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Abstract. This paper gives a proof of the Oseledets multiplicative ergodic theorem for d × d
linear cocycles, and mention some applications of this theorem to products of random matrices

and Schrödinger cocycles.
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1. Introduction

This expository paper aims to provide an overview of a classical result from dynamical systems
and the theory of Lyapunov exponents. In particular, we focus on proving the Oseledets multi-
plicative ergodic theorem for d × d linear cocycles, which establishes the existence of Lyapunov
exponents (also called Lyapunov characteristic numbers). Then, at the end of the paper, we discuss
some preliminary applications of this theorem to products of random matrices and Schrödinger
cocycles.

Throughout this paper, we take (M,B, µ) to be a probability space and f :M →M a measure
preserving transformation, i.e., a measurable map satisfying

µ(f−1(B)) = µ(B) , for every B ∈ B .

We define a dynamical system to be the quadruple (M,B, µ, f). If A is a d× d matrix, we take
∥A∥ to be the standard operator norm

∥A∥ := sup
|v|=1

|Av| .

The version of multiplicative ergodic theorem proven in this paper is concerned with describing
the asymptotic behavior of a product of matrices chosen using an arbitrary dynamical system
(M,B, µ, f). In particular, if A : M → GL(d) is a measurable map with values in the general
linear group of d×d matrices with real entries, which also satisfies some integrability assumptions,
we show that for µ−almost every x ∈ M , there exist k = k(x) ∈ N, real numbers λ1(x) >
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· · · > λk(x) (called Lyapunov exponents), and a family of decreasing linear subspaces of Rd

Rd = V i
x ⊋ · · · ⊋ V k

x ⊋ {0} (called a flag), such that for all 1 ≤ i ≤ k, we have

lim
n→∞

1

n
log

∣∣A(fn−1(x)) · · ·A(f(x))A(x)v
∣∣ = λi(x) , for all v ∈ V i

x\V i+1
x .(1.1)

A full statement of the theorem will be introduced in Section 1.1.
We remark that there are several proofs of the multiplicative ergodic theorem. It was first

proven by Oseledets in 1968 [1], based on previous results by Furstenberg and Kesten [2]. A
different approach to prove the theorem is due to [6], which is based on exterior algebra and
singular value decomposition. Another proof can be found at [7], which uses an approach called
the Avalanche Principle. The approach used in this paper is primarily based on the proofs by
Viana, Walters, and Bochi (see [3], [4], [5], respectively).

In terms of proof strategy, we will first establish a weaker version of the theorem by replacing
the limit in (1.1) with a limsup. Then, we show that the limit exists using an inductive argument

on the number of subspaces in the flag Rd = V i
x ⊋ · · · ⊋ V

k(x)
x ⊋ {0}.

1.1. Motivation. In this subsection, we briefly describe some motivation for proving the multi-
plicative ergodic theorem, from the point of view of products of random matrices.

We begin by introducing a concrete model. Let (p1, ..., pm) be a probability vector, so that
pj ≥ 0 and p1 + ... + pm = 1. Take a subset {B1, ..., Bm} ⊆ GL(d) of the general linear group
of d × d invertible matrices with real entries. We define a sequence of independent, identically
distributed random variables A0, A1, ... taking values in {B1, ..., Bm}, such that for each i ≥ 0,
1 ≤ j ≤ m, one has

P {Ai = Bj} = pj .(1.2)

For n ≥ 0, let An := An−1 · · ·A0 be the matrix product of the Ai’s.
We are interested in studying the limiting behavior of An as n → ∞. In 1960, Furstenberg

and Kesten showed that with probability 1, there are real numbers λ± such that for large N , the
operator norms of AN and (AN )−1 exhibit the exponential growth rates∥∥AN

∥∥ ∼ eNλ+ ,
∥∥∥(AN

)−1
∥∥∥−1

∼ eNλ− .(1.3)

The numbers λ± are called the extremal Lyapunov exponents, which are defined precisely as
the limits

λ+ := lim
n→∞

1

n
log ∥An∥ , λ− := lim

n→∞

1

n
log

∥∥(An)−1
∥∥−1

.(1.4)

This result is a special case of their general theorem, which is proven in [2] for all stationary
stochastic processes under some integrability assumptions.

Example 1.5. For example, consider the case in which our sequence of random matrices take
values in the set {

B1 =

(
1
2 0
0 2

)
, B2 =

(
0 −1
1 0

)}
⊆ GL(2) ,

with probability given by (p, 1− p), for p ∈ [0, 1]. Then, we have

λ+ =

{
log 2 if p = 1

0 if p ∈ (0, 1)
and λ− =

{
log 1

2 if p = 1

0 if p ∈ (0, 1) .

See [17, Section 4] for more examples.

We see that the growth rates of the operator norms are completely determined by the extremal
Lyapunov exponents. By the definition of the operator norm, this implies that for large N , we
have the following upper and lower bounds on the length of the vector ANv:

eNλ− |v| ≤
∣∣ANv

∣∣ ≤ eNλ+ |v| , for all v ∈ Rd .

