not locally Euclidean. If (3) fails, removing
v from a sufficiently small connected neighborhood yields two components, so it is
not locally Euclidean.

Suppose now that all three conditions hold. Then (1) guarantees that we only
need to check the interior of 0-, 1-, and 2-simplices. The last is trivial. Since gluing
together two polygons at an edge yields a Euclidean neighborhood for points on the
edge, 1-simplices follow by (2). Finally, 0-simplices follow by (3), since it implies
that at a 0-simplex v, the realization is locally homeomorphic to the disk obtained
by gluing together triangles along their edges circularly. □

Now we can prove the theorem.
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Proof. The first condition for the poset is equivalent to the first condition
for the simplicial complex. Given pureness, the second and third poset conditions
together are equivalent to the second simplicial complex condition, because (to-
gether with the pureness) they are equivalent to the statement that for any two
comparable points p and q, there are exactly two ways of extending the 2-chain
{p, q} to a 3- chain. Finally, the second, third and fourth poset conditions together
are equivalent to the third simplicial complex condition, since a graph is a circle if
and only if it is connected and each vertex has degree 2. □

There is an alternate characterization of finite surfaces which is also useful.
While it is ultimately just a more compact rephrasing of Theorem 4.7, we will see
that it is convenient for a number of purposes. The proof is given by point-counting
together with the above criterion for a graph to be a circle, and comparing to the
conditions of our original classification.

Definition 10.1.8. Let X be a finite poset and x ∈ X. Then the link of x,
Lk(x), is the set of points other than x which are comparable to x.

Corollary 10.1.9. A finite T0 space X is a finite surface if and only if for
each x ∈ X, |Lk(x)| is homeomorphic to S1.

One of the reasons this statement of the theorem is advantageous is that it
can more easily describe the higher-dimensional version of the theorem. Although
we have written it out specifically for finite surfaces, the proof of this theorem
generalizes directly to higher dimensions1, so we obtain the following.

Corollary 10.1.10. A finite T0 space X is a finite n-manifold if and only if
for each x ∈ X, |K (Lk(x)|) is homeomorphic to Sn−1.

Another benefit of this form of the theorem is its relationship to the following
result of A. Björner in [11].

Theorem 10.1.11. Let P be a finite poset, and for each x ∈ P , denote the set
of points less than x by Ûx. Then P is the face poset of a regular CW complex if
and only if for each x ∈ P , |K (Ûx)| is homeomorphic to a sphere. 2

This gives us a final characterization of finite surfaces which will be crucial in
obtaining our bound in the next section.

Theorem 10.1.12. A finite T0 space X is a finite surface if and only if it is
the face poset of a regular CW structure on some closed surface.

Proof. Firstly, suppose X = X (Y ), where Y is a regular CW structure on
some closed surface. Then |K (X)| is nothing more than the cellular subdivision of
Y , so the two are homeomorphic.

Suppose conversely that X is a finite surface, and let x be some point in X. If
x is minimal, then by definition |K (Ûx)| ∼= S−1. If x is on the second level, there

are exactly two points below it by Theorem 4.7, so |K (Ûx)| ∼= S0. Finally, if x is

maximal, then |K (Ûx)| ∼= S1 by Theorem 4.13. □

1In two dimensions, the conditions guarantee precisely that we have triangles glued in a

circular fashion, which yields a Euclidean neighborhood of every point. The higher-dimensional
equivalent is for n-simplices to be glued so as to form a ball in the neighborhood of a vertex,

which is expressed via the condition that the indicated poset has order complex homeomorphic

to Sn−1.
2We take the empty space to be the sphere of dimension −1.
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Before moving on, it is worth taking a moment to consider the common element
between Corollary 4.11 (more generally Corollary 4.12) and Theorem 4.13 which
allowed us to prove this relationship: subposets whose order complexes are simpli-
cial spheres. It is generally a nontrivial problem to determine whether a finite poset
has this property, although the case in dimension 1 is simple: a height-2 poset has
geometric realization S1 if and only if it is connected and every vertex has degree
2. Given this fact, the following theorem suggests the idea of taking an inductive
approach to the problem.

Theorem 10.1.13. If X is a finite n-manifold, then |K (X)| is homeomorphic
to Sn if and only if X is a finite model of Sn.

Proof. One direction is obvious: if |K (X)| is homeomorphic to Sn, then X
is a finite model of Sn by Theorem 1.4.

To prove the other direction, suppose X is a finite n-manifold which is a finite
model of Sn. Then |K (X)| is a CW space which is weak homotopy equivalent to
Sn, and hence homotopy equivalent to it by the Whitehead theorem. Since |K (X)|
is a closed n-manifold, the result follows by the Poincaré conjecture. □

10.1.1. Bounds for finite surfaces. Throughout this section, we will denote
the number of height 1, 2, and 3 points by ℓ, m, and n respectively.

The problem of finding absolutely minimal finite models amounts to minimizing
the sum of the number of points at each level. As the following result shows, by
restricting to finite surfaces, we need consider only one number rather than three
or more.

Proposition 10.1.14. Let X be a finite surface which is a model of a closed
surface S of genus g. If S is orientable, then #X = 2m + 2 − 2g. If S is nonori-
entable, then #X = 2m+ 2− g.

Proof. Because X is a finite surface, #X = ℓ+m+ n. But we also know by
Theorem 4.14 that X is the face poset of a regular CW complex structure on S, so
n−m+ ℓ = χ(S). Thus, #X = ℓ+m+ n = 2m+ χ(S). The result follows by the
standard formula for the Euler characteristic of a closed surface. □

Using the fact that any finite model of a closed surface other than RP 2 or S2

must satisfy the (S2) splitting property and thus have at least three maximal and
three minimal points, we can immediately derive from this the linear lower bounds
2g+10 and g+10 for the size of finite surface models of orientable and nonorientable
closed surfaces respectively. However, we can do slightly better than this.

Theorem 10.1.15. Let X be a finite surface modelling the closed surface S of
genus g. If S is orientable, then #X ≥ 2⌈4√g⌉ + 2g + 6. If S is nonorientable,
then #X ≥ 2⌈2

√
2g⌉+ g + 6.

Proof. Let ci denote the degree of the ith maximal point in the Hasse diagram
of X. Then since each point in the middle level has up-degree 2, Σici = 2m, and
so for at least one i, ci ≥ 2m/n. Call this point xi. Because Ûxi

is a finite model
of S1, the number of minimal points less than xi must be equal to the number of
level 2 points less than xi, which is just ci. Thus, we get ci ≤ l, so ⌈2m/n⌉ ≤ l.
The same argument for bottom points shows that ⌈2m/ℓ⌉ ≤ n.

Adding these inequalities (and ignoring the ceilings), we get 2m(1/n+ 1/ℓ) ≤
n + ℓ = m + χ(S), since n − m + ℓ = χ(S). The smallest possible value of the
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left side of the inequality is achieved when n = ℓ = (m + χ(S))/2, and we get
8m ≤ (m + χ(S))2. Solving, we get m ≥ 4

√
g + 2g + 2 in the orientable case and

m ≥ 2
√

2g + g + 2 in the nonorientable case. The result follows from Proposition
5.1. □

It is not clear that these inequalities are sharp, especially because we dropped
the ceilings to derive them. However, there are some cases in which we can be
certain they are achieved. To show this, we perform the following construction,
illustrated in Figure 3.

Proposition 10.1.16. Let n and ℓ be positive even integers and set 2m = nℓ.
Then there is a finite orientable surface with n, m, and ℓ points in its third, second,
and first levels respectively.

Proof. To construct this surface, take n ℓ-gons and identify them in the fol-
lowing way. Glue every other edge of the first ℓ-gon to every other edge of the second
with coherent orientation, then glue the remaining edges of the second ℓ-gon to ev-
ery other edge of the third (again with coherent orientation), and continue until the
final ℓ-gon is glued back to the first. Because we have an even number of polygons,
the final gluing will also have coherent orientation. Explicitly, we may embed the
polygons in R3 centered at equal intervals along a circle and with parallel top edges,
and glue them together via homotopies of R3. Then each step of gluing switches
the sides which are glued between containing and not containing the top edge, so
having an even number of polygons guarantees that the first and last polygons will
glue properly, so the space we have constructed admits an embedding in R3. This
construction also guarantees that the link of every vertex will be a circle (since it
is connected and every vertex in the graph has degree two) and every edge will be
adjacent to exactly two faces, so this will produce a closed orientable surface with
a regular CW structure consisting of n faces, m edges, and ℓ vertices. We finish
the construction by taking its face poset. □
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Figure 3: The polygons and identifications obtained by performing the
construction with ℓ = 6 and n = 4. All edges are oriented clockwise. Performing

the gluing will yield the orientable surface of genus 2.

If we take n = 4, ℓ = 6, this produces a model of the orientable surface of genus
2 with n = 12 (Figures 3,4). Geometrically, this is obtained by gluing together
four hexagons in pairs to obtain two pairs of pants, then gluing together the pairs
of pants to obtain the surface. By our bound above, this is minimal among finite
orientable surfaces of genus 2.

It is unfeasible to explicitly construct every model individually to check if it
achieves our bound. However, as the following theorem shows, for g with particu-
larly nice number-theoretic properties, we don’t need to.
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Figure 4: A minimal finite orientable surface of genus 2.

Theorem 10.1.17. If g is a perfect square, then performing this construction
with n = ℓ = 2

√
g + 2 yields a minimal finite orientable surface of genus g.

Proof. The resulting space has m = 2g + 2 + 4
√
g, so its Euler characteristic

is n −m + ℓ = 2 − 2g, which shows that it is indeed of genus g. Its cardinality is
ℓ + m + n = 8

√
g + 2g + 6, and since

√
g is an integer, this is precisely the lower

bound derived above. □

The simplest case is when g is a perfect square. However, the lower bound is more
generally achieved by this construction when g is a product of two integers which
are sufficiently close. For example, if g is of the form (k− 1)(k− 2), then as long as
k is at least 3, we get 4k− 7 < 4

√
g ≤ 4k− 6, so ⌈4√g⌉ = 4k− 6 = k− 1 + 2 + 4

√
g,

and setting n = 2k, ℓ = 2(k−1) yields a surface of the desired genus which achieves
the bound. To further generalize this result is a problem of number theory.





CHAPTER 11

Group actions and finite groups

We shall explain some of the results and questions in a beautiful 1978 paper
[57] by Daniel Quillen. He relates properties of groups to homotopy properties of
the simplicial complexes of certain posets constructed from the group. He does
not explicitly think of these posets as finite topological spaces. He seems to have
been unaware of the earlier papers of McCord [50] and Stong [65] that we have
studied, and it is interesting to look at his work from their perspective. Stong
himself first looked at Quillen’s work this way [66], and we will include his results
on the topic. We usually work with a finite group G, but the basic definitions apply
more generally.

11.1. Equivariance and finite spaces

We begin with some general observations about equivariance and F -spaces,
largely following Stong [66].

A topological group G is a group and a space whose product G×G −→ G and
inverse map G −→ G are continuous. An action of G on a topological space X is a
continuous map G ×X −→ X, written (g, x) 7→ gx, such that g(hx) = (gh)x and
ex = x, where e is the identity element of G. A map f : X −→ Y of G-spaces is a
continuous map f such that f(gx) = gf(x) for g ∈ G and x ∈ X.

For a space X, the automorphism group AutX is the topological group of
homeomorphisms X −→ X. The group operation is composition, and AutX is
topologized as a subspace of the space of maps X −→ X with the compact open
topology. Suppose a topological group G acts on X. Then the action of g on X gives
a homeomorphism g : X −→ X. This gives a group homomorphism G −→ AutX.
At least if X is first countable, this map is also continuous. That is, it is a map of
topological groups.

We say that G acts trivially on X if gx = x for all g and x. We let G act
diagonally on products X × Y , g(x, y) = (gx, gy). In particular, with G acting
trivially on I, we have the notion of aG-homotopy, namely aG-map h : X×I −→ Y .
There is a large subject of equivariant algebraic topology, in which one studies the
algebraic invariants of G-spaces.

We begin with some basic ideas of equivalence in this context. We say that a
G-map f : X −→ Y is a G-homotopy equivalence if there is a G-map f ′ : Y −→ X
and there are G-homotopies f ◦ f ′ ≃ id and f ′ ◦ f ≃ id. For a subgroup H of G,
define the H-fixed point space XH of X to be {x|hx = x for h ∈ H}. Say that
a G-map f is an H-equivalence if fH : XH −→ Y H is a nonequivariant homotopy
equivalence. For nice G-spaces, the sort one usually encounters in classical algebraic
topology, which are called G-CW complexes, a map f is a G-homotopy equivalence
if and only if it is an H-equivalence for all subgroups H. Note that we have the

105
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much weaker notion of an e-equivalence, namely a G-map which is a homotopy
equivalence of underlying spaces, forgetting the action of G.

We also have weak notions. A G-map f is a weak G-homotopy equivalence if
each fH : XH −→ Y H is a weak homotopy equivalence in the nonequivariant sense.
We also have the notion of a weak e-equivalence, meaning a G-map that is a weak
homotopy equivalence of underlying spaces, forgetting the action of G.

In general, the notions ofG-equivalence are very much stronger than the notions
of e-equivalence. There are lots of G maps that are e-equivalences but are not G-
equivalences. We show that cannot happen when G acts on a finite space. We start
with some general observations.

Lemma 11.1.1. If an A-space G is a topological group, then it is discrete.

Proof. If h ≤ g, then, by the continuity of the inverse map, h−1 ≤ g−1. By
the continuity of left multiplication by h, e ≤ hg−1, and then, by the continuity of
right multiplication by g, g ≤ h. Since G is T0, g = h. Thus Ug = {g} is open for
all g and therefore every subset is open. □

We have observed that if a topological group G acts on a space X, then we
can view the action as given by a map of topological groups G −→ AutX. This
homomorphism has a kernel K, and the action factors through the quotient group
G/K, which is a topological group with the quotient topology. When X is an F -
space, AutX is finite since there are only finitely many functions X −→ X. But
then G/K is finite and therefore discrete. Thus we lose no generality if we restrict
our attention to finite discrete groups G acting on F -spaces. Therefore G will be
finite from now on.

Recall the notion of upbeat and downbeat points in an F -space X. Note that
if x is upbeat, so that there is a y > x such that z > x implies z ≥ y, then y is
uniquely determined by x.

Theorem 11.1.2. Let X be an F -space with an action by a group G. Then
there is a core C ⊂ X such that C is a sub G-space and equivariant deformation
retract of X. We call C an equivariant core of X.

Proof. The orbit Gx of an element x is {gx|g ∈ G}. If x is upbeat, then gx
is also upbeat, with gy playing the role of y. The inclusion X − Gx ⊂ X is the
inclusion of a sub G-space. Define f : X −→ X − Gx ⊂ X by f(z) = z if z /∈ Gx
and f(gx) = gy, where y > x is such that z > x implies z ≥ y. Clearly f ≥ id
and thus f ≃ id. An explicit homotopy used to show this is given by h(z, t) = z
if t < 1 and h(z, 1) = f(z), and this homotopy is a G-map. Removing upbeat and
downbeat orbits successively until none are left, we reach an equivariant core. □

Corollary 11.1.3. If X is a contractible F -space with an action by a group
G, then X is equivariantly contractible to a G-fixed point.

Proof. A core of X is a point, so an equivariant core must be a point with
the trivial action by G. □

Corollary 11.1.4. If X is a contractible F -space, then X has a point that is
fixed by every homeomorphism of X.

Proof. The finite group G of homeomorphisms of X acts on X, and an equi-
variant core is a fixed point. □
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Theorem 11.1.5. Let X and Y be F -spaces with actions by G and f : X −→ Y
be a G-map. If f is an e-homotopy equivalence, then f is a G-homotopy equivalence.

Proof. Let C and D be equivariant cores of X and Y . Let iX : C −→ X and
rX : X −→ C be the inclusion and retraction, and similarly for Y . Let p be the
composite

C
iX //X

f //Y
rY //D, p = rY ◦ f ◦ iX .

Then p is a G-map and a homotopy equivalence between minimal finite spaces. The
latter property implies that p is a homeomorphism, and p−1 is necessarily also a
G-map. Define g : Y −→ X to be the composite

Y
rY //D

p−1

//C
iX //X, g = iX ◦ p−1 ◦ rY .

Then g ◦ f and f ◦ g are equivariantly homotopic to the respective identity maps.
Indeed, we have the homotopies

gf = gf idX ≃ gf iXrX = iXp
−1rY fiXrX = iXp

−1prX = iXrX ≃ idX
and

fg = idY fg ≃ iY rY fg = iY rY fiXp
−1rY = iY pp

−1rY = iY rY ≃ idY . □

11.2. The basic posets and Quillen’s conjecture

Fix a finite group G and a prime p. We define two posets. Compare with Bar-
mak’s book. Any-
thing interesting fur-
ther in there?

Definition 11.2.1. Let Sp(G) be the poset of non-trivial p-subgroups of G,
ordered by inclusion. An abelian p-group is elementary abelian if every element
has order 1 or p. This means that it is a vector space over the field of p elements.
Define Ap(G) to be the poset of non-trivial elementary abelian p-subgroups of G,
ordered by inclusion and let i : Ap(G) −→ Sp(G) be the inclusion.

Remark 11.2.2. Quillen calls a non-trivial elementary abelian p-group a p-
torus, and he defines its rank to be its dimension as a vector space.

The reason these posets are interesting is that G acts on them in such a way that
their topological properties relate nicely to algebraic properties of G. The action of
G is by conjugation. If H is a subgroup of G and g ∈ G, write Hg = gHg−1. The
function fg that sends P to P g gives an automorphism of the posets Ap(G) and
Sp(G). Clearly fe = id, where e is the identity element of G, and fg′g = fg′ ◦ fg.
These automorphisms are what give these posets their interest: the poset together
with its group action describe how the different p-subgroups are related under
subconjugation in G.

In particular, a point P in Ap(G) is fixed under the action of G if and only if
P g = P for all g ∈ G, and this means that P is a normal subgroup of G. Thus the
poset (Ap(G))G of fixed points is the poset of normal p-tori of G. We can therefore
relate algebraic questions about the presence of normal subgroups to topological
questions about the existence of fixed points. Of course, we may regard these posets
as F -spaces with G actions, and the theory of the previous section applies.

Remark 11.2.3. Some of Quillen’s language for studying these posets is similar
to the language we have been using, but it can be quite confusing. For example,
he says that a subset S of a poset X is closed if x ∈ S and y ≤ x implies y ∈ S. In
our language, this means that x ∈ S implies Ux ⊂ S, which says that S is open.
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The posets Sp(G) and Ap(G) are both empty if p does not divide the order of
G. At first sight, it might seem that Sp(G) is a lot more interesting and complicated
than Ap(G), but that is not the case. To understand the discussion to follow, it is
helpful to keep the following commutative diagram of spaces in mind, remembering
that its vertical arrows are weak homotopy equivalences.

|K Ap(G)|
|K (i)| //

ψ

��

|K Sp(G)|

ψ

��
Ap(G)

i
// Sp(G)

We first consider p-groups.

Proposition 11.2.4. If P is a non-trivial p-group, then Ap(P ) and Sp(P ) are
both contractible.

Proof. There is a central subgroup B of P of order p. We will be accepting
as known some basic facts in the theory of finite groups, such as this one. But
the proof is just an easy counting argument. We think of P as a P -set, with P
acting on itself by conjugation. As is true for any finite P -set, P is isomorphic to
a disjoint union of orbits, each isomorphic to some orbit P/Q. Unless the orbit
consists of a single point, its number of elements is divisible by p, and the total
number of elements is the order of P . Since the identity element is an orbit with a
single point, there must be at least p− 1 other orbits with a single point, and such
a point is a non-identity element in the center of P .

For any subgroup A of P , we have A ⊂ AB ⊃ B where AB is the subgroup
of P generated by A and B. If A is a p-torus, then so is AB since B is central.
Define three maps Ap(P ) −→ Ap(P ): the identity map id, the map f that sends
A to AB, and the constant map cB that sends A to B. These are all continuous,
and our inclusions say that id ≤ f ≥ cB . This implies that id ≃ f ≃ cB . Since the
identity is homotopic to the constant map, Ap(G) is contractible. The proof for
Sp(G) is the same. □

Quillen calls a poset X conically contractible if there is an x0 ∈ X and a map
of posets f : X −→ X such that x ≤ f(x) ≥ x0 for all x. He was thinking in terms
of associated simplicial complexes, but we are thinking in terms of F -spaces. The
previous proof says that the F -spaces Ap(P ) and Sp(P ) are conically contractible.
It is to be emphasized that conically contractible finite spaces are genuinely and
not just weakly contractible. As we shall see, the difference is profound in the case
at hand. In contrast with the previous result, we emphasize the word “weak” in
the following result.

Theorem 11.2.5. The inclusion i : Ap(G) −→ Sp(G) is a weak homotopy
equivalence. Therefore the induced map |K i| : |K Ap(G)| −→ |K Sp(G)| is a weak
homotopy equivalence and hence an actual homotopy equivalence.

Proof. We have the open cover of Sp(G) given by the UP , where P is a non-
trivial finite p-group. Clearly i−1UP is the poset of p-tori of G that are contained
in P , and this is the contractible space Ap(P ). Our general theorem that weak
homotopy equivalence is a local notion applies. □
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Definition 11.2.6. Define the p-rank of G, denoted rp(G), to be the maximal
rank of a p-torus in G. Observe that this is one greater than the dimension of the
simplicial complex K Ap(G). (We interpret the dimension of the empty complex
to be −1).

Example 11.2.7. If the p-Sylow subgroups of G are cyclic of order p and there
are q of them, then Ap(G) is a discrete space with q points. For example, this
holds for some q if G is the symmetric group on n letters, where p is a prime and
p ≤ n < 2p.

Remark 11.2.8. Sylow’s third theorem is relevant. The number of Sylow p-
subgroups of G is congruent to 1 mod p and divides the order of G.

Theorem 11.2.9. The following statements are equivalent.

(i) G has a non-trivial normal p-subgroup.
(ii) G has a non-trivial normal elementary abelian subgroup.
(iii) Sp(G) is contractible.

Moreover, they are implied by the statement

(iv) Ap(G) is contractible.

Proof. Obviously (ii) implies (i). Conversely, as a matter of algebra, (i) im-
plies (ii). To see that, let P be a non-trivial normal p-subgroup of G and let C be
its center. For g ∈ G, c ∈ C, and p ∈ P ,

gcg−1p = gcg−1pgg−1 = gg−1pgcg−1 = pgcg−1

since g−1pg is in P and therefore commutes with c. This shows that any conjugate
of an element of C commutes with any element of P and is therefore in C, showing
that C is normal in G. Now let B be the set of elements b ∈ C such that bp = e.
Any conjugate of an element of B is in C and has pth power e, hence is in B.
Therefore B is a non-trivial normal elementary abelian subgroup of G.

To see that (i) implies (iii), let P be a non-trivial normal p-subgroup of G. For
any nontrivial p-subgroup Q of G, Q ⊂ QP ⊃ P , where QP denotes the subgroup
of G generated by P and Q. Since P is normal in G, QP = {qp|q ∈ Q and p ∈ P}.
This implies that id ≤ f ≥ cP , where f(Q) = QP and cP (Q) = P , hence Sp(G)
is conically contractible, hence contractible. The same argument does not apply to
show that (ii) implies (iv) since QP need not be abelian when Q and P are abelian.

Conversely, to see that (iii) implies (i) and (iv) implies (ii), we use Corol-
lary 11.1.3, which states that contractibility implies G-contractibility to a fixed
point. A fixed point of Sp(G) is a normal p-subgroup and a fixed point of Ap(G)
is a normal elementary abelian p-subgroup. □

The inclusion i : Ap(G) −→ Sp(G) is not generally a homotopy equivalence.
To see this, we use the following observation.

Lemma 11.2.10. Let Qp(G) ⊂ Sp(G) be the subposet of nontrivial intersec-
tions of Sylow p-subgroups. Then Qp(G) is a G-equivariant deformation retract of
Sp(G).

Proof. For P ∈ Sp(G), let f(P ) be the intersection of the Sylow p-subgroups
that contain P . Then f : Sp(G) −→ Qp(G) is continuous and G-equivariant. More-
over, f(P ) = P if P is itself a p-Sylow subgroup. Let j : Qp(G) −→ Sp(G) be the
inclusion. Then fj = id. Since P ≤ f(P ), id ≃ jf via an equivariant homotopy. □
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Example 11.2.11. Let G = Σ5 be the symmetric group on five letters. Then
A2(G) and S2(G) are not homotopy equivalent. There are 6 conjugacy classes of
2-subgroups of G, as follows.

(i) Dihedral groups D4 of order 8, the Sylow 2-subgroups.
(ii) Cyclic groups C4 of order 4.

(iii) Elementary 2-groups C2 × C2 generated by transpositions (ab) and (cd).
(iv) Elementary 2-groups C2×C2 generated by products of disjoint transpositions

(ab)(cd), (ac)(bd), whose product in either order is (ad)(bc).
(v) Cyclic groups C2 generated by a transposition.

(vi) Cyclic groups C2 generated by a product of two disjoint transpositions.

Of course, each C2 × C2 contains three C2’s. Each C2 of type (v) is contained in
three C2 × C2’s of type (iii) and each C2 of type (vi) is contained in one C2 × C2

of type (iii) and one C2 × C2 of type (iv). This information shows that A2(G)
is minimal, hence not homotopy equivalent to any space with fewer points. The
intersections of Sylow 2-subgroups of G are the dihedral groups in (i), the groups
C2 × C2 of type (iv) and the subgroups C2 of type (v). In fact, Q2(G) is a core of
S2(G)). Counting, one sees that there are fewer points in Q2(G) than there are in
the minimal F -space A2(G), so these two F -spaces cannot be homotopy equivalent.

Quillen conjectured the following stronger version of the implication (iii) implies
(i) of Theorem 11.2.9, and he proved the conjecture for solvable groups.

Conjecture 11.2.12 (Quillen). If Ap(G) or equivalently Sp(G) is weakly con-
tractible, then G contains a non-trivial normal p-subgroup.

The hypothesis holds if and only if |K Ap(G)| or equivalently |K Sp(G)| is
weakly contractible and therefore contractible. We have seen that if G has a non-
trivial normal p-subgroup, then Ap(G) is contractible and therefore weakly con-
tractible. Quillen’s conjecture is that, conversely, if Ap(G) is weakly contractible,
then it is contractible and thus G has a non-trivial normal p-subgroup. In this
form, we see that the conjecture can be thought of as a problem in the equivariant
homotopy theory of F -spaces.

In particular, if G is simple and not isomorphic to Cp, then it has no non-
trivial normal subgroups and the conjecture implies that Ap(G) cannot be weakly
contractible. This consequence of the conjecture has been verified for many but
not all finite simple groups, using the classification theorem and proving that the
space Ap(G) has non-trivial homology. A conceptual proof would be a wonderful
achievement!

11.3. Some exploration of the posets Ap(G)

As an illustration of the translation of algebra to topology, we show how to
compute Ap(G×H) in terms of joins for finite groups G and H. We then see how
the computation appears in Quillen’s analysis of the poset Ap(Σ2p).

Proposition 11.3.1. The poset Ap(G×H) is homotopy equivalent to the poset
C−Ap(G)× C−Ap(H)− {(cG, cH)}.

Proof. Let T be the subposet of Ap(G × H) whose points are the p-tori in
G = G×e, the p-tori in H = e×H, and the products A×B of p-tori A in G and B
in H. (Remember that p-tori are non-trivial elementary abelian p-groups). Visibly,
thinking of trivial groups as conepoints and therefore < non-trivial subgroups, T
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is isomorphic to C−Ap(G)× C−Ap(H)− {(cG, cH)}. Let i : T −→ Ap(G×H) be
the inclusion. The projections π1 : G × H −→ G and π2 : G × H −→ H induce a
map r : Ap(G × H) −→ T such that r ◦ i = id. Explicitly, for C ∈ Ap(G × H),
r(C) = π1(C) × π2(C). Then i(r(C)) ⊃ C, which means that i ◦ r ≥ id and thus
i ◦ r ≃ id. □

In view of ??, this has the following immediate consequence.

Corollary 11.3.2. The space |K (Ap(G×H))| is homotopy equivalent to the
space |K (Ap(G))| ∗ |K (Ap(H))|.

Proposition 11.3.3. Quillen’s conjecture holds if rp(G) ≤ 2.

Proof. The hypothesis cannot hold if rp(G) = 0, since Ap(G) is then empty
and hence not weakly contractible. If rp(G) = 1, then the space Ap(G) is discrete
since there are no proper inclusions. It is weakly contractible if and only if it
consists of a single point, and then its single point must be fixed by the action of
G. This means that there is a unique p-torus in G, and it is a normal subgroup of
order p. If rp(G) = 2, then |K (Ap(G))| is one dimensional and contractible, which
means that it is a tree. According to Quillen, “one knows (Serre) that a finite group
acting on a tree always has a fixed point”. This means that G has a normal p-torus.
The trees here are of a particularly elementary sort, but the conclusion is still not
altogether obvious. The following problem gives a way of thinking about it. □

Problem 11.3.4. Consider an F -space X such that |K (X)| is a tree (a con-
tractible graph). Clearly X is weakly contractible. Prove that X is contractible.
(Search for upbeat or downbeat points). It follows that if a finite group G acts on
X, then X is G-contractible and therefore has a G-fixed point.

Much of Quillen’s paper is devoted to proving that the conjecture holds for
solvable groups G. This means that there is a decreasing chain of subgroups of G,
each normal in the next, such that the subquotients are cyclic of prime order. We
shall not repeat the proof.

However, following Quillen, we shall work out the structure of Ap(G) when
G = Σ2p is the symmetric group on 2p letters for an odd prime p. This is a first
interesting case since Ap(Σn) is empty if n < p and is a discrete space with one
element for each cyclic subgroup of order p if p ≤ n < 2p. (In fact, there are
n!/(n − p)!p(p − 1) such subgroups.) The analysis shows just how non-trivial the
posets Ap(G) are.

Let g ∈ G = Σ2p have order p. The group ⟨g⟩ it generates has order p, and its
action on the set S = {1, · · · , 2p} partitions S into two disjoint subsets, one given
by the orbit generated by an element s such that gs ̸= s and the other given by
its complement, on which ⟨g⟩ acts either freely or trivially. If A ∼= Z/p × Z/p is a
maximal elementary abelian p-subgroup of G with generators g and g′, then since
g and g′ commute we can see that they give the same partition of S, so that each
such A gives a unique partition of the set S into two A-invariant subsets, each with
p elements. The set of such partitions of S into two subsets with p elements gives
a corresponding decomposition of Ap(G) into disjoint subposets, each consisting of
those A which partition S in the prescribed way.

Under the action of G, these partitions are permuted transitively, meaning that,
given two partitions, there is an element of G that permutes one into the other.
Consider for definiteness the partition into the first p and last p elements of S. Let
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H be the subgroup of those elements of G that fix this partition. The corresponding
subposet of Ap(G) is Ap(H). Here H is the wreath product Σ2

∫
Σp, which is the

semi-direct product of Σ2 with Σp × Σp determined by the permutation action of
Σ2 on Σp × Σp.

Since p is odd, Ap(H) = Ap(Σp × Σp), which, after passage to realizations of
simplicial complexes, is the join Ap(Σp) ∗ Ap(Σp). Since Σp has (p − 2)! Sylow
subgroups, each of order p, Ap(Σp) is the disjoint union of (p − 2)! points. After
counting the number of partitions and inspecting the join of our two discrete spaces
Ap(Σp), Quillen informs us, and we can work out for ourselves, that |Ap(Σ2p)|
is a disconnected graph with (2p)!/2(p!)2 components, each of which is homotopy
equivalent to a one-point union of ((p−2)!−1)2 circles. For example, for p = 5, there
are 25 circles. The same analysis applies to the alternating groups An for n ≤ 2p
since Ap(An) = Ap(Σn). Of course, these Ap(G) are not weakly contractible.

11.4. The components of Sp(G)

Let p be a prime which divides the order of G. We describe the set of com-
ponents π0(Sp(G)), which of course is the same as π0(Ap(G)). Recall that two
elements of a poset are in the same component if they can be connected by a chain
of elements, each either ≤ or ≥ the next. In the poset π0(Sp(G)), each element
is a p-group and is contained in a Sylow subgroup. Therefore there is at least one
Sylow subgroup in each component. Since any one Sylow subgroup P generates all
the others by conjugation by elements of G, G acts transitively on π0(Sp(G)), in
the sense that there is a single orbit. If N = NP denotes the subgroup of G that
fixes the component [P ] of P , then G/N is isomorphic to the G-set π0(Sp(G)) via
gN 7→ [P g]. We want to determine the subgroup N . Let Sylp(G) denote the set of
p-Sylow subgroups of G and let NGH denote the normalizer in G of a subgroup H.
Recall that Hg = gHg−1.

Proposition 11.4.1. The following conditions on a subgroupM of G are equiv-
alent.

(i) For some P ∈ Sylp(G), M ⊃ NP .
(ii) For some P ∈ Sylp(G), M ⊃ NGH for all H ∈ Sp(P ).
(iii) For some P ∈ Sylp(G), M ⊃ NGP and K ⊂ M whenever K is a p-

subgroup of G that intersects M non-trivially.
(iv) p divides the order of M and M ∩Mg is of order prime to p for all g /∈M .

Moreover, Sp(G) is connected if and only if there is no proper subgroup M which
satisfies these equivalent conditions.