However, the extremal Lyapunov exponents are not sufficient to completely determine the ex-
pansion rate of |Anv| (where v is chosen arbitrarily form Rd), because we can find subspaces of
Rd in which |Anv| admit different growth rates. In the following, we illustrate how such subspaces
arise for powers of one matrix. This can also be interpreted as taking m = 1, i.e., a constant
sequence of matrices, from the random matrix model in (1.2).
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Suppose B ∈ GL(d) is a normal matrix (i.e., B∗B = BB∗, where B∗ := B
T
). For v ∈ Rd\{0},

we consider the limit

lim
n→∞

1

n
log |Bnw| , for w ∈ Rd .(1.6)

It turns out that if ν1, ..., νd are the (not necessarily distinct) eigenvalues of B, indexed in a way
such that |ν1| ≥ ... ≥ |νd|, and w1, ..., wd are the distinct, orthonormal eigenvectors of B (which
exist because B is normal), then

lim
n→∞

1

n
log |Bnw| = log |νi| , for all w ∈ span{wi, ..., wd}\span{wi+1, ..., wd} .

See Section 3 for more details and a proof. It follows that we have

|Bnw| ∼ |vi|n , for all w ∈ span{wi, ..., wd}\span{wi+1, ..., wd} .

Therefore, there is a decomposition of Rd according to the eigenspaces of B such that vectors in
different subspaces expand at different rates under iterations of B.

If d > 2 and B has more than 2 distinct eigenvalues, then there must be some vector subspace of
Rd in which |Bnw| expands at a rate different to those given by the extremal Lyapunov exponents.

Example 1.7. For example, suppose we consider the following normal matrix

B =

 6 −2 −1
−2 6 −1
−1 −1 5

 .

B is unitarily diagonizable, with B = PDPT ,

P = (w1 w2 w3) =

−1/
√
2 −1/

√
6 1/

√
3

1/
√
2 −1/

√
6 1/

√
3

0 2/
√
6 1/

√
3

 , D =

8 0 0
0 6 0
0 0 3

 .

For arbitrary w ∈ Rd, we write w = a1w1 + a2w2 + a3w3. If a1 ̸= 0, then we have the rate

lim
n→∞

1

n
log |Bnw| = log 8 .

But, if a1 = 0 and a2 ̸= 0, then the rate is log 6. If a1 = a2 = 0 and a3 ̸= 0, then the rate is log 3.
Thus, we see that there are 3 distinct expansion rates.

In the above example, we observed that for powers of 1 matrix, there is a decomposition of Rd

into subspaces that admit different growth rates. A natural question is whether the same is true
for nontrival models from products of random matrices, for example, the model introduced in (1.2)
for m > 1.

It turns out that linear cocycles are useful tools for us to analyze this generalization. Note that
if (M,B, µ, f) is a dynamical system and A : M → GL(d) is a measurable map, then a linear
cocycle defined by A over f is a map F :M × Rd →M × Rd,

F (x, v) := F (f(x), A(x)v) .

Iterating F on itself yields Fn(x, v) = (fn(x), An(x)v), where An(x) denotes the matrix product

An(x) := A(fn−1(x)) · · ·A(f(x)) ·A(x) .

The advantage of considering linear cocycles is that (a) they allow us to formally define general
matrix products (see the second coordinate of Fn), and (b) they allow us to use tools from dy-
namical systems and ergodic theory to prove that the desired decomposition of Rd exists. We are
thus interested in the following question about linear cocycles:

Question 1.1. Suppose (M,B, µ, f) is a dynamical system and A : M → GL(d) is measurable.
Let F : M × Rd → M × Rd be a linear cocycle defined by f over A. Suppose we take the second
coordinate of Fn(x, v), where x ∈ M, v ∈ Rd are chosen arbitrarily. Can we find a decomposition
of Rd for the following limit that is similar to the trivial example for powers of 1 matrix?

lim
n→∞

1

n
log |An(x)v|

This leads us to the statement of the main theorem of this paper:
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Theorem 1.8 (Oseledets Multiplicative Ergodic Theorem). Suppose log+
∥∥A±1

∥∥ are integrable

with respect to µ, where log+ t := max{log t, 0}. Then, for µ−almost every x ∈ M , there exist
k = k(x) ∈ N, real numbers λ1(x) > · · · > λk(x), and a flag Rd = V 1

x ⊋ · · · ⊋ V k
x ⊋ {0} such that

for all 1 ≤ i ≤ k, the following hold:

(a) k(f(x)) = k(x), λi(f(x)) = λi(x), and A(x) · V i
x = V i

f(x) ,

(b) the maps x 7→ k(x), x 7→ λi(x), and x 7→ V i
x are measurable,

(c) one has

lim
n→∞

1

n
log |An(x)v| = λi(x) , for all v ∈ V i

x\V i+1
x .

The numbers λ1(x), ..., λk(x) are called the Lyapunov exponents of the linear cocycle F at
x, and the set consisting of all Lyapunov exponents is called the Lyapunov spectrum.