Proof. The last statement holds since G is connected if and only if G = NP for
all P ∈ Sylp(G), in which case no proper subgroup can satisfy the stated conditions.
(i) =⇒ (ii): If g ∈ NGH with H ⊂ P , then Hg = H is contained in both P and
P g, so that [P ] = [P g] = g[P ]. This means that g ∈ NP ⊂M .
(ii) =⇒ (iii): Obviously M ⊃ NGP . Since P is a p-Sylow subgroup of G, it is
also a p-Sylow subgroup of M . Thus if H is a non-trivial p-subgroup of M , then
H is conjugate in M to a subgroup, Hm say, of P . Since M ⊃ NG(Hm) and
(NGH)m = NG(Hm), M ⊃ NGH. Let K be a p-subgroup of G such that K ∩M
is non-trivial. We have

K ∩M ⊂ NK(K ∩M) = K ∩NG(K ∩M) ⊂ K ∩M.
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Since K is a p-group, the first inclusion is proper if K ∩M is a proper subgroup of
K. Since this is a contradiction, we must have K ∩M = K and K ⊂M .
(iii) =⇒ (iv): Since M ⊃ P , p divides the order of M . Assume that p divides
the order of M ∩ Mg for some g ∈ G. Then there is a non-trivial p-subgroup
H ⊂ M ∩Mg. Let H ⊂ Q for Q ∈ Sylp(G). Since Q ∩M is non-trivial, we have

Q ⊂M . Since Hg−1 ⊂ Qg−1

and Hg−1 ⊂M , we also have Qg
−1 ⊂M . Since P , Q,

and Qg
−1

are p-Sylow subgroups of M , they are conjugate in M , say Qm = P and

Qg
−1

= Pn for m,n ∈ M . Then a quick check shows that mgn ∈ NGP ⊂ M and
therefore g ∈M , proving (iv).
(iv) =⇒ (i): Writing G as the disjoint union of double cosets MgM , one calculates
that the index of M in G is the sum over double coset representatives g of the
indices of M ∩Mg in M . Since p divides the order of M and does not divide the
order of M ∩Mg if g /∈ M , these indices are divisible by p except for the double
coset represented by e. Thus the index of M in G is congruent to 1 mod p, hence
M must contain some p-sylow subgroup P . Let N = NP . For n ∈ N , P and
Pn are in the same component. Considering p-Sylow subgroups containing groups
in a chain connecting them, we see that there is a sequence of p-Sylow subgroups
P = P0, P1, . . ., Pq = Pn such that Pi ∩ Pi+1 ̸= {e}. There are elements gi such
that P gii−1 = Pi, and we can choose gq so that gq · · · g1 = n. We have P ⊂ M ,
and we assume inductively that Pi−1 ⊂ M . Then Pi−1 ∩ Pi ⊂ M ∩Mgi , so this
intersection contains a p-group and, by (iv), gi ∈ M . This implies that Pi ⊂ M
and, inductively, we conclude that n ∈M , so that N ⊂M . □

Corollary 11.4.2. NP is generated by the groups NGH for H ∈ Sp(P ).

Proof. NP contains all of these NGH, so it contains the subgroup they gen-
erate, and it is the smallest such subgroup by the equivalence of (i) and (ii). □

By the contrapositive, G is not connected if and only if there is a proper
subgroup M of G that satisfies the equivalent properties of the proposition. For
example, if rp(G) = 1 and G has no non-trivial normal p-subgroup, then Ap(G)
is discrete and not contractible, and is therefore not connected. Quillen gives a
condition on G under which these are the only examples.

Proposition 11.4.3. Let H (= Op′(G)) be the largest normal subgroup of G
of order prime to p and let K (= Op′,p(G)) be specified by requiring K/H to be the
largest normal p-subgroup of the quotient group G/H. If K/H is non-trivial and
Sp(G) is not connected, then rp(G) = 1.

Proof. If Q is a p-Sylow subgroup of K, then K = QH since H is a p′-
group and K/H is a p-group. This implies that H acts transitively on π0(Sp(K))
since it implies that any two p-Sylow subgroups are conjugate by the action of
some h ∈ H. The intersection with K of a p-Sylow subgroup P of G is a p-Sylow
subgroup of K. A p-subgroup of K is a p-subgroup of G, and the induced map
π0(Sp(K)) −→ π0(Sp(G)) is surjective since P ∩ K ⊂ P implies that [P ] is the
image of [P ∩ K]. Therefore H also acts transitively on π0(Sp(G)). Let A be a
maximal p-torus of G. The map π0(Sp(AH)) −→ π0(Sp(G)) is also surjective
since H acts transitively on the target and the map is H-equivariant. Therefore
Sp(AH) is not connected. The component [A] is fixed by the centralizers CH(B)
for all non-trivial subgroups B of A since Bh = B ⊂ A for h ∈ CH(B). By [28,
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6.2.4], if A is not cyclic (= rank one), then H is generated by these centralizers,
which contradicts the fact that Sp(AH) is not connected. Therefore A is cyclic. □



CHAPTER 12

Really finite H-spaces

The circle is a topological group. If we regard it as the subspace of the complex
plane consisting of points of norm one, then complex multiplication gives the prod-
uct S1 × S1 −→ S1. How can we model such a basic structure in terms of a map
of finite spaces?

Stong proved a rather amazing negative result about this problem. We will
not go into the combinatorial details of his proof, contenting ourselves with the Expository REU

paper? Research:
Alexandroff H-
spaces?

statement.

12.0.1. Topological Groups. The interaction of group multiplication with
a space’s topology is captured in the following definition.

Definition 12.0.1. A topological group is a group that is also a T0 topological
space in which the multiplication map given by (x, y) 7→ x · y and the inverse map
given by x 7→ x−1 are continuous.

Proposition 12.0.2. Let H be a group that is also a T0 topological space.
Then H is a topological group if and only if the map ρ : H × H −→ H given by
(x, y) 7→ x · y−1 is continuous.

Proof. Suppose H is a topological group. The functions f : H×H −→ H×H
where (x, y) 7→ (x, y−1) and g : H × H −→ H sending (a, b) 7→ a · b are then
continuous, and so ρ = g ◦ f is as well.

Conversely, suppose ρ is continuous. First, the map v taking x to x−1 is
equal to the composition of the continuous maps ρ and h : H −→ H ×H defined
by x 7→ (e, x), and is therefore itself continuous. Second, the product map g is
continuous because it equals the composition of the continuous functions ρ and
f . □

Example 12.0.3. (Z,+)
When equipped with the order topology, this is a T1 space. Consider the open
interval (a, b), an arbitrary basis element for (Z,+). Define ρ : Z × Z −→ Z by
(x, y) 7→ x − y. For the pre-image, we have ρ−1(a, b) = {(x, y)|a < x − y < b} =
{(x, y)|a+y < x < b+y}. This pre-image is the union over all y of the corresponding
open sets (a+ y, b+ y)× (y− 1, y+ 1), and is therefore open. Thus ρ is continuous.

Example 12.0.4. (R,+)
The continuity of ρ : R −→ R where (x, y) 7→ x − y in the usual topology is a
standard fact of analysis.

Example 12.0.5. (R+,×)
The continuity of the quotient operation q : R × (R − {0}) −→ R is a standard
fact of analysis. For R+, construct the continuous ρ by restricting q’s domain to
R+ × R+ and its range to R+.

115
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Example 12.0.6. (S1,×)
The beauty of the algebra of these numbers is that their multiplication is the same
as the addition of real numbers (complex numbers on the unit circle are written as
exponentials, and their multiplication is given by the addition of the exponents).
That (S1,×) is a topological group follows from the fact that (R,+) is.

We take S1 as our main example. We are interested in finite models of S1 that
can be equipped with continuous multiplication.

12.0.2. Failure of the non-Hausdorff Suspension of S1. Our standard
four-point model of S1, the non-Hausdorff suspension, is incompatible with contin-
uous complex multiplication. The model in the complex numbers is pictured in the
following diagram. An arrow pointing from one element to another says that the
element being pointed to is greater than the other. The far-right and far-left points
are identical.

i ←− −1 −→ −i ←− 1 −→ i

Proposition 12.0.7. In the complex numbers, the non-Hausdorff suspension
S1 of the zero-sphere gives discontinuous multiplication.

Proof. We have (i, i) > (−1, i),but i · i = −1 < −1 · i. □

12.0.3. Finite H-Spaces.

Definition 12.0.8. Let (X, e) be a finite space with a basepoint e and let
ϕ : X ×X −→ X be a map We say that X is an H-space of type I if multiplication
by e on either the right or the left is homotopic to the identity. That is, the maps
x −→ ϕ(e, x) and x −→ ϕ(x, e) are each homotopic to the identity. Say that X is
an H-space of type II if the shearing maps X ×X −→ X ×X defined by sending
(x, y) to either (x, ϕ(x, y)) or (y, ϕ(x, y)) are homotopy equivalences.

A topological group is an H-space of both types, but it is much less restrictive
for a space to be an H-space than for a space to be a topological group. In partic-
ular, a topological group is an H-space in which multiplication by e is the identity
map, so that e is an algebraic identity element. The definition of a type I H-space
is often presented as the standard definition of an H-space. Henceforth, it will be
the focus of the chapter.

By definition, the notion of H-space is homotopy invariant in the sense that if
one defines an H-space structure on (X, e) to be a homotopy class of products ϕ,
then one has the following result.

Proposition 12.0.9. If (X, e) and (Y, f) are homotopy equivalent, then H-
space structures on (X, e) correspond bijectively to H-space structures on (Y, f).

This motivated Stong [65] to study H-space structures on minimal finite spaces
covered in the following sections.

12.0.4. A combinatorial result. Before proving propositions aboutH-spaces,
we modify the definitions of minimal finite spaces and cores to respect basepoints.
Recall the given definition (Definition 2.4.2) of a beat point of a finite space. We
present the analogous notions for based spaces.
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Definition 12.0.10. A based finite space (X,x) is minimal if it satisfies the
T0 axiom and has no beat points except possibly x. A core of a finite space (X,x)
is a subspace (Y, x) that is minimal and a deformation retract of X.

This modified definition ensures that when a based space is reduced to its core,
the basepoint is not deleted.

The following fact will prove useful in the proof of following results.

Proposition 12.0.11. Let (X, e) be a minimal finite H-space. Then θ1, θ2 :
X −→ X given by θ1(x) = xe and θ2(x) = ex are equal to the identity map.

Proof. Since (X, e) is a minimal finite space, any map from X to itself that
is homotopic to the identity is the identity. □

The following proposition provides the structure for the proof of Stong’s major
result, Theorem 12.0.17. Recall that in a poset, an upbeat point x under y implies
that y is the immediate successor of x. The opposite holds for downbeat points.

Proposition 12.0.12. Let (X, e) be a minimal finite space, x ∈ X. Then

(i) x is less than each of two distinct maximal points, or
(ii) x is maximal, or
(iii) x is upbeat under a maximal point (so x = e)

and

(i’) x is greater than each of two distinct maximal points, or
(ii’) x is minimal, or
(iii’) x is downbeat over a minimal point (so x = e)

Proof. Suppose by way of contradiction that the set A of points that do not
satisfy any of (i), (ii), (iii) is nonempty, and let a be a maximal element of A. Since
a is not maximal in X, there exists z ∈ X such that z > a. Let B = {x|x > a} ⊂ X.
If B contains a point z′ other than z, then a satisfies (i). If not, then a satisfies
(iii). Either way, we have arrived at a contradiction with the fact that a is in A.
We conclude that A must be empty. Similarly, every point must satisfy one of (i’),
(ii’), (iii’). □

We present the following combinatorial result on the relationship of general
points of X to the point e, which leads Stong to his main result.

Proposition 12.0.13. Let (X, e) be a minimal finite H-space. Then e is both
maximal and minimal under the associated order ≤.

Proof. Knowing that e must satisfy one of the conditions (i), (ii), (iii) and
one of (i’), (ii’), (iii’), we proceed to eliminate from possibility all pairs of conditions
except the pair consisting of (ii) and (ii’).

Remark 12.0.14. From the definition of the order on a finite T0 space we can
deduce the appropriate order on a product of two finite spaces. Let (a, b), (c, d) ∈
X × Y where X and Y are finite T0 spaces. Then (a, b) ≤ (c, d) if and only if a ≤ c
and b ≤ d. If any of the two inequalities in the factor spaces is strict, then the
inequality in the product space is strict as well.

The point e does not satisfy (i).
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Lemma 12.0.15. Let m and m′ be maximal points in X with m,m′ > e. Then
m = m′.

Proof. Since m′ > e and m > e, we have

(m,m′) > (m, e) and (m,m′) > (e,m′).

□

Applying the continuous (order-preserving) product ϕ to each, we obtain

mm′ ≥ me = m and mm′ ≥ em′ = m′

Because the right-hand sides of both inequalities above are maximal, we deduce
that m = mm′ = m′.

The point e does not satisfy (i’).
This is true for perfectly symmetric reasons.

The point e does not satisfy both (ii’) and (iii).
We show that if it did, then X would have infinitely many subsets, in contradiction
to the fact that X is finite.

Suppose by way of contradiction that e satisfies (ii’) and (iii), i.e., e is both
minimal and upbeat under a maximal point.

Our claim is that for every integer r ≥ 0, X contains a subset

Dr = {e = u0, u1, . . . , ur;m0, . . . ,mr−1}(12.0.16)

with all ui minimal in X and all mi maximal in X, and such that all of the following
conditions hold:

(a) For i between 0 and r− 1 (inclusive), the only points in X less than mi are ui
and ui+1.

(b) m0 is the only point in X that is greater than u0.
(c) For i between 1 and r− 1 (inclusive), the only points in X greater than ui are

mi−1 and mi.
(d) For i between 0 and r − 1 (inclusive), xmi = mix = mi if x is mk or uk with

k ≤ i.
(e) For i between 0 and r (inclusive), xui = uix = ui if x = mk with k < i or

x = uk with k ≤ i.
(f) For every x ∈ X not in Dr, xmi = x = xui and mix = x = uix.

For r = 0, we have the set D0 = {e = u0}. It contains no mi. Conditions (a) –
(d) and (f) are vacuously satisfied. For condition (e), the first option (involving
mi) is vacuously satisfied, and the second demands only that we check ee = e.
That equation is true in the minimal space (X, e) because multiplication by e is
homotopic to the identity, but in fact it is true for any H-space. Multiplication by
e is homotopic to the identity through maps from (X, e) to (X, e). That is, the fact
that e is the space’s basepoint means the only allowed intermediate maps take e to
itself.

Now assume X contains a set Dk of the form in (7.1.15). We show that there
are an additional maximal point mk and an additional minimal point uk+1 such
that Dk+1 (of the form (7.1.15)) satisfies (a) through (f).

First we show that it satisfies (a), (b), (c).
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For k = 0, the assumption that e is upbeat under a maximal point gives a
unique mk, namely the point under which e is upbeat.

For k > 0, we know that uk ̸= e and that uk is not maximal (being less than
mk−1). So uk is less than each of two distinct maximal points. By (a), only one of
those is in Dk.

In order for Dk+1 to satisfy (c), we cannot have a choice of multiple maximal
points to call mk. In the case k = 0, this needed uniqueness property has already
been shown. In the case k > 0, in which we know that there exists a maximal point
outside Dk, the uniqueness follows from the combination of (f) with the procedure
of the previous subsection.

Existence and uniqueness of uk+1 now follow by the analogous argument, using
mk ̸= e.

One can now see that Dk+1 satisfies (a), (b), (c). We finally show that it
satisfies (d), (e), (f).

To verify (d) for Dk+1, we substitute x = mk in the assumption (f) for Dk.
Likewise, to verify (e), we substitute x = uk+1.

Finally, let us verify (f) for Dk+1. We will show xmk = x = xuk. The derivation
of the other identity uses the analogous argument.

Suppose x is not in Dk+1. We obtain immediately xmk ≥ xuk = x. We now
proceed by induction.

In the base case, where x is maximal, we find from the above that xmk = x.
Now, for the inductive step, consider the point w, supposing that for every

y > w, ymk = y.
For any such y, by continuity of ϕ, we have y = ymk ≥ wmk.
Thus, either w is upbeat or wmk = w. The former is false because X is a

minimal space (no point other than e can be upbeat) with xe ̸= e for x ̸= e. So
wmk = w = wuk. This completes the verification of (f).

We now see that if e satisfied (ii’) and (iii), we would be able to construct
infinitely many distinct subsets of X, contradicting the fact that X is finite.

The point e does not satisfy both (ii) and (iii’).
This possibility is ruled out in the same way as the possibility (ii’) and (iii).

The point e does not satisfy both (iii) and (iii’).
This possibility is conceptually similar to the last, because it just replaces maxi-
mality by the situation of being upbeat under a maximal point. The technicalities
of the demonstration are slightly different, but offer negligible additional insight.

The point e satisfies (ii) and (ii’).
This is the only remaining possible pair of conditions. The proof of Proposition
7.2 is now complete. □

This means that e is a component of X. Stong shows that this implies the
following conclusions for general finite H-spaces.

12.0.5. Inviability of finite H-space models of non-contractible con-
nected spaces.

Theorem 12.0.17. Let X be a finite space and let e ∈ X. Then there is a
product ϕ making (X, e) an H-space of type I if and only if e is a deformation
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retract of its component in X. Therefore X is an H-space for some basepoint e if
and only if some component of X is contractible.

Proof. Since (X, e) is homotopy equivalent to its core (Y, e), Proposition
4.3 says that there is an H-space structure on (X, e) only if there is one on (Y, e).

Because (Y, e) is a minimal finite space, it is an H-space only if e is both max-
imal and minimal in Y under the associated order ≤, i.e., {e} is a path component
of Y .

In finite spaces, path components are the same as connected components. So,
{e} is a path component of Y only if it is a component of Y .

If {e} is a component of Y (the core), then {e} is the core of e’s component in
X.

A core of a component is a deformation retract of the component. Thus the
result is established. □

Theorem 12.0.18. Let X be a finite space. Then there is a product ϕ making
X an H-space of type II if and only if every component of X is contractible.

Corollary 12.0.19. A connected finite space X is an H-space of either type
if and only if X is contractible.

So there is no way that we can model the product on S1 by means of an H-
space structure on some finite space X. Our standard model T = SS0 of S1 can
be embedded in C as the four point subgroup {±1,±i}, but then the complex
multiplication is not continuous. However, the multiplication can be realized as a
map (T × T)(n) −→ T for some finite n, by the simplicial approximation theorem
for finite spaces. Explicitly, it is implied that for an H-space X with product ϕ and
finite model Y , there exist an integer n and a continuous map µ : (Y ×Y )(n) −→ Y
such that |K(µ)| ≃ ϕ. It is natural to expect that some small n works here.

The following result is proven in [30].

Theorem 12.0.20. Choosing minimal points e in T and f ∈ T′ as basepoints,
there is a map

ϕ : T′ × T′ −→ T
such that ϕ(f, f) = e and the maps x −→ ϕ(x, f) and x −→ ϕ(f, x) from T′ to T
are weak homotopy equivalences.

That is, we can realize a kind of H-space structure after barycentric subdivi-
sion. The proof is horribly unilluminating. The space T′ has eight elements, the
space T has four elements. One writes down an 8 × 8 matrix with values in T,
choosing it most carefully so that when the 8 point and 4 point spaces are given
the appropriate partial order, and the 64 point product space the product order,
the function represented by the matrix is order preserving. Then one checks the
row and column corresponding to multiplication by the basepoint.

Several other interesting spaces and maps are modelled similarly in the cited
paper, for example RP 2 and CP 2.
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CHAPTER 13

Simplicial sets

13.1. Motivation for the introduction of simplicial sets

Simplicial sets, and more generally simplicial objects in a given category, are
central to modern mathematics. While I am not a mathematical historian, I thought
I would describe in conceptual outline how naturally simplicial sets arise from the
classical study of simplicial complexes. I suspect that something like this recapitu-
lates the historical development.

We have described simplicial complexes in several different forms: abstract
simplicial complexes, ordered simplicial complexes, geometric simplicial complexes,
ordered geometric simplicial complexes and realizations of geometric simplicial com-
plexes. It is possible to go directly from abstract simplicial complexes to realiza-
tions without passing through geometric simplicial complexes, but the construction
is perhaps not as intuitive and will not be included.

An abstract simplicial complex is equivalent to a geometric simplicial complex,
and neither of these notions involves anything about ordering the vertices. If one
has a simplicial complex of either type, one can choose a partial ordering of the
vertices that restricts to a linear ordering of the vertices of each simplex, and this
gives the notion of an ordered simplicial complex. This can be done most simply,
but not most generally, just by choosing a total ordering of the set of all vertices
and restricting that ordering to simplices. However, there is no canonical choice.

We have seen in studying products of simplicial complexes that geometric re-
alization behaves especially nicely only in the ordered setting. Both the category
S C of simplicial complexes and the category OS C of ordered simplicial complexes
have categorical products. Geometric realization preserves products when defined
on OS C , but it does not preserve products when defined on S C . The functor
K is best viewed as a functor from the category P of partially ordered sets to the
category OS C rather than just to the category S C . Observe that there are gen-
erally many different ordered simplicial complexes with the same poset of vertices.
The functor K picks out the largest choice, the one in which every finite totally
ordered subset of the set of vertices is a simplex.

The functor X , on the other hand, starts in S C and lands in P, which can
be identified with the category of A-spaces. The composite K X is the barycentric
subdivision functor Sd : S C −→ OS C . It can be viewed as the construction
of a canonical ordered simplicial complex SdK starting from a given unordered
simplicial complex K, at the price of subdividing. Since the geometric realization
functor gives a space |SdK| that can be identified with |K| there is no loss of
topological generality working in OS C instead of S C .

123
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The most important motivation for working with ordered rather than unordered
simplicial complexes is that the ordering leads to the definition of an associated
chain complex and thus to a quick definition of homology.

As noted earlier, a topological space X is called a polytope if it is homeomorphic
to |K| for a (given) simplicial complex K. Such a homeomorphism |K| −→ X
is called a triangulation of X, and X is said to be triangulable if it admits a
triangulation. Then we can define the homology ofX to be the homology ofK. This
is a quick definition, and useful where it applies, but it raises many questions and is
quite unsatisfactory conceptually. Not every space is triangulable, and triangulable
spaces can admit many different triangulations. It is far from obvious that the
homology is independent of the choice of triangulation.

Simplicial sets abstract the notion of ordered simplicial complexes, retaining
enough of the combinatorial structure that homology can be defined with equal ease.
The generalization allows myriads of examples that do not come from simplicial
complexes. The original motivating example gives a functor from topological spaces
to simplicial sets. Composing with the functor from simplicial sets to homology
groups gives the quickest way of defining the homology groups of a space and leads
to the proof that these groups depend only on the weak homotopy type of the space,
not on any triangulation, and to the proofs that different triangulations, when they
exist, give canonically isomorphic homology groups.

Perhaps the quickest and most intuitive way to motivate the definition of sim-
plicial sets is to start from structure clearly visible in the case of ordered simplicial
complexes. Let X denote the partially ordered set V (K) of vertices of an ordered
simplicial complex K. The reader might prefer to start with an ordered simplicial
complex of the form K (X), where X is a poset. The reader may also want to insist
that X is finite, but that is not necessary to the construction, and we later want to
allow infinite sets.

Then an n-simplex σ of K is a totally ordered n + 1-tuple of elements of X.
Write such a tuple as (x0, · · · , xn). When studying products, we saw that it can
become essential to consider tuples (x0, · · · , xn), where x0 ≤ x1 ≤ · · · ≤ xn. Of
course, (x0, · · · , xn) is no longer a simplex, but one can obtain a simplex from it by
deleting repeated entries. When there are repeated entries, we think of (x0, · · · , xn)
as a “degenerate” n-simplex. Let Kn denote the set of such generalized n-simplices,
degenerate or not. For 0 ≤ i ≤ n, define functions

di : Kn −→ Kn−1 and si : Kn −→ Kn+1,

called face and degeneracy operators, by

di(x0, · · · , xn) = (x0, · · ·xi−1, xi+1, · · · , xn)

and
si(x0, · · · , xn) = (x0, · · ·xi, xi, · · · , xn).

Of course, the di and si just defined also depend on n, but it is standard not to
indicate that in the notation. In words, di deletes the ith entry and si repeats the
ith entry. If i < j and we first delete the jth entry and then the ith entry, we get
the same thing as if we first delete the ith entry and then delete the (new) (j− 1)st

entry. Similarly, elementary inspections give commutation relations between the di
and sj and between the si. Here is a list of all such relations:

di ◦ dj = dj−1 ◦ di if i < j



13.2. THE DEFINITION OF SIMPLICIAL SETS 125

di ◦ sj =


sj−1 ◦ di if i < j

id if i = j or i = j + 1

sj ◦ di−1 if i > j + 1

si ◦ sj = sj+1 ◦ si if i ≤ j
The reader can easily check that these identities really do follow immediately

from the definition of the Kn, di, and si above.
The Kn are defined in terms of the partially ordered vertex set V (K) of K, but

there are many examples of precisely similar structure that arise differently.

13.2. The definition of simplicial sets

We obtain our first definition of simplicial sets by formalizing structure that,
as we have just seen, is implicit in the definition of an ordered simplicial complex.

Definition 13.2.1. A simplicial set K is a sequence of sets Kn, n ≥ 0, and
functions di : Kn −→ Kn−1 and si : Kn −→ Kn+1 for 0 ≤ i ≤ n that satisfy
the identities just displayed. The elements of the set Kn are called n-simplices,
following the historic precedent of simplicial complexes. Just as if K were a sim-
plicial complex, a map f : K −→ L of simplicial sets is a sequence of functions
fn : Kn −→ Ln such that fn−1 ◦ di = di ◦ fn and fn+1 ◦ si = si ◦ fn. With these
objects and morphisms, we have the category sSet of simplicial sets.

Now our motivating example can be recapitulated in the following statement.

Proposition 13.2.2. There is a canonical functor i : OS C −→ sSet from the
category of ordered simplicial complexes to the category of simplicial sets. It assigns
to an ordered simplicial complex K the simplicial set Ks given by the sequence of
sets Ks

n and the functions di and si defined above. It assigns to a map f : K −→ L
of ordered simplicial complexes the map fs : Ks −→ Ls induced by its map of vertex
sets:

fsn(x0, · · · , xn) = (f(x0), · · · , f(xn)).

It is a full embedding, meaning that the maps K −→ L of ordered simplicial com-
plexes map bijectively to the maps Ks −→ Ls of simplicial sets.

The identities listed above are hard to remember and do not appear to be very
conceptual. The definition admits a conceptual reformulation that may or may
not make things clearer, depending on personal taste, but definitely allows many
arguments and constructions to be described more clearly and conceptually than
would be possible without it. We define the category ∆ of finite ordered sets.

Definition 13.2.3. The objects of ∆ are the finite ordered sets [n] with n+ 1
elements 0 < 1 < · · · < n. Its morphisms are the monotonic functions µ : [m] ≤ [n].
This means that i < j implies µ(i) ≤ µ(j). Define particular monotonic functions

δi : [n− 1] −→ [n] and σi : [n+ 1] −→ [n]

for 0 ≤ i ≤ n by

δi(j) = j if j < i and δi(j) = j + 1 if j ≥ i
and

σi(j) = j if j ≤ i and σi(j) = j − 1 if j > i.

In words, δi skips i and σi repeats i.
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There are identities for composing the δi and σi that are “dual” to those for
composing the di and si that appear in the definition of a simplicial set. Precisely,
the duality amounts to reversing the direction of arrows. The following pair of
commutative diagrams should make clear how to interpret this, where i < j.

Kn

dj //

di

��

Kn−1

di

��
Kn−1

dj−1

// Kn−2

and [n] [n− 1]
δjoo

[n− 1]

δi

OO

[n− 2]
δj−1

oo

δi

OO

A moment’s reflection should convince the reader that every monotonic function
µ : [m] −→ [n] can be written as a composite of monotonic functions δi and σj for
varying i and j. That is, µ can be obtained by omitting some of the i’s and
repeating some of the j’s. Just as a group can be defined by specifying a set of
generators and relations, so a category can often be specified by a set of generating
morphisms and relations between their composites. The category ∆ is generated
by the δi and σi subject to our “dual” relations. This leads to the proof of the
following reformulation of the notion of a simplicial set. Recall that a contravariant
functor F assigns a morphism FY −→ FX of the target category to each morphism
X −→ Y of the source category.

Proposition 13.2.4. The category of simplicial sets can be identified with the
category of contravariant functors K : ∆ −→ Set and natural transformations be-
tween them.

Proof. The correspondence is given by viewing the functions di and si that
define a simplicial set as the morphisms of sets induced by the morphisms δi and σi
of the corresponding functor ∆ −→ Set. It is convenient to write µ∗ : Kn −→ Km

for the function induced by contravariance from a morphism µ : [m] −→ [n], and
then di = δ∗i and si = σ∗

i . For a map f , the corresponding natural transformation
is given on the object [n] by the function fn. □

While we do not want to emphasize abstraction in the first instance, we never-
theless cannot resist the temptation to generalize the definition of simplicial sets to
simplicial objects in a perfectly arbitrary category. The generalization has a huge
number of applications throughout mathematics, and we shall use it when defining
homology.

Definition 13.2.5. A simplicial object in a category C is a contravariant func-
tor K : ∆ −→ C . A map f : K −→ L of simplicial objects in C is a natural tran-
formation K −→ L; it is given by morphisms fn : Kn −→ Ln in C . We have the
category sC of simplicial objects in C . By composition of functors and natural
transformations, any functor F : C −→ D induces a functor sF : sC −→ sD . By
duality, a covariant functor ∆ −→ C is called a cosimplicial object in C .

13.3. Standard simplices and their role

We explain a general conceptual way to relate simplicial sets to “standard sim-
plices”. Standard simplices exist in many categories. We have standard simplices
in topological spaces, simplicial sets, and even posets and categories. In general,
fixing a category V , we often have a standard cosimplicial object in V , that is a
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certain covariant functor ∆[•]v : ∆ −→ V . The superscript v is meant as a reminder
that the functor is assigning objects in V to objects in ∆; it should also help to
distinguish the functor ∆[•]v from the category ∆. On objects, we write the func-
tor ∆[•]v as [n] 7→ ∆[n]v, but we agree to write µ∗ rather than ∆[µ]v for the map
∆[m]v −→ ∆[n]v in V obtained by applying our functor to a morphism µ in ∆. For
each object V of V we obtain a contravariant functor, denoted SV : ∆ −→ Set, by
letting the set SnV of n-simplices be the set V (∆[n]v, V ) of morphisms ∆[n]v −→ V
in the category V . The faces and degeneracies are induced by precomposition with
the maps

δi : ∆[n− 1]v −→ ∆[n]v and σi : ∆[n+ 1]v −→ ∆[n]v

obtained by applying the functor ∆[•]v to the generating morphisms δi and σi of
∆. That is, for a morphism ν : ∆[n]v −→ V in V ,

di(ν) = ν ◦ δi and si(ν) = ν ◦ σi.

Before turning to the motivating examples, in which V is the category U of
topological spaces or the category Cat of small categories, we apply this construction
to the case V = sSet.

Definition 13.3.1. Define the standard simplicial n-simplex ∆[n]s to be the
contravariant functor ∆ −→ sSet represented by [n]. This means that the set
∆[n]sq of q-simplices is the set of all morphisms ϕ : [q] −→ [n] in ∆. For a morphism
ν : [p] −→ [q] in ∆, the function ν∗ : ∆[n]sq −→ ∆[n]sp is given by composition,
ν∗(ϕ) = ϕ ◦ ν : [p] −→ [q].

Definition 13.3.2. We define a covariant functor ∆[•]s from ∆ to the category
sSet of simplicial sets. On objects, the functor sends [n] to the standard simplicial
n-simplex ∆[n]s. On morphisms µ : [m] −→ [n] in ∆, define µ∗ : ∆[m]sq −→ ∆[n]sq
by µ∗(ψ) = µ ◦ ψ : [q] −→ [m] −→ [n]. Thus the simplicial set ∆[n]s is defined
using pre-composition with morphisms of ∆, and then the covariant functoriality
of ∆[•]s is defined using post-composition with morphisms of ∆. The object ∆[•]v
is a cosimplicial simplicial set, that is, a cosimplicial object in the category of
simplicial sets.

We may identify the set of all non-degenerate simplices of ∆[n]s with the poset
of non-empty subsets of the set [n] of n+1 elements, ordered by inclusion. In other
words, ∆[n]s = (K ([n])s is the ordered simplicial set determined by the simplicial
complex K ([n]).

Although we shall give a direct proof, the following result is an application of
the Yoneda lemma. Let ιn ∈ ∆[n]sn be the identity map id: [n] −→ [n].

Proposition 13.3.3. Let K be a simplicial set. For x ∈ Kn, there is a unique
map of simplicial sets Y (x) : ∆[n]s −→ K such that Y (x)(ιn) = x. Therefore
K is naturally isomorphic to the simplicial set whose n-simplices are the maps of
simplicial sets ∆[n]s −→ K.

Proof. The map Y (x) is a natural transformation from the contravariant
functor ∆[n]s to the contravariant functor K from ∆ to Set. Since a q-simplex
ϕ : [q] −→ [n] is ϕ∗(ιn), we can and must specify Y (x) at the object [q] ∈ ∆ by the
function ∆[n]sq −→ Kq that sends ϕ to the q-simplex ϕ∗(x). □
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We can vary the construction in a way that may look unnatural but that will
lend itself to generalization to other examples. We show how to reconstruct K
directly from the ∆[n]s.

Construction 13.3.4. For a set J and a simplicial set L, one can form a
new simplicial set J × L by setting (J × L)q = J × Lq and letting the faces and
degeneracies be induced by those of L. Said another way, we think of J as a
“discrete” simplicial set with each Jq = J and all faces and degeneracies the identity
map of J , and we then take the product J × L of simplicial sets. We apply this
with J = Kn and L = ∆[n]s as n varies to obtain a simplicial set

K =
∐
n≥0

Kn ×∆[n]s.

We define an equivalence relation ≃ on K by requiring

(13.3.5) (α∗(k), σ) ≃ (k, α∗(σ))

for k ∈ Kn, σ ∈ ∆[m]sq, and α : [m] −→ [n] in ∆. Here α∗(k) ∈ Km is given by the
fact that K is a contravariant functor from ∆ to sets and α∗(σ) ∈ ∆[n]sq is given
by the fact that ∆[−]s is a covariant functor from ∆ to simplicial sets. With the
simplicial structure induced from the simplicial structure on the ∆[n]s, passage to
equivalence classes gives us a new simplicial set that we shall denote by T sK for
the moment. Then T s is a functor from simplicial sets to simplicial sets.

Proposition 13.3.6. The simplicial set T sK is naturally isomorphic to K.

Proof. We claim that an arbitrary pair (k, τ) in Kn ×∆[n]sq is equivalent to
the pair (τ(k), ιq) in Kq ×∆[q]sq where, as above, ιq : [q] −→ [q] is the identity map
viewed as a canonical q-simplex in ∆[q]s. Viewing τ : [q] −→ [n] as a morphism of
∆, we have τ = τ∗(ιq), and the claim follows. Identifying equivalence classes of q-
simplices with elements of Kq in this fashion, we find that the faces and degeneracies
agree. Indeed, for ξ : [p] −→ [q], ξ ◦ ιp = ιq ◦ ξ and

(k, ξ∗(ιq)) = (k, ξ∗(ιp)) ≃ (ξ∗(k), ιp). □

13.4. The total singular complex SX and the nerve NC

We turn to the historical motivating example V = U by constructing the
total singular complex SX of a topological space X. We need a covariant functor
∆[•]t : ∆ −→ U , and that is given by the standard topological simplices ∆[n]t.

Definition 13.4.1. Recall that the standard topological n-simplex ∆[n]t is the
subspace

{(t0, · · · , tn) | 0 ≤ ti ≤ 1 and Σiti = 1}
of Rn+1. Define

δi : ∆[n− 1]t −→ ∆[n]t and σi : ∆[n+ 1]t −→ ∆[n]t

by
δi(t0, · · · , tn−1) = (t0, · · · , ti−1, 0, ti, · · · , tn)

and
σi(t0, · · · , tn+1) = (t0, · · · , ti−1, ti + ti+1, ti+2, · · · , tn+1).