In particular, we may consider all products of independent, identically distributed random ma-
trices as represented by special kinds of linear cocycles (see Example 2.4), for which the underlying
dynamical system is a Bernoulli scheme (see Example 2.1). Thus, as a consequence of Theorem
1.8, under some integrability assumptions, we can find a decomposition for all products of i.i.d.,
invertible random matrices. In Section 6, we will discuss this implication in more detail.

1.2. Structure of the Paper. In Section 2, we introduce the formal definition of linear cocycles
as well as some examples. In Section 3, we state the proof for the trivial example concerning
powers of one matrix mentioned in Section 1.1.

In Section 4, we state Kingman’s subadditive ergodic theorem (Theorem 4.1). Then, we use it
to deduce a version of Furstenberg and Kesten’s theorem for linear cocycles (Theorem 4.2) and
the Birkhoff ergodic theorem (Theorem 4.7), since these results will be utilized later in the proof
of the multiplicative ergodic theorem (Theorem 1.8).

In Section 5, we state the proof of Theorem 1.8. In particular, Subsections 5.1 and 5.2 prove
the claim of the theorem when the limit in part (c) is replaced by limsup; Subsections 5.3 and 5.4
discuss two useful lemmas for induction; Subsection 5.5 shows that the limit in part (c) exists via
an inductive argument.

In Section 6, we mention some simple applications of the multiplicative ergodic theorem to
examples introduced in Section 2.

2. Definition of Linear Cocycles and Examples

In this section, we discuss the basic set up of the proof of the multiplicative ergodic theorem.
In particular, we state the definition of linear cocycles, and introduce some examples.

In the rest of this paper, we take (M,B, µ) to be a complete separable probability space. Recall
that complete means that if U ⊆ B and B ∈ B with µ(B) = 0, then U ∈ B. Separable means
that there exists a countable family C ⊆ B such that for any ϵ > 0 and B ∈ B there exists E ∈ C
with µ(B∆E) < ϵ, where B∆E denotes the set difference B\E ∪ E\B.

To define linear cocycles, we first need to define measure preserving transformations. Recall that
a transformation f :M →M is measure preserving (also called µ−invariant) if f is measurable
and

µ(f−1(B)) = µ(B) , for all B ∈ B ,

and that the quadruple (M,B, µ, f) is called a dynamical system. In the following, we mention
two examples of dynamical systems.

Example 2.1 (Bernoulli Scheme). For m ∈ N, define X := {1, ...,m}, and let (p1, ..., pm) be a
probability vector. Consider the σ−algebra C defined by the power set of X, and a measure ρ
over X defined by

ρ({i}) := pi .

The space (X,C , ρ) is a probability space, and we shall use it to construct a Bernoulli scheme.
For each i ∈ Z, let (Mi,Bi, µi) := (X,C , ρ), and consider the countable product

(M,B, µ) :=

+∞∏
n=−∞

(Mi,Bi, µi) .
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Then,M is called a shift space and a point inM is a X−valued sequence {xi}i∈Z. The σ−algebra
B of subsets ofM is the countable product of C with itself, i.e., the smallest σ−algebra containing
all sets (called measurable rectangles) of the form

R = {{xi}i∈Z | xj = aj , |j| ≤ n} , for some n ≥ 0 and aj ∈ X .

The measure µ on M is the product measure defined by

µ(R) := Πn
j=−nρ({aj}) ,

and (M,B, µ) is a probability space.
We further define the shift map f :M →M as the transformation

f ({xi}i∈Z) = {xi+1}i∈Z .

In particular, f preserves the product measure µ (see, e.g., [13, pp. 20-21]). The dynamical system
(M,B, µ, f) is called a two-sided Bernoulli scheme.

Note that f is also measure preserving if the product is taken over the non-negative integers:

(M,B, µ) :=

+∞∏
n=0

(Mi,Bi, µi) ,

in which case the dynamical system (M,B, µ, f) is called a one-sided Bernoulli scheme.
A simple concrete example of a Bernoulli scheme is the fair coin flip, in which case we take

X = {0, 1} and p =
(
1
2 ,

1
2

)
, and consider the the space M = XZ of sequences of 0’s and 1’s,

endowed with the product measure.
We remark that the above construction may also be generalized by taking the base space

(X,C , ρ) to be any arbitrary probability space, not necessarily discrete.

Example 2.2 (Irrational Rotation). LetM = Td = Rd\Zd be the d−dimensional torus. Let B be
the Borel σ−algebra onM , and let µ be the normalized Lebesgue measure onM . Then, (M,B, µ)
forms a probability space.

Let α ∈ Td be rationally independent (i.e., none of the coordinates of α can be written as a
linear combination of the others with rational coefficients). We define the irrational rotation
map fα :M →M as

fα(x) := x+ α mod 1 .

Then, one can prove using properties of the Haar measure that f preserves the measure µ (see,
e.g., [13, p.20]). Thus, (M,B, µ, f) is a dynamical system.

Now, let’s recall the definition of a linear cocycle:

Definition 2.3. Let (M,B, µ, f) be a dynamical system and A : M → GL(d) be a measurable
map. The linear cocycle defined by A over f is the function F :M ×Rd →M × Rd,

F (x, v) := (f(x), A(x)v) .

In the following, we introduce two examples of linear cocycles.

Example 2.4 (Random Transformations). In general, if (M,B, µ, f) is a Bernoulli scheme and
A(x) depends only on the first coordinate of x ∈M , then F is called a random transformation.
In the following, we show that products of independent, identically distributed random matrices
are equivalent to special kinds of random transformations.

Suppose A0, A1, ... is a sequence of i.i.d., invertible, d×d random matrices. Since all matrices are
identically distributed, all of Ai are formally given by a measurable function from some probability
space (Ω,F , η) to some measurable space (X,C ) ⊆ GL(d). We think of X as a probability space
endowed with the distribution measure of Ai, i.e., ρ = Ai∗η, and use (X,C , ρ) to construct a
one-sided Bernoulli scheme (M,B, µ, f) in Example 2.1.

For instance, for the model in (1.2), we can take X := {B1, ..., Bm} ⊆ GL(d), and consider the
probability space defined by X and the measure σ = p1δB1 + ... + pmδBm , where pi ≥ 0 is taken
from a probability vector (p1, ..., pm).

Now, let A :M → GL(d) be the map

A
(
{An}n∈Z≥0

)
= A0 ,
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and let F :M ×Rd →M ×Rd be the linear cocycle defined by A over f (recall that f is the shift
map). Then, for a given point ({An}n, v) ∈M × Rd, iterating F for k times yields

F k ({An}n, v) =
(
fk({An}n), Ak(fn({An}n))v

)
= ({An+k}n, Ak−1 · · ·A0v) .

We see that the second coordinate looks exactly like a product of random matrices.
Here is how we relate results about the second coordinate of F k to the original product of i.i.d.

random matrices. We may think of a sequence of random matrices as a single random variable
taking value in the shift space M = XZ≥0 , with distribution given by the product measure µ.
Then, since the random variables are independent, a property holds for µ−almost every sequences
in M if and only if the same property holds for the sequence of random matrices with probability
1.

Example 2.5 (Schrödinger Cocycles). Let l2(Z) :=
{
u = {un}n∈Z :

∑
n |un|

2
<∞

}
. Given an

R−valued sequence {vn}n, we define the one dimensional Schrödinger operator H : l2(Z) → l2(Z)
associated with the sequence {vn}n as the following:

H({un}n) := {un−1 + un+1 + vnun}n .

We further suppose that the sequence {vn}n is generated by a function V :M → R and a dynamical
system (M,B, µ, f) via the composition vn := V (fn(x)), for some x ∈M .

In particular, the eigenvalue equation of H, i.e.,

Hu = Eu , where E ∈ R ,(2.6)

can be expressed using the trajectory of a 2 × 2 linear cocycle. In the below, we explain the
construction of this linear cocycle. Note that if u = {un}n is a solution to (2.6), then for each
n ∈ Z, we can write un−1 + un+1 + vnun = Eun . Thus, equivalently, we have[

un+1

un

]
=

[
E − V (fn(x)) −1

1 0

] [
un
un−1

]
.

Therefore, we may define a 2× 2 linear cocycle FE :M ×R2 →M ×R2 of the function AE :M →
GL(2) over f , where

AE(y) :=

[
E − V (y) −1

1 0

]
.

It follows that u = {un}n is a solution to the eigenvalue equation of H if and only if the trajectory
of FE given by plugging in v = (u0, u1) coincides with u.

If the base system (M,B, µ, f) is a Bernoulli scheme and V :M → R only depends on the first
coordinate of x ∈ M , then FE is called a random Schrödinger cocycle. If the base system is
an irrational rotation on M = Td and V :M → R is analytic (i.e., its Taylor series converges in a
neighborhood around every point), then FE is called a quasi-periodic Schrödinger cocycle.

3. Trivial Example

In this section, we discuss the trivial case of powers of one matrix mentioned in Section 1.1. We
prove the following theorem:

Theorem 3.1. Suppose B ∈ GL(d) is normal. Let ν1, ..., νd be its eigenvalues satisfying

|ν1| ≥ ... ≥ |νd| .

Let w1, ..., wd be the corresponding distinct orthonormal eigenvectors of B. For 1 ≤ i ≤ d, denote
Ei := span{wi, ..., wd}. Then, there is a decreasing family of subspaces Rd = E1 ⊋ · · · ⊋ Ed ⊋ {0}
such that for all 1 ≤ i ≤ d,

lim
n→∞

1

n
log |Bnw| = log |νi| , for all w ∈ Ei\Ei+1 .

The following Lemma is fundamental to the proof of Theorem 3.1:

Lemma 3.2. Let B be as in Theorem 3.1. Then for all w ∈ Ei such that |w| = 1, for all n ∈ N,
one has |Bnw| ≤ |νi|n.