Then the δi and σi satisfy the commutation relations required to specify a covariant
functor ∆[•]t from ∆ to the category U of topological spaces, that is, a cosimplicial
object in the category of topological spaces.
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Definition 13.4.2. The total singular complex SX of a space X is the simpli-
cial set whose set SnX of n-simplices is the set of continuous maps ∆[n]t −→ X
and whose faces di and degeneracies si induced by precomposition with δi and
σi. By composition of continuous maps, a map f : X −→ Y induces the map
f∗ = Sf : SX −→ SY of simplicial sets that sends an n-simplex s : ∆[n]t −→ X
to the n-simplex f ◦ s. This defines the total singular complex functor S from
topological spaces to simplicial sets.

We shall return to this example after giving an analogue that may seem as-
tonishing at first sight. Although it has become a standard and commonplace
construction, its importance and utility were only gradually recognized. Recall
that a poset can be viewed as a category with at most one arrow between any pair
of objects: either x ≤ y, and then there is a unique arrow x −→ y, or x ≰ y, and
then there is no arrow x −→ y. Composition is defined in the only possible way.
By definition [n] is a totally ordered set, hence of course it is a partially ordered
set. We can view it as a category and then the monotonic functions µ : [m] −→ [n]
are precisely the functors [m] −→ [n]: monotonicity says that if there is an arrow
i −→ j, then there is an arrow i ≤ j, which must be the value of the functor µ on
that arrow.

Definition 13.4.3. Let Cat denote the category whose objects are small cat-
egories and whose morphisms are the functors between them. Define a covariant
functor ∆[•]c : ∆ −→ Cat by sending the ordered set [n] to the corresponding cat-
egory [n] and sending a morphism µ : [m] −→ [n] to the corresponding functor
µ∗ : [m] −→ [n]. Thus ∆[•]c is a cosimplicial category. When necessary for clarity,
we write [n]c for the ordered set [n] regarded as a category.

It is consistent with our previous notations to write ∆[n]c for the poset [n]
regarded as a category. With that notation, the analogy with the definition of the
total singular complex becomes especially obvious.

Definition 13.4.4. Let C be a small category. We define a simplicial set NC ,
called the nerve of C . Its set NnC of n-simplices is the set of covariant functors
ϕ : [n]c −→ C . The function µ∗ : NnC −→ NmC induced by µ : [m] −→ [n] is
given by µ∗(ϕ) = ϕ ◦ µ, where µ is viewed as a functor [m]c −→ [n]c. A functor
F : C −→ D induces a function Fn = NnF : Nn −→ NnD by composition of
functors, Fn(ϕ) = F ◦ ϕ. These functions specify a map F∗ = NF : NC −→ ND
of simplicial sets. Thus we have the nerve functor N from Cat to the category Set
of simplicial sets.

The definition can easily be unravelled. The category [0]c has one object and
its identity morphism, hence a functor ϕ : [0]c −→ C is just a choice of an object
of C . That is, if we write OC for the set of objects of C , then N0C = OC . For
n ≥ 1, a functor ϕ : [n]c −→ C is a choice of n composable morphisms

c0
f1 //c1 // · · · //cn−1

fn //cn.

Denoting such a string by (f1, · · · , fn), the faces and degeneracies are given by

(13.4.5) di(f1, · · · , fn) =


(f2, · · · , fn) if i = 0

(f1, · · · , fi−1, fi+1 ◦ fi, fi+2, · · · , fn) if 0 < i < n

(f1, · · · , fn−1) if i = n
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si(f1, · · · , fn) = (f1, · · · , fi−1, id, fi, · · · , fn)

In words, the 0th and nth faces send (f1, · · · , fn) to the (n−1)-simplex obtained
by deleting f1 or fn; when n = 1 this is to be interpreted as giving the object c1
or c0. For 0 < i < n, the ith face composes fi+1 with fi. The ith degeneracy
operation inserts the identity morphism of ci. The ordering may look unnatural,
since fi+1 ◦ fi means first fi and then fi+1, and many authors prefer to reverse the
ordering in a composable sequence so that for n ≥ 1, a functor ϕ : [n]c −→ C is a
choice of n composable morphisms

c0 c1
f1oo oo · · · cn−1

oo cn.
fnoo

This amounts to replacing the categories ∆[n]c by their opposite categories. It is
the choice taken in the following hugely important example.

Example 13.4.6. Let G be a group regarded as a category with a single object
∗; the elements of the group are the morphisms ∗ −→ ∗, and every pair of morphisms
is composable. The nerve NG is often written B∗G and called the bar construction.
It is the simplicial set with BnG = Gn, with n-tuples of elements written [g1| · · · |gn]
(hence the name “bar”) and with faces and degeneracies specified for 0 ≤ i ≤ n by

di[g1| · · · |gn] =

 [g2| · · · |gn] if i = 0
[g1| · · · |gi−1|gigi+1|gi+2| · · · |gn] if 0 < i < q
[g1| · · · |gn−1] if i = q.

si[g1| · · · |gn] = [g1| · · · |gi−1|e|gi| · · · |gn]

However NA is written, in general it looks nothing like our original example
of the simplicial set associated to an ordered simplicial complex! In one important
case, which we will find is far more common than one might reasonably expect, it
does look like that.

Example 13.4.7. Let X be a poset. We can obtain a simplicial set by regarding
X as a category and taking its nerve. Alternatively, we can take the ordered
simplicial complex K X and then take the simplicial set associated to that. It is
an instructive exercise to check that we get the same simplicial set via either route.
That is, NX is naturally isomorphic to (K X)s.

13.5. The geometric realization of simplicial sets

We have observed that the category ∆ is generated by the injections δi and
surjections σi. Decomposing a morphism µ : [m] −→ [n] as a composite of δi’s
and σj ’s records which elements of the target [n] are not in the image of µ and
which elements of the source [m] have the same image under µ. It is helpful to
be more precise about this. Let i1, · · · , iq in reverse order 0 ≤ iq < · · · < i1 ≤ n
be the elements of [n] that are not in the image µ([m]). Let j1, . . . , jp in order
0 ≤ j1 < · · · < jp < m be the elements j ∈ [m] such that µ(j) = µ(j + 1). With
these notations, m− p+ q = n and

(13.5.1) µ = δi1 · · · δiqσj1 · · ·σjp .

That is, we record duplications in such a manner that the indices record the repeated
and skipped elements in a sensible canonical order. The sequences of i’s and j’s in
this description of µ are uniquely determined.
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Using this canonical decomposition implicitly, we can be precise about the
definition and description of the geometric realization of a simplicial set K. The
construction is precisely analogous to Construction 13.3.4 and might well be denoted
by T tK.

Construction 13.5.2. For a set J and a space L, we regard J as a discrete
topological space and obtain the space J × L. Applying this with J = Kn and
L = ∆[n]t for n ≥ 0, we obtain the space

K̄ =
∐
n≥0

Kn ×∆[n]t

with the topology of the union. That is, we take the union of one topological
simplex for each n-simplex k ∈ Kn. Say that an n-simplex k is degenerate if
k = siℓ for some (n − 1)-simplex ℓ and some i and nondegenerate otherwise. We
shall glue the simplices together in such a way that we obtain a space with one
“n-cell” for each nondegenerate n-simplex of K. That means in particular that in
the resulting space every point will be the interior point of the image of exactly
one simplex {k} ×∆[n]t, where k is nondegenerate. Note that the unique point of
∆[0]t is an interior point. We say that a point (k, u) of K̄ is nondegenerate if k is
nondegenerate and u is interior.

Define an equivalence relation ≈ on K̄ by letting

(µ∗k, u) ≈ (k, µ∗u)

for each k ∈ Kn, u ∈ ∆[m], and µ : [m] −→ [n]. This equivalence relation is
generated by the relations obtained by specializing to µ = δi or µ = σi. These can
be rewritten as

(dik, u) ≈ (k, δiu) and (sik, u) ≈ (k, σiu).

Each n-simplex kn can be written uniquely in the form kn = sjp · · · sj1kn−p, where

kn−p is nondegenerate and 0 ≤ j1 < · · · < jp < n. Define a function λ : K̄ −→ K̄
by

λ(kn, un) = (kn−p, σj1 · · ·σjpun)

where un ∈ ∆[n]t. Similarly, every un ∈ ∆[n]t can be written uniquely in the form
un = δiq · · · δi1un−q, where un−q is interior and 0 ≤ iq < · · · < i1 ≤ n. Define a

function ρ : K̄ −→ K̄ by

ρ(kn, un) = (diq · · · di1kn, un−q).

Lemma 13.5.3. The composite λ ◦ ρ carries each point of K̄ into the unique
nondegenerate point that is equivalent to it.

Define the geometric realization of K, which is usually denoted |K| but which
we shall usually denote by TK, to be the set of equivalence classes K̄/(≈). Define
FpTK to be the image of

∐
0≤n≤pKn ×∆[n] in TK and give it the quotient space

topology. Then topologize TK by giving it the topology of the union of the FpTK.
This means that a subset C is closed if and only if it intersects each FpTK in a
closed subset. We shall shortly give an equivalent description of this topology.
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13.6. The adjoint relationship between S and T

It has long been known that we can use simplicial sets pretty much interchange-
ably with topological spaces when studying homotopy theory. We sketch how this
is seen through the categorical eyes of an adjunction. For a simplicial set K, we
have defined a space |K| = TK, called the geometric realization of K. We write
|k, u| for the image of (k, u) in TK, where k ∈ Kn and u ∈ ∆[n]. For a space X,
we have defined a simplicial set SX, called the total singular complex of X, whose
n-simplices are the continuous maps f : ∆[n]t −→ X. The homotopical behavior
is studied through an adjunction: T and S are left and right adjoint functors in
the sense that we have just defined. That is, there is a bijection, natural in both
variables, between morphism sets

U (TK,X) ∼= sSet(K,SX).

It is specified by letting f : TK −→ X correspond to g : K −→ SX if

f(|k, u|) = g(k)(u).

There is an equivalent way of saying this. Define γ : TSX −→ X by

γ|f, u| = f(u) for f : ∆n −→ X and u ∈ ∆n.

It is a fact that γ is a weak homotopy equivalence for every space X, although we
shall not prove that here. There is also a map ι : K −→ STK of simplicial sets
specified by ι(k)(u) = |k, u| for k ∈ Kn and u ∈ ∆n. Again, as we also shall not
prove, |ι| : |K| −→ |STK| is a homotopy equivalence. These facts are proven, for
example, in [45]. The natural composite

SX
ιS //STSX

Sγ //SX

is the identity map of SX. The natural composite

TK
Tι //TSTK

γT //TK

is the identity map of TK. Here ιS means first apply the functor S and then the
natural map γ, and similarly for γT . The natural maps ι and γ are the unit and the
counit of the adjunction. This means that, in the correspondence above, f = γ ◦Tg
and g = Sf ◦ ι.

13.7. CW complexes

We explain the nature of the space TK by introducing two equivalent definitions
of a CW complex. We start with the original 1949 definition of J.H.C. Whitehead
[68], which explains the name. We then observe that TK satisfies the specifications
of that definition. Finally, we give the more modern and now standard definition
of a CW complex. Let Dn be the disc {x||x| ≤ 1} ⊂ Rn.

The capitalized C and W are the source of the name “CW complex”, but this
form of the definition is so rarely used nowadays that younger experts often have
no idea where the name came from. However, it is convenient for describing TK.

Theorem 13.7.1. The space TK is a CW complex with one n-cell for each
nondegenerate n-simplex kn ∈ Kn.
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Proof. The n-cells en of TK are the images of the subspaces {kn}×∆̊[n], and

the map j : ∆[n] −→ ēn is the restriction of the map K̄ −→ TK to {kn} × ∆̊[n].
The topology of the union we prescribed before is in fact the “weak topology”. It
is “weak” in the sense that in general it has more open sets than the quotient space
topology, but the novice may not want to worry about the verification, preferring
to simply accept that our original definition of the topology gives what once upon
a time was called the weak topology. □

Here is the modern redefinition of a CW complex.

Definition 13.7.2. A CW complex is a space X that is the union of an ex-
panding sequence of subspaces Xn, where Xn is called the n-skeleton of X. It is
required inductively that

(1) X0 is a set with the discrete topology.
(2) Xn+1 is constructed from Xn as a “pushout”∐

Sn
j //

∩
��

Xn

��∐
Dn+1

j̄
// Xn+1.

This means that Xn+1 is the quotient space

Xn ∪⨿Sn (⨿Dn+1) ≡ Xn ⨿ (⨿Dn+1)/(≈)

specified by the equivalence relation s ≈ j(x) for s ∈ Sn ⊂ Dn+1.

The space X is given the topology of the union; equivalently, a subset is closed if
its intersection with each closed cell j̄(Dn) is closed.

We leave it as an exercise for the reader to see that the two definitions of a CW
complex give exactly the same spaces. The compactness of the spheres that are the
domains of attaching maps ensures that a CW complex with the second definition
is closure finite, as required in the first definition.

The intuition is that we glue discs Dn+1 to Xn as dictated by attaching maps
defined on their boundaries Sn. The attaching maps can be quite badly behaved.
For an ordered simplicial complex K, the classical geometric realization |K| is
homeomorphic to the geometric realization T (Ks) of its associated simplicial set
Ks. This is visually apparent since each has an n-cell for each n-simplex of K.
Remember that the n-simplices of K itself are of the form {x0 < · · · < xn} whereas
the elements of Kn are of the form {x0 ≤ · · · ≤ xn}. The degeneracy identifications
in the construction of TKs serve to eliminate the degenerate elements in which
some of the vertices are repeated.

In T (Ks) the closed cells are homeomorphic to ∆[n] and the attaching maps are
homeomorphisms on boundaries. Spaces can be “triangulated” as CW complexes
using many fewer cells than are required for polyhedral triangulations. For example,
we can triangulate the n-sphere Sn as a CW complex with just two cells. Clearly
S0 is a CW complex with two 0-cells, or vertices. For n > 0, we start with a single
0-cell ∗, take (Sn)n−1 = ∗ and attach a single n-cell with attaching map the trivial
map Sn−1 −→ ∗. Then the n-skeleton is ∗ ∪Sn−1 Dn = Dn/Sn−1, which is already
homeomorphic to Sn.
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Remark 13.7.3. Earlier we neglected to give a precise definition of |K| for a
geometric simplicial complex with a possibly infinite number of vertices and thus
with possibly infinite dimension: while every simplex has a finite dimension, sim-
plices of all finite dimensions can occur. When K is ordered, we now have such a
definition. We just take the geometric realization of the associated simplicial set;
the result is a functor from the category of ordered simplicial sets to the category of
spaces. When K is finite, TKs is homeomorphic to |K| as we defined it originally.
We can also start with A-spaces, alias posets X. Then TK (X)s gives a composite
functor from the category of posets to the category of spaces.

Remember that the product K×L of ordered simplicial complexes K and L has
simplices all subsets of products σ × τ of simplices, where the ordering on vertices
is given by (x, y) ≤ (x′, y′) if x ≤ x′ and y ≤ y′.

Definition 13.7.4. Define the product K × L of simplicial sets K and L by
letting (K ×L)n = Kn×Ln, with di = (di, di) and si = (si, si), which implies that
µ∗ = (µ∗, µ∗) for all morphisms µ in ∆.

This definition is forced by two considerations. First, it ensures the consistency
statement (K×L)s ∼= Ks×Ls. That is, if we start with ordered simplicial complexes
K and L, then the simplicial set (K × L)s is naturally isomorphic to the product
simplicial set Ks ×Ls. Second, the definition is dictated by the universal property
that we require of products in any category. Recall that the n-simplices of K × L
involve repeated vertices of K and L. These correspond to the use of degeneracy
operators in the factors Ks and Ls of the associated simplicial set. It clarifies
matters to be precise about this. We state the following lemma for general simplicial
sets K and L, but the reader should think about what it is saying when we apply
it to Ks and Ls for ordered simplicial complexes K and L.

Lemma 13.7.5. Let K and L be simplicial sets. The nondegenerate n-simplices
of K × L can be written uniquely in the form

(sip · · · si1k, sjq · · · sj1ℓ),
where k is a nondegenerate (n−p)-simplex of K, ℓ is a nondegenerate (n−q)-simplex
of L, i1 < · · · < ip, j1 < · · · < jq, and the sets {ia} and {jb} are disjoint.

The set {ia} ∪ {jb} has p+ q elements and corresponds to a (p, q) shuffle per-
mutation of a set with p+ q elements. The term “shuffle” comes from thinking of a
permutation of a deck of p+ q cards that starts with a cut into p cards and q cards,
which are kept in order by the permutation. The reader will easily see that when
we started with posets X and Y and showed that K (X × Y ) is a subdivision of
K (X) ×K (L), we were actually verifying an instance of essentially this lemma.
From here, the reader will have no trouble believing the following result, the proof
of which amounts to appropriately subdividing topological simplices ∆[n]t.

Theorem 13.7.6. For simplicial sets K and L, the map

T (K × L) −→ TK × TL
whose coordinates are the maps Tπ1 and Tπ2 induced by the projections of K × L
on K and L is a homeomorphism.

We shall not repeat the proof, which adds precision and decreases intuition,
referring the reader, for example, to [45, 14.3] or [26, 4.3.15] for details. The latter
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book is especially recommended as a very good and relatively recent treatment of
CW complexes, simplicial complexes, and simplicial sets.

13.8. The fundamental category functor Π

It is also known, although this is more recent, that we can use categories pretty
much interchangeably with topological spaces when studying homotopy theory. We
are going to say quite a lot about this later. This comparison again starts with an
adjunction. We have constructed a simplicial set NC called the nerve of C . We
define BC = TNC . This is called the classifying space of the category C . When G
is a group regarded as a category with a single object, BG is called the classsifying
space of the group G. The space BG is often written as K(G, 1). It is called an
Eilenberg-Mac Lane space. It is characterized (up to homotopy type) as a connected
space with π1(K(G, 1)) = G and with all higher homotopy groups πq(K(G, 1)) = 0.
A concise summary of how that works is in [48, §16.5]. More generally, a detailed
study of the classifying spaces of topological groups and what they classify is in [46].
These are fundamentally important constructions in topology and its applications.

The nerve functor N is accompanied by a functor Π: sSet −→ Cat, called the
“fundamental category” functor.1 It is left adjoint to N , meaning that

Cat(ΠK,C ) ∼= sSet(K,NC ).

This means that it is conceptually sensible, but, in contrast to such functors as S
and T , it does not have good homotopical properties, as we shall see.

For a simplicial set K, the objects of the category ΠK are the vertices (that is,
the 0-simplices) of K. To construct the morphisms, one starts by thinking of the
1-simplices y as maps d1y −→ d0y. One forms all words (formal composites) that
make sense, that is, whose targets and sources match up. One then imposes the
relations on morphisms determined by

s0x = idx for x ∈ K0 and d1z = d0z ◦ d2z for z ∈ K2.

We use the relations didj = dj−1di for i < j when (i, j) is (0, 1), (1, 2), and (0, 2) to
see that sources and targets match up. This makes good sense since if K = NC ,
then a 0-simplex is an object x of C , a 1-simplex y is a map d1y −→ d0y, the
1-simplex s0x is idx, and a 2-simplex z is given by a pair of composable morphisms
d2z and d0z together with their composite d1z.

Therefore there is a natural map ε : ΠNC −→ C that is the identity on objects
(the zero simplices of NC ) and is induced by the identity map from the generating
morphisms of ΠN C (the 1-simplices on NC ) to the morphisms of C . In fact,
ε is an isomorphism of categories: it is the identity on objects, and it presents
the category in terms of generators given by the morphism sets modulo relations
determined by the category axioms.

For the adjunction, a functor F : ΠK −→ C is constructed from a map of sim-
plicial sets g : K −→ NC by letting F be the unique functor that agrees with g
on objects (= 0-simplices) and equivalence classes of morphisms (= 1-simplices).
Applying the adjunction to the identity map of ΠK, we obtain a natural map
η : K −→ NΠK, which is the unit of the adjunction, and the counit is the isomor-
phism ε.

1There is no fully standard notation for this category. I’ve seen it denoted τ1, π1, π, and C.



136 13. SIMPLICIAL SETS

13.9. Tensor products of functors?
Add in: see §9 exam-
ples Give the idea, relate to geometric realization of simplicial spaces and K ∼=

K ⊗∆ ∆s. Motivate by coming analogy with subdivision.
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The big picture: a schematic diagram and the role
of subdivision

The n-skeleton Kn of a simplicial set K is the subsimplicial set generated by the
q-simplices for all q ≤ n. Visibly, ΠK depends only on the 2-skeleton K2. Therefore
the inclusion K2 −→ K of simplicial sets induces an isomorphism of categories
ΠK2 −→ ΠK for any K. In particular, Π takes the inclusion ι : ∂∆[n]s −→ ∆[n]s

of the boundary of the n-simplex to the identity functor when n > 2. Thus Π
loses homotopical information: upon realization, |ι| is equivalent to the inclusion
Sn−1 −→ Dn. What is amazing is that this extreme loss of information disappears
after subdividing twice. This is something I have been trying to better understand
for quite some time.

The reader will find it easy to believe that there is a subdivision functor on
simplicial sets that generalizes the subdivision functor Sd on simplicial complexes
in the sense that (SdK)s ∼= Sd(Ks) for a simplicial complex K. This allows one
to define a subdivision functor on categories by setting SdC = ΠSdNC . One can
iterate subdivision, forming functors Sd2 on both simplicial sets and categories.
What is mind blowing at first is that the iterated subdivision Sd2C is actually a
poset whose classifying space BSd2C is homotopy equivalent to BC . I will start
from a more combinatorial definition of SdC , and I will use it to give what I hope
the reader will find an easy combinatorial proof that Sd2C is indeed a poset.

However, before heading for that, let us summarize a schematic and technically
oversimplified global picture of all of the big categories that we are constructing
and comparing by functors. This is the same diagram as in the introduction, and
it gives an interesting picture of lots of kinds of mathematics that come together
with a focus on simplicial sets. Add left adjoint to i,

from Cat to Poset?

Grp
K(−,1) //

i

��

U

S

��

π1

oo

Cat

Sd2

��

N //

B

;;

sSet

T

OO

Sd2 //
Π

oo OS C
i

oo

U

��
Poset

i

OO

∼= // A-Space

K

;;

∼=
oo S C

X
oo
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Our earlier work focused on finite spaces, but the basic theory generalizes with
the finiteness removed, provided we understand simplicial complexes to mean ab-
stract simplicial complexes. As noted above, we didn’t define geometric realization
in general earlier, but we have done so now. The equivalence of posets with A-
spaces and the constructions K and X that we worked out in detail for finite
spaces work in exactly the same way when we no longer restrict ourselves to the
finite case. The functors i in the diagram are thought of as inclusions of categories.
Remember that we write i(K) = Ks for the simplicial set associated to an ordered
simplicial complex. We have defined all of the categories and functors exhibited in
the diagram except for Sd2, which is second subdivision.

Describe features of the diagram: posets vs ordered simplicial complexes (latter:
some but not all totally ordered subsets of the poset of vertices. [Said earlier])
Remember no canonical ordering, u cannot be a right adjoint, etc.
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Subdivision and Properties A, B and C in the
Category of Sets

We shall define three properties of a simplicial set, called Properties A, B,
and C. We say that a category satisfies property A, B, or C if its nerve satisfies
that property. Remember that the nerve functor N is a right adjoint whose left
adjoint is the fundamental category functor Π. We shall define the subdivision of a
simplicial set in such a way as to generalize the subdivision of simplicial complexes
that plays such a fundamental role in our study of finite spaces. We shall define
the companion notion of the subdivision of a category in the next chapter. We
write Sds for the subdivision functor on simplicial sets and Sdc for the subdivision
functor on categories when necessary for clarity. These are the main characters in
our story. We want to understand the relationships between these functors and
the rest of the categories and functors in our big picture. There are a number of
surprising and interesting implications.

15.1. Properties A, B and C of simplicial sets

Definition 15.1.1. We define and name three properties that a simplicial set
might have.

(A) Property A, the nondegenerate simplex property: K has property A if every
face of a nondegenerate simplex x of K is nondegenerate.

(B) Property B, the distinct vertex property: K has property B if the n+1 vertices
of any nondegenerate n-simplex x of K are distinct.

(C) Property C, the unique simplex property: K has property C if for any set of
n + 1 distinct vertices of K, there is at most one nondegenerate n-simplex of
K whose vertices are the elements of that set.

Remark 15.1.2. In Property A, we mean that all faces dix are nondegenerate.
But then all faces of all dix are also nondegenerate. Iterating, all of the face q-
simplices of x for q < n are nondegenerate.

In line with this remark, there is a less succinct but useful characterization of
Property B. We express it with a notation that we shall use frequently later.

Notation 15.1.3. For a simplex x ∈ Kn and a (nonempty) subset S of the set
[n] = {0, 1, · · · , n}, let S∗x denote the simplex µ∗x ∈ Km, where µ : [m] −→ [n] is
the unique injection in ∆ with image S. Then the cardinality of S, which we write
as |S|, is m+ 1.

Proposition 15.1.4. A simplicial set K has Property B if and only if for every
n and every nondegenerate simplex x ∈ Kn, µ

∗x and ν∗x are distinct simplices of
K for every pair µ and ν of distinct injections with target [n] in ∆; equivalently,
S∗x ̸= T ∗x for every pair of distinct subsets S and T of [n].

139
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Proof. Property B is the case when µ and ν have source [0], so it is clear
that the new property implies Property B. For the converse, suppose that K
satisfies Property B and that S∗x = T ∗x for a nondegenerate simplex x ∈ Kn and
nonempty subsets S and T of [n]. This clearly implies that |S| = |T | = m + 1,
say, where 0 ≤ m ≤ n. Write S = {s0, · · · , sm} and T = {t0, · · · , tm}, each in
strictly increasing order. Consider the singleton subsets {i} ⊂ [m], {si} ⊂ [n], and
{ti} ⊂ [n], where 0 ≤ i ≤ m. Using the language of Notation 15.1.3, we have

{si}∗x = {i}∗S∗x = {i}∗T ∗x = {ti}∗x.
Since these are vertices of x, they are equal by Property B. This implies that si = ti
and thus S = T . □

It is natural to ask if there are implications among Properties A, B, and C.

Theorem 15.1.5. Property B implies Property A, but there are no other im-
plications between these properties.

Proof. Suppose that K does not have Property A. There is an n ≥ 1 and a
nondegenerate n-simplex with a degenerate face. Using the commutation relations
between faces and degeneracies, we see that any degenerate simplex has a degen-
erate 1-simplex as one of its 1-faces. Since both vertices of a degenerate 1-simplex
s0x are x, our original nondegenerate n-simplex cannot have distinct vertices. The
non-implications are proven by exhibiting counterexamples. We choose nerves of
categories, so that these non-implications will also be clear for categories. □

Example 15.1.6. Here are some examples which exhibit various non-implications.
(i) Let K = NC where C is the category with one object x and one non-identity
morphism p, with p ◦ p = p. Then K satisfies Property A but not Property B.
(ii) Let K = NC , where C is the category with two vertices x and y, two non-
identity morphisms x −→ y, and no morphisms y −→ x. Then K satisfies Proper-
ties A and B but not Property C.
(iii) Let K = NC2, where C2 is the cyclic group of order 2 regarded as a category
with one object. Then K satisfies Property C but not Properties A or B. For each
q, K has a unique nondegenerate q-simplex (g, · · · , g), where g is the generator of
C2. Since g2 = e, that simplex has a degenerate face when q ≥ 2.
(iv) More generally, if K = NCn, where Cn is the cyclic group of order n > 2 with
generator g, the simplices x = (g, · · · , g) ∈ Kq have all faces dix nondegenerate,
but iterated face operations reach degenerate simplices when q ≥ n.

Here is a thought exercise. Consider the simplicial set Ks associated to anSuspect
ordered simplicial complex K. Clearly it has all three properties. What about a
converse? Recall that there is a natural order on the set of vertices of the standard
n-simplex ∆[n]s. After all, they are the i with 0 ≤ i ≤ n. Since the set Kn can
be identified with the set of simplicial maps ∆[n]s −→ Kn, each simplex has an
induced ordering of its vertices. It need not be consistent as the simplices vary. We
can try to give the set of vertices a partial order that restricts to a total order on
each simplex by setting v ≤ w if [and only if] v and w are vertices of some simplex
x in some Kn and v ≤ w in the ordering of the vertices of that simplex [and taking
the partial order generated by this relation [to get transitivity]?]

Exercise 15.1.7. Suppose that a simplicial set K satisfies Properties B and
C. Then ≤ is a well-defined partial order on the set V = K0 that restricts to aThis is not so

easy! Transitivity?
FALSE!
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total order on the vertices of each non-degenerate simplex of K. With simplices
those finite sets of vertices that are the vertices of some nondegenerate x ∈ Kn, we
obtain a simplicial complex L, and K is isomorphic to Ls. Conversely, if K does
not satisfy either Property B or Property C, then it cannot be isomorphic to Ls

for any simplicial complex L.

By abuse of language, we say that a simplicial set is a simplicial complex if it
is isomorphic to Ls for some ordered simplicial complex L. In fact, L is canonically
determined by K in the manner that we have described. The exercise proves the
following result.

Theorem 15.1.8. A simplicial set is a simplicial complex if and only if it
satisfies Properties B and C.

15.2. The definition of the subdivision of a simplicial set

For both simplicial sets and categories, there is both a conceptual definition
and an equivalent combinatorial definition. For simplicial sets, we begin with the
perhaps ugly looking and hard to grasp combinatorial definition and then show that
it is equivalent to a conceptual definition that is closely analogous to the definition
of geometric realization.

Definition 15.2.1. We define the subdivision SdK = SdsK of a simplicial set
K. The q-simplices of SdKq are the equivalence classes of tuples

(x;S0, · · · , Sq),

where, for some n ≥ 0, x ∈ Kn, each Si is a subset of [n], and Si ⊂ Si+1 for
0 ≤ i < q. The equivalence relation is specified by

(µ∗x;S0, · · · , Sq) ∼ (x;µ∗(S0, · · · , Sq))

for a morphism µ : [m] −→ [n] in ∆, where x ∈ Kn, hence µ∗x ∈ Km; here {Si} is
an increasing sequence of subsets of [m] and

µ∗(S0, · · · , Sq) = (µ(S0), · · · , µ(Sq)).

The simplicial operations are induced by

ν∗(x;S0, · · · , Sq) = (x;Sν(0), · · · , Sν(p))

for a map ν : [p] −→ [q] in ∆, where x ∈ Kn and {Si} is an increasing sequence
of subsets of [n] for some n. Subdivision is functorial. For a map f : K −→ L of
simplicial sets, f∗ = Sdf : SdK −→ SdL is induced by

f∗(x;S0, · · · , Sq) = (f(x);S0, · · · , Sq).

This definition is convenient for doing combinatorics and is directly motivated
by the following comparison, which we will prove in §15.3.

Example 15.2.2. We can denote the vertices of a geometric n-simplex using
elements in [n] and denote the barycenter of each q-simplex with vertices vi0 <
· · · < viq using the q-tuple (vi0 , . . . , viq ). The following illustrates this in the case
of a 2-simplex.



142 15. SUBDIVISION AND PROPERTIES A, B AND C IN THE CATEGORY OF SETS

Remark 15.2.3. Notice that barycenters of higher dimensional simplices have
higher orders. In the example above for instance, we have the following order on
the vertices:

0 ≤ (0, 1) ≤ (0, 1, 2)

Theorem 15.2.4. If K is an ordered simplicial complex, then the simplicial
sets Sd(Ks) and (SdK)s are naturally isomorphic.

However, it obscures the idea behind the definition, which we now elucidate.
The conceptual definition parallels Constructions Construction 13.3.4 and Con-
struction 13.5.2. The parallel with the geometric realization functor is particularly
useful, but the parallel with the reconstruction functor T sK is especially illuminat-
ing.

Recall that ∆[n]s is the represented simplicial set with q-simplices the maps
α : [q] −→ [n] in ∆. Its nondegenerate simplices are the injections. It is a simplicial
complex. That is, it can be viewed as (K [n])s. As a simplicial complex it has the
subdivision studied earlier, which we now regard as a simplicial set and denote by
Sd∆[n]s. Then the nondegenerate q-simplices of Sd∆[n]s are the ordered q-tuples
α = {α0, · · · , αq} of ∆[n]s, where αi is a face of αi+1, so that αi is obtained from
αi+1 by precomposition with an injection in ∆. For a map ν : [p] −→ [q] in ∆, the
simplicial operation ν∗ on Sd∆[n] is given by

ν∗(α) = (αν(0), · · · , αν(p)).

As n varies, the subdivisions Sd∆[n] define a covariant functor

Sd∆[•]s : ∆ −→ sSet,

that is, a cosimplicial simplicial set. For µ : [m] −→ [n], µ∗ : Sd∆[m]s −→ Sd∆[n]s

is given by

µ∗α = (µ ◦ α0, · · · , µ ◦ αq).
Strictly speaking, to write simplices in terms of injections only, we must interpret
µ◦αi as the injective part δ of the canonical decomposition of µ◦αi as the composite
δσ of a surjection σ and an injection δ. Here is the conceptual definition of SdK.

Construction 15.2.5. As in the construction of T sK given in Construc-
tion 13.3.4, regard each set Kn as just a set, or as a discrete simplicial set with
each (Kn)q = K and all faces and degeneracies the identity map. Then form the
product simplicial sets Kn × Sd∆[n]s and take their disjoint union to obtain the
simplicial set

SdK =
∐
n≥0

Kn × Sd∆[n].
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Again as in the construction of T sK, define an equivalence relation on SdK. For
µ : [m] −→ [n] in ∆, we let

(µ∗x, α) ∼ (x, µ∗α).

where x ∈ Kn and α ∈ Sd∆[m]s. We suppress from the notation that this defines an
equivalence relation on q-simplices for each q. Now (SdK)q is the set of equivalence
classses of q-simplices. The simplicial operations on the simplicial sets Kn×Sd∆[n]s

are of the form id×ν∗. They induce the simplicial operations on SdK.

Remark 15.2.6 (Categorical remark). The definitions of T sK, SdK and TK
are all examples of “tensor products of functors”, often written K ⊗∆ L for a
contravariant functor K and a covariant functor L defined on ∆ (which could be
replaced by any other small category) but we shall not go into the general categorical
framework. However, as a specialization of a general categorical result about such Will we?
categorical tensor products, there is an associativity isomorphism of simplicial sets

(K ⊗∆ L)⊗∆ M ∼= K ⊗∆ (L⊗∆ M)

where K is a simplicial set and L and M are cosimplicial simplicial sets. Inductively,
this implies that

SdnK ∼= K ⊗∆ Sdn∆[−] =
∐
n

Kn × Sdn∆[n]/(∼),

where the equivalence relation is defined exactly as in Construction 15.2.5. This
gives a good hold on these functors, since Sdn∆[−] = (K (n)∆[−])s is just the
classical iterated barycentric subdivision, regarded as a simplicial set.

To reconcile the combinatorial and conceptual definitions of SdK, observe
that injective maps α in ∆ are uniquely determined by their images. The q-
tuples (α0, · · · , αq) of injections above can just as well be viewed as the q-tuples
(S0, · · · , Sq) of the images of the αi, which are increasing sequences of subsets of
[n] for some n. After this replacement, the two definitions coincide. Observe that
the degenerate simplices of Sd∆[n]s are those for which Si = Si+1 for some i.

The conceptual definition is the one best suited for the proof of the following
basic result.

Theorem 15.2.7. The geometric realization of a simplicial set K is home-
omorphic to the geometric realization of SdK, but there is no natural simplicial
map between the two that realizes the homeomorphism. There is a natural map of
simplicial sets SdK −→ K that induces a homotopy equivalence TSdK −→ TK.

Proof. We compare SdK with the simplicial set isomorphic to K given by
Proposition 13.3.6. That simplicial set is constructed from K and the ∆[n] rather
than from K and the Sd∆[n]. The standard homeomorphisms between the |∆[n]|
and the |Sd∆[n]| induce the claimed homeomorphism between |K| and |SdK|.

The standard maps of simplicial sets ξ : Sd∆[n]s −→ ∆[n]s given by Defini-
tion 6.4.13 together specify a map ξ : Sd∆[•]s −→ ∆[•]s of cosimplicial simplicial
sets since they are natural, as observed in Remark 6.4.18. Using the conceptual
definition of SdK and the description of K as T sK in Proposition 13.3.6, we see
that ξ induces a natural map of simplicial sets ξ : SdK −→ K. The geometric
realization of the maps ξ : Sd∆[n]s −→ ∆[n]s are homotopy equivalences by Propo-
sition 6.4.12. It follows that the induced map Tξ : TSdK −→ TK is a homotopy
equivalence. The proof of the implication is just a bit beyond the scope of this
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book; an old reference is [48, A.4(ii)]. The idea is that application of the maps ξ
gives a map that by inspection of the filtrations of TSdK and TK can be proven
to be a local weak homotopy equivalence, so that Theorem 3.3.1 gives that Tξ is
a weak homotopy equivalence. Since it is a map between CW complexes, it is a
homotopy equivalence. □

15.3. Combinatorial properties of subdivision

We use the combinatorial definition to derive some basic combinatorial prop-
erties of subdivision.

Definition 15.3.1. A q-simplex (x;S0, · · · , Sq) of SdK is in minimal form if
x ∈ Kn is nondegenerate and Sq = [n].

Proposition 15.3.2. Every simplex of SdK is equivalent to a unique simplex
in minimal form. When so written, a simplex is degenerate if and only if Si = Si+1

for some i.

Proof. Conceptually, this is analogous to the description of the points of
the geometric realization TK in nondegenerate form. We think of q-simplices of
Sd∆[n]s as “interior” if Sq = [n], and we then use the same canonical form for
morphisms of ∆ as composites of σ’s and δ’s that we used to prove the analogue for
realization. If we start with an element (y;T1, · · · , Tq) with y ∈ Kp, Ti ⊂ [p] and
|Tq| = m+1, we have a unique injection δ : [m] −→ [p] such that δ([m]) = Tq. There
are unique subsets Ri of [m] such that δ(Ri) = Ti, and (y;T1, · · · , Tq) is equivalent
to (δ∗y;R1, · · · , Rq), where Rq = [m]. Now there is a surjection σ : [m] −→ [n] and
a nondegenerate simplex x of Kn such that σ∗x = δ∗y. Then (δ∗y;R1, · · · , Rq) is
equivalent to (x;S1, · · · , Sq) where Si = σ∗(Ri). By the surjectivity of σ, Sq = [n].
It is left as an exercise to check that this process reaches the unique minimal element
equivalent to the element we started with.

Now suppose that z = (x;S1, · · · , Sq) is in minimal form. If Si = Si+1, then z
is certainly degenerate. We must show that if z is degenerate, then some Si = Si+1.
The assumption means that z is equivalent to z′ = (y;T0, · · · , Tq), where Tj = Tj+1

for some j. However, unlike z, z′ might not be in minimal form. Just as above, let
y ∈ Kp, so that the Ti are contained in [p]. Let |Tq| = m+1 and choose an injection
δ : [m] −→ [p] such that δ([m]) = Tq. Define Ri = δ−1(Ti) for all i and note that
Rq = [m]. Then z′ is equivalent to z′′ = (δ∗y;R0, · · · , Rq). Now let δ∗y = σ∗w
where σ is a surjection and w ∈ Kn is nondegenerate. Then z′′ is equivalent to
(w;σ(R0), · · · , σ(Rq)). This simplex is in minimal form since σ([m]) = [n], so it
must be z. Thus x = w and Si = σ(Ri) = σiδ

−1(Ti). Since Tj = Tj+1, Sj = Sj+1.
This proves the result. □

Corollary 15.3.3. Let x ∈ Kn be nondegenerate. Then there is a nondegen-
erate q-simplex yq in SdK with qth vertex (x; [n]) if and only if q ≤ n.

Proof. If q ≤ n, set yq = (x; [n − q], [n − q + 1], · · · , [n]). Then yq is in
minimal form and nondegenerate, and its qth vertex is (x; [n]). Conversely, if we
have a nondegenerate yq with qth vertex (x; [n]), then, in minimal form, we must
have yq = (x;S0, · · · , Sq−1, Sq) with Si strictly contained in Si+1 for 0 ≤ i < n and
Sq = [n]. Clearly that implies q ≤ n. □

Proof of Theorem 15.2.4. The nondegenerate q simplices of the barycen-
tric subdivision SdK are the strictly increasing chains σ0 ⊂ · · · ⊂ σq of faces of a
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simplex. If σq has cardinality n+ 1, its elements specify a nondegenerate n-simplex
x of Ks. Viewing x as a map ∆[n] −→ Ks via Proposition 13.3.3, the inverse
images of the σi specify an increasing sequence of subsets Si of [n] with Sq = [n].
The rest is an exercise about the description of elements of Sds(Ks) in minimal
form. □

15.4. Subdivision and Properties A, B, and C of simplicial sets

Here is how subdivision relates to Properties A, B, and C.

Theorem 15.4.1. Subdivision of simplicial sets has the following properties.

(i) K has Property A if and only if SdK has Property A.
(ii) K has Property A if and only if SdK has Property B.
(iii) K has Property B if and only if SdK has Property C.

The following two corollaries are immediate.

Corollary 15.4.2. If K does not have Property A, then SdnK does not have
any of the three properties for any n ≥ 1. If K does have property A, then SdnK
has all three properties for all n ≥ 2.

Corollary 15.4.3. K has Property A if and only if Sd2K has Property C,
and then Sd2K also has Property B.

Now the following very satisfactory theorem follows directly from Theorem 15.1.8.

Theorem 15.4.4. A simplicial set K satisfies Property A if and only Sd2K is
a simplicial complex.

We might also ask whether our properties shed light on the question of whether
or not a simplicial complex is the nerve of a category. We have the following
complement to the previous result. It is an analogue of the fact that the subdivision
of a simplicial complex is a poset. We will prove it later, in §16.6.

Theorem 15.4.5. A simplicial set satisfies Property A if and only if SdK is
the nerve of a category, namely the category ΠSdK.

The last clause is a consequence of the following general observation.

Proposition 15.4.6. If a simplicial set K is isomorphic to NC for some cat-
egory C , then the category C is isomorphic to ΠK.

Proof. If K ∼= NC , then ΠK ∼= ΠNC ∼= C . □

Since ordered simplicial complexes satisfy Property A when regarded as sim-
plicial sets, Theorem 15.4.5 has the following result as a special case. It says that
the subdivision of a simplicial complex is the nerve of a category. Remarkably, this
appears to be a new result.

Theorem 15.4.7. If K is an ordered simplicial complex, then Sd(Ks) is iso-
morphic to NΠSd(Ks).
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15.5. The proof of Theorem 15.4.1

Since Property B implies Property A, by Theorem 15.1.5, the following two
implications prove both (i) and (ii) of Theorem 15.4.1.

Proof that if SdK has Property A, then so does K. Suppose for a con-
tradiction that we have a nondegenerate x ∈ Kn with a degenerate face dix = sjz,
where z ∈ Kn−2. Recall that djsj = id. In SdK, we have the 2-simplex1

(x; δiδj [n− 2], δi[n− 1], [n]).

It is written in minimal form and is nondegenerate. Its last face is the 1-simplex

(x; δiδj [n−2], δi[n−1]) ∼ (dix; δj [n−2], [n−1]) = (sjz; δj [n−2], [n−1]) ∼ (z; [n−2], [n−2])

since σjδj = id and σj : [n − 2] −→ [n − 2] is a surjection. This simplex is in
minimal form and degenerate, which contradicts the assumption that SdK has
Property A. □

Proof that if K has Property A, then SdK has Property B. Consi-
der a nondegenerate q-simplex y = (x;S0, · · · , Sq) written in minimal form. For
some n, x ∈ Kn is nondegenerate and the Si give a strictly increasing sequence
of subsets of [n], with Sq = [n]. The vertices of y are the (x;Si). Suppose that
(x;Si) ∼ (x;Sj) where 0 ≤ i < j ≤ q. Let µ : [mi] −→ [n] and ν : [mj ] −→ [n] be
injective maps in ∆ with images Si and Sj , respectively. Then

(µ∗x; [mi]) ∼ (x;Si) ∼ (x;Sj) ∼ (ν∗x; [mj ]).

Since K has Property A, the faces µ∗x and ν∗x are nondegenerate. Therefore, by
the uniqueness of the minimal form, we must have mi = mj . Since Si ⊂ Sj , this
implies that Si = Sj . The contradiction proves that SdK has Property B. □

Finally, the following two implications prove (iii) of Theorem 15.4.1.

Proof that if K has Property B, then SdK has Property C. Let

z1 = (x;S0, · · · , Sq) and z2 = (y;T0, · · · , Tq)
be nondegenerate q-simplices of SdK that have the same set of q+1 distinct vertices.
We must show that z1 = z2. We may assume without loss of generality that z1 and
z2 are in minimal form, with x ∈ Km, Sq = [m], y ∈ Kn, and Tq = [n] for some m
and n. Let mi + 1 = |Si| and ni + 1 = |Ti| and note that m0 < · · · < mq = m and
n0 < · · · < nq = n. Using Proposition 15.1.4, we see that the vertices of z1 and z2,
in minimal form, are the (S∗

i x; [mi]) and the (T ∗
i x; [ni]), respectively.

We are assuming that these two sets of vertices are the same. We claim that
they are the same as ordered sets. That is, (S∗

i x; [mi]) = (T ∗
i y; [ni]) for 0 ≤ i ≤ q.

Suppose not. Then (S∗
i x; [mi]) = (T ∗

j y; [nj ]) for some i ̸= j, and we may assume
i < j. Since these are both in minimal form, mi = nj . By the pigeonhole principle,
we must have some j′ < j and i′ > i such that mi′ = nj′ . But then we have
mi < mi′ = nj′ < nj = mi, which is a contradiction.

Thus mi = ni and S∗
i x = T ∗

i y for all i. Since Sq = [m] = [n] = Tq, we have
x = S∗

qx = T ∗
q y = y. Then, by Proposition 15.1.4 again, Si and Ti must be defined

by the same injection and so must be equal. Therefore z1 = z2 and SdK has
Property C. □

1Here and below, we write α[n] to denote the set α([n]).
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Proof that if SdK has Property C, then K has Property B. Suppose
that K does not have Property B. Let x ∈ Kn, n > 0, be nondegenerate with re-
peated vertices α∗x and β∗x for injections α, β : [0] −→ [n]. By the uniqueness
of the minimal form, (x;α[0], [n]) and (x;β[0], [n]) are distinct 1-simplices of SdK.
However, these 1-simplices have the same vertex sets since one of the vertices of
each is (x; [n]) and the other is

(x;α[0]) ∼ (α∗x; [0]) = (β∗x; [0]) ∼ (x;β[0]).

Thus SdK does not have Property C. □

15.6. Isomorphisms of subdivisions
Not worth a section?

We saw that if X and Y are posets, then the subdivisions of X ∗Y and (X ∗Y )−

are isomorphic, hence so are their associated simplicial sets. However, the posets
X ∗ Y and (X ∗ Y )− are not isomorphic, and neither are their associated simplicial
sets. We round out the picture with the following rather strange looking result,
which puts this example in a more general context.

Proposition 15.6.1. If K and L are simplicial sets such that SdK and SdL
are isomorphic, then although K and L need not be isomorphic, for each n there is
a bijection of sets fn : Kn

∼= Ln such that the faces of a simplex x ∈ Kn correspond
bijectively under fn−1 to the faces of f(x).

Proof. Let g : SdK −→ SdL be an isomorphism of simplicial sets. For a
nondegenerate n-simplex x ∈ Kn, we have the vertex (x; [n]) in SdK. Write
g(x; [n]) = (y; [m]) in minimal form. Using Corollary 15.3.3, we see that m = n,
and we define fn(x) = y. If x ∈ Kn is degenerate, there is a unique surjection σ
and nondegenerate simplex z such that x = σ∗z. Define fn(x) = σ∗f(z). If we
apply the same construction starting from g−1 : SdL −→ SdK, we obtain an inverse
function f−1

n to fn. The (n + 1) faces dix of a nondegenerate x ∈ Kn correspond
to the (n+ 1) 1-simplices yi = (x; δi[n− 1], [n]) of SdK, counted with multiplicities
in case of repetitions. The vertices of yi are d0yi = (x; δi[n − 1]) ∼ (dix; [n − 1])
and d1yi = (x; [n]) in minimal form. Since the nondegenerate faces of L admit a
similar description, we see that these faces correspond under fn−1 to the faces of
fn(x). The following example shows that K and L need not be isomorphic. □ Missing!

15.7. Regularity and non-singularity of simplicial sets and CW
complexes

Property A of a simplicial set is an analogue of the classical notion of regularity
for a CW complex X. The results of this section are peripheral to our main interests
here, but they help contrast simplicial sets with CW complexes. Incomplete section,

see Piccinini?
Or expository REU
paper project

Definition 15.7.1. A CW complex X is regular if its closed cells are homeo-
morphisms onto their images so that each cell map (Dn, Sn−1) −→ (en, ∂en) is a
homeomorphism.
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Definition 15.7.2. A nondegenerate simplex x ∈ Kn is regular if the following
diagram is a pushout, where [x] denotes the subsimplicial set generated by x.

∆[n− 1]

δn

��

dnx // [dnx]

��
∆[n]

x
// [x];

K is regular if all of its nondegenerate simplices are regular.

Theorem 15.7.3. For any K, SdK is regular.

Theorem 15.7.4. If K is a regular simplicial set, then |K| is a regular CW
complex.

Theorem 15.7.5. If X is a regular CW complex, then X is triangulable; that
is X is homeomorphic to |Ks| for some simplicial complex K.

Proof. This can be proven using induction. For a regular simplicial complex
X, let the triangulation on the vertices X0 be the vertices themselves. Supposing
that the triangulation up to the skeleton Xn−1 has been defined, we construct Xn

in the following way. The boundary of the closure of each n-cell en lies in Xn−1, and
thus we turn our attention to the triangulation of en. Let b denote the barycenter
of en and notice that since X is regular, b does not lie in Xn−1. Let the cone
space |C(∂en, b)| be the triangulation of en with |C(∂en, b)| ∼= en. Inducting over
all n-cells in Xn gives the desired triangulation. □

Corollary 15.7.6. If K is a regular simplicial set, then |K| is triangulable.

Proof. This follows directly from Theorem 15.7.4 and Theorem 15.7.5 above.
□

Now we turn to a special case of regular simplicial sets: nonsingular simplicial
sets.

Definition 15.7.7. A simplicial set is nonsingular if for each nondegenerate
simplex x, the map x is degreewise injective, i.e. the induced map on the geometric
realization |∆[n]| −→ |[x]| is an embedding including the boundary.

Proposition 15.7.8. If a simplicial set is nonsingular, then it is regular.

Proof. Suppose thatK is a nonsingular simplicial set and x ∈ Kn is a simplex.
Each face is then a nondegenerate (n− 1)-simplex and so can be identified as ∆[n]
attaching along the nth face, giving regularity as desired. □

Remark 15.7.9. If K is nonsingular, then the induced map on the geometric
realization |∆[n]| together with its boundary is an embedding to |[x]|. Nonsingular
simplicial set is a structure in between ordered simplicial complex and simplcial
set. The main difference between nonsingular simplicial sets and those induced
by ordered simplicial complexes is that nondegenerate simplicies in nonsingular
simplicial sets are not uniquely determined by the vertices. Hence we have the
following inclusion relations between the three types of simplical sets:

OS C s ⊂ nonsingular sS et ⊂ sS et
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15.8. Characterizing nerves of posets

It is natural then to ask which simplicial sets are the nerves of posets, and
equivalent condition to which are in the image of N ◦ I. As we will find, the
intersection of the images of functors N and J is exactly the subcategory of the
nerves of posets.

sS et

C at OS C

Poset

N

J

I

K

To be the nerve of a poset, the left side of the commutative diagram above
shows that the following three conditions are necessary:

(1) its vertices must have a partial ordering
(2) it must be the nerve of a category
(3) there is at most one nondegenerate n-simplex for every set of distinct

(n+ 1) vertices

The right side of the commutative diagram indicates the following necessary con-
ditions:

(1) its vertices must have a partial ordering and
(2) it must be the maximal OS C realization based on the ordering of the

vertices.

These observations give us some intuition about what properties the nerves of
a poset need to satisfy. First of all we characterize a property that gives partial
ordering on the vertices.

Definition 15.8.1. Let X be a simplicial set, then

(1) Define v < w for vertices v and w in X if there is a nondegenerate n-
simplex x ∈ X such that the ith vertex is v and the jth vertex is w, with
i < j.

(2) Define v ≤ w for vertices v and w in X if there is a 1-simplex x such that
d0x = w and d1x = v.

X satisfies Property D if the ordering based on (1) is a strict partial ordering and
that of (2) is a partial ordering.

Remark 15.8.2. By definition the vertices of a simplicial set X that satisfies
Property D form a poset.

Lemma 15.8.3. Property D implies Property B.

Proof. Given a simplicial set X, if there exists a nondegenerate n-simplex
that has a repeated vertex v, then by Property D we have v < v, which is a
contradiction to strict partial ordering. □

One may ask how near Property D is to being a characterization of the nerves
of posets and whether there are simplicial sets satisfying Property D that are not
nerves of posets. The following example shows that there exists simplicial sets K
that satisfy Property D but are not the nerve of a poset.
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Example 15.8.4. Consider the following simplicial set with nondegenerate 0-
simplices and 1-simplices as shown below, and with no nondegenerate 2-simplicies.

a

b c

This satisfies Property D but is not the nerve of a category.

Now we consider the following theorem which characterizes those simplicial sets
which are the nerves of categories.

Theorem 15.8.5. Let K be a simplicial set. Then the following conditions are
equivalent:

• K is isomorphic to the nerve of a category
• Every inner horn of K has a unique filler

Remark 15.8.6. The second condition in Theorem 15.8.5 can be explicitly
characterized as the following: for any n ≥ 2 and any n-tuple of simplicies {xi ∈
K1|1 ≤ i ≤ n}, such that d0xi−1 = d1xi for 2 ≤ i ≤ n, there is a unique y ∈ Kn

such that v∗i y = xi, where vi : [1] −→ [n] with the image as {i− 1, i}.

In the following we denote the condition in Theorem 15.8.5 as the unique inner
horn filling condition. One might ask whether Property D and the unique inner
horn filling condition imply Property C, another condition necessary to be a nerve
of a poset. The following counterexample proves this to be false.

Example 15.8.7. Consider the simplicial set K with K0 = {0, 1} and two
nondegenerate 1-simplicies with 0, 1 as vertices and the ordering as 0 < 1. It has
the geometric realization in the form:

0 1

K satisfies Property D and the unique inner horn filling condition, but it does not
satisfy Property C because there are two 1-simplicies with the same vertices. The
key to this contradiction lies in the fact that the unique inner horn filling is defined
only for simplicies with dimension greater than or equal to 2.

Theorem 15.8.8. K is the nerve of a poset if and only if it satisfies the fol-
lowing conditions:

(1) Property C
(2) Property D
(3) Unique inner horn filling condition

Proof. ⇒ If K is the nerve of a poset P , then the partial ordering on the
vertices implies Property D, and the uniqueness of morphisms between objects
implies Property C. Being the nerve of a category implies the unique inner horn
filling condition.
⇐ For a given simplicial set K which satisfies Property C, D and the unique

inner horn filling condition, we construct a poset P using K0 along with their partial
orderings in K. By Property C and the unique inner horn filling condition, there
exists a bijection between

{nondegenerate n-simplex in K}↭ {chains of length n in P}
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By the construction of nerves, there’s also a bijection between

{chains of length n in P}↭ {non-degenerate n-simplices in N(P )}
Hence there is a bijective simplicial map from K to N(P ) by mapping the corre-
sponding vertices, which shows K is the nerve of a poset. □

It sometimes proves quite difficult to check whether a given simplicial complex
satisfies property D. Thus, we develop another equivalent, easier-to-check condition
that characterizes nerves of posets.

Lemma 15.8.9. Property B, Property C and the unique inner horn filling con-
dition imply Property D.

Proof. Suppose X is a simplicial set satisfying the three conditions, we first
check the partial ordering property. Given any vertex v, there always exists the
degenerate 1-simplex σ∗

0v such that it has both of its vertices as v, hence reflexivity
is satisfied;

Suppose by way of contradiction that there exist two 1-simplicies with v, w as
its vertices with v ≤ w and w ≤ v. Then there exist two nondegenerate simplicies
with the same vertex set, contrary to Property C. This then gives antisymmetry.

Transitivity is given by the unique inner horn filling condition.
We claim vertices are also strictly partial ordered. Property B ensures that

anti-reflexivity (since any nondegenerate 1-simplex must have distinct vertices).
Property C guarantees antisymmetry, and transitivity is given by the unique inner
horn filling property. □

Remark 15.8.10. Picking any two of the previous three conditions cannot give
Property D. This shows that Property D is indeed a very delicate condition.

Corollary 15.8.11. K is the nerve of a poset if and only if it satisfies the
following conditions:

(1) Property B
(2) Property C
(3) Unique inner horn filling condition

Proof. ⇒ This is given by Theorem 15.8.5 and Lemma 15.8.3.
⇐ This is given by Theorem 15.8.5 and Lemma 15.8.9. □

Remark 15.8.12. These three conditions are easier to check than the one using
Property D. Also, careful readers should also realized that we can characterize the
nerves of posets as the simplicial sets coming from some maximal realization of
posets based on the right side of the commutative diagram at the beginning of the
section. However, this characterization provides little insight on the nerves of poset
and is comparatively difficult to check.

With the characterization in Corollary 15.8.11, we can derive the following
interesting result.

Corollary 15.8.13. The intersection of the image of the nerve functor N and
the inclusion functor J is exactly the nerves of posets.

sS et

C at OS C

N

J
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Proof. By Theorem 15.8.5, being the nerve of a category is equivalent to the
unique inner horn filling condition. Since (OS C )s satisfies Property B and C,
Corollary 15.8.11 gives the desired result. □

Proposition 15.8.14. Any simplicial set in J(OS C ) = OS C s satisfies Prop-
erties A,B,C and D.

Proof. Recall that Theorem 15.1.5 shows that Property B implies Property
A. The result then simply follows since J(OS C ) satisfies Property B and C and
any element in (OS C )s satisfies Property D given that the vertices of ordered
simplicial complexes always satisfy the two partial ordering conditions. □

Proposition 15.8.15. The nerves of posets satisfy Property A, B, C, and D.

Proof. This follows from Proposition 15.8.14 and the fact that N ◦ I = J ◦
K . □

Remark 15.8.16. Note that the main difference between the nerves of posets
and OS C s is that a nerve of a poset must satisfy the unique inner horn filling
condition. This will be shown to be the only difference.

Proposition 15.8.17. A simplicial set X belongs to OS C s if and only if X
satisfies Property C and D.

Before proving this proposition, we introduce first a short lemma.

Lemma 15.8.18. Let K be a simplicial set and x be an arbitrary n-simplex with
vertex set V . For any subset S ⊂ V such that |S| = m+1, there exists an m-simplex
with S as the set of vertices.

Proof. Regard the simplicial set K as a contravariant functor K : ∆ −→ S et.
Define g : [m] −→ [n] which maps each element i to the position of the ith element
of S in V . Consider the map fi : [0] −→ [n] defined by 0 7→ g(i). Denote the g(i)th

vertex of x as vi, then this means:

K(fi)(x) = vi

Define morphism δi : [0] −→ [k] by 0 7→ i, then fi = g ◦ δi. Therefore any function
in the collection {fi}i∈[m] factors through g, as shown in the following diagram for
fi:

[0] [n]

[m]

fi

δi g

This corresponds to the following commutative diagram in the category of simplicial
sets:

K0 Kn

Km

X(fi)

X(g)X(δi)

Therefore for given x ∈ Kn, X(g)(x) gives a m-simplex with vertex set S. □

Equipped with the previous lemma, we return ready to prove Proposition 15.8.17.
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Proof. ⇒ follows from Proposition 15.8.14. ⇐ By Lemma 15.8.3, we know
X also satisfies Property B. For any simplicial set X that satisfies Property B and
C, all of its nondegenerate simplicies are uniquely determined by its vertices. For
any nondegenerate n-simplex x with vertex set V , for any subset S ⊂ V , there
exists a simplex with vertex set S based on Lemma 15.8.18. Hence the collection of
nondegenerate simplicies in X form an abstract simplicial complex. Since Property
D ensures a partial ordering on the vertices, we know the collection of nondegenerate
simplicies in X form an OS C , which means X is in (OS C )s. □

After identifying when a simplicial set is the nerve of a poset, we venture to
explore when the barycentric subdivision of a simplicial set is the nerve of a poset.
To this end, the following theorem proves as a classification.

Theorem 15.8.19. A simplicial set X has its subdivision Sd(X) as the nerve
of a poset if and only if X satisfies Property B.

Proof. Recall the following facts:

(1) Sd(X) satisfies Property C if and only if X satisfies Property B.
(2) Sd(X) satisfies Property B if and only if X satisfies Property A.
(3) Sd(X) is the nerve of a category if and only if X satisfies Property A.

Since Property B implies Property A, we can deduce that X satisfies Property
B if and only if Sd(X) satisfies Property B, C, and the unique inner horn filling
condition. □

Corollary 15.8.20. A simplicial set X has its double subdivision Sd2(X) as
the nerve of a poset if and only if X satisfies Property A.

Proof. A simplicial set X satisfies Property A if and only if Sd(X) satisfies
Property B. Applying Theorem 15.8.19, we know Sd(X) satisfies Property B if and
only if Sd2(X) is the nerve of a poset. □





CHAPTER 16

Subdivision and Properties A, B, and C in Cat

16.1. Properties A, B, and C of categories

Categories are implicitly small unless they are obviously large, like the cate-
gories of spaces, simplicial sets, or (small) categories. We may interpret properties
A, B, and C of the simplicial set NC as properties of a category C .

Definition 16.1.1. A (small) category C has Property A, B, or C if the
simplicial set NC has Property A, B, or C.

Theorem 16.1.2. Let C be a category. The following statements hold.

(i) NC has property A if and only if C has the no retracts property, meaning that
retractions are identity maps: if we have morphisms i : a −→ b and r : b −→ a
in C such that r ◦ i = ida, then a = b and i = r = id.

(ii) NC has property B if and only if C has the no loops property, meaning that
loops are identity maps: if we have morphisms f : a −→ b and g : b −→ a in
C , then a = b and f = g = id.

(iii) NC has property C if and only if C has the one way property: there is at
most one sequence of nonidentity morphisms fi : Ci −→ Ci+1 connecting any
finite ordered set of objects {Ci}.

(iv) C is a poset if and only if NC has properties B and C.

Proof. A nondegenerate n-simplex of NC is a composable sequence

c0
f1 //c1 // · · · //cn−1

fn //cn

of nonidentity morphisms. It has a degenerate face if and only if one of the com-
posites fi+1 ◦ fi is an identity map. This proves (i).

For (ii), Property B says that the objects ci of a nondegenerate n-simplex are
distinct, which clearly implies the no loops property. Conversely, if ci = cj for some
i < j, the composite of f ’s from ci to cj is a loop ci −→ ci. We can write the
composite as g ◦ fi. The no loops property implies that fi and g are identity maps,
so that our simplex is degenerate. This proves (ii)

Statement (iii) is immediate from the definition of Property C.
For (iv), it is immediate from (ii) and (iii) that C satisfies Properties A and

B if and only if there is at most one morphism between any pair of objects of C .
That is precisely the characterization of posets regarded as categories. □

16.2. The definition of the subdivision of a category

Let C be a category. We start with a combinatorical definition of SdC = SdcC .
It may be hard to assimilate, but it is the right definition to start with. We will
eventually see that Sd is actually nothing but the composite functor ΠSdsN , but
that will require a fair amount of proof.

155
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The intuition is that SdC has objects all chains of non-identity maps, and
the set of morphisms from (fi, n) to (gi,m) is the set of all ways that (fi, n) can
be mapped injectively to a subchain of (gi,m). These ways are to be distinct
after accounting for degeneracies, which motivates the definition of the equivalence
relation in the following definition.

To define SdC rigorously, we first define a category DC . The objects of DC
are the chains of composable arrows in C . To abbreviate notation, we sometimes
write A = (fi,m) as shorthand for a chain

a0
f1 //a1 // · · · //am−1

fm //am.

We may think of such a chain as an m-simplex of NC .
The morphisms from (fi,m) to (gi, n) are the equivalence classes of maps

µ : [m] −→ [n] in ∆ such that µ∗(gi, n) = (fi,m) in NC . The equivalence re-
lation is generated under composition by the following basic equivalences. For a
surjective map σ : [q] −→ [p] in ∆ and for right inverses α, β : [p] −→ [q] to σ, so that
σα and σβ are both the identity morphism of [p], set α ∼ β : (hi, p) −→ σ∗(hi, p)
for any object (hi, p). This makes sense since α∗σ∗ = id = β∗σ∗. Composition in
DC is induced by composition in ∆. Then define SdC to be the full subcategory of
DC whose objects are the non-degenerate chains. A functor F : C −→ C ′ induces
a functor NF : NC −→ NC ′, which in turn induces a functor SdF : SdC −→ SdC ′.
With these definitions, Sd is a functor Cat −→ Cat.

There is another way to view the definition, which may be easier to grasp.
The letter D above is meant to indicate that we allow degenerate chains as objects
of the category DC . We can instead start with the smaller category C C whose
objects (fi,m) are the nondegenerate chains, so that no fi is an identity map. The
maps from (fi,m) to (gi, n) in C C are the maps ν : [m] −→ [n] in ∆ such that
ν∗(gi, n) = (fi,m). Notice that such a map ν must be an injection since (fi,m) is
nondegenerate. Now define SdC to be the quotient category of C C with the same
objects but with equivalence classes of morphisms under the equivalence relation
generated by setting να ∼ νβ when

ν∗(gi, n) = (fi,m) = σ∗(hi, q)

for some surjection σ : [m] −→ [q] with right inverses α, β : [q] −→ [m].
The difference is whether we choose to first restrict to nondegenerate simplices

and then impose an equivalence relation or to first impose an equivalence relation
and then restrict to nondegenerate simplices. We get the same category either way.

Remark 16.2.1. It is useful to observe that if C has Property A, then no
ν∗(gi, n) can be degenerate and therefore C C = SdC .

16.3. Subdivision and Properties A, B, and C of categories

Despite the analogy with simplicial sets, the conclusions here read rather dif-
ferently.

Theorem 16.3.1. Subdivision of categories has the following properties.

(i) For any category C , SdC has Property B.
(ii) A category C has Property B if and only if SdC is a poset.

Again, the following remarkable theorem follows directly. Since this result
applies to any category C , it does not make sense to ask for a converse.
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Theorem 16.3.2. For any category C , Sd2C is a poset.

Example 16.3.3. The nerve of a poset need not be the subdivision of a simpli-
cial set. The poset Z of integers with its usual ordering provides a counterexample.
If NZ ∼= SdK and 0 corresponds to (x; [n]) in minimal form, then for any nonde-
generate q-simplex (y;S0, · · · , Sq) in minimal form that has qth vertex (x; [n]), we
have Sq = [n] and thus q ≤ n. However, in NC there are nondegenerate simplices
(−r,−r + 1, · · · , 0) for arbitrarily large r.

Since we have subdivision functors on both categories and simplicial sets, it is
natural to ask how these functors relate to the adjoint pair (Π, N). The following
result is either a theorem or a definition, depending on whether one chooses to start
with the combinatorial or the conceptual definition of the subdivision of a category.
We shall take it as a theorem and prove it in §16.5.

Theorem 16.3.4. For any category C , SdcC is isomorphic to ΠSdsNC .

This implies another characterization of categories having Property A.

Corollary 16.3.5. A category C has Property A if and only if SdsNC is
isomorphic to NSdcC .

Proof. If C has Property A, then Theorem 15.4.5 implies that SdsNC is
isomorphic to NΠSdsNC . By Theorem 16.3.4, the latter is isomorphic to NSdcC .
For the converse, NSdcC has Property B and therefore Property A by Theorems
16.3.1(i) and ??(ii). If SdsNC ∼= NSdcC , then C has Property A by ??(i). □

Remark 16.3.6. For posets X, we obtain naturally isomorphic simplicial sets
if we regard X as a category and take its nerve or if we regard X as the simplicial
complex K X and take the associated simplicial set (K X)s. It is natural to ask
whether NSdcX is isomorphic to Sds(K X)s. Since X satisfies Property A (and
B and C), the previous result gives that

NSdcX ∼= SdsNX ∼= Sds(K X)s.

Remarkably, Theorem 16.3.4 also implies that the categorical analogue of The-
orem 15.2.7 is a direct implication of that result.

Theorem 16.3.7. There is a njk on passage to classifying spaces. gap? Does Π pre-
serve the property in
question?

Proof. We apply the natural map of simplicial sets of Theorem 15.2.7 and
the fact that the composite ΠN is isomorphic to the identity functor to obtain the
required map as the composite

SdcC ∼= ΠSdsNC −→ ΠNC ∼= C .

□

16.4. The proof of Theorem 16.3.1

We have three implications to prove.