Assuming this lemma, we prove Theorem 3.1:
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Proof of Theorem 3.1. Suppose w ∈ Ei\Ei+1. Then, we can write w as the orthogonal projection
w = cwi + w̃, where c ̸= 0 and w̃ ∈ Ei+1.

If w̃ = 0, then the proof is complete. Thus, without loss of generality, we assume that w̃ ̸= 0.
It follows that ∣∣∣∣ 1n log |Bnw| − log |νi|

∣∣∣∣ = 1

n

∣∣∣∣log ∣∣∣∣cwi +
Bnw̃

νni

∣∣∣∣∣∣∣∣ .
To show that this difference converges to zero, we need to verify that for all n ≥ 1, one has

0 <

∣∣∣∣cwi +
Bnw̃

νni

∣∣∣∣ <∞ .(3.3)

Note that by Lemma 3.2, for all n ≥ 1 we have∣∣∣∣Bnw̃

νni

∣∣∣∣ ≤ |w̃| <∞,

and so it follows that
∣∣∣cwi +

Bnw̃
νn
i

∣∣∣ <∞. Moreover, note that since w̃ ∈ Ei+1, we can write

w̃ = ci+1wi+1 + ...+ cdwd .

Thus, for any n ≥ 1, we have wi, B
nw̃ ̸= 0, and Bnw̃ · wi = 0. Therefore, by positivity of the

Euclidean inner product, Bnw̃ ̸= awi for any a ∈ R. It follows that
∣∣∣cwi +

Bnw̃
νn
i

∣∣∣ > 0.

In conclusion, by (3.3), we have that as n→ ∞,∣∣∣∣ 1n log |Bnw| − log |νi|
∣∣∣∣ = 1

n

∣∣∣∣log ∣∣∣∣cwi +
Bnw̃

νni

∣∣∣∣∣∣∣∣ −→ 0 .

□

We conclude this section by the proof of Lemma 3.2.

Proof of Lemma 3.2. Suppose w ∈ Ei and |w| = 1. Then for all j > i we have w · wj = 0.
Since B is normal, by the spectral theorem, it is unitarily diagonizable. Thus, we may represent

B = PDP ∗, where D = diag(ν1, ..., νd) and P is a unitary matrix whose columns are orthonormal
eigenvectors of B. It follows that

|Bw|2 = wTBTBw = wTP |D|2 PTw︸ ︷︷ ︸
=:y

= yT |D|2 y = y1 |ν1|2 + ...+ yd |νd|2 .

Since P is unitary, it is an isometry of Rd, and so we have 1 = |w| = |y|. Since w · wj = 0 for
all j > i we have y1 = ... = yi−1 = 0. It follows that

|Bw|2 = yi |νi|2 + ...+ yd |νd|2 ≤ 1 · max
i≤k≤d

|νk|2 = |νi|2 .

Note that for all n ≥ 1, if B is normal then so is any polynomial of B. Moreover, if B has
eigenvalue λ then Bn has eigenvalue λn. Thus, we may apply the same argument to Bn to obtain

|Bnw| ≤ |νi|n .

□

4. Extremal Lyapunov Exponents

In this section, we state Kingman’s subadditive ergodic Theorem (Theorem 4.1), and use it to
deduce a version of Furstenberg and Kesten’s theorem (Theorem 4.2) and the Birkhoff ergodic
theorem (Theorem 4.7) as corollaries. These results are crucial for the proof of the multiplicative
ergodic theorem, in Section 5.

Let (M,B, µ, f) be a dynamical system. We write g ∈ L1(µ) if a function g onM is µ−integrable,
i.e., ∫

M

|g| dµ < +∞ .

We call a measurable function φ : M → [−∞,+∞) (essentially) f−invariant if φ(f(x)) = φ(x)
for µ−almost every x ∈ M . Moreover, we call a sequence of measurable functions, φn : M →
[−∞,+∞), n ≥ 1, subadditive relative to f if

φm+n ≤ φm + φn ◦ fm , for all m,n ≥ 1 .
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The sequence is called super-additive if

φm+n ≥ φm + φn ◦ fm , for all m,n ≥ 1 .

Theorem 4.1 (Kingman’s Subadditive Ergodic Theorem). Let φn : M → [−∞,+∞), n ≥ 1
be a subadditive sequence of measurable functions such that the positive part φ+

1 ∈ L1(µ). Then,
the sequence {φn/n}n∈N converges µ−almost everywhere to some f−invariant function φ : M →
[−∞,+∞). Moreover, the positive part φ+ of φ is integrable and∫

φ dµ = lim
n→∞

1

n

∫
φn dµ = inf

n∈N

1

n

∫
φn dµ ∈ [−∞,+∞) .

Proof. A proof can be found in [3, Theorem 3.3]. □

Now, we use Theorem 4.1 to obtain a version of Furstenberg and Kesten’s Theorem for d × d
linear cocycles. Let (M,B, µ, f) be a dynamical system and A : M → GL(d) be measurable. We
take F to be the linear cocycle defined by A over f .