Proof that SdC has Property B. We first prove that C C has Property
B. Let A = (fi,m) and B = (gi, n) be objects of C C and suppose that we have
morphisms µ : A −→ B and ν : B −→ A. Since these morphisms are given by
injections in ∆, m = n. Since the only injection [n] −→ [n] is the identity map,
we have A = B and µ = id = ν. Thus C C has the no loops property, which is
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equivalent to Property B. This property is inherited by the quotient category SdC .
If we have maps µ : A −→ B and ν : B −→ A in SdC , they must be represented
by maps µ and ν in C C , but these maps are identity maps by what we have just
shown, hence µ and ν are identity maps. □

Proof that if C has Property B, then SdC is a poset. Since Property
B implies Property A, C C = SdC by Remark 16.2.1. We must show that C C is
a poset. Let A and B be objects of C C . We must show that there is at most one
morphism between A and B. Suppose there is a morphism µ : A and B. Since we
have just shown that C C has the no loops property, there is no morphism B −→ A
unless A = B and µ = id. Suppose there is another morphism ν : A −→ B. We
must show that µ = ν. Since A = µ∗B = ν∗B, we have ai = bµ(i) = bν(i) for all i,
where the ai and bj are the objects appearing in the chains A and B. Since B must
be nondegenerate when thought of as an element of NC and C has the no loops
property, we have bi ̸= bj for i ̸= j. Therefore µ(i) = ν(i) for all i and µ = ν. □

Proof that if SdC is a poset, then C has Property B. Suppose that
C does not have Property B. Then there are objects A and B (possibly the
same) and non-identity maps f : A −→ B and g : B −→ A. Consider the ob-

jects A
f−→ B

g−→ A and A in SdC . Let α, γ : [0] −→ [2] be the maps with images
{0} and {2}, respectively. Then

α∗(A
f−→ B

g−→ A) = A = γ∗(A
f−→ B

g−→ A).

Since no degeneracy operator on A is a face of A
f−→ B

g−→ A, we cannot have
α ∼ γ; that is, they represent distinct morphisms of SdC . But that contradicts the
assumption that SdC is a poset. □

16.5. Relations among Sds, Sdc, N , and Π

We are heading towards the proof of Theorem 16.3.4. We recall that ΠK has
objects the vertices x ∈ K, morphisms generated by the 1-simplices y ∈ K, and
relations dictated by the 2-simplices z. For a vertex x, s0x is the identity map
of x. For a 1-simplex y, d1y is the source of y and d0y is the target of y. For a
2-simplex z, d1z = d0z ◦ d2z. The functor Π is left adjoint to N , and the counit
of the adjunction is a natural isomorphism ΠNC ∼= C . We start work with the
following understanding of the category ΠSdsK for simplicial sets K.

Proposition 16.5.1. Every morphism of the category ΠSdsK can be repre-
sented by a 1-simplex in SdsK, and the category ΠSdsK has Property B.

Proof. By definition, every morphism is a formal composite of 1-simplices,
say yq ◦ · · · ◦ y1. Since yi+1 ◦ yi is defined, the target d0yi is equal to the source
d1yi+1. We will show that such a formal composite of length q is equivalent to a
formal composite of length q − 1. By induction, it must be equivalent to a formal
composite of length 1, which is just a 1-simplex.

Write yi in minimal form (xi;Si, [ni]), where xi ∈ Kni
is nondegenerate. Let

|Si| = mi ≤ ni and let αi : [mi] −→ [ni] be the injection with image Si. Since

(xq;Sq) = d1(xq;Sq, [nq]) = d0(xq−1;Sq−1, [nq−1]) = (xq−1; [nq−1]),
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there must be some surjection σ : [mq] −→ [nq−1] in ∆ such that α∗
qxq = σ∗[xq−1].

Let β : [nq−1] −→ [mq] be a right inverse to σ. Then

(xq;αqβ[nq−1], Sq) ∼ (σ∗xq−1;β[nq−1], [mq]) ∼ (xq−1; [nq−1], [nq−1]),

which is degenerate and thus an identity morphism in ΠSdK. Consider the 2-
simplex z = (xq;αqβ[nq−1], Sq, [nq]). The relation d1z = d0z ◦ d2z gives that

(xq;αqβ[nq−1], [nq]) = (xq;Sq, [nq]) = yq

as morphisms in ΠSdK. Now use that β∗σ∗ = id on [nq−1] to see that

yq−1 = (xq−1;Sq−1, [nq−1]) ∼ (xq;αqβSq−1, αqβ[nq−1]).

Finally, consider the 2-simplex w = (xq;αqβSq−1, αqβ[nq−1], [nq]). The relation
d1w = d0w ◦ d2w gives that (xq;αqβSq−1, [nq]) = yq ◦ yq−1 in ΠSdK. This gives
the claimed reduction from word length q to word length q − 1.

To prove that ΠSdsK has Property B, we must verify the no loop condition.
Thus suppose that f : (x; [m]) −→ (y; [n]) and g : (y; [n]) −→ (x; [m]) are morphisms
in ΠSdsK, where x ∈ Km and y ∈ Kn are nondegenerate simplexes. We have just
shown that f and g can be represented by 1-simplices. It suffices to show that both
are degenerate, so that they are identity morphisms in ΠSdsK. We have

d0f = d1g = (y; [n]) and d0g = d1f = (x; [m]).

By the conditions on d0, we can write f = (y;T, [n]) and g = (x;S, [m]) in minimal
form. By the conditions on d1, we then have (y;T ) ∼ (x; [m]) and (x;S) ∼ (y; [n]).
Choose injections α : [p] −→ [m] and β : [q] −→ [n] with images S and T . We then
have

(x; [m]) ∼ (y;T ) ∼ (β∗y; [p]) and (y; [n]) ∼ (x;S) ∼ (α∗x; [q]).

Write α∗x = σ∗u where u ∈ Kj is nondegenerate and σ : [q] −→ [j] is a surjection.
Then

(y; [n]) ∼ (α∗x; [q]) = (σ∗u; [q]) ∼ (u; [j]).

Since these are both in minimal form, n = j ≤ q. Similarly m ≤ p. Since α and β
are injections, n = q, m = p, and α and β are identity maps. Thus S = [m] and
T = [n], showing that f and g are degenerate. □

Proof of Theorem 16.3.4. We shall prove that the categories SdcC and
ΠSdsNC are isomorphic by exhibiting inverse functors between these categories.
Moreover, these inverse isomorphisms of categories will be natural in C .

We first define F : SdC −→ ΠSdsNC and its inverse G on objects. The ob-
jects A = (fi,m) of SdC are the nondegenerate simplices of NC . The objects
of ΠSdsNC are the vertices of SdsNC . We may write these in minimal form as
(A; [m]), where A is an object of SdcC . We define F and G on objects by

F (A) = (A; [m]) and G(A; [m]) = A.

Visibly, FG = Id and GF = Id on objects.
We next define F on morphisms and we first define it on the morphisms of C C ,

which has the same objects as SdC . For objects A = (fi,m) and B = (gi, n), a
morphism ν : A −→ B is an injection ν : [m] −→ [n] such that ν∗B = A. We let
F (ν) be the morphism of ΠSdsNC represented by the 1-simplex ν = (B; ν[m], [n])
of SdsNC . It is straightforward and left to the reader to check that F is indeed a
functor, respecting composition and identities.
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To see that F induces a functor SdcC −→ ΠSdsNC , we must show that F
respects the equivalence relation used to define morphisms in SdcC from morphisms
in C C . Thus suppose that we have an injection ν : [m] −→ [n] and a surjection
σ : [m] −→ [q] such that ν∗B = A = σ∗C for some object C. Let α, β : [q] −→ [m]
be right inverses to σ. Then να ∼ νβ and we must show that να = νβ in ΠSdsNC .
Observe first that

(B; να[q], ν[q]) ∼ (σ∗A;α[q], [m]) ∼ (A; [q], [q]) ∼ (σ∗A;β[q], [m]) ∼ (B; νβ[q], ν[q])

are degenerate 1-simplices of SdNC . Therefore they are identity morphisms of
ΠSdNC . We now use the definition of Π to see that

να = (B; να[q], [n]) = (B; νβ[q], [n]) = νβ

ΠSdsNC . In fact, both are equivalent to (B; ν[m], [n]), as we see by considering
the relations of the form d1z = d0zd2z induced by the 2-simplices

(B; να[q], ν[m], [n]) and (B; νβ[q], ν[m], [n])

of NSdsC . Therefore F induces a well-defined functor SdcC −→ ΠSdsNC .
We next define G : ΠSdsNC −→ SdcC on morphisms. We claim that every

morphism (A; [m]) −→ (B; [n] in ΠSdsNC is of the form ν, and we define G(ν) = ν.
Visibly this will ensure that FG = Id and GF = Id on morphisms. By Proposi-
tion 16.5.1, a morphism (A; [m]) −→ (B; [n]) in ΠSdsNC can be represented by
some 1-simplex (D;S, [r]) in SdsNC . Inspection of source and target shows that
we must have

d1(D;S, [r]) = (D;S) ∼ (A; [m]) and d0(D;S, [r]) = (D; [r]) ∼ (B; [n]).

By the uniqueness in minimal form r = n and D = B. Then (B;S) ∼ (A; [m]).
Let S be the image of an injection ν : [p] −→ [n], and note that ν is uniquely
determined by S. Then (B;S) ∼ (ν∗B; [p]). By the uniqueness in minimal form,
[p] = [m] and ν∗B = A. Thus our morphism is given in minimal form by the
1-simplex ν = (B; ν[m], [n]), where ν∗B = A. We have effectively used the defining
relations for ΠSdsNC in the reduction to 1-simplices of Proposition 16.5.1, and G
is well-defined.

We have not checked that G is actually a functor, but fortunately we don’t have
to. It is a familiar observation that a homomorphism of groups that is a bijection
of sets is an isomorphism of groups. In our situation, the same argument works to
prove that G preserves identity morphisms and respects composition. Indeed

G(id(A;[m])) = GF (idA) = idA

and, for composable morphisms µ and ν of ΠSdsNC ,

G(ν ◦ µ) = G(F (ν) ◦ F (µ)) = GF (ν ◦ µ) = ν ◦ µ
and

G(ν) ◦G(µ) = GF (ν) ◦GF (µ) = ν ◦ µ. □

16.6. Horn-filling conditions and nerves of categories

There are special kinds of simplicial sets that appear ubiquitously and are
central to the applications of simplicial sets to other areas of mathematics. They
are closely related to our focus on the relationship between simplicial sets and
categories, and understanding them leads to several equivalent characterizations of
those simplicial sets which are the nerves of categories.
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Define Λkn to be the subsimplicial set of ∆[n]s generated by the faces diιn for
all i ̸= k. The name horn comes from the picture that one sees after passage to
geometric realization. The realization of ∆[n]s is ∆[n]t, and the realization of Λkn
is the “horn” that one sees after removing one of the faces of the boundary ∂∆[n]t.
If one has a map f from the realization TΛkn to a space X, then one can extend
the map to T∆[n]s = ∆[n]t. In fact, the topological n-simplex retracts onto any of
its horns, as one sees by pushing in along the missing face. Composing f with such
a retraction extends f over the simplex. This leads to the following definition and
example.1

Definition 16.6.1. A simplicial set K is a Kan complex if every map of simpli-
cial sets Λkn −→ K extends to a map ∆[n]s −→ K. There is a concrete combinatorial
way to rephrase the condition. For every set of n-simplices xi ∈ Kn−1, 0 ≤ i ≤ n
and i ̸= k that satisfy the necessary compatibility condition dixj = dj−1xi for i < j
with neither i = k nor j = k, there must exist an n-simplex x ∈ Kn such that
dix = xi for i ̸= k.

The equivalence of the two formulations is immediate from Proposition 13.3.3.

Proposition 16.6.2. For every space X, the simplicial set SX is a Kan com-
plex.

One might ask whether the extensions in Definition 16.6.1 are unique. If they
are, we say that K has the unique horn filling property. Looking at the definition of
the faces of the nerve of a category, ((13.4.5)), we see that not all horns are created
equal. We say that Λkn is an inner horn if 0 < k < n; the outer horns are those
with k = 0 or k = n.

Looking at NC or at ΠK, one sees that the inner horns play a special role. If
we have faces d0z and d2z, their composite is d1z. In a category, if we are given
morphisms f0 and f2 such that the source of f2 is the target of f0, they define a
map Λ1

2 −→ NC , and the composable pair (f0, f2) gives a 2-simplex that extends
the horn. This doesn’t work if we are given f0 and f1 or f1 and f2, since we cannot
compose those. We can use inverses to fill these outer horns when C is a groupoid.
This leads to the following result whose meaning should I hope be clear. We leave
some details of proof to the reader. For 1 ≤ i ≤ n, let νi : [1] −→ [n] denote the
injection with image {i− 1, i}.

Theorem 16.6.3. Let K be a simplicial set. The following conditions are equiv-
alent.

(i) K is isomorphic to the nerve of a category.
(ii) Every inner horn of K has a unique filler.
(iii) For any n ≥ 2 and any n-tuple of simplices xi ∈ K1, 1 ≤ i ≤ n, such that

d0xi−1 = d1xi for 2 ≤ i ≤ n, there is a unique y ∈ Kn such that ν∗i y = xi.

K is isomorphic to the nerve of a groupoid if and only if every horn of K, inner
or outer, has a unique filler.

Sketch Proof. First suppose that K ∼= NC . We deduce (ii) and (iii). It
helps to recall the formulas for the faces and degeneracies of NC as given in
((13.4.5)).

1These are so basic that they appear on pages 2 and 3 of my book [45].
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If we have an inner horn Λkn −→ K given by compatible (n − 1)-simplices xi
for i ̸= k, then we can reconstruct from these simplices a unique string (f1, · · · , fn)
of composable arrows, and they give a filler for the given inner horn. One way of
seeing this is to look at the ordered string of n−1 1-simplices obtained from x0 and
xn by applying all iterated face operations. Applied to x0, we obtain 1-simplices in
order that we denote by fi, 2 ≤ i ≤ n. Applied to xn, we obtain 1-simplices that we
also denote by fi, but now for 1 ≤ i ≤ n− 1. The duplicate fi for 2 ≤ i ≤ n− 1 are
equal by the assumed compatibility condition, and the required y is the n-simplex
(f1, · · · , fn). If we have simplices xi ∈ K1 as in (iii), they are a string of composable
morphisms (f1, · · · , fn), and that string is the required simplex y.

If C is a groupoid, we can use inverses to modify the proof of (ii) so that it
applies to outer as well as inner horns.

Conversely, assume (ii) or (iii). We claim that either suffices to prove that the
unit η : K −→ NΠK of the (N,Π)-adjunction is an isomorphism. The meaning is
that the formal words of length n in the 1-simplices that appear in the definition of
ΠK are all realized uniquely by simplices in Kn. We show that η is an isomorphism
on n-simplices for all n by induction on n. The induction starts with n = 0 and
n = 1, where there is nothing to prove. Assume that η is an isomorphism on
(n − 1)-simplices. Let y be an n-simplex of NΠK. Its faces give inner horns Λkn
in K, and they also give the data of (iii). With either hypothesis, a filler gives an
n-simplex x of K such that y and η(x) have the same faces. This means η(x) is the
same composite of 1-simplices as y, so that η(x) = y. If also η(x′) = y, then x and
x′ have the same faces and so are equal by the uniqueness assumed in (ii) or (iii).

If we have fillers for all horns, then K ∼= NΠK and the fillers for the outer
horns defined on Λ0

2 and Λ2
2 give left and right inverses for all morphisms. Just

as for groups, the left and right inverses must be equal, and NΠK must be a
groupoid. □

We use this characterization to prove Theorem 15.4.5.

Proof of Theorem 15.4.5. Suppose that K has Property A. We show that
SdK satisfies condition (iii) of Theorem 16.6.3. Thus let (xi;Si, [qi]), 1 ≤ i ≤ n, be
1-simplices of SdK in minimal form such that

d0(xi−1;Si−1, [qi−1]) = d1(xi;Si, [qi])

for 2 ≤ i ≤ n. Choose an injection αi : [pi] −→ [qi] with image Si for 0 ≤ i ≤ n.
Note that p1 = q0, where q0 = |S0|. The compatibility condition is equivalent to

(xi−1, [qi−1]) ∼ (xi;Si) ∼ (α∗
i xi; [pi])

for 2 ≤ i ≤ n. Since K has Property A, the faces α∗
i xi are nondegenerate. By the

uniqueness in minimal form, qi−1 = pi and xi−1 = α∗
i xi for 2 ≤ i ≤ n. Letting

x0 = α∗
1x1, this still holds for i = 1. The composite αn · · ·α1 : [p1] −→ [qn] is

defined. Let

y = (xn;αn · · ·α1[p1], αn · · ·α2[p2], · · · , αn[pn], [qn]).

Then νny = (xn;Sn, [qn]) and, for 1 ≤ i < n,

ν∗i y = (xn;αn · · ·αi[pi], αn · · ·αi[pi+1]) ∼ (xi;Si, [qi])

For the uniqueness, suppose that we have another extension z = (w;T0, · · · , Tn)
in minimal form such that νiz = (xi;Si, [qi]) for 1 ≤ i ≤ n. The nth vertex (w;Tn)
of z must be (xn; [qn]), so that (w;Tn) ∼ (xn; [qn]). Since K satisfies Property
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A and w is nondegenerate, it follows from the uniqueness in minimal form that
w = xn and Tn = [qn]. Similarly, for 0 ≤ i < n, the ith vertex of z must be the ith
vertex of y, hence

(xn;Ti) ∼ (xn;αn · · ·αi+1[pi+1]).

Therefore Ti must be αn · · ·αi+1[pi+1] and z = y.
We shall prove a strengthened form of the converse statement in Proposi-

tion 16.7.3 below. □

Remark 16.6.4 (Categorical remark). The functor Sd is a left adjoint. Its
right adjoint is denoted Ex. Iterating it leads to an endofunctor Ex∞ on sSet
that assigns a Kan complex Ex∞K to a simplicial set K. The composite ST is
another such functor. They fit into a more sophisticated context of Quillen model
category theory. One recent reference is [49, 17.5].

16.7. Quasicategories, subdivision, and posets

Looking at the definition of Kan complexes and the characterization of nerves
of categories, one sees that they have a natural common generalization.

Definition 16.7.1. A simplicial set is a quasicategory if and only if every inner
horn has a filler, not necessarily unique.

The idea is that compositions are defined, but they need not be unique. This is
a very fashionable notion, and in much current literature the rather grandiose terms
“∞-category” or “(∞, 1)-category” are used for quasicategories. To go with this,
the term “∞-groupoid” is then often used for Kan complexes. There is even some
motivation for the terminology. In view of their importance, it seems reasonable to
ask how these concepts behave with respect to subdivision and our Properties A,
B, and C.

Proposition 16.7.2. If SdK is a Kan complex, then K is discrete, meaning
that it has no nondegenerate simplices other than vertices.

Proof. Suppose that K has a nondegenerate n-simplex, where n > 0. Let v
be a vertex of x and let α : [0] −→ [n] be an injection such that α∗x = v. Define
an outer horn Λ2

2 −→ SdK by sending the vertices 0, 1, 2 to the vertices (x; [n]),
(v; [0]), (x; [n]) of SdK and sending the 1-simplices (1, 2) and (0, 2) to (x;α[0], [n])
and (x; [n], [n]). Since v ∈ K0, there is clearly no 1-simplex (y;S, [m]) with vertices
(x; [n]) and (v; [0]), so SdK cannot be a Kan complex. □

Proposition 16.7.3. If SdK is a quasicategory, then K satisfies Property A.

Proof. Assume that K does not satisfy Property A. We construct an inner
horn f : Λ2

3 −→ SdK that cannot be extended to a map ∆[3] −→ K, thus showing
that SdK cannot be a quasicategory. Since Property A fails for K, we can choose
a nondegenerate simplex x ∈ Kn, an injection α : [m] −→ [n], and a surjection
σ : [m] −→ [p], m > p, such that α∗x = σ∗y in Km for some nondegenerate simplex
y ∈ Kp. Choose a right inverse β : [p] −→ [m] to σ. The three 2-faces of Λ2

3 ⊂ ∆[3]
are d0ι3, d1ι3, d3ι3, where ι3 is the identity simplex that generates ∆[3]. We specify
f on these three 2-simplices by sending them to

(x;αβ[k], α[m], [n]), (x;α[m], α[m], [n]), (y; [p], [p], [p])
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respectively. It is a straightforward to check that they satisfy the required consis-
tency on 1-faces of the horn. However, f cannot be extended to the last 2-face d2ι3.
Any possible image would have a minimal form (x;S, T, [n]). For consistency with
the prescribed faces, we would have

(x;S, [n]) ∼ (x;α[m], [n]) and (x;T, [n]) ∼ (x;αβ[p], [n]).

By the uniqueness of the minimal form, S = α[m] and T = αβ[p]. Thus, since
p < m, T is a proper subset of S. Since S ⊂ T by definition, S = T . This
contradicts the choice of β as a non-identity injection. □

Remark 16.7.4. There is a curious analogue for quasicategories of the result
that a simplicial set is a simplicial complex if and only it satisfies Properties B
and C. If K is the nerve of a poset, then it satisfies Properties B and C by
Theorem 16.3.1, and of course it is a category and thus a quasicategory. It is
reasonable to ask whether a quasicategory K that satisfies Properties B and C
is a poset. By Theorem 15.1.8, K is the simplicial set associated to a simplicial
complex, and we now write K for the latter. The set of vertices of K is a poset, and
its order restricts to a total order on each simplex, so that we can write simplices
in the form {x0 < · · · < xn} for vertices xi. Then K is isomorphic to the nerve
of the poset K0 if and only if every finite totally ordered set {x0 < · · · < xn} is a
simplex.

The example of ∂∆[1]s shows that for two vertices x0 < x1, {x0 < x1} need not
be a simplex of K. However, suppose that all such sets {x0 < x1} are 1-simplices.
Then K is a poset. To see this assume by induction that all totally ordered subsets
of K0 with at most n elements are simplices. Suppose for a contradiction that
{x0 < · · · < xn} is totally ordered but not a simplex. Since all faces of this missing
simplex are simplices, it is easy to construct an inner horn f : Λkn −→ K, in fact
one for each 0 < k < n, from all but one of the faces. A filler is an n-simplex of K,
hence a totally ordered set {y0, . . . , yn}; it must be totally ordered since otherwise
it would have degenerate faces, which it clearly does not have; that its vertices must
be the xi follows from the fact that the map ∆[n] −→ K determined by {y0, . . . , yn}
extends f , and f maps onto the vertices.

We also remark that Properties B and C clearly fail to imply that K is a
quasicategory. The inner horn Λ1

2 is a simplicial complex, and its identity map
does not extend to a simplex ∆[2] −→ Λ1

2.
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CHAPTER 17

Cores of Alexandroff spaces

This appendix is taken from an REU paper written by Xi (Cathy) Chen in
2015. Her paper is based on work of Kukie la[42]. We have made only relatively
minor editorial changes. All spaces are A-spaces throughout.

We first introduce some classes of A-spaces, including finite-chains spaces, lo-
cally finite spaces, finite-paths spaces, and bounded-paths spaces. Next, we present
Kukie la’s generalizations. If an infinite A- space is sufficiently well-behaved, then we
get a core by recursively removing sets of beat points until no more beat points are
left, just as for finite spaces. We have the following results. Every bounded-paths
space or countable finite-paths space has a core, and if X is a minimal finite-paths
space, then the connected component of id(X) in the space C(X,X) of self maps of
X is a singleton. Moreover, if X and Y are fp-spaces that both have cores, then X
is homotopy equivalent to Y if and only if their respective cores are homeomorphic.

Definition 17.0.1. Given a poset X, we define a chain of X to be a sequence
{xn} of points of X such that xi < xi+1 for all i.

Definition 17.0.2. Let X be an A- space. A (finite or infinite) sequence (xn)
of elements of X is an s-path if xi ̸= xj for i ̸= j and xi−1 ∼ xi for all i > 0. Given
a finite s-path k = (x0, . . . , xm), we say m is the length of k and call k an s-path
from x0 to xm.

Definition 17.0.3. An A- space X is:
1. a finite-chains space if every chain in X is finite,
2. a locally finite space if for every x ∈ X, the set {y ∈ X|y ∼ x} is finite,
3. a finite-paths space (fp-space) if every s-path of elements of X is finite,
4. a bounded-paths space(bp-space) if there exists an n ∈ N such that every s-path
of elements in X has less than n elements.

Remark 17.0.4. Bp-spaces form a strict subclass of fp-spaces and both fp-
spaces and locally finite spaces are strict subclasses of finite-chains spaces. More-
over, the connected components of the spaces, which are both fp-spaces and locally
finite, are finite. Finite connected components can be visualized as the intersection
of the following Venn diagram.

167
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We saw that an F−space can be reduced to its core through the removal of
beat points. We shall see a similar notion, which the following reduction techniques
help to define. For an upbeat point x, we write ux for the minimal point above x.
For a downbeat point x, we write dx for the maximal point below x.

Definition 17.0.5. Let X be an A- space. A retraction r : X −→ r(X) is
called:
1. a comparative retraction if r(x) ∼ x for every x ∈ X.
2. an up-retraction if r(x) ≥ x for every x ∈ X.
3. a down-retraction if r(x) ≤ x for every x ∈ X.
4. a retraction removing a beat point if there exists an x ∈ X that is an upbeat point
under some ux ∈ X or a downbeat point over some dx ∈ X such that r(x) = ux or
r(x) = dx, and r(y) = y for all y ̸= x.

Remark 17.0.6. Every comparative retraction can be written as a composi-
tion of an up-retraction and a down-retraction. If r : X −→ A is a comparative
retraction, then r = rd ◦ ru, where

ru(x) =

{
r(x) if r(x) ≥ x
x if r(x) ≤ x

and

rd(x) =

{
r(x) if r(x) ≤ x
x if r(x) ≥ x

Definition 17.0.7. Let X be an A- space. Let C be the class of all comparative
retractions and I be the class of {retractions removing a beat point}

⋃
{identity

maps}. The space X is called a C-minimal space (or an I-minimal space) if there
is no retraction r : X −→ r(X) in C (or I) other than idX . The space X is called
a C-core (or an I-core) if X is a C-minimal subspace (or an I-minimal subspace)
that is a strong deformation retract of X.

Proposition 17.0.8. A space X is I-minimal if and only if it has no beat
points.
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Proof. (⇒) This direction follows from the definition above. Since in the
class of I, there is no retraction removing a beat point other than idX , it follows
that there are no beat points in X.
(⇐) If X has no beat points, then the retractions of removing a beat point are
the same as the identity maps. This means idX is the only retraction in I, which
implies X is I-minimal. □

Corollary 17.0.9. Suppose X is a finite-chains space. Then X is C−minimal
if and only if X is I−minimal.

Proof. (⇐): Suppose X is I−minimal and that r : X −→ r(X) is a C-
retraction. Factor r as rd ◦ ru, which gives that rd ≤ idX and ru ≥ idX . Since X
is a finite-chains space, X contains no strictly decreasing infinite sequence and we
can therefore use induction. Take y ∈ X and suppose rd(x) = x for all x < y. We
will show that if rd(y) < y, then y is a downbeat point over rd(y), contradicting
the I-minimality of X. Hence, we must have rd(y) = y and by the induction
argument, rd = idX . So, suppose rd(y) < y. For any x < y, x = rd(x) ≤ rd(y) < y
by induction and monotonicity. This means y is a downbeat point over rd(y),
a contradiction. By previous remarks, it follows rd = idX . A similar argument
shows that if rd ≥ idX , then rd = idX . Using the same arguments for ru gives
thatru = idX . Therefore X is C−minimal.
(⇒) : A retraction removing a beat point is also a comparative retraction. So if X
is C-minimal, then there is no comparative retraction, and hence no I-retraction,
other than idX . Therefore X is I-minimal. □

Definition 17.0.10. [42, Defn. 5.9] Let γ be an ordinal and X be an A-
space. Let {rα|Xα −→ Xα+1}α<γ be a family of retractions from C (or I) such that
X0 = X, Xα+1 = rα(Xα) for all α < γ and Xα =

⋂
β<αXβ for limit ordinals α < γ.

By transfinite recursion, we define a family of retractions {Rα|X −→ Xα}α≤γ such
that:
1. R0 = idX ,
2. Rα+1 = γα ◦Rα,
3. for a limit ordinal α and an x ∈ X, if there exists β0 < α such that Rβ(x) =
Rβ0

(x) for all β0 ≤ β < α, then Rα(x) = Rβ0
(x), and if not, we leave Rα(x)

undefined.

The recursion ends when Rγ is defined or when Rα cannot be totally defined
for some limit ordinal α. In the first case we say the family {rα}α<γ is infinitely
composable and X is C-dismantlable (or I- dismantlable) to Xγ (in γ steps). In
the second case we say the family {rα}α<γ is not infinitely composable.

Definition 17.0.11. Let X be a finite-chains space. Let uX : X −→ X be
given by:

uX(x) =

{
ux if x is upbeat under ux

x otherwise

Since uX(x) ≥ x for every x ∈ X and X is a finite-chains space, it follows that for
every x ∈ X there exists an Nx ∈ N such that (uX)n(x) = (uX)Nx(x) for every
n ≥ Nx. Let UX : X −→ UX(X) be an up-retraction given by UX(x) = (uX)Nx(x).
Similarly we define the down-retraction DX : X −→ DX(X).
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Remark 17.0.12. We check that ux and UX are order-preserving, as well as
dX and DX . Given x, y ∈ X such that x < y, we will show uX(x) ≤ uX(y). Note
that we can assume x < y here because if x = y, then uX(x) = uX(y).

• If neither x nor y is an upbeat point, then uX(x) = x < y = uX(y).
• If x is an upbeat point under ux and y is not an upbeat point, then
uX(x) = ux ≤ y = uX(y).

• If y is an upbeat point under uy and x is not an upbeat point, then
uX(x) = x < y < uy = uX(y).

• If both x and y are upbeat points, then uX(x) = ux ≤ y < uy = uX(y).

Now we check UX is order-preserving. Note that for any pair x ≤ y, there is some
N ≫ 0 such that UX(x) = uNX(x) and UY (y) = uNX(y). Since uX is monotone,
UX(x) = UX(y) by induction.
Similarly, we can check dX and DX are order-preserving as well.

Definition 17.0.13. Given an ordinal γ and a finite-chains space X, we define
a sequence of retractions {rα|Xα −→ Xα+1} by transfinite recursion.
Let X0 = X, Xα+1 = rα(X) and Xα =

⋂
β<αXγ if α is a limit ordinal. For α = 0

or α a limit ordinal and n a finite ordinal, let

rα+n =

{
DXα+n

if n is even

UXα+n
if n is odd

We call this sequence of retractions {rα|Xα −→ Xα+1}α<γ the standard sequence
of X (of length γ).

Theorem 17.0.14. [42, Thm. 4.18] Let X,Y be A- spaces and {fα|X −→
Y }α≤γ , where γ is a countable ordinal, be a family of continuous maps such that:

(1) if α = β + 1, then fα ∼ fβ,
(2) if α is a limit ordinal, then for every x ∈ X, there exists βαx < α such that

fβ(x) ≤ fα(x) for all βαx ≤ β ≤ α.
The f0 is homotopic to fγ .

Definition 17.0.15. An A- space X is countably C-dismantlable (or countably
I-dismantlable) to X ′ ⊆ X if it is C-dismantlable (or I- dismantlable) to X ′ in γ
steps, where γ is a countable ordinal.

The above theorem and definition imply that when an A- space X is countably
C-dismantlable (or I-dismantlable) to a C-minimal subspace (or an I-minimal sub-
space), we can build a strong deformation retraction from X. By Corollary 17.0.9,
these two notions of minimality coincide. We call such a minimal subspace of X a
core of X.

We now present the main theorems on cores from Kukie la’s paper[42].

Theorem 17.0.16. Every bp-space or countable fp-space X has a core. More-
over, if X is a bp-space with path length bounded by some n ∈ N, then X can be
C-dismantled to a core in fewer than 2n+ 2 steps.

Recall that in the finite case, we can construct a core by removing beat points
one by one until we obtain a minimal space. Since removing a beat point is a
strong deformation retract, this produces a core. However, in the infinite case, we
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use the standard sequence to remove many beat points at a time, and repeat. After
countably many steps, X is C-dismantled to a core. The following is the sketch of
the proof, and details can be found in [42, Thm. 5.14].

Proof. (Sketch) Assume X is an infinite A- space. Let Ω be the first ordinal
of cardinality greater that X. Let {rα|Xα −→ Xα+1}α<γ be the standard sequence
of X of length Ω.

First, we claim that if X is an fp-space, then the standard sequence is infinitely
composable. If not, then for some limit ordinal α, rα could not be totally defined
and we could construct an infinite s-path in X, using a point that moves infinitely
often. This would contradict that X is an fp-space. Since the standard sequence of
X is infinitely composable, it will be constant beginning with some α0 < Ω. If not,
then X would have cardinality at least Ω, which is a contradiction. Thus we obtain
an I-minimal space at α0. If X is countable, then Ω = ω1, the first uncountable
ordinal. Therefore α0 < ω1 is countable, and we can construct a strong deformation
retract to Xα0 by Theorem 17.0.14. Thus Xα0 is a core of X.

If X is a bp-space with path length bounded by some n ∈ N, one can show
that the standard sequence is constant after 2n+ 2 steps. For if not, then X would
contain an s-path of length greater than n, which is a contradiction. □

Recall that C(X,X) denotes the space of all continuous maps X −→ X in
the compact open topology, and that W (C,U) = {f |f(C) ⊂ U} are the canonical
subbasis elements of C(X,Y ). We have the following theorem [42, Thm. 5.16].

Theorem 17.0.17. If X is a I-minimal fp-space, then the connected component
of idX in C(X,X) is a singleton.

Proof. (Sketch) One first shows that for every x ∈ X, there exists a subspace
x ∈ Ax ⊆ X such that:

(1) Ax is finite,
(2) if y ∈ Ax is not maximal in X, then |Ax ∩max{z ∈ X|z < y}| ≥ 2,
(3) if y ∈ Ax is not minimal in X, then |Ax ∩min{z ∈ X|z > y}| ≥ 2.

Ax can be thought of as the image of a tree (but the order on the tree is not the
same as the order on X). If Ax is not finite, we could construct a tree Ax, where
at each node, there are at most 4 new branches. König’s Lemma 1 would imply
that if Ax is infinite, then X has an infinite s-path, which contradicts that X is an
fp-space.

Since for all y ∈ Ax ⊆ X, idX(y) = y ≤ y it follows that idX ∈
⋂
y∈Ax

W ({y}, Uy},
which is an open neighborhood of idX . We can show that this

⋂
y∈Ax

W ({y}, Uy)

is also closed. Thus
⋂
y∈Ax

W ({y}, Uy) is a clopen set containing idX . From point
set topology, the connected component of idX is a subset of the intersection of all
clopen sets

⋂
y∈Ax

W ({y}, Uy) containing idX , therefore the component of idX is

contained in
⋂
x∈X

⋂
y∈Ax

W ({y}, Uy).