Theorem 4.2 (Furstenberg and Kesten’s Theorem). Suppose log+
∥∥A±1

∥∥ are integrable with re-

spect to µ, where log+ t := max{log t, 0}. Then, the limits

λ+(x) := lim
n→∞

1

n
log ∥An(x)∥ , λ−(x) := lim

n→∞

1

n
log

∥∥(An(x))−1
∥∥−1

exist for µ−almost every x ∈M . Moreover, the functions λ±(x) are µ−integrable and f−invariant,
with ∫

λ+ dµ = lim
n→∞

1

n

∫
log ∥An(x)∥ dµ ,

∫
λ+ dµ = lim

n→∞

1

n

∫
log

∥∥(An(x))−1
∥∥−1

dµ .(4.3)

In particular, λ±(x) are called the extremal Lyapunov exponents of F at x.

Proof. Given a function A : M → GL(d), since the operator norm ∥·∥ is sub-multiplicative (i.e.,
∥XY ∥ ≤ ∥X∥ ∥Y ∥), the sequences {φn}n≥1, {ψ}n≥1 defined by

φn(x) := log ∥An(x)∥ = log
∥∥A(fn−1(x)) · · ·A(x)

∥∥ ,

ψn(x) := log
∥∥(An(x))−1

∥∥−1
= − log

∥∥(A(fn−1(x)) · · ·A(x))−1
∥∥ .

are subadditive and super-additive respectively.
We first treat {φn}n. By the assumption log+

∥∥A±1
∥∥ ∈ L1(µ), we know that φ+

1 ∈ L1(µ), and
that for all n ≥ 1, φn ∈ [−∞,+∞) for µ−almost every x. Therefore, by Theorem 4.1, the limit

φ(x) := lim
n→∞

1

n
φn(x) ∈ [−∞,+∞)

exists for µ−almost every x ∈M , the positive part φ+ is µ−integrable, and∫
φ dµ = lim

n→∞

1

n

∫
log ∥An(x)∥ dµ ∈ [−∞,∞) .(4.4)

We now show that φ(·) ∈ L1(µ). Since f is measure preserving and ∥B∥ ≥
∥∥B−1

∥∥−1
for every

invertible matrix B, for any n we have

1

n

∫
log ∥An(x)∥ dµ ≥ 1

n

∫
log

∥∥(An(x))−1
∥∥−1

dµ

≥ 1

n

∫
log

∥∥(A(x))−1
∥∥−1 · · ·

∥∥(A(fn−1(x)))−1
∥∥−1

dµ

=

∫
log

∥∥(A(x))−1
∥∥−1

dµ ,

so by integrability of log+ ∥A±(·)∥ and (4.4), we have

−∞ <

∫
φ dµ < +∞ .(4.5)

Thus, (4.5) and the fact that φ+ ∈ L1(µ) implies φ− ∈ L1(µ). Finally, we have∫
|φ| dµ =

∫
φ+ dµ+

∫
φ− dµ <∞ ,

which proves that λ+(·) = φ(·) ∈ L1(µ). We can use a similar argument for λ− and ψ.
□
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Remark 4.6. Note that µ−integrability of λ±(·) implies that the functions λ±(·) are finite
µ−almost everywhere. This property is important for the proof of the multiplicative ergodic
theorem (particularly for Lemma 5.3 below).

Theorem 4.7 (Birkhoff Ergodic Theorem). Let φ :M → R be a µ−integrable function. Then the
limit

φ∗(x) = lim
n→∞

1

n

n−1∑
i=0

φ(f j(x))

exists for µ−almost every x. Moreover, φ∗(·) is f−invariant and µ−integrable with∫
φ∗ dµ =

∫
φ dµ .

Proof. Consider the orbital sum

φn :=

n−1∑
j=0

φ ◦ f j .

Observe that for every x ∈M , this function satisfies

φn+m(x) =

n+m−1∑
j=0

φ ◦ f j = φm(x) + φn(f
m(x)) .

Thus, the conclusion of the theorem follows directly from Theorem 4.1. □

We conclude this section by stating a useful (particularly for the proof of Lemma 5.19 below)
corollary of the Birkhoff ergodic theorem (Theorem 4.7):

Corollary 4.8. Let φ :M → R be a measurable function such that ψ := φ◦f −φ is µ−integrable.
Then, for µ−almost every x ∈M ,

lim
n→∞

1

n
φ(fn(x)) = 0 .

Proof. A proof can be found in [3, Corollary 3.11]. □

5. Oseledets Multiplicative Ergodic Theorem

In this section, we prove the multiplicative ergodic theorem. For an arbitrary dynamical system
(M,B, µ, f), we consider the linear cocycle F : M × Rd → M × Rd defined by a measurable map
A :M → GL(d) over f :M →M .

Recall that a flag in Rd is a decreasing family Rd = V 1 ⊋ · · · ⊋ V k ⊋ {0} of linear subspaces of
the d−dimensional Euclidean space. For instance, the containment Rd = E1 ⊋ E2 ⊋ · · · ⊋ Ed ⊋
{0} in Section 3 is an example of a flag.

Theorem 5.1 (Oseledets Multiplicative Ergodic Theorem). Suppose log+
∥∥A±1

∥∥ are integrable

with respect to µ, where log+ t := max{log t, 0}. Then, for µ−almost every x ∈ M , there exist
k = k(x) ∈ N, real numbers λ1(x) > · · · > λk(x), and a flag Rd = V 1

x ⊋ · · · ⊋ V k
x ⊋ {0} such that

for all 1 ≤ i ≤ k, the following hold:

(a) k(f(x)) = k(x), λi(f(x)) = λi(x), and A(x) · V i
x = V i

f(x) ,

(b) the maps x 7→ k(x), x 7→ λi(x), and x 7→ V i
x are measurable,

(c) one has

lim
n→∞

1

n
log |An(x)v| = λi(x) , for all v ∈ V i

x\V i+1
x .

To prove this theorem, we first replace the limit in item (c) by a limsup, i.e.,

(c)′ one has

lim sup
n→∞

1

n
log |An(x)v| = λi(x) , for all v ∈ V i

x\V i+1
x ,
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and find functions k(x), V i
x , and λi(x) that satisfy the claims of parts (a), (b), and (c)′. We then

show that the limsup is actually a limit (part (c)), via an inductive argument on the number of
subspaces in the flag Rd = V 1

x ⊋ · · · ⊋ V k
x ⊋ {0} .

In Subsection 5.1, we find the functions k(x), V i
x , and λi(x) that satisfy parts (a) and (c)′. In

Subsection 5.2 we show that these functions are also measurable (part (b)). Finally, in Subsection
5.3 and 5.4, we prove two important lemmas to prepare for the induction. In Subsection 5.5, we
use an inductive argument on k = k(x) to show that the limit in part (c) exists.

5.1. Existence and Invariance of k(x), V i
x , and λi(x). In this subsection, we replace the limit

by limsup and show existence of measurable functions k(x), V i
x , and λi(x) for the limsup (part(c)′).

We then check that the functions are invariant as claimed in part (a).
For the ease of notation, in the rest of this paper, we denote

λ(x, v) := lim sup
n→∞

1

n
log |An(x)v| .

We take log 0 := −∞, which means λ(x, 0) = −∞.

Proposition 5.2. For µ−almost every x ∈M , there exists k = k(x) ∈ N, numbers λ1(x) > · · · >
λk(x), and a flag Rd = V 1

x ⊋ · · · ⊋ V k
x ⊋ {0} such that for all 1 ≤ i ≤ k, parts (c)′ and (a) hold.

To prove Proposition 5.2, we will use the following lemmas.

Lemma 5.3. For µ−almost every x ∈M and any v, v′ ∈ Rd\{0}, one has

(i) λ(x, v) is well-defined and finite, and λ−(x) ≤ λ(x, v) ≤ λ+(x);
(ii) λ(x, cv) = λ(x, v) for all c ̸= 0;
(iii) λ(x, v + v′) ≤ max {λ(x, v), λ(x, v′)};
(iv) λ(x, v) = λ(f(x), A(x)v).

Lemma 5.4. Suppose a function g : Rd → R ∪ {−∞} satisfies the following assumptions for all
v, w ∈ Rd:

(i) g(v + w) ≤ max{λ(v), λ(w)};
(ii) g(cv) = λ(v), for all c ̸= 0;
(iii) g(0) = −∞ .

Then, the following hold:

(a) if g(v) ̸= λ(w) for some v, w ∈ Rd, then g(v + w) = max{g(v), g(w)};
(b) if g(v1), ..., g(vm) are distinct for some v1, ..., vm ∈ Rd\{0}, then v1, ..., vm are linearly

independent;
(c) g attains at most d distinct finite values.

Lemma 5.5. If {an}n, {bn}n are sequences such that an, bn > 0, then one has

(a) lim sup
n→∞

1

n
log(an + bn) = max

{
lim sup
n→∞

1

n
log an, lim sup

n→∞

1

n
log bn

}
;

(b) lim sup
n→∞

1

n
log

√
a2n + b2n = max

{
lim sup
n→∞

1

n
log an, lim sup

n→∞

1

n
log bn

}
;

(c) lim inf
n→∞

1

n
log(an + bn) ≥ max

{
lim inf
n→∞

1

n
log an, lim inf

n→∞

1

n
log bn

}
;

(d) lim inf
n→∞

1

n
log

√
a2n + b2n ≥ max

{
lim inf
n→∞

1

n
log an, lim inf

n→∞

1

n
log bn

}
.

Assuming these lemmas, we prove Proposition 5.2.

Proof of Proposition 5.2. To find the desired functions, we first show that for µ−almost every
x ∈M , the set

Kx :=
{
λ(x, v) | v ∈ Rd\{0}

}
contains only finitely many elements, all of which are finite.