Next, one can show that for every x ∈ X, if f ∈
⋂
y∈Ax

W ({y}, Uy), then f
∣∣
Ax

=

idAx . If not, then one may inductively construct an infinite, strictly decreasing
sequence in Ax, which is a contradiction as well. Thus the connected component

1König’s Lemma: Let P be a well-founded poset, and S(x) = min{y ∈ P |y > x} be the set
of immediate successors of x. If for all x ∈ P , S(x) is finite, and there exists an x ∈ P such that

the set {y|y ≥ x} is infinite, then there exists an infinite ascending chain in P .



172 17. CORES OF ALEXANDROFF SPACES

of idX is contained in
⋂
x∈X

⋂
y∈Ax

W ({y}, Uy) =
{
idX

}
, and hence the connected

component of idX is exactly
{
idX

}
. □

Corollary 17.0.18. Suppose X and Y are fp-spaces, and suppose that they
both have cores XC and Y C . Then X is homotopy equivalent to Y if and only if
XC is homeomorphic to Y C .

Lastly, we introduce the concept of chain-complete posets. Although they do
not belong to one of those classes of infiniteA- spaces considered in Definition 17.0.5,
we still have similar results.

Definition 17.0.19. A poset P is called chain-complete if every chain in P
has both a supremum and an infimum in P .

Definition 17.0.20. An antichain in a poset P is a subset A ⊆ P such that
no two elements in A are comparable.

Theorem 17.0.21. [42, Thm. 5.8] Every chain-complete poset X with no in-
finite antichains has a finite core.

Remark 17.0.22. In Corollary 17.0.18, instead of requiring X and Y to be
fp-spaces, we only need XC and Y C to be fp-spaces. Also note that if XC is a
finite core, then it is an I-minimal fp-space, so we can use Theorem 17.0.17 above.
In this case, it is straightforward to prove that if any two chain-complete posets X,
Y without infinite antichains have finite cores XC and Y C respectively, then X is
homotopy equivalent to Y if and only if XC is homeomorphic to Y C .



CHAPTER 18

The enumeration of homotopy classes of F -spaces

As promised in Section 2.5, we here give the results on the enumeration of
homotopy types of F -spaces that appeared in the 2008 REU paper of Alex Fix and
Stephen Patrias. We follow their exposition with minor edits.

18.0.1. Constructing Posets. Intuitively, we expect that as the number of
points in a poset grows large, the number of neighbors of each point in the graph
should grow large as well, and that cases where a point has exactly one neighbor
should be very rare. We will examine this probabilistic reasoning rigorously in the
final section, but for now, it seems a good heuristic that the large majority of graphs
will be minimal once n grows large enough, and that non-minimal graphs will be
the exception. Thus, it makes sense to try to count the number of minimal graphs
by first enumerating all posets of a given size, and then checking to see whether
each such generated graph is minimal.

As a reminder, by Corollary 2.5.7 we are interested in enumerating the minimal
spaces up to homeomorphism, and by Corollary 2.5.4, homeomorphism of spaces is
equivalent to graph isomorphism of the constructed Hasse diagrams.

Definition 18.0.1. Since an isomorphism between graphs is equivalent to re-
labeling the vertices in a consistent fashion, an equivalence class of graphs under
graph isomorphism is called an unlabeled graph.

Since any relabeling of a minimal graph produces another minimal graph (as
it does not change the in or out degree of any of the vertices), we can treat an
unlabeled minimal graph as the equivalence class of a minimal graph under graph
isomorphism. This represents the same object as the equivalence class of a minimal
space under homeomorphism, so our task is to produce exactly one representative
for each unlabeled minimal graph.

Fortunately, a fast algorithm for producing exactly one representative of each
unlabeled Hasse diagram has already been proposed by Brinkmann and McKay[13],
and has been used to enumerate all unlabeled posets on up to 16 points. The
remainder of this section will be a summary of these results.

The algorithm works by a method called the canonical construction path which,
for every unlabeled poset P on n points, gives a canonical unlabeled poset Q on
n− 1 points such that Q can be obtained from P by deleting a point from the top
level. This essentially turns the set of all unlabeled posets into a tree, whereby
each poset on n points has a unique parent with n − 1 points, turning the task of
enumeration into a search on this tree.

In order for this construction to work, it is necessary to be able to reconstruct
all children of a given poset, and to only construct exactly one example of each child
graph (so that we do not produce two different labelings of the same graph, and
consider them as different children). It is relatively straightforward to construct the

173
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set of all possible children for a graph. However, to reject possible isomorphisms
between these candidates we require a device called a canonical choice function.

Definition 18.0.2. Let C be a set of candidates, each of which is a poset on
n points, with vertex set [n] = {1, 2, . . . , n}. Then a function f : C −→ 2[n] (from
candidates to subsets of [n]) is a canonical choice function if

(1) For each candidate G, the set f(G) is an orbit under the automorphisms
of G consisting of vertices on the highest level of G.

(2) For any two candidates G,G′ , if σ : G −→ G′ is an isomorphism of
graphs, then σ maps f(G) onto f(G′).

Definition 18.0.3. The parent of a graph G is the unlabeled graph formed by
removing a point v in f(G) from the graph.

Definition 18.0.4. Conversely, a graph G′ is a candidate child of a graph G if
we can add a point v to G to obtain G′, and so that v is on the highest level of G′.

Since the point removed will be on the highest level, we will remove only down-
wards pointing edges from the graph, so we cannot create any shortcuts or cycles.
Thus the parent of a Hasse diagram is again a Hasse diagram.

Also, the parent of a graph is uniquely defined, regardless of which point we
remove from f(G) to obtain it. Since f(G) is an orbit of G, if v, w are both in f(G)
then there is an automorphism σ such that σ(v) = w. But then, the two parents,
G \ {v} and G \ {w} are isomorphic by σ, so they are actually the same unlabeled
graph.

Definition 18.0.5. If G′ is a candidate child of G, formed by adding a point
v, we say that faccepts G′ if and only if v is in f(G′), where f is a canonical choice
function. If we have fixed some f beforehand, we say that G′ is an (actual) child
of G if f accepts G′.

This definition allows us to use the canonical choice function to distinguish
between the children of a graph so as to accept only one representative from the
unlabeled children of a graph.

Lemma 18.0.6. If H and H ′ are distinct children of a graph G, i.e., both are
accepted by some canonical choice function f , then H and H ′ are not isomorphic.

The only remaining task is to ensure that we actually construct all possible
candidate children of a graph, and accept at least one from each isomorphism class.
To do this, we must consider all ways in which we can add a point to G such that
the new point is now on the highest level.

First, note that if G has ℓ levels, then the new point must have an edge to some
point on level ℓ − 1 or level ℓ, or else the new point would not be on the highest
level of G′.

Second, the new edges we add between our new point and its neighbors cannot
create any shortcuts, since G′ must be a Hasse diagram. So, if x and y are both
neighbors of our new point, we cannot have x > y or y > x. Thus, the neighbors
of our new point must be pairwise incomparable. In graph theory, we call such a
set an antichain. Each antichain with a point on the highest or next-highest level
gives a valid set of neighbors for a new point on the top level, so these antichains
describe all ways of connecting a new point to a graph to get a point at the highest
level.
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Finally, if we pick two antichains A and A′ such that there is a graph auto-
morphism σ that sends A to A′, then the resulting graphs formed by connecting
a new point to each of A and A′ will be isomorphic by the same permutation σ
(extended to send the new vertex to itself). Thus, it suffices to consider only one
representative from each orbit of the antichains under group automorphism.

From the above considerations, we have the following algorithm:

Theorem 18.0.7. To construct all children of an unlabeled poset P with ℓ levels:

(1) Find a representative from each orbit of antichains that contains a point
on level ℓ or ℓ− 1.

(2) Connect a new point v to each antichain computed in step (1) in turn.
(3) Compute the canonical choice function for each candidate constructed in

step (2). A candidate is a child of P if and only if the new point v is in
f(P ).

To actually enumerate all unlabeled posets with at most n points, begin with
the graphs consisting of no more than n points all on the first row, and then perform
a depth-first search on the children of each graph that we find.

The proof of the correctness of this algorithm is due to Brinkmann and McKay
[13], but for now, the assertion that it does generate exactly one example of each
unlabeled poset should suffice to justify our modifications to count minimal graphs.

18.0.2. Constructing Minimal Graphs. Since we are not in fact trying to
count all posets, but only a subset of them, we really only need to generate graphs
which are minimal, or some of whose children will eventually be minimal. If we can
determine that a given graph will never have minimal descendants, then we can
prune that node from our search, and not have to waste computation on branches
which will never bear fruit. We can do this most easily by considering a slightly
larger collection than the set of all minimal graphs.

Definition 18.0.8. We say that a graph is non-downbeat if there are no points
with out-degree equal to 1. This is equivalent to the statement that the underlying
topology has no downbeat points.

All minimal graphs are of course non-downbeat, so if we can construct all non-
downbeat graphs and then check whether each one is non-upbeat as well, we will
have accomplished our task of counting all minimal graphs.

The categorization of graphs as non-downbeat is useful primarily because it is
a hereditary property:

Lemma 18.0.9. If a graph G′ is non-downbeat, then its parent G is non-
downbeat as well.

Proof. Let v be the vertex that we remove from G′ to obtain G. Remember
that v is on the top level, so there cannot be any edges w −→ v, or else w would
be on a higher level; thus in removing v from G′, we do not change the out-degree
of any point w ̸= v. Thus since no points in G′ \ {v} have out-degree equal to 1,
no points in G have out-degree 1 either. Thus G is non-downbeat. □

We can also categorize which children of a non-downbeat graph will also be
non-downbeat (allowing us to not construct the other children in the first place).
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Lemma 18.0.10. If G is non-downbeat, and G′ is obtained from G by adding
a point v on the highest level, then G is non-downbeat if and only if v has two or
more neighbors.

Proof. Again, by adding a point at the top level, we do not change the out-
degree of any of the points in G, so G′ is non-downbeat if and only if v is not a
downbeat point. Then, it is clear that v will not be a downbeat point if and only
if it has two or more neighbors. □

Finally, we can identify a special case of child which will never produce any
minimal descendants, even though the child itself is non-downbeat.

Lemma 18.0.11. If G has exactly one point on the top level ℓ, and G′ is obtained
from G by adding a point to a new level ℓ + 1, then no descendant of G′ will ever
be minimal.

Proof. We claim that all descendants of G′ will have exactly one point on
level ℓ, but have a highest level ℓ′ > ℓ. By Proposition 2.5.11, such graphs cannot
be minimal.

We proceed by structural induction on the tree of descendants of G′. As a base
case, this is trivially true of G′. Now, let H be a descendant of G′ with exactly one
point on level ℓ and with highest level ℓ′ > ℓ. Then all children of H are formed by
adding a point on level ℓ′ or ℓ′ + 1, so all children of H still have exactly one point
on level ℓ. □

These three Lemmas allow us to make the following changes to the above
algorithm which will prune dead-ends. We call all children which are not known to
be dead-ends by the above lemmas useful children.

Theorem 18.0.12. To construct all useful children of a graph G with highest
level ℓ:

(1) Find a representative from each orbit of antichains that contains a point on
level ℓ−1. If G has more than one point on level ℓ, also find representatives
from each orbit of antichains with a point on level ℓ.

(2) Connect a new point v to each antichain computed in step 1 whenever the
antichain contains at least two vertices.

(3) Compute the canonical choice function for each candidate constructed in
step 2. A candidate is a child of P if and only if the new point v is in
f(P ).

(4) If the canonical choice function accepts, then verify that the graph is non-
upbeat as well by checking that no point has in-degree 1. If the graph
is non-upbeat, then increment our count of minimal graphs encountered.
Even if the graph contains upbeat points, it is still a useful child of G and
could have minimal descendants, so we must recursively find its children
as well.

By the above Lemmas, the children which we ignore are all such that they
are not minimal, and will never have minimal descendants, so we can ignore those
branches and still find representatives of all minimal graphs.

18.0.3. Computational Results. The above algorithm was actually imple-
mented and run to obtain the exact counts of unlabeled minimal graphs with small
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numbers of points. Various optimizations described in [13] were implemented to
expedite the computation of the canonical choice function, and in the construction
of antichains. Canonical labeling of graphs (needed for the canonical choice func-
tion) was achieved by the using the graph isomorphism library nauty [51]. This is
the same library used by Brinkmann and McKay in their original library [13].

Points Minimal graphs Homotopy classes Unlabeled posets
1 1 1 1
2 1 2 2
3 1 3 5
4 2 5 16
5 4 9 63
6 11 20 318
7 36 56 2045
8 160 216 16999
9 954 1170 183231
10 7929 9099 2567284
11 92092 101191 46749427
12 1493102 1594293 1104891746

Table 1. Counts of minimal graphs and homotopy classes

To ensure the correctness of these results, we used the C preprocessor to compile
two different versions of the algorithm, one with our changes as described above,
and one functionally identical to the original algorithm for enumerating all unla-
beled posets. The unmodified algorithm successfully reproduced the counts for all
unlabeled posets up to 11 points, but could not be run on higher inputs since it
takes far longer to run than the modified version (This was the purpose of pruning
branches in the first place). Since the code for the two versions is 99% identical,
it is much more feasible for a human to check that the changes we implemented
actually produce the desired result. Furthermore, at the beginning of researching
this topic, one of the authors enumerated all minimal graphs up to 8 points by
hand, and these counts were verified by the algorithm.

Table 18.0.3 gives the counts for the number of unlabeled minimal graphs with
up to 12 points. Since the number of homotopy classes with n points is the number
of unlabeled graphs with at most n points, their number is simply the sum of the
counts of minimal graphs with at most n points. We also provide the number of
unlabeled graphs (equal to the number of F -spaces up to homeomorphism) from
[13] for reference.

18.0.4. Asymptotic Enumeration. Kleitman and Rothschild’s paper [38]
has been used to describe the asymptotic behavior of posets as consisting of graphs
with exactly three levels with ‘roughly’ n/4, n/2 and n/4 points on each of the three
levels. However, the exact statement of the result will prove much more useful in
describing the asymptotic behavior of minimal graphs.

Their paper describes a set of posets on a vertex set V of n points which
formalizes this notion of three-leveled posets. The collection, Q(V ) consists of the
posets P such that
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(1) The vertices of P are the disjoint union, S1 ⨿ S2 ⨿ S3 where points in Si
only have edges going to points in Si−1 or Si−2

(2) The size of the partition is such that

(a) | |Si| − n/4| < (n− 1)
1
2 log(n− 1)

(b) | |S2| − n/2| < log(n− 1)
(3) For every u ∈ S1 ∪ S3, | |N(u) ∩ S2| − n/4| < (n − 1)7/8, where N(u) is

the set of neighbors of u.
(4) For every u ∈ S2, | |N(u) ∩ Si| − n/8| < (n− 1)7/8 for i = 1 or i = 3

By a collection of logarithmic bounds given by their lemma, they find that the
number of posets on n points, Pn, is asymptoticaly equivalent to the number of
posets in X(V ), and that this is asymptoticaly equivalent to the number of posets
in Q(V ). Specifically, if Qn counts the number of posets in Q(V ) with n points,
then Pn = (1 +O(1/n))Qn.

In our enumeration we have been concerned with non-isomorphic, minimal,
leveled digraphs (equivalently unlabeled, minimal Hasse diagrams) as these define
the homotopy classes of F -spaces, yet Kleitman and Rothschild’s result is using
labeled Hasse Diagrams, which gives the number of all F -spaces. To make use of
their result, we need to know the relation between the number of unlabeled graphs
and labeled graphs. For this we make use of an exceedingly general result from
Prömel [56], which states that in any large enough collection of labeled objects,
the fraction of objects with non-trivial automorphism group goes to 0, and thus
asymptotically, the ratio of labeled objects to unlabeled objects approaches 1

n! .

Lemma 18.0.13. Let C be a class of finite labeled structures ( i.e., a finite labeled
set with a single binary relation) which is closed under substructures and isomor-
phisms. Let C(n) count the number of such structures on sets with n points, and
let Cu(n) count the number of unlabeled structures on n points. If (C) satisfies the
growth condition

C(n) = cn2 + dn+ o(n)

where c > 0 and d is arbitrary, then

Cu(n) ∼ C(n)

n!

Applied to the case of classes of posets, this lemma states that as long as
our collection of labeled posets is large enough, we can directly derive asymptotic
bounds on the growth of the collection of unlabeled posets. Since this condition is
satisfied both by the set of all posets and by the set of posets in Q(V ) we have the
immediate corollary:

Corollary 18.0.14. The number of unlabeled posets in Q(V ), Qun, is asymp-
toticaly equal to the number of unlabeled posets, Pun .

Proof. We know, by Kleitman and Rothschild’s result [38], that the number,

Pn, of all labeled posets, is such that log(Pn) = n2

4 + 3n
2 + O(log(n)) . So by the

above lemma, Pun ∼ 1
n!Pn. Similarly, since Pn ∼ Qn, we have that Q(V ) satisfies

the growth condition as well, so Qun ∼ 1
n!Qn. Also, Pn ∼ Qn implies that Pn

n! ∼
Qn

n!
so

Qun ∼
Qn
n!
∼ Pn

n!
∼ Pun

□
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An asymptotic enumeration of the homotopy classes of finite F -spaces follows
directly from this.

Corollary 18.0.15. The number of homotopy classes of finite T0 topological
spaces is asymptotically equivalent to the number of all T0 spaces up to homeomor-
phism.

Proof. By definition, graphs in Q(V ) have the property that

(1) For every u ∈ S1 ∪ S3, the number of neighbors of u in S2 is greater than
n/4− (n− 1)7/8

(2) For every u ∈ S2, the numbers of neighbors of u in S1 and S3 are each
greater than n/8− (n− 1)7/8

Thus, for n large enough, every point in the top row has out-degree at least 2,
every point in the middle row has out-degree and in-degree at least 2, and every
point in the bottom row has in-degree at least 2. Thus, every graph in Q(V ) with
enough points is a minimal graph.

But then, every unlabeled graph in Q(V ) is an unlabeled minimal graph, so if
we let Mu

n be the number of unlabeled minimal graphs with n points, then we have
that Qun ≤Mu

n ≤ Pun . Since Qun ∼ Pun , by the squeeze theorem we have Mu
n ∼ Pun .

But remembering that Mu
n also counts the number of homotopy classes of finite

spaces up to homotopy, and Pun counts the number of finite spaces up to homeo-
morphism, we have that almost every unlabeled graph on n vertices is minimal and
therefore the number of homotopy classes of F -spaces is asymptotically equal to
the number of all F -spaces. □

Before considering the implications of this, it is worth noting that the above
method is not the only way to prove this result; instead, one only needs that almost
every poset has three levels and that these levels monotonically increase in size as
the poset grows.

Lemma 18.0.16. Almost all graphs with 3 levels are minimal.

Proof. Let P = L1 ⨿ L2 ⨿ L3 be an unlabeled digraph with three levels, and
let |L3| = j, |L2| = k, and |L1| = l.

To determine the probability of this graph being minimal, consider that P is
formed by taking the complete tri-partite graph on its levels, randomly deleting
some number of edges, and possibly adding edges from L3 to L1.

So x ∈ L3 has between 1 and k edges leading to L2, by definition of the levels
of a graph; for y ∈ L2 y has between 0 and j edges to it from L3. A point in L3

might have edges going to L1 in addition to its edges going to L2, so for any x ∈ L3

prob(outdegree(x) > 2) ≥ 1− 1
k . This bound is from the fact that there are k ways

for x to have one edge, but also k ways for it to have any degree up to k − 1 and
so we get a very conservative bound by considering only one possibility for each
possible degree that x may have.

Each event (placing edges from a point in L3 to points in L2) is independent
from the others, so

prob(∀x ∈ L3, outdegree(x) ≥ 2) ≥
(

1− 1

k

)j
=

(
k − 1

k

)j
=
kj − jkj−1 + · · · − (−1)jk + (−1)j

kj



180 18. THE ENUMERATION OF HOMOTOPY CLASSES OF F -SPACES

Therefore, for a given j,

lim
k→∞

(prob(∀x ∈ L3, outdegree(x) ≥ 2)) = 1.

Then, we have that for any x ∈ L3, prob(indegree(x) ≥ 2) > (1− 1
j )2 and

prob(∀y ∈ L2, outdegree(y) ≥ 2) >

(
1− 1

j

)2k

=

(
j − 1

j

)2k

=
j2k − 2kj2k−1 + · · · − k + 1

kj

Therefore, for a given k,

lim
j→∞

(prob(∀y ∈ L2, outdegree(y) ≥ 2)) = 1.

Similarly
lim
l→∞

(prob(∀y ∈ L2, outdegree(y) ≥ 2)) = 1

and
lim
k→∞

(prob(∀z ∈ L1, outdegree(z) ≥ 2)) = 1.

These events are not probabilistically independent, so we cannot just multiply
the individual probabilities to obtain the probability of all 4 events happening
simultaneously. However, we can take the union bound on the complement of these
events, giving prob(P is not minimal) ≤ ϵ1 + ϵ2 + ϵ3 + ϵ4 where

ϵ1 = prob(∃ x ∈ L3, outdegree(x) < 2),

ϵ2 = prob(∃ y ∈ L2, indegree(x) < 2),

ϵ3 = prob(∃ y ∈ L2, outdegree(x) < 2),

and
ϵ4 = prob(∃ z ∈ L1, outdegree(z) < 2).

Then almost all such graphs P are minimal, provided that the size of each level
increases as the graph itself grows, meaning graphs on n vertices P = L1⨿L2⨿L3

with |L3| = an |L2| = bn |L1| = cn such that a+ b+ c = 1. □

Remark 18.0.17. The graphs inQ(V ) are of this form, but this proof is perhaps
more intuitive.

Let us go back and consider this result. In some ways it is unsurprising to
find this behavior; given a large space, the digraph representing it is large and thus
has many more possible edges between vertices. In this way it makes sense that
with enough edges on the graph, there is a good probability that every vertex has
in-degree and out-degree at least 2. However, with respect to the topology, this
result is startling; homotopy equivalence does not narrow down the classification of
F -spaces any more than homeomorphism for large F -spaces. Nevertheless, when
we look at the actual, numerical counts for number of spaces up to homotopy and
homeomorphism, we see a large gap between the relative growth rates. For example,
for spaces with 12 points, there are 1,104,891,746 spaces up to homeomorphism,
with only 1,594,293 distinct spaces up to homotopy equivalence (a factor of 70
difference). Thus, even though the asymptotic behavior of these two numbers is
the same, the convergence for small values is very slow.



CHAPTER 19

An outline summary of point set topology

We have implicitly given a quick outline of a bare bones introduction to point
set topology in Chapter 1. The focus was on basic concepts and definitions rather
than on the usual examples that give substance to the subject. We thought the
reader might like to see a brief summary of some of the most basic parts of point-set
topology that were not discussed in Chapter 1, including but not limited to those
results we that we have used in our exposition.

19.1. Metric spaces

The intuition for and the most important examples in point-set topology come
from metric spaces, where the topology is defined in terms of a distance function.

Definition 19.1.1. A metric d on a set X is a function d : X ×X −→ R such
that

(i) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.
(ii) d(x, y) = d(y, x).

(iii) d(x, y) + d(y, z) ≥ d(x, z).

The basis B determined by a metric d consists of the sets B(x, r) = {y|d(x, y) < r}.
The topology generated by B is called the metric topology on X determined by d.
A topological space X is metrizable if its topology is determined by a metric.

A subset A of a metric space X has an induced metric, and the metric and
subspace topologies coincide. Any metric space is Hausdorff.

Of course, Rn has the standard metric

d(x, y) = (
∑

(yi − xi)2)1/2.

The metric topology that it determines coincides with the product topology. The
product of countably many copies of R is metrizable, but the product of uncountably
many copies of R is not. There is a metric topology on any product of copies of
R, called the uniform topology, but it is finer than the product topology when the
product is infinite.

For metric spaces, Lemma 1.5.8 leads to the familiar ε, δ formulation of conti-
nuity.

Lemma 19.1.2. A function f : X −→ Y between metric spaces is continuous if
and only if for each x ∈ X and each ε > 0, there exists δ > 0 such that

f(B(x, δ)) ⊂ B(f(x), ε);

that is, if the distance from x to y is less than δ, then the distance from f(x) to
f(y) is less than ε.

Moreover, we can characterize continuity in terms of convergent sequences.

181
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Definition 19.1.3. A sequence {xn} of points in a space X converges to a
point x if every neighborhood of x contains all but finitely many of the xn. We
then write {xn} −→ x. If X is Hausdorff, then the limit of {xn} is unique if it
exists.

Observe that if {xn} ⊂ A and {xn} −→ x, then x ∈ Ā. The converse does not
hold for general topological spaces, but it does hold for metric spaces. Actually,
what is relevant is not the metric but something it implies.

Definition 19.1.4. A space X is first countable if for each x ∈ X, there is adefined and used
earlier countable set of neighborhoods Un of x such that any neighborhood of x contains

at least one of the Un; X is second countable if its topology has a countable basis.

Using the neighborhoods B(x, 1/n), we see that a metric space is first countable.

Lemma 19.1.5. Let X be first countable. Then x ∈ Ā if and only if there is a
sequence {xn} ⊂ A such that {xn} −→ x.

Using Lemma 1.5.2 this leads to the promised characterization of continuity.

Proposition 19.1.6. Let f : X −→ Y be a function, where X is first countable
and Y is any space. Then f is continuous if and only for every convergent sequence
{xn} −→ x in X, {f(xn)} −→ f(x) in Y .

19.2. Compact and locally compact spaces

Definition 19.2.1. A space X is compact if every open cover contains a finite
subcover. That is, if X is the union of open sets Ui, then there are finitely many
indices ij , such that X is the union of the Uij .

Using standard facts about complements, one can reformulate the notion of
compactness as follows. Say that a set of subsets of X has the finite intersection
property if any finite subset has nonempty intersection.

Proposition 19.2.2. A space X is compact if and only if any set of closeddefined and used
earlier subsets of X with the finite intersection property has nonempty intersection. In

particular, if X is compact and if {Cn} is a nested sequence of closed subsets of X,
Cn ⊃ Cn+1, then ∩Cn is nonempty.

A metric space X is bounded if d(x, y) ≤ D for some fixed D and all x, y ∈ X;
the least such D is called the diameter of X. Boundedness is not a “topological”
property, since it depends on the choice of metric: different metrics can define
the same topology but have very different bounded subsets. With the standard
Euclidean metric, we have the following result.

Theorem 19.2.3 (Heine-Borel). A subspace of Rn is compact if and only if it
is closed and bounded.

In general, we have the following observations about the compactness of sub-
spaces. For a subset A of a space X, a cover of A in X is a set of subsets of X
whose union contains A.

Proposition 19.2.4. Let A be a subspace of a space X. Then A is compact
if and only if every cover of A in X has a finite subcover. If X is compact, then
every closed subspace of X is compact.
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For compact Hausdorff spaces, the second statement has a converse.

Proposition 19.2.5. Every compact subspace of a compact Hausdorff space is
closed.

Proposition 19.2.6. If f : X −→ Y is a continuous function and X is com-
pact, then the image of f is a compact subspace of Y . In particular, any quotient
space of a compact space is compact.

Theorem 19.2.7. Let X be compact and Y be Hausdorff. Then a continu-
ous bijection f : X −→ Y is a homeomorphism (hence X is Hausdorff and Y is
compact).

Proof. If C is closed in X, then C is compact, hence f(C) is compact, hence
f(C) is closed in Y . This proves that f−1 is continuous. □

The results above give the behavior of compactness with respect to subspaces
and quotient spaces. The behavior with respect to products is deeper than anything
that we have stated so far.

Theorem 19.2.8 (Tychonoff). Any product of compact spaces is compact.

The case of finite products is not difficult, but the general case is.
For metric spaces, compactness can be characterized in terms of limit points

and convergent sequences.

Theorem 19.2.9. Consider the following conditions on a space X.

(i) X is compact.
(ii) Every infinite subset of X has a limit point.
(iii) Every sequence in X has a convergent subsequence.

In general, (i) ⇒ (ii) ⇒ (iii). If X is a metric space, the three conditions are
equivalent.

We say that X is sequentially compact if it satisfies (iii). The following impor-
tant fact is used in proving that (iii)⇒ (i) when X is a metric space.

Lemma 19.2.10 (Lebesque Lemma). Let O be an open cover of a sequentially
compact metric space X. Then there is a δ > 0 such that if A ⊂ X is bounded with
diameter less than δ, then A is contained in some U ∈ O.

Proof. If not, then for each n we can choose a subset An of diameter less
than 1/n which is not contained in any U ∈ O. Choose a point xn ∈ An for
each n. Suppose that {xn} has a subsequence {xni

} that converges to some x.
Certainly x ∈ O for some U ∈ O. For small enough ε and large enough ni,
B(x, 2ε) ⊂ U , d(x, xni

) < ε and 1/ni < ε. It follows easily that Ani
⊂ U , which is

a contradiction. □

Definition 19.2.11. A space X is locally compact if each point of X has a
neighborhood that is contained in a compact subspace of X.

Clearly Rn is locally compact but not compact.

Lemma 19.2.12. Let X be a Hausdorff space. Then X is locally compact if and
only if for any point x and any neighborhood U of x, there is a smaller neighborhood
V of x such that V̄ is compact and V̄ ⊂ U .
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This criterion is needed to prove the second part of the following result.

Lemma 19.2.13. Let A be a subspace of a locally compact subspace X. If A is
closed or if A is open and X is Hausdorff, then A is locally compact.

Locally compact Hausdorff spaces admit a canonical compactification, as we
now make precise.

Definition 19.2.14. A compactification of a space X is an inclusion of X as a
dense subspace in a compact Hausdorff space Y . Observe that a compactification
of a compact Hausdorff space must be a homeomorphism. Two compactifications
Y and Y ′ are equivalent if there is a homeomorphism Y −→ Y ′ which restricts to
the identity map on X.

Compactifications are of fundamental importance in topology and algebraic
geometry. The most naive example is the one-point compactification. The con-
struction applies to any Hausdorff space, but it only gives a Hausdorff space when
X is locally compact.

Construction 19.2.15. Let X be a Hausdorff space and let Y be the union
of X and a disjoint point denoted ∞. Then Y is a topological space whose open
sets are the open sets in X together with the complements of the compact sets in
X. The space Y is called the one point compactification of X.

If X is itself compact, then {∞} is open and closed in Y and Y is the union of
its components X and {∞}.

Proposition 19.2.16. If X is a locally compact Hausdorff space that is not
compact, then the one point compactification Y of X is in fact a compactification:
Y is compact Hausdorff and X is a dense subspace.

Since X is itself one of the open sets in Y , Lemma 19.2.13 gives the following
implication.

Corollary 19.2.17. A space X is locally compact and Hausdorff if and only
if it is homeomorphic to an open subset of a compact Hausdorff space.

19.3. Further separation properties

We have defined T0, T1 spaces and T2, or Hausdorff spaces. We give three
analogous definitions, and we describe various implications relating these separation
properties to each other and to local compactness.

Definition 19.3.1. Let X be a T1 space (points are closed), let x ∈ X, and
let A and B be closed subsets of X.

(i) X is regular if whenever x /∈ A, there are open subsets U and V such that
x ∈ U and A ⊂ V .

(ii) X is completely regular if whenever x /∈ A, there is a continuous function
f : X −→ [0, 1] such that f(x) = 0 and f(a) = 1 for a ∈ A.

(iii) X is normal if whenever A∩B = ∅, there are open subsets U and V such
that A ⊂ U and B ⊂ V .

Together with Lemma 19.2.12, the following result makes clear that these sep-
aration properties are closely related to local compactness.

Lemma 19.3.2. Let X be a T1 space.
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(i) X is regular if and only if for any point x and any neighborhood U of x,
there is a smaller neighborhood V of x such that V̄ ⊂ U .

(ii) X is normal if and only if for any closed set A contained in an open set
U , there is an open set V such that A ⊂ V and V̄ ⊂ U .

Language varies. The terms regular, completely regular, and normal are often
defined without assuming that X is T1. Then what we call regular and normal
spaces are called T3 and T4 spaces and what we call completely regular spaces are
called Tychonoff spaces. (As already noted, the Ti notation goes back to a 1935
paper of Alexandroff and Hopf [3], but some later references confuse things further
by forgetting history and using Ti differently).

Lemma 19.3.3. The following implications hold: A normal space is completely
regular. A completely regular space is regular. A regular space is Hausdorff.

normal ⇒ completely regular ⇒ regular ⇒ Hausdorff

The implications normal ⇒ regular ⇒ Hausdorff are obvious. The implication
normal ⇒ completely regular is a consequence of the following important result.

Theorem 19.3.4 (Uryssohn’s lemma). If X is normal and A and B are disjoint
closed subsets of X, then there is a continuous function f : X −→ I such that
f(a) = 0 if a ∈ A and f(b) = 1 if b ∈ B.

The proof is non-trivial, and the closely analogous assertion that regular implies
completely regular is false. Uryssohn’s lemma can be used to prove the following
equally important result.

Theorem 19.3.5 (Tietze extension theorem). If A is a closed subspace of a
normal space X and f : A −→ I is a continuous function, then f can be extended
to a continuous function X −→ I.

Normality is the most desirable separation property, but it is much less nicely
behaved than our other separation properties.

Proposition 19.3.6. A subspace of a Hausdorff, regular, or completely regular
space is again Hausdorff, regular, or completely regular. A product of Hausdorff,
regular, or completely regular spaces is again Hausdorff, regular, or completely reg-
ular. Neither of these assertions is true in general for normal spaces.

For example, the product of uncountably many copies of R is not normal. Since
R is homeomorphic to the open interval (0, 1) and Tychonoff’s theorem implies that
the product of uncountably many copies of I is compact Hausdorff, this example
also shows that a subspace of a normal space need not be normal. Nevertheless,
most spaces of interest are normal.

Theorem 19.3.7. If X is metrizable or compact Hausdorff, then X is normal.

Some indication of the importance of complete regularity is given by the fol-
lowing sequence of results, the second of which should be compared with Corol-
lary 19.2.17.

Theorem 19.3.8. If X is completely regular, then it can be embedded as a
subspace of a product of copies of the unit interval.

Corollary 19.3.9. The following conditions on a space X are equivalent.
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(i) X is completely regular.
(ii) X is homeomorphic to a subspace of a compact Hausdorff space.
(iii) X is homeomorphic to a subspace of a normal space.

Corollary 19.3.10. A space X admits a compactification if and only if it is
completely regular.