By Lemma 5.3 (i), we know that for µ−almost every x, the limit λ(x, v) exists and is finite for
every v ∈ Rd\{0}. Moreover, recall that λ(x, 0) = −∞. Thus, combining this fact with Lemma
5.3 (ii) and (iii), we see that the function λ(x, ·) : Rd → R ∪ {−∞} is well-defined for µ−almost
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every x and satisfies all three of the hypotheses of Lemma 5.4. Therefore, it follows from Lemma
5.4 (c) that Kx ⊆ R and Kx contains at most d distinct elements.

Next, we proceed to construct the Oseledets’ flag. Let k = k(x) be the number of distinct
elements in Kx, and denote by λi(x) > ... > λk(x) those elements. For 1 ≤ i ≤ k, we define

V i
x :=

{
v ∈ Rd\{0} | λ(x, v) ≤ λi(x)

}
∪ {0} .

Then, by Lemma 5.3 (ii) and (iii), we see that V i
x forms a vector subspace of Rd for each i, and by

construction of V i
x , we have a flag Rd = V 1

x ⊋ · · · ⊋ V k
x ⊋ {0}.

In particular, if v ∈ V i
x\V i+1

x , then one has

λi+1(x) < λ(x, v) ≤ λi(x) .

If λ(x, v) ̸= λi(x), then Kx contains k + 1 distinct elements. Contradiction. Thus, this forces

λ(x, v) = λi(x) , for all v ∈ V i
x\V i+1

x ,

which proves part (c)′ in the proposition.
We proceed to show that the functions x 7→ k(x), x 7→ λi(x), and x 7→ V i

x are f−invariant (part
(a)). Note that by Lemma 5.3 (iv) we know that for almost every x ∈ M and all v ∈ Rd\{0},
λ(x, v) = λ(f(x), A(x)v). Therefore, since A(x) is an invertible linear transformation of Rd, we
have

Kx =
{
λ(x, v) | v ∈ Rd\{0}

}
=

{
λ(f(x), A(x)v) | v ∈ Rd\{0}

}
=

{
λ(f(x), w) | w ∈ Rd\{0}

}
= Kf(x) .

It follows that k(f(x)) = k(x), λi(f(x)) = λi(x), and so by construction of V i
x ,

A(x)V i
x =

{
A(x)v | λ(x, v) ≤ λi(x), v ∈ Rd\{0}

}
∪ {0}

=
{
w ∈ Rd\{0} | λ

(
x,A(x)−1w

)
≤ λi(f(x))

}
∪ {0}

=
{
w ∈ Rd\{0} | λ (f(x), w) ≤ λi(f(x))

}
∪ {0}

= V i
f(x) .

□

We now proceed to prove the mentioned lemmas.

Proof of Lemma 5.3. To verify part (i), we begin with finding a bound for the Euclidean norm
|An(x)v|. Note that for all v ∈ Rd\{0}, we have

|An(x)v|
|v|

≤ sup
|v|=1

|An(x)v| = ∥An(x)∥ .

If we take An(x)v = w, then we also have

|An(x)v|
|v|

=
|w|

|(An(x))−1w|
≥

∥∥(An(x))−1
∥∥−1

.

Thus, for all x ∈M and v ∈ Rd\{0}, we obtain∥∥(An(x))−1
∥∥−1 |v| ≤ |An(x)v| ≤ ∥An(x)∥ |v| .

By Theorem 4.2, since log+ ∥(A(·))±∥ ∈ L1(µ), we know that the extremal Lyapunov exponents
λ−(x) and λ+(x) exist and are real-valued for µ−almost every x ∈ M . Therefore, this forces
λ(x, v) to exist, and so

−∞ < λ−(x) ≤ λ(x, v) ≤ λ+(x) < +∞ ,

for µ−almost every x ∈M and v ∈ Rd\{0} .
For (ii), observe that if v ̸= 0, then for any c ̸= 0, we have

λ(x, cv) = lim sup
n to∞

1

n
log |An(x)cv|

= lim sup
n→∞

1

n
log |An(x)v|+ lim sup

n→∞

1

n
log |c|︸ ︷︷ ︸

=0

= λ(x, v) .
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For (iii), observe that if v+ v′ ̸= 0, then by part (i), the limit λ(x, v+ v′) exists and is finite for
almost every x ∈M . By Lemma 5.5, we have

λ(x, v + v′) = lim sup
n→∞

1

n
log |An(x)(v + v′)|

≤ lim sup
n→∞

1

n
log (|An(x)v|+ |An(x)v′|)

= max

{
lim sup
n→∞

1

n
log (|An(x)v|) , lim sup

n→∞

1

n
log (|An(x)v′|)

}
= max {λ(x, v), λ(x, v′)} .

To prove (iv), note that by construction, An(x) = A(fn−1(x)) · · ·A(x). Therefore,

λ(f(x), A(x)v) = lim sup
n→∞

1

n
log |An(f(x))A(x)v|

= lim sup
n→∞

1

n
log

∣∣An+1(x)v
∣∣

= lim sup
n→∞

n+ 1

n︸ ︷︷ ︸
∼1

1

n+ 1
log

∣∣An+1(x)v
∣∣ = λ(x, v) .

□

Proof of Lemma 5.4. The proof of this lemma is based on [8, Theorem