Proof. If Y is a compactification of X, then X is a subspace of the compact
Hausdorff space Y and is thus completely regular. Conversely, if X is completely
regular and thus homeomorphic to a subspace of some compact Hausdorff space
Z, then the closure of the image of X in Z is a compactification of X, called the
compactification induced by the inclusion of X in Z. □

The very definition of complete regularity leads to a canonical compactification.

Construction 19.3.11. Let X be completely regular. Let F = F (X) be the
set of all continuous functions f : X −→ I, let Z = Z(X) be the product of copies
of I indexed on the set F , and let i : X −→ Z be the map whose fth coordinate
is the map f . Then i is an inclusion. The induced compactification is denoted βX
and called the Stone-Čech compactification of X.

The Stone-Čech compactification is characterized as the unique compactifica-
tion (up to equivalence) that satisfies the following “universal property”.

Proposition 19.3.12. Let X be a completely regular space. A map f : X −→
Y , where Y is a compact Hausdorff space, extends uniquely to a map f̃ : βX −→ Y .

Proof. Uniqueness holds by Lemma 1.5.3. When Y = I, the existence is im-
mediate from the construction: f is one of the coordinate maps, and the projection
from Z(X) to this coordinate restricts to f̃ : βX −→ I. In general, Y is homeo-

morphic to βY ⊂ Z(Y ). The map fg : X
f−→ Y ∼= βY ⊂ Z(Y )

πg−→ I obtained from

the gth coordinate projection πg, g ∈ Z(Y ), extends to a map f̃g : βX −→ I, and

f̃g is the gth coordinate of a map βX −→ Z(Y ). This map sends X into the closed

set βY , hence it sends the closure βX into βY ∼= Y , giving f̃ . □

19.4. Metrization theorems and paracompactness

Since we are much more comfortable with metric spaces than with general
spaces, it is important to be able to recognize when the topology on a given space
is that induced by some metric. The simplest criterion is the following. Metrization
theorems are proven by embedding a given space as a subspace of a space that is
known to be metrizable. Let Iω denote the product of countably many copies of I.
It is a metric space, which would be false for an uncountable product.

Theorem 19.4.1 (Uryssohn metrization theorem). The following conditions
on a T1 space X are equivalent.

(1) X is regular and second countable.
(2) X is homeomorphic to a subspace of Iω.
(3) X is metrizable and has a countable dense subset.

Remember that second countable means that there is a countable basis for the
topology. This ensures the following analogue of compactness.
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Lemma 19.4.2. If X is second countable, then any open cover of X has a
countable subcover and X has a countable dense subset.

Second countability is a strong condition, and a weaker countability condition,
plus regularity, is necessary and sufficient for metrizability.

Definition 19.4.3. A set V of subsets of X is locally finite if each x ∈ X has
a neighborhood that intersects at most finitely many subsets of V . A cover O of
X is σ-locally finite if it is the union of countably many locally finite subsets.

Theorem 19.4.4 (Nagata-Smirnov metrization theorem). A space is metrizable
if and only if it is regular and has a σ-locally finite basis.

The “σ” here is essential: if a Hausdorff space has a locally finite cover, then
it is discrete.

There is another characterization of metrizability that is perhaps more intuitive.

Definition 19.4.5. A space X is locally metrizable if every point x ∈ X has
a neighborhood U such that U (with its subspace topology) is metrizable.

Clearly any metric space is locally metrizable. There is a property, called
paracompactness, that is very often used to patch local conditions to obtain a
global condition, and Stone proved that any metric space is paracompact.

Theorem 19.4.6 (Smirnov metrization theorem). A space is metrizable if and
only if it is paracompact and locally metrizable.

We explain paracompactness. A refinement of a cover O of X is a collection of
subspaces each of which is contained in at least one of the spaces in O.

Definition 19.4.7. A space X is paracompact if every open cover of X has a
locally finite refinement that is again an open cover of X.

Clearly a compact Hausdorff space is paracompact. The following sharpening
of part of Theorem 19.3.7 holds.

Theorem 19.4.8. A paracompact space X is normal.

Like normality, paracompactness is not preserved by standard constructions.
For this reason, Stone’s theorem that metrizable⇒ paracompact seems more useful
than the converse implication of Smirnov’s metrization theorem.

Proposition 19.4.9. A closed subspace of a paracompact space is paracompact.
In general, subspaces of paracompact spaces and products of paracompact spaces need
not be paracompact.

The point of paracompactness is that it ensures the existence of particularly
convenient open covers. This is very important in the theory of fiber bundles in
algebraic topology.

Definition 19.4.10. An open cover O of X is numerable if it is locally finite
and for each U ∈ O there is a continuous function ϕU : X −→ I such that ϕU (x) > 0
only if x ∈ U . A numerable cover U is a partition of unity if

∑
U ϕU (x) = 1 for

each x ∈ X.

Given a numerable cover O, we can define ϕ(x) =
∑
U ϕU (x) and ψU (x) =

ϕU (x)/ϕ(x), thereby obtaining a partition of unity.
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Proposition 19.4.11. If X is paracompact, then any open cover of X has a
numerable refinement.

Definition 19.4.12. An n-manifold M is a second countable Hausdorff space
each point of which has a neighborhood homeomorphic to Rn.

By the Uryssohn metrization theorem, an n-manifold is metrizable. By Stone’s
theorem, it is therefore paracompact. The following theorem can be proven by use
of a numerable cover of M .

Theorem 19.4.13. Any n-manifold M can be embedded as a subspace of RN
for a sufficiently large N .

19.5. Finite metric spaces and their embedding into Lebesgue spaces

A finite metric space is a finite collection of points with a real distance defined
between each pair. From the perspective of algebraic topology, they have no in-
terest as discrete spaces. Although relaxing metrics to pseudometrics appears to
provide finite metric spaces with more interest, pseudometric spaces are homotopi-
cally equivalent to the discrete space formed when they are passed through the
Kolmogorov quotient. Despite their uninteresting topogical structure, finite met-
ric spaces have applications to computer science. Many physical systems can be
modeled with finite points and distances between them, so computer scientists are
motivated to embed finite metric spaces into host spaces like RN where detailed
analysis can be done. Perfect embeddings cannot always be achieved, so the study
of the distortion needed for embeddings and when isometric embeddings exist is a
rich area.

19.6. Finite Metric Spaces

Finite spaces have different metrization and pseudometrization conditions and
their metrics can be represented in convenient ways.

19.6.1. Pseudometrizing Metrics on Finite Spaces.

Definition 19.6.1. A pseudometric is a function d : X × X −→ R which
satisfies the following properties:

(1) d(x, x) = 0 for all x ∈ X
(2) d(x, y) ≥ 0
(3) d(x, y) = d(y, x) for all x, y ∈ X
(4) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X

This definition is a weakening of the standard metric. Two distinct points may
have a distance of zero. Pseudometrics are sometimes referred to as semimetrics.

Definition 19.6.2. A space X is pseudometrizable if there is a pseudometric
d on X that induces the topology of X.

Definition 19.6.3. A space is R0 if each pair of topologically distinct points
(i.e. points which do not have the same set of neighborhoods) have some neighbor-
hood not containing the other point.

Theorem 19.6.4. A finite topological space is pseudometrizable iff it is R0.
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Proof. Given a topological space X and points x and y in X, define x ≡ y to
mean that x and y are topologically indistinguishable.

Define the standard discrete pseudometric to be:

d(x, y) =

{
0 if x ≡ y
1 if x ̸≡ y

Given x ̸≡ y, take neighborhoods B
(
x,
(
1
2

))
and B

(
y,
(
1
2

))
of x and y so that

B

(
x,

(
1

2

))⋂
B

(
y,

(
1

2

))
= ∅

This metric induces a topology on X where every topologically distinguishable pair
is separated.

If a finite space is R0 with its given topology, then it can be given this topology
which separates topologically distinguishable points, satisfying the R0 condition as
well as inducing a topology which puts families of points equivalent to the given
topology into the same neighborhoods.

Take a space X to be pseudometrizable. Then its metric topology forms open
balls around topologically distinguishable points which can be separated.

If no points in the space have distinct neighborhoods (i.e. the pseudometric
outputs 0 given any two points), then there are no topologically distinguishable
points, so the space is vacuously R0. □

19.6.2. Representing Metrics on Finite Spaces. A metric on a finite
space can be explicitly defined by

(
n
2

)
non-negative numbers, where each number

corresponds to a distance between two points. This property of finite metric spaces
allows them to represented in convenient ways, most importantly with matrices and
graphs.

19.6.2.1. Matrix Representation. Take a finite metric space (X, d) with points
(x0, x1, . . . , xn). Construct an n × n matrix with entries (ai,j) giving the distance
between point i and point j in the space. Then the following characteristics can be
observed.

(1) d(xi, xj) ≥ 0 for all 0 ≤ i, j ≤ n so the matrix is comprised of nonnegative
real numbers.

(2) d(xi, xi) = 0 for all 0 ≤ i ≤ n so the diagonal of the matrix is 0.
(3) d(xi, xj) = d(xj , xi) for all 0 ≤ i, j ≤ n so the matrix equals its transpose.

Thus any finite metric space has a real, positive, symmetric matrix containing all
the information of its metric.

19.6.2.2. Graph Representation. The matrix defined by the finite metric space
can be translated to an undirected, no loop, weighted, finite graph. Given a finite
metric space (X, d) with points (x0, x1, . . . , xn), a graph G with n vertices and

(
n
2

)
weighted edges giving the distance between vertices can be constructed to represent
it.

The distance function defines a distance between any two points of the space,
so each vertex of the graph connects to every other vertex, forming a complete
graph. Metrics satisfy the triangle inequality, so all edges may not be necessary if
the shortest path metric is used on the graph.

Definition 19.6.5. Given a weighted graph G, the shortest path metric is a
metric which defines the distance between two vertices to be the length of the
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shortest path between them. If the two vertices are not connected, the distance is
said to be infinite.

Theorem 19.6.6. A graph G with n vertices and the shortest path metric rep-
resents an n point finite metric space (X, d) iff it is undirected, no loop, weighted
and connected.

Proof. Set each vertex in G to represent a distinct point in the underlying set
X. The properties of a metric give rise to the conditions necessary for the graph.

(1) d(xi, xj) = d(xj , xi) for all 0 ≤ i, j ≤ n (G must be undirected).
(2) d(xi, xi) = 0 for all 0 ≤ i ≤ n (G must have no loops).
(3) d(xi, xj) ≥ 0 for all 0 ≤ i ≤ n (G must be weighted with nonnegative real

values).
(4) d(xi, xj) <∞ for all 0 ≤ i, j ≤ n (G must be connected).

The triangle inequality means that the shortest path metric must be used.
Conversely, a graph fulfilling the above properties can be made into a finite

metric space if the vertices are made into the underlying set and the shortest path
metric is made into the metric on that set. □

Definition 19.6.7. It may be possible to obtain a graph with fewer than
(
n
2

)
(i.e. not a complete graph) to represent the finite metric space. When all edges
which do not alter the output of the shortest path metric are dropped, the critical
graph is obtained.

Example 19.6.8. Where the triangle inequality is satisfied by an equality an
edge can be removed. In this case a critical graph is obtained.

1

42

3

3

1 7

5

8

1

42

3

3

1 7

5

19.7. The Problem with Finite Metric Spaces

Finite metric spaces are of no interest to algebraic topologists as they induce
the discrete topology on the space. This section illustrates why this is the case and
how an indiscrete pseudometric space can be made into a discrete space when it is
made T0 through the Kolmogorov Quotient.

19.7.1. The Discrete Topology. Recall that the discrete topology is the
finest topology possible on a set. Every subset is an open set, and therefore every
subset is also a closed set. The fact that finite metric spaces have the discrete
topology can be proved directly, or illustrated through Lipschitz equivalence of
metrics.
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Theorem 19.7.1. Any metric on a finite space induces the discrete topology.

Proof. Take a finite metric space (X, d). If every point in the space is open,
then all of their possible unions are open, giving the discrete topology.

For any x ∈ X, find r = miny∈X(d(x, y)). This r exists and is nonzero as X is
finite and d(x, y) > 0 for x ̸= y. Then the open ball of radius r about x contains
only x. Thus, the set {x} is open. □

Theorem 19.7.2. A finite space is metrizable iff it is discrete.

Proof. Given a finite space with the discrete topology, the discrete metric
ensures that every point is in a singleton open set (any open ball of radius less than
1) and so the finite space can be metrized.

Conversely, any finite space can be metrized in order to give the discrete topol-
ogy. In fact, as proved above, the discrete topology is the only possible metric
topology given to a finite space. □

19.7.2. The Kolmogorov Quotient. Finite pseudometric spaces allow dis-
tinct points to have the same open neighborhoods in the induced topology. This
seems to give them greater topological interest as they are not necessarily discrete.
The Kolmogorov quotient K(X) of a space X identifies points with the same open
neighborhoods, and allows for a way to form a T0 space. In this case, the T0 space
would be a metric space. This process of converting a pseudometric space into a
metric space through a Kolmogorov quotient is called metric identification.

19.7.2.1. Metric Identification. Suppose (X, d) is a pseudometric space with
x, y ∈ X, and let x ∼ y if d(x, y) = 0. Define X∗ = X/ ∼. If we construct a metric
d∗ on X∗ by setting d∗([x], [y]) = d(x, y), then (X∗, d∗) is a metric space.

Proposition 19.7.3. Metric d∗([x], [y]) = d(x, y) is well-defined.

Proof. It is clear that d∗ is a metric as it inherits properties from metric
d. We show that for x1, x2 ∈ [x] and y ∈ [y], d∗(x1, y) = d∗(x2, y) = d(x, y).
Take d∗(x1, y) = d(x, y). By the triangle inequality on d∗, d∗(x1, x2) + d∗(x2, y) ≥
d∗(x1, y). Because x1 ∼ x2, d∗(x1, x2) = 0, so d∗(x2, y) = d∗(x1, y). Thus d∗ is
is independent of choice of representative from the equivalence class, and hence is
well-defined. □

Theorem 19.7.4. Metric identification preserves the metric induced topology.

Proof. We show the set A ⊂ X is open iff set [A] (the set of all [x] where x
is in A) is open in (X∗, d∗).

Take A ⊂ (X, d), open. Then for all x ∈ A, there is an open ball around x
which is contained in A. Identify all x, y such that d(x, y) = 0. These equivalence
classes are made of points distance zero from each other, so the set of open balls
[B(x, ϵ)] for a given [x], all overlap. □

19.7.2.2. Kolmogorov Quotient of Pseudometric Spaces.

Theorem 19.7.5. The topology induced by metric identification forms a quo-
tient space that is the Kolmogorov quotient.

Proof. Take (X, d) a pseudometric space with metric identified as above. It
must be shown that the relation ∼ is an equivalence relation and that topology
induced by d∗ on X/ ∼ forms K(X).
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(1) The relation ∼ is an equivalence relation
(a) Reflexivity: d(x, x) = 0 for all x ∈ X, so x ∼ x.
(b) Symmetry: d(x, y) = d(y, x) for all x = y ∈ X, so if d(x, y) = 0, then

d(y, x) = 0. Thus, if x ∼ y, then y ∼ x.
(c) By the triangle inequality, d(x, y)+d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

If x ∼ y and y ∼ z, then d(x, y) + d(y, z) = 0, d(x, z) ≥ 0, and so
d(x, z) = 0.

(2) For the topology induced by d∗ on X/ ∼ to be K(X), the equivalence
classes must be comprised of topologically indistinguishable points. Take
x, y ∈ X, with x and y topologically distinguishable. Then there is an
open subset U of X where x ∈ U but y /∈ U . This means that there an
open ball of some radius about x that does not contain y, so d(x, y) > 0,
so x ̸∼ y.

Conversely, if x and y are topologically indistinguishable, then there
is no open ball containing only one of the points. Then each B

(
x, 1

n

)
must

contain both x and y, so d(x, y) must be zero. This means that the topol-
ogy induced by d∗ on X/ ∼ is putting only topologically indistinguishable
points into equivalence classes. This, taken with Theorem 19.7.5 above,
shows that this quotient forms K(X).

□

19.7.2.3. Homotopy Equivalence of the Kolmogorov Quotient. Finite pseudo-
metric spaces (in fact all finite spaces) are homotopy equivalent to their Kolmogorov
Quotient K(X).

Theorem 19.7.6. Every finite space is homotopically equivalent to a T0 space,
K(X).

Corollary 19.7.7. Any finite pseudometric space X is homotopically equiva-
lent to its Kolmogorov Quotient, K(X), with K(X) being a finite metric space.

19.8. Embedding Finite Metric Spaces

Despite the properties explored above, finite metric spaces are of interest to
fields other than algebraic topology. In fields like microbiology, large tables of
numbers are generated and need to be analyzed. It can be difficult to work with
large tables, meaning that a representation in Euclidean space is desirable. An
embedding would offer a way to see the distribution and behavior of the points of
the metric space. In addition, a metric space with n points could be described in
2n numbers instead of

(
n
2

)
numbers.

The interest in representing combinatorial objects like finite metric spaces in
this way comes from a wider interest in the geometrization of combinatorial objects,
which is a method used to transform large amounts of information into a usable
form. Considering the equivalence between linear graphs and finite metric spaces
given above, it would seem that all finite metric spaces could be represented in RN
for some finite N . This is not the case.

The distance metric on the weighted graph representing the finite metric space
is the shortest path metric. In RN , the shortest path between two points is a
straight line, so if equality holds in the triangle equality, those three points lie on
the same line in RN . This fact will mean that not all finite metric spaces can be
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embedded without distorting the distances between points. This is illustrated in
the following example.

Example 19.8.1. Take finite metric space (X, d) with 4 points represented by
the weighted graph below with distance given by the shortest path metric.

x

wy

z

11

1 1

This is a simple 4 cycle with edges of uniform length. Note that

d(x, z) = d(x, y) + d(y, z) = 2 and d(x, z) = d(x,w) + d(w, z) = 2

This fact will give a contradiction when an embedding is done. Embed this metric
space in RN . There are then two minimal paths between x and z and both obtain
equality with the triangle inequality. As explained above, the fact that

d(x, z) = d(x, y) + d(y, z) and d(x, z) = d(x,w) + d(w, z)

implies that points x, y, z are collinear, as are x,w, z. Line segments xyz and xwz
are the same as they have the same endpoints. Because y and w are both distance 1
away from x on the same line, they are distance zero from each other. This implies
that y = w, contradicting the fact that X has 4 points.

The graph must be distorted to be represented in RN .

Definition 19.8.2. Take metric spaces (X, dX) and (Y, dY ) and a function
f : X −→ Y . Then the distortion of f can be realized by its Lipschitz constants.
The expansion of f is defined as

∥f∥Lip = sup
x,y∈X

dY (f(x), f(y))

dX(x, y)

The contraction of f is given by

∥f∥−1
Lip = sup

x,y∈X

dX(x, y)

dY (f(x), f(y))

The distortion of f is given by

distortion(f) = contraction(f) ∗ expansion(f) = ∥f∥−1
Lip ∗ ∥f∥Lip

This is equivalent to finding the closest a, b ∈ R such that

a ≥ dY (f(x), f(y))

dX(x, y)
≥ b

and defining distortion(f) := a
b .
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Remark 19.8.3. A mapping f : X −→ Y is an isometry if a
b = 1. That is, all

distances are preserved up to scaling.

Definition 19.8.4. Take metric spaces (X, d) and (Y, d′). Then (X, d) is
isometrically embeddable into (Y, d′) if there is a map f : X −→ Y such that
d(x, y) = d′(f(x), f(y)) for all x and y in X.

As Example 4.1 illustrates, distortion is often necessary for embedding to occur.
In that particular case, the distances can be distorted by a factor of

√
2 in order to

form the square cycle.
Embedding a metric space in RN is a useful case of embedding, but embedding

can be described in general settings.

Definition 19.8.5. For 0 < p < ∞, ℓp space is the set of all real sequences
{xn} such that

∑
n |xn|p <∞.

The norm of this space is given by

∥x∥p =

(∑
n

|xn|p
) 1

p

Note that when p = 2 this is the Euclidean norm.

Definition 19.8.6. A metric space (X, d) is ℓp embeddable if (X, d) is isomet-
rically embeddable into ℓnp for some natural number n. This number n is the ℓp
dimension of (X, d).

19.8.1. Embedding in ℓ2. Embedding in ℓ2 attracts special attention. To
those looking to analyze large amounts of data, translating data points into a finite
metric space and then into a representation can be useful. In ℓ2 there are extremely
well developed tools in analysis and geometry to aid in the analysis of the data, so
obtaining a good representation is important.

For its usefulness, ℓ2 is very strict in its behavior, making embeddings difficult.
The general theory of Banach spaces gives additional insight into why this is the
case and additional motivation to consider ℓ2 embeddings.

Definition 19.8.7. The Banach-Mazur distance is a measure of distance on
the set of n-dimensional normed spaces. Take two normed spaces X and Y of
dimension n and GLX,Y , the set of linear isomorphisms from X to Y .

The Banach-Mazur distance between X and Y is defined to be

δ(X,Y ) = log

(
inf

T∈GLX,Y

distortion(T )

)
This is a metric on the space of n-dimensional normed spaces. For many purposes
(including ours) the multiplicative Banach-Mazur distance

d(X,Y ) = eδ(X,Y ) = inf
T∈GLn

distortion(T )

will be used. Because δ(X,Y ) is a metric, the multiplicative Banach-Mazur dis-
tance obeys the multiplicative triangle inequality, d(X,Z) ≤ d(X,Y )d(Y, Z). For
convenience, this will be referred to as the Banach-Mazur distance.

The Banach-Mazur distance gives a sense of how close two normed spaces are to
one another. If the distance is small, then the space needs little distortion for there
to be a linear isomorphism between them. The following theorem, Dvoretzky’s
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theorem, is a classical theorem which gives a quantitative sense of how close ℓ2
space is to arbitrary normed spaces.

Theorem 19.8.8. (Dvoretzky’s Theorem [43]) For every n ∈ N and ϵ > 0, every
n-dimensional normed space contains a subspace X of dimension m = Ω(ϵ2log(n))
such that d(X, ℓ2) ≤ 1 + ϵ.
Ω denotes that m is bounded asymptotically by ϵ2log(n) as n −→∞.

19.8.1.1. Bourgain’s Theorem. [12]. Motivated by this property of ℓ2, in 1986,
Jean Bourgain developed an algorithm which describes embedding in ℓ2.

Theorem 19.8.9. Any metric space (X, d) with n points can be embedded in ℓ2
with distortion ≤ O(log n).

Proof. Bourgain’s proof gives an efficient randomized algorithm for the em-
bedding in ℓ2 with distortion ≤ O(log n).
Take a metric space (X, d) with n points.

(1) Take m and q to be integers m = ⌊log2⌋ and q = ⌊Clog(n)⌋ where C is a
constant.

(2) Construct an embedding into ℓmq2 with coordinates i = 1, . . . ,m and j =
1, . . . , q.

(3) Construct subsets of X, Aij by putting each x ∈ X into Aij with proba-
bility 2−j .

(4) Now embed with function f(x)ij = d(x,Aij).

This is an embedding in ℓ
O(log)2n
2 . It has distortion O(logn). □

19.8.1.2. Tightness of Bound. The construction of this algorithm raises the
question whether a better embedding can be achieved. A paper by Nathan Linial
(2002) shows that this bound is tight. He considers a specific type of graph that
has a shortest path metric which is as far from the ℓ2 metric as possible in order
to guarantee a large distortion, giving a lower bound on distortion of graphs. To
state his theorem, some definitions from graph theory are needed.

Definition 19.8.10. The girth of a graph is the shortest cycle contained in the
graph. The girth of an acyclic graph is defined to be infinite.

Definition 19.8.11. An expander graph is a connected graph in which every
“small” subset of vertices has a “large” boundary. That is, the graph cannot be
disconnected without removing many edges.

This quality can be quantified in the notion of an ϵ edge expander. A graph
with n vertices is an ϵ edge expander if every set of K vertices with 0 ≤ K ≤ n

2 has
ϵ|K| edges connected to Kc (the set of vertices not in K).

Definition 19.8.12. A k-regular graph is a graph where each vertex is of degree
k.

Theorem 19.8.13. Linial’s Lower Bound [43]
Take G, a k-regular graph, with k ≥ 3, and girth g. Then every embedding f :
G −→ ℓ2 has distortion Ω(

√
g).

Proof. Sketch. This proof uses a random walk on the graph. Knowing the
girth of the graph and that all vertices are connected to k other vertices, it can
be proven that the walk moves away from where it started at constant speed at a
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time bounded asymptotically by g. The geometry of Euclidean space means that
this class of random walks is at time T expected to be O(

√
T ) from its origin. This

difference must be accounted for by a distortion in the metric if it is to be embedded
in ℓ2. Comparing the two walks on the graph at time O(g) gives a distortion of
Ω(
√
g). □

The triangle inequality is satisfied by equality many times, necessitating signif-
icant distortion.

19.8.1.3. Isometric Embedding in ℓ2. I. J. Schoenberg’s 1937 paper [61] out-
lines the necessary and sufficient conditions for an isometric embedding in ℓ2. In
particular, he addresses separable pseudometric spaces and characterizes embed-
dable metrics in terms of positive definite functions.

Definition 19.8.14. A real function f = f(x1, x2, . . . , xn) is a positive definite
function if it is defined for all real values, and if for any real numbers x1, x2, . . . , xn
the n×n matrix A where A = (ai,j) and ai,j = f(xi−xj) is a positive, semi-definite
matrix (that is, xtAx ≥ 0 for all real numbers x).
A similar notion of positive definite functions can be defined for real-valued func-
tions which take as input distances on a pseudometric space (X, d).
A real function g(t) is positive definite if g is continuous, even, defined on the range
of distances in the pseudometric space, and satisfies the inequality

n∑
i,j=1

g(d(xi, xj)) ≥ 0

Examples of positive definite functions in ℓ2 are f(t) = e−t
2

, and more generally,

f(t) = e−λt
2

for all λ ∈ R.

Theorem 19.8.15. Schoenberg’s Embedding
A separable pseudometric space (X, d) is isometrically embeddable in ℓ2 if and only

if the functions e−λt
2

are positive definite in (X, d).

Proof. Sketch. The idea of this proof is to note that e−λt
2

for (λ ∈ R) is a
family of positive definite functions in ℓ2. It is only necessary to consider λ > 0
as λ = 0 is an accumulation point of this family and the cases where λ < 0 follow
by symmetry. The proof uses ideas from analysis about positive definite functions
to show that if the given characteristics of positive definite functions are preserved
on embedding into ℓ2, then all distances must have been preserved and if the given
family of functions are positive definite in the metric space, then the metric of the
space will allow isometric embedding into ℓ2. □

19.8.2. Embedding in ℓ1. Following the formula given for ℓp space ℓ1 is the
set of all real sequences {xn} such that

∑
n |xn| <∞. The distance metric on ℓ1 is

defined to be dℓ1(x, y) :=
∑
n |xn − yn| <∞.

To consider isometric embedding in ℓ1, the cut semimetric will be used.

Definition 19.8.16. The cut semimetric is a pseudometric d on a set X. Given

partitions A and B of X, define d(x, y) =

{
0 if x, y ∈ A or x, y ∈ B
1 otherwise

.

Every cut semimetric is clearly isometrically embeddable in ℓ1.
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The set of all linear combinations of semimetrics on a set forms a special class
of metrics on that set. These are exactly the ℓ1 metrics on the set (that is, the
metrics which can be isometrically embedded in ℓ1) [21].

19.8.3. Embedding in ℓ∞.

Definition 19.8.17. ℓ∞ space is defined to be the set of all real bounded
sequences. It takes on the norm ∥x∥∞ = supn∈N |xn|.

Theorem 19.8.18. [27, Ch 8.1.3] Every finite metric space (X, d) with n points
can be embedded in ℓn∞.

Proof. Take a finite metric space (X, d) with X = {x1, x2, . . . , xn} and define
an embedding function f : X −→ ℓn∞ by f(xi)j = d(xi, xj) for all 1 ≤ i and
j ≤ n. □

Embeddings into lower dimensional ℓk∞ spaces exist.

Definition 19.8.19. Take a metric space (X, d) and every subset S ⊂ X. Then
define a mapping fS : X −→ R for each S by

fS(x) = d(x, S) = min
s∈S

(d(x, s))

A Frechet Embedding is a map f : X −→ Rk where each coordinate in Rk is a
scaled fS mapping. Then f is a Frechet Embedding if, for some βS ∈ R,

Proposition 19.8.20. [58] When βS = 1 for all S ⊂ V, ∥f(x) − f(y)∥∞ ≤
d(x, y). That is, Frechet embeddings are contraction mappings in the ℓ∞ metric.

Proof. Let Sx denote the point in S ⊂ X closest to some point x ∈ X. Then
both

d(x, S)− d(y, S) ≤ d(x, Sy)− d(y, Sx) ≤ d(x, y), and

d(y, S)− d(x, S) ≤ d(y, Sx)− d(x, Sy) ≤ d(x, y)

This implies that ∥f(x)− f(y)∥∞ = |d(x, S)− d(y, S)| ≤ d(x, y). □

A 1996 paper by Jiri Matousek uses these mappings to do distorted mappings
into lower dimension ℓk∞ space.

Theorem 19.8.21. [44] Take an n-point metric space (X, d) and integer D.

Then (X, d) can be embedded into ℓ
O(Dn2/D log(n)
∞ .

Proof. The idea of this proof is to divide X into O(Dn2/Dlog(n)) subsets,
each of which will correspond to a dimension in the range ℓ∞ space.

Construct the embedding function ψ : (X, d) −→ ℓ
O(Dn2/Dlog(n))
∞ to be a Frechet

embedding with jth coordinate of ψ(x) to be d(x, S). Noting the proposition above,
function ψ must be a contraction mapping. The rest of the proof uses an algorithm
and probability to show that its contraction is limited. □
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19.8.4. Embedding in RN [53]. A paper by C.L. Morgan published in 1974
proved necessary and sufficient conditions for embedding a metric space in RN . His
theorem applies to arbitrary metric spaces, not only finite ones. It holds special
interest for embedding finite metric spaces. His theorem makes the computation
necessary to determine whether embeddability is feasible. His proof also shows that
for any metric space, embedding into RN is a very strong condition, but it is one
that is determined by a finite number of points in the metric space.

In order to state and prove the embedding theorem, some special definitions
will be needed, as well as some general results about inner products, metrics, and
linear algebra.

Definition 19.8.22. An inner product on a vector space V over a field F with
characteristic 0 is a bilinear map ⟨ , ⟩ : V × V −→ F. This function satisfies
conjugate symmetry and positive definiteness.

For a vector space V with element x ∈ V , define a norm ∥x∥ =
√
⟨x, x⟩.

Theorem 19.8.23. For a vector space V over characteristic 0 field F with inner
product ⟨ , ⟩, and norm ∥x∥ =

√
⟨x, x⟩, a metric d(x, y) = ∥x − y∥ is induced by

the norm.

Definition 19.8.24. Let (X, d) be a metric space and for points x, y, z ∈ X
define a function from X ×X ×X −→ R by:

⟨x, y, z⟩ =
1

2

(
d(x, z)2 + d(y, z)2 − d(x, y)2

)
If we define X to be a subset of some vector space V such that metric d is induced
by an inner product on V , then ⟨x, y, z⟩ is the inner product of x− z and y − z.

Definition 19.8.25. Take metric space (X, d). Then define Y to be a metric
subspace of X if Y ⊂ X and Y has the distance function d|Y×Y .

Finite metric subspaces of X are n-simplices in X. In particular, a metric
subspace of n+ 1 elements is an n-simplex in X.

If (X, d) is a subspace of Euclidean space, then these simplices have a clear no-
tion of volume. The following function will begin to generalize this idea to arbitrary
metric spaces.

Definition 19.8.26. Define a function D : Xn+1 −→ R as follows:
Construct an n×nmatrixA from (x0, x1, . . . , xn) with real entries (ai,j) = ⟨xi, xj , x0⟩
and let D(x0, x1, . . . , xn) = det(A). This function D is a real valued function on
the n-simplices of X.

Proposition 19.8.27. The function D is symmetric.

Proof. In Euclidean space, the entry (ai,j) in the above matrix is

⟨xi, xj , x0⟩ =
1

2

((√
(xi − x0)2

)2
+ (

(√
(xj − x0)2

)2

− (

(√
(xi − xj)2

)2
)

=
1

2

(
(xi − x0)2 + (xj − x0)2 − (xi − xj)2

)
=

1

2

(
−2xjx0 − (−2x0xi) + 2xixj + 2x20

)
= −xjx0 − x0xi + xjxi + x20

= (xi − x0) ∗ (xj − x0)
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The determinant of a matrix with these entries is the square of the volume of a
parallelpiped spanned by the set of n vectors (x1, . . . , xn) based at x0. □

With this machinery, it is possible to find the volume of the simplex (x1, . . . , xn).

Proposition 19.8.28. The volume of the n−simplex Y = (x1, . . . , xn) in Eu-
clidean space is

V oln(Y ) =
1

n!

√
D(x0, x1, . . . , xn)

Having computed this volume in Euclidean space, define the volume of an n-
simplex Y in any metric space to be the formula given by V oln(Y ). We can now
provide two definitions which will describe which metric spaces can be embedded
in RN .

Definition 19.8.29. A metric space (X, d) is flat if for each n-simplex Y in
X, V oln(Y ) is real.

Definition 19.8.30. If (X, d) is a flat metric space, the dimension of (X, d) is
the largest n ∈ N where there exists an n-simplex of X with positive volume.

These characteristic of metric spaces will determine which can be isometrically
embedded in RN . To prove Morgan’s main theorem, some results from linear
algebra are quickly cited.

Lemma 19.8.31. Any real n-dimensional inner product space is linearly isomet-
ric to Euclidean n-space.

Lemma 19.8.32. Let M be an m × m real symmetric matrix with all non-
negative eigenvalues. If D[i, j] is the determinant of the m − 1 ×m − 1 minor of
M obtained by deleting its ith row and jth column, then D[i, j]2 ≤ D[i, i]D[j, j].

Theorem 19.8.33. Morgan’s Embedding in RN . A metric space can be isomet-
rically embedded in Euclidean n-space iff the metric space is flat and has dimension
less than or equal to n.

Proof. Take a metric space (X, d) which can be isometrically embedded in
Euclidean n-space. Isometries preserve volume, so the simplices must have real
volume in (X, d) (as they have real volume in RN ), so (X, d) is flat. Because
volume is preserved, the simplices of positive volume in (X, d) have positive volume
in RN . Since there cannot be any simplices of positive volume in RN with greater
than n+ 1 points, (X, d) must have dimension less than or equal to n.

Suppose (X, d) is flat and of dimension n with n-simplex Y = (x0, x1, . . . , xn)
such that Y has positive volume.

If a map f : X −→ RN can be constructed such that f embeds X isometrically
in RN with some inner product, then (X, d) can be embedded in Euclidean n-
space because any real n-dimensional inner product space is linearly isometric to
Euclidean n-space.

Let f : X −→ RN be the map defined by f(x) := (⟨x, x1, x0⟩, . . . , ⟨x, xn, x0⟩),
and construct bilinear form on RN as follows: Let L be an n×n matrix with entries
(ai,j) = ⟨xi, xj , x0⟩, and let

⟨u, v⟩ = utL−1v for all u, v ∈ RN

If the eigenvalues of matrix L are positive, this bilinear form is an inner product
on RN and f embeds (X, d) isometrically into this inner-product space.
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The roots of the polynomial det(xI+L) are the negatives of the eigenvalues of L.
Thus, we can look at the coefficient of the term of degree n− k in this polynomial,
which is the sum of the k ∗ n minors that lie along the main diagonal. These
minors are all non-negative because they are volumes of k-simplicial complexes
(these volumes are all real, nonnegative as (X, d) is flat and dimension n). These
make the polynomial positive, so it must have no positive roots, so there cannot
be negative eigenvalues of L. L being symmetric and non-singular (as (X, d) has
non-zero dimension) ensures that its eigenvalues are positive.

We show the inner product given on RN preserves the structure of all of the
n-simplexes of (X, d), and that therefore f is an isometry, by showing that

⟨f(x), f(y)⟩ = ⟨x, y, x0⟩ for all x, y ∈ X
Construct a (n+ 2)× (n+ 2) matrix M with entries ⟨xj , xi, x0⟩. By the same

reasoning used on the similarly constructed matrix L, M has all non-negative eigen-
values.

Set D[i, j] to be the determinant of the (n+ 1)× (n+ 1) of the matrix obtained
by deleting the ith row and jth column of M .

Recall the lemma stating that D[i, j]2 ≤ D[i, i]D[j, j]. D[i, i] is the determinant
corresponding to the volume of a (n+ 1)-simplex squared and scaled by a factor of
(n+ 1)! and since (X, d) is n-dimensional, the volume of any (n+ 1)-simplex must
be zero, and therefore D[i, i] = 0. By the lemma, this also means that D[i, j] = 0.

Setting i = n and j = n+1 shows that, in particular, D[n, n+1] = 0. Consider
the minor of M with the nth row and (n+ 1)st columns deleted.

⟨x1, x1, x0⟩ . . . . . . ⟨xn, x1, x0⟩ ⟨xn+2, x1, x0⟩
...

. . .
. . . . . .

...
⟨x1, xn−1, x0⟩ . . . . . . ⟨xn, xn−1, x0⟩ ⟨xn+2, xn−1, x0⟩
⟨x1, xn+1, x0⟩ . . . . . . ⟨xn, xn+1, x0⟩ ⟨xn+2, xn+1, x0⟩
⟨x1, xn+2, x0⟩ . . . . . . ⟨xn, xn+2, x0⟩ ⟨xn+2, xn+2, x0⟩


Since in ⟨f(x), f(y)⟩ = f(x)tL−1f(y) in general, the condition for isometry is

⟨f(x), f(y)⟩ = ⟨x, y, x0⟩
Set x := xn+1 and y := xn+2 so that

f(x) = (⟨xn+1, x1, x0⟩, . . . , ⟨xn+1, xn, x0⟩) , f(y) = (⟨xn+2, x1, x0⟩, . . . , ⟨xn+2, xn, x0⟩)
Note that by deleting one row and one column from the matrix above, and dividing
by the determinant of L, the matrix becomes the L−1 (when assigning the correct
cofactor signs).

Expand the above matrix by the last row to calculate the determinant, using
the minors
⟨x1, x1, x0⟩ . . . . . . ⟨xn, x1, x0⟩

...
. . .

. . . . . .
⟨x1, xn−1, x0⟩ . . . . . . ⟨xn, xn−1, x0⟩
⟨x1, xn+1, x0⟩ . . . . . . ⟨xn, xn+1, x0⟩

 =


⟨x2, x1, x0⟩ . . . . . . ⟨xn+2, x1, x0⟩

...
. . .

. . . . . .
⟨x2, xn−1, x0⟩ . . . . . . ⟨xn+2, xn−1, x0⟩
⟨x2, xn+1, x0⟩ . . . . . . ⟨xn+2, xn+1, x0⟩


Taking the appropriate sign changes and summing their determinants gives zero
(as D[n, n+ 1] = 0). So dividing by det(L) still yields zero.

Continue the calculation to get that

⟨xn+1, xn+2, x0⟩ = f(xn+1)tL−1f(xn+2)



19.8. EMBEDDING FINITE METRIC SPACES 201

This means that ⟨f(x), f(y)⟩ = ⟨x, y, x0⟩ for all x, y ∈ X and thus, f is an isometry.
□

These characterizations of metric spaces provides a useful way to analyze ex-
amples of metric spaces.

Theorem 19.8.34. [53] For n ≥ 2, RN with the ℓp metric is flat iff p = 2.

Proof. Morgan gives the two examples used below for his proof of this theorem
without additional argument. However, working through the process to show why
these examples work illustrates why the case when p = 2 is special.

Given RN with the ℓ2 metric, the previous theorem proves that it is flat (i.e.
(RN , ℓ2) can embed in itself). The example given in Example 19.8.1 of a non-
embeddable metric space suggests how to construct simplices of imaginary volume
in (RN , ℓp) when p ̸= 2. It is only necessary to find examples in R2 as R2 ⊂ RN for
n ≥ 2.

Consider (RN , ℓp) for p < 2.
If 1 ≤ p, the ℓp is induced by the norm

∥x∥p =

(∑
n

|xn|p
) 1

p

Take the example of the 3-simplex Y in (RN , ℓ2) with Y = {(0, 0), (1, 0), (1, 1), (0, 1)}.
Observe that for any value of p ≥ 1, the horizontal and vertical distances on this
simplex are the same.

If p ≥ 1,

d((a, b), (a, c)) = ∥(a, b)− (a, c)∥p = (|(a− a)|p + |(b− c)|p)
1
p = |b− c|

The same argument applies, by symmetry, when the second coordinates are equal.
This means that distortion would occur in the distance between two non-adjacent
points in this simplex. By the triangle inequality, for any p ≥ 1,

d((0, 0), (1, 1)) ≤ d((0, 0), (0, 1)) + d((0, 1), (1, 1)) = 1 + 1 = 2

d((0, 0), (1, 1)) ≤ d((0, 0), (1, 0)) + d((1, 0), (1, 1)) = 1 + 1 = 2

d((0, 0), (1, 1)) = ∥(0, 0)− (1, 1)∥p = (|(0− 1|p + |(0− 1)|p)
1
p = 2

1
p

As p −→∞, the quantity d((0, 0), (1, 1)) −→ 1, so this square in (RN , ℓ2) collapses
to a line as p increases.

Now consider the matrix constructed to compute function D(Y ):

A =

⟨(0, 0), (1, 0), (1, 0)⟩ ⟨(0, 0), (1, 0), (1, 1)⟩ ⟨(0, 0), (1, 0), (0, 1)⟩
⟨(0, 0), (1, 1), (1, 0)⟩ ⟨(0, 0), (1, 1), (1, 1)⟩ ⟨(0, 0), (1, 1), (0, 1)⟩
⟨(0, 0), (0, 1), (1, 0)⟩ ⟨(0, 0), (0, 1), (1, 1)⟩ ⟨(0, 0), (0, 1), (0, 1)⟩


Notice an entry on the diagonal takes the form

⟨x, y, y⟩ =
1

2

(
d(x, y)2 + d(y, y)2 − d(x, y)2

)
= 0,

and therefore A has a zero diagonal. Then since d((0, 0), (0, 1)) = d((0, 0), (1, 0)) =
d((1, 0), (1, 1)) = d((0, 1), (1, 1)) = 1 for any p, matrix A can be simplified to

A =

 0 1
2 [d((0, 0), (1, 1))2] 1

2 [d((1, 0), (0, 1))2]
1− 1

2 [d((0, 0), (1, 1))2] 0 1− 1
2 [d((0, 0), (1, 1))2]

1
2 [d((0, 1), (1, 0))2] 1

2 [d((0, 0), (1, 1))2] 0
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We find D(Y ) := D((0, 0), (1, 0), (1, 1), (0, 1)) can be calculated:

D(Y ) =

[
1

2
d((0, 0), (1, 1))2

] [
1

2
d((0, 1), (1, 0))2

] [
1− 1

2
d((0, 0), (1, 1))2

]
+ (

[
1

2
d((1, 0), (0, 1))2

] [
1− 1

2
d((0, 0), (1, 1))2

] [
1

2
d((0, 0), (1, 1))2

]
= d
(
(1, 0), (0, 1)

)2
d
(
(0, 0), (1, 1)

)2
(
1

2
− 1

4
d
(
(0, 0), (1, 1))2

)
The term d

(
(1, 0), (0, 1)

)2
d
(
(0, 0), (1, 1)

)2
is always positive. Then this value of

D(Y ) is negative (and so the volume of Y imaginary) only when

1

2
<

1

4
d
(
(0, 0), (1, 1)

)2
Solving this inequality gives that the volume is imaginary when

√
2 < d

(
(0, 0), (1, 1)

)
If 0 < p < 1 then ℓp has the metric dp(x, y) =

∑n
i=1 |xi − yi|p so

d
(
(0, 0), (1, 1)

)
=

2∑
i=1

|0− 1|p = 1p + 1p = 2

Then since D(Y ) is negative for 0 < p < 1, V ol(Y ) is imaginary, and therefore
(RN , ℓp) is not flat for 0 < p < 1. If 1 ≤ p < 2, then this distance takes the form

d
(
(0, 0), (1, 1)

)
= ∥(0, 0)− (1, 1)∥p = (1p + 1p)

1
p = 2

1
p

If p < 2, then the inequality is satisfied, meaning that (RN , ℓp) is not flat for
1 ≤ p < 2.

Consider (RN , ℓp) for p > 2. Take example of the 3-simplex Y in (RN , ℓp)
with Y = {(0, 1), (1, 0), (−1, 0), (0,−1)}. This simplex has vertical and horizontal
distances of 2 which are preserved in all (RN , ℓp) for all p. It is the distances
which are not preserved which will cause this simplex to have imaginary volume for
p > 2. This example’s invariant distances are larger than the changing distances,
so by repeating the same computation as above, the inequality is reversed, giving
that the volume of Y is imaginary when

√
2 > d

(
(−1, 0), (0, 1)

)
This is an equality when p = 2. By the same analysis as above, as p becomes
greater than 2, this inequality is satisfied, showing that Y has an imaginary volume
when p > 2, and therefore (RN , ℓp) is not flat for p > 2. □

19.8.5. Embeddings of the ℓ2 Metric. In Section 19.8.2 it was shown that
ℓ2 is close to other normed spaces. That is, there is a linear isomorphism between
them which requires little distortion of the spaces. It is then natural to ask when
there is an isometric embedding from ℓ2 to other spaces.

19.8.5.1. Dimension reduction in ℓ2. Given a metric space (X, ℓ2) in RN , it
is useful to ask whether the dimension of the host space, ℓ2, can be reduced in
exchange for distortion. A paper by William Johnson and Joram Lindenstrauss
quantified the possible dimension reduction.

Theorem 19.8.35. (Johnson and Lindenstrauss Dimension Reduction [36])
Given any n-point metric space (X, ℓ2) ⊂ RN and ϵ > 0, there is an embedding of
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distortion of at most 1 + ϵ such that

(X, ℓ2) −→ ℓ
O( logn

ϵ2
)

2

The proof of this dimension reduction theorem and other proofs of isometric
embedding from ℓ2 to ℓp uses a technique in theoretical computer science, random
projection.

Definition 19.8.36. Take vectors r1 . . . , rk ⊂ RN which have been obtained
by some random process. Then define map ψ : RN −→ Rk as follows:

ψ : v −→ (⟨v, r1⟩, . . . , ⟨v, rk⟩)
The map ψ is a random projection from RN −→ Rk.

Random projection ψ can be conveniently expressed as a k×n matrix A whose
rows are r1, . . . , rk so that ψ(v) = Av. This means that random projections are
linear.
There are three notable examples of random process used to generate the r1, . . . , rk.
All three have been used to prove the Johnson-Lindenstrauss Theorem.

Example 19.8.37. (1) Set each ri = (r1i , . . . , r
n
i ) and obtain values for

each rji from a normal probability distribution centered at 0 with variance
1. This is labeled ψN and was used to prove Johnson-Lindenstrauss [35].

(2) Set each ri = (r1i , . . . , r
n
i ) and obtain values for each rji by choosing either

+1 or −1, each with probability 1
2 . This method is called binary coins

and is labeled ψB . This is the simplest method used to prove Johnson-
Lindenstrauss [1].

(3) Take r1, . . . , rk to be a set of k orthogonal vectors from Sn−1. This is
labeled ψS and was originally used by Johnson and Lindenstrauss [36].

19.8.5.2. Isometric Embedding from ℓ2 to ℓ1. Two interesting cases of ℓp spaces
are ℓ2 and ℓ1, so the existence of an isometric embedding of a n-point metric space
in ℓn2 to some finite dimensional ℓk1 is an important one. In order to prove that there

does exist such an embedding, the space ℓS
n−1

1 will be explored. The definition of
this space and the proof of an embedding theorem is given in lecture 12 of the series
on finite metric spaces given at TTIC [58].

Definition 19.8.38. Space ℓS
n−1

1 is a ℓ1 metric space with a coordinate for

each vector in Sn−1. Each point in ℓS
n−1

1 is given by a function f : Sn−1 −→ R.
The ℓ1 norm is given by

∥f∥1 =

∫
r∈Sn−1

|f(r)|dr

Lemma 19.8.39. There exists an isometric embedding of every n−point metric

space in ℓn2 to ℓS
n−1

1 .

With this embedding lemma, it only need be shown that there is an isometric

embedding from to isometric embeddings from ℓS
n−1

1 into a finite dimensional ℓ1.

This result can also be generalized to isometric embeddings from ℓS
n−1

p to finite
dimensional ℓp.

Theorem 19.8.40. [58] Every n-point metric space in ℓn2 can be isometrically
embedded in ℓn!1 .
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Proof. Sketch. Isometrically embed space metric space X = {x1, . . . , xn}
in ℓn2 by the above lemma. Sn−1 is partitioned into n! regions and each region
is assigned an xi and xj . Each region is defined in such a way that the sign of
⟨xi, r⟩ − ⟨xj , r⟩ is constant within it. It can then be shown that this produces an

isometric embedding from ℓn2 to ℓS
n−1

1 and into ℓn!1 . □



CHAPTER 20

Reduction methods of finite spaces

The manipulation of a finite space through removal of points presents a space
weakly homotopy equivalent to the original. The exposition presented in the next
section follows the work of Sharon Zhou, in her 2020 REU paper on homotopy types
of finite spaces and simplicial complexes.

As observed, if two finite spaces X and Y are homotopy equivalent, then so
are their corresponding order complexes K (X) and K (Y ). In fact, T. Osaki [55]
showed that K (X) and K (Y ) are actually simple homotopy equivalent, which is a
more refined notion of homotopy equivalence in the world of simplicial complexes.

In order to understand this result, the following definition of simple homotopy
is presented:

Definition 20.0.1. Let K be a finite simplicial complex and L ⊂ K be a
subcomplex. We say that K collapses to L via an elementary simplicial collapse
and write K ↘e L if there exists a simplex S ∈ K and a vertex a ∈ K that is not
contained in S such that

K = L ∪ aS and L ∩ aS = a∂S.

In other words, K collapses to L via an elementary simplicial collapse if there
are only two simplices S, S′ ∈ K disjoint from L such that S is a free face of S′,
i.e., S′ is the only simplex disjoint from L that contains S as a face.

Definition 20.0.2. We say that K (simplicially) collapses to L or L (simpli-
cially) expands to K if L can be obtained from K via a sequence of elementary
collapses. We denote this by K ↘ L or L ↗ K. Two complexes K and L have
the same simple homotopy type if there exists a sequence of simplicial complexes
K = K1,K2, . . . ,Kn = L such that Ki ↘ Ki+1 or Ki ↗ Ki+1 for all 1 ≤ i ≤ n.

For a concrete example, consider the sequence of elementary collapses below,
which can be found in [7].

We say that a simplicial complex K is collapsible if it collapses to one of its
vertices. For example, any simplicial cone aK is collapsible. The key observation

here is that simple homotopy equivalence is a special case of homotopy
equivalence, as we show below.

Proposition 20.0.3. If two simplicial complexes are simple homotopy equivalent,
then they are homotopy equivalent.

205
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Proof. Let K,L be two simplicial complexes. Without loss of generality,
let L ⊂ K be a subcomplex and suppose that K collapses to L via an elementary
simplicial collapse. Then there exists some simplex S ∈ K and a vertex a ∈ K, a /∈ S
such that K = L ∪ aS and L ∩ aS = a∂S. Note that the inclusion i : L ∩ aS ↪→ aS
is a homotopy equivalence. Applying the gluing theorem (Theorem A.2.5 in [7]) to
the diagram below,

L ∩ aS i //

∩
��

aS

��
L

I
// K

we see that the inclusion I : L ↪→ K is also a homotopy equivalence. □

This yields the following proper containment of types of homotopies between
simplicial complexes, where S denotes the set of simple homotopy equivalences. A

theorem by Whitehead shows that a homotopy equivalence between simplicial
complexes is a simple homotopy equivalence precisely when the Whitehead torsion

τ vanishes (see [52] for details).

S ⊂ {Homotopy equivalence} = {Weak Homotopy Equivalence}

In finite spaces, as we will soon show, a different relation holds:

{Homotopy equivalence} ⊂ S ⊂ {Weak equivalence}

In both cases, the containment is proper. A natural question to ask is whether
there exists some kind of homotopy equivalence between simple homotopy and

homotopy equivalence of CW complexes. In other words, one might hope to define
a new class of homotopy equivalences that will “fill in” the first chain of set
containment. The close correspondence between finite spaces and simplicial

complexes suggests that we may find an answer by examining the hierarchy of
homotopy equivalences of finite spaces.

The following question may then be presented: Can we further refine the notion
of homotopy equivalence in the world of simplicial complexes to obtain some

formal class of homotopy equivalence between simple homotopy equivalence and
general homotopy equivalence by using the homotopy theory of finite spaces?
Although this remains an open problem, several methods of examination are

presented in Section 4 of the source paper.
What follows presents the effect of one-point reductions on the order complex of
the space. In particular, results will show that removing beat points from a finite

space X does not affect the homotopy type of either X or K (X).

20.0.1. One-point reduction of finite spaces. In this section, we study
three types of one-point reductions of finite spaces, namely the removal of beat

points, weak points, and γ-points, and consider what kind of homotopy
equivalences they induce on the corresponding order complexes.

20.0.1.1. Beat points. Recall that two finite spaces are homotopy equivalent if
and only if one can be obtained from another by successively removing or adding

beat points. We have the following useful corollary, directly implied from
Theorem 2.4.4.
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Corollary 20.0.4. A finite space X is contractible if and only if one can remove
beat points from X one at a time to obtain a space consisting of only one point.

We now consider what kind of homotopy equivalence a beat point removal will
induce on the order complex associated to the original finite space. As one would
reasonably expect, removing a beat point from a finite space X does not change
the simple homotopy type of K (X). This result was first proved by Osaki [55].

Theorem 20.0.5 (Osaki). If x is a beat point, then K (X) collapses to K (X\{x}).
Since two finite spaces are homotopy equivalent if and only if one can be obtained

from another by successively removing and adding beat points, this theorem
generalizes readily to the following corollary.

Corollary 20.0.6. If X and Y are homotopy equivalent, then K (X) and K (Y )
have the same simple homotopy type.

There is one thing unsatisfactory, however, about this corollary: its converse is
false. To see that, consider the following example given by Barmak and Minian

[7].

Example 20.0.7. The finite space W (inspired by its resemblance to a wallet),
which we draw below, has no beat points and is therefore non-contractible. Nev-
ertheless, if one follows the definition of a order complex and draws out K (W ),
one sees that K (W ) is contractible. In fact, it will soon be shown that K (W ) is
simple homotopy equivalent to a point.

Figure 1. W

This example suggests that homotopy equivalence of finite spaces is a “stronger”
relation than simple homotopy equivalence of simplicial complexes. To put it

more precisely, the set of homotopy equivalences in simplicial complexes that are
induced by removal of beat points from finite spaces, which we sometimes call
strong homotopy equivalence, is a proper subset of the set of simple homotopy
equivalences of simplicial complexes. Accordingly, the removal of a beat point

from a finite space is a “stronger” move than an elementary collapse in simplicial
complexes.

This observation naturally gives rise to the following question: does there exist an
“elementary move” in finite spaces that would precisely correspond to an

elementary collapse in simplicial complexes? It is for precisely this reason that
Barmak and Minian [7] introduced the notion of a weak point. In particular, we
will show that the point x ∈W in the above example is a weak point, and that

K (W ) is homotopically trivial.
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20.0.1.2. Weak points.

Definition 20.0.8. Let X be an F -space. We say that x ∈ X is an up weak point
if F̂x is contractible and a down weak point or Ûx is contractible. A point is a weak
point if it is either an up weak point or a down weak point.

Note that a beat point is necessarily a weak point, since for any beat point x,
either Ûx has a maximum or F̂x has a minimum, which makes at least one of these
two sets contractible. To lighten the notation, we make the following definitions.

Definition 20.0.9. Given an F -space X, the link of x ∈ X is defined as lk(x) =

Ĉx = Ûx ∗ F̂x.

The following lemma gives us an alternative way to characterize weak points.

Lemma 20.0.10. Let X,Y be F -spaces. Then the join X ∗ Y is contractible if and
only if either X or Y is contractible.

Proof. Without loss of generality, suppose that X is contractible with point
{+}. By Corollary 20.0.4, we can find a decreasing sequence of spaces

X = Xn ⊃ Xn−1 ⊃ . . . X1 = {+},

where we remove beat points from X one by one such that each Xi contains i
points and xi ∈ Xi is a beat point. Note that xi is also a beat point of Xi ∗ Y , so
X ∗ Y inductively deformation retracts to {+} ∗ Y , which has a minimum and is
therefore contractible. The argument where Y is contractible is exactly analogous
if one replaces minimum by maximum at the end.
Conversely, suppose that X ∗ Y is contractible. Again by Corollary 20.0.4, there
exists a decreasing sequence of spaces

X ∗ Y = (X ∗ Y )n ⊃ (X ∗ Y )n−1 ⊃ . . . (X ∗ Y )1 = {+},

where (X ∗ Y )i = {z1, z2, . . . , zi} such that zi is a beat point of (X ∗ Y )i.
Fix some 2 ≤ i ≤ n, and suppose that zi ∈ Xi. Then zi is a beat point of Xi unless
it is a maximal point of Xi, Yi has a minimum, and Xi\{zi} has no maximum.
Similarly, if zi ∈ Yi, then either zi is a beat point of Yi or Xi has a maximum and
Yi\{zi} has no minimum. Thus for every i, at least one of the following statements
is true: (1) either Xi−1 ↪→ Xi or Yi−1 ↪→ Yi is a deformation retract, and (2) one
of Xi and Yi is contractible. Hence X or Y is contractible, as desired. □

Proposition 20.0.11. Let X be an F -space. Then x ∈ X is a weak point if and
only if lk(x) = Ĉx is contractible.

As shown, if x is a beat point of X, then X\{x} is homotopy equivalent to X.
This is no longer true if we replace beat points with weak points. Nevertheless, a

weaker version of this result holds.

Proposition 20.0.12. Let X be an F -space, and let x ∈ X be a weak point. Then
the inclusion i : X\{x} ↪→ X is a weak homotopy equivalence.

The proof of this proposition makes use of Theorem 3.3.1. Note that for any
F -space X, the minimal basis {Ux}x∈X is a basis like open cover.
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Proof. Without loss of generality, suppose that x is a up weak point. Then
F̂x is contractible. Let y ∈ X. Then the set i−1(Fy) = Fy\{x} has a minimum if
y ̸= x, and is contractible if y = x. Hence the restricted map

i
∣∣
i−1(Fy)

= i−1(F y)→ Fy,

is a weak homotopy equivalence, since the map πn(i−1(Fy), y) → πn(Fy, y) is an
isomorphism for all n. As remarked above, the minimal basis of X is a basis like
open cover of X. Now applying Theorem 3.15 to the minimal basis of X shows
that the restricted inclusion is a weak homotopy equivalence.
The case where x is a down weak point follows immediately by applying the above
argument to Xop, noting that K (Xop) = K (X). □

To illustrate this proposition, let us return to Example 20.0.7, as promised. To see
that the point x is a weak point, we draw out the subspace Ûx as follows.

Figure 2. Ûx

Clearly, Ûx is contractible, so x is a weak point. Hence Proposition 20.0.12 tells us
that W is weak homotopy equivalent to W\{x}, whose Hasse diagram looks like

the following:

Figure 3. W\{x}

W\{x} is contractible because we can remove beat points one by one (starting
with the point y as labeled in the diagram, then proceed to z, and so on),

eventually obtaining a space consisting of a single point. This motivates the
following definition.

Definition 20.0.13. Let X be an F -space and Y ⊂ X a subspace. We say that X
collapses to Y by an elementary collapse (or that Y expands to X by an elementary
expansion) if Y is obtained from X by removing a weak point. In this case, we
denote X ↘e Y or Y ↗e X.
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In general, given two F -spaces X and Y , we say that X collapses to Y (or Y
expands to X) if there is a sequence of F -spaces X = X1, X2, . . . , Xn = Y such
that for each 1 ≤ i < n,Xi ↘e Xi+1. In this case, we write X ↘ Y or Y ↗ X.
Two F -spaces X and Y are simply equivalent if one can be obtained from another
via a sequence of elementary collapses and expansions.

Before stating the following corollary from Proposition 20.0.12, we make a quick
note on convention: adopting the terminology of Barmak and Minian, we will say
that two F -spaces are simply equivalent and two simplicial complexes are simple

homtopy equivalent (or have the same simple homotopy type). The crux of
Theorem 20.0.15 is that these two definitions are really describing the same

relation for two kinds of objects.

Corollary 20.0.14. Let X,Y be two simply equivalent F -spaces. Then they are
weakly equivalent.

The next theorem, which was proved by Barmak and Minian [7] as the main
result of simple homotopy theory of finite spaces and simplicial complexes,

essentially says that weak points do exactly what we want them to do. That is,
removal of weak points is the F -space counterpart to an elementary simplicial

collapse in simplicial complexes.

Theorem 20.0.15 (Barmak and Minian).

(1) Let X and Y be F -spaces. Then X and Y are simply equivalent if and only
if K (X) and K (Y ) have the same simple homotopy type. In particular,
if X ↘ Y , then K (X)↘ K (Y ).

(2) Let K and L be finite simplicial complexes. Then K and L are simple
homotopy equivalent if and only if X (K) and X (L) are simply equivalent.
In particular, if K ↘ L, then X (K)↘X (L).

We say that an F -space is collapsible if it collapses to a point. Similarly, a
simplicial complexes is said to be collapsible if it simplicially collapses to a single
point. Since every beat point is a weak point, the set of contractible F -spaces is a

proper subset of collapsible spaces. For example, the wallet W as constructed
above is a collapsible space that is not contractible.

20.0.1.3. γ-points. Recall that our goal is to define a formal class of
homotopy equivalences of simplicial complexes that are not simple homotopy

equivalences. Having seen that removing weak points induces simple homotopy
equivalences in simplicial complexes, we want to relax the condition even further.

This motivates the definition of a γ-point.

Definition 20.0.16. Let X be an F -space. Then x ∈ X is a γ-point if Ĉx is
homotopically trivial. That is, πn(Ĉx) = 0 for all n ≥ 0.

This definition gives us a new method of reduction of finite spaces.

Definition 20.0.17. We say that X γ-collapses to X\{x} by an elementary γ-
collapse if x ∈ X is a γ-point. More generally, an F -space X γ-collapses to a
subspace Y ⊂ X if there is a sequence of spaces

X = Xn ⊃ Xn−1 ⊃ · · · ⊃ Xk = Y (n > k)

such that Xi γ-collapses to Xi−1 via an elementary γ-collapse for all k ≤ i ≤ n.
In this case, we write X ↗γ Y . If X γ-collapses to a point, we say that X is
γ-collapsible.
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Note that every weak point is a γ-point, since a contractible space necessarily has
all trivial homotopy groups. To see what kind of homotopy equivalence a γ-point
reduction will induce on simplicial complexes, we first consider the relationship

between X\{x} and X where x ∈ X is a γ-point.

Proposition 20.0.18. If x ∈ X is a γ-point, then the inclusion i : X\{x} → X is
a weak homotopy equivalence.

The proof for Proposition 20.0.12 does not apply directly because neither F̂x nor
Ûx is necessarily contractible. Nevertheless, the following pushout diagram still

holds:

|K (Ĉx)|
φ //

ψ

��

|K (Cx)|

��
|K (X\{x})| // |K (X)|

Note that φ : |K (Ĉx)| → |K (Cx)| is a homotopy equivalence, and that

ψ : |K (Ĉx)| → |K (X\{x})| satisfies the homotopy extension property. Hence the
map |K (X\{x})| → |K (X)| is a homotopy equivalence. This implies that

i : X\{x} → X is a weak homotopy equivalence. The converse to this proposition,
however, is true only when x is neither maximal nor minimal (Theorem 3.13 in

[7]).
If x ∈ X is a γ-point, one can show that the map K (X\{x})→ K (X) is a

simple homotopy equivalence (the proof uses the relativity principle of simple
homotopy theory; see [19]). In fact, Barmak and Minian [7] proved the following

more general result, which says that this is the case whenever we have a weak
homotopy equivalence between finite spaces.

Theorem 20.0.19. Let X be an F -space, and let x ∈ X. Suppose that the inclusion
i : X\{x} → X is a weak homotopy equivalence. Then the induced simplicial map
K (X\{x})→ K (X) is a simple homotopy equivalence.

This theorem essentially shows that one-point reductions do not generate all weak
homotopy types of finite spaces. We might then look beyond one-point reductions,

a discussion for the following section. Before proceeding, we briefly discuss how
some of the previous results can be generalized to a broader class of topological

spaces.
While we cannot directly take these results for granted in general CW complexes,

we can consider them on subsets called regular and h-regular CW complexes.

Definition 20.0.20. Let K be a CW complex. We say that K is regular if, for each
open cell en, the characteristic map Dn → en is a homeomorphism. Equivalently,
the attaching map Sn−1 → K is a homeomorphism onto its image ∂en.

For a regular CW complex K, the closure en of each cell is a subcomplex of K.
There is also a more general notion of h-regular CW complex, where one only
requires the attaching map of each cell to be a homotopy equivalence with its

image and that the closed cells en are subcomplexes of K.
Theorem 20.0.15 fails even when we consider only regular CW complexes (see page
60 of [7] for a counterexample). Nevertheless, a weaker version of the second part



212 20. REDUCTION METHODS OF FINITE SPACES

of Theorem 20.0.15, as proved in the same book, shows that simplicial collapses of
h-regular CW complexes do induce γ-collapses in the corresponding finite spaces.



CHAPTER 21

Epilogue

We conclude the book with a few remarks on an old list of problems. Revisit
We give a few problems that spring immediately to mind. To the best of my

knowledge, these have not been studied, at least not thoroughly. The original 2003
list was considerably longer, but a number of people around the world have since
solved many of its problems. Some of their solutions are sprinkled through the
book.

Problem 21.0.1. For small n, determine all homotopy types and weak homo-
topy types of spaces with at most n elements.

Addendum 21.0.1. We have given the answer or left it as an exercise when n ≤
6. Most finite spaces with so few points are disjoint unions of (weakly) contractible
spaces, but we have seen several more interesting examples. I’d like to see the
answer for larger n.

Problem 21.0.2. Is there an effective algorithm for computing the homotopy
groups of X in low degrees in terms of the increasing chains in X? An REU paper
of Weng described in §Section 4.3 elaborated on the computation of the fundamental Not written yet
group by Barmak [7].

Remark 21.0.3. The dimension of the simplicial complex K (X) is the max-
imal length of a sequence x0 < · · · < xn in X. A map g : K −→ L of simplicial
complexes of dimension less than n is a homotopy equivalence if and only if it
induces an isomorphism of homotopy groups in dimension less than n and an epi-
morphism of homotopy groups in dimension n.

Problem 21.0.4. Let X be a minimal finite space. Give a descriptive inter-
pretation of what this says about |K (X)|.

Addendum 21.0.2. There is a nice paper of Osaki [55] that interprets Stong’s
process of passing from an F -space to its core Y . He shows that K (Y ) is obtained
from K (X) by a sequence of elementary simplicial collapses, so that |K (X)| and
|K (Y )| have the same “simple” homotopy type. It follows that if X and Y are
homotopy equivalent F -spaces, then K (X) and K (Y ) have the same simple ho-
motopy type. If K is not collapsible, then X (K) is a minimal finite space. As
Osaki points out and is clear from Example 3.4.15, there are non-collapsible trian-
gulations K1 and K2 of S1 such that X (K1) and X (K2) are not homeomorphic
and therefore, being minimal, not homotopy equivalent. Barmak and Minian [10]
went further and proved that two finite spaces X and Y are homotopy equivalent
if and only if |K (X)| and |K (Y )| have the same simple homotopy type. reference to Bar-

mak’s book already
here?

Finite spaces can be weak homotopy equivalent but not homotopy equivalent,
as we have seen in Example 3.4.14 and Example 3.4.15. The following problems
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are far more difficult than their analogues for homotopy equivalence, which we
have treated in §Section 2.5, following the REU paper of Fix and Patrias. NoteNot written yet
that the work of Fix and Patrias implicitly addresses the problem of finding a
computationally effective algorithm for enumerating the homotopy types of finite
spaces.

Problem 21.0.5. Are there computationally effective algorithms for enumerat-
ing the weak homotopy types of finite spaces for small n? What is the asymptotic
behavior of the number of weak homotopy types of spaces with at most n elements?

Addendum 21.0.3. Osaki [55] has given two theorems that describe when one
can shrink an F -space, possibly minimal, to a smaller weakly homotopy equivalent
F -space. He asks whether all weak homotopy equivalences are generated by the
simple kinds that he describes. The question has since been answered in the nega-
tive, by Barmak and Minian [8]. Barmak’s thesis, which was inspired by my 2003
REU notes and has now become the book [7], goes a good deal further. There is
much more to be done on this problem, which is still not well understood.

Problem 21.0.6. Is there a combinatorial way of determining when a weak
homotopy equivalence of finite spaces is a homotopy equivalence?

Problem 21.0.7. Rather than restricting to finite simplicial complexes, can we
model the world of finite CW complexes, or at least the world of finite regular CW
complexes, in the world of finite spaces. The discussion of spheres and cones in
§Section 3.4 gives a possible starting point. This is related to the combinatorially
interesting question of relating finite topological spaces to discrete Morse theory.
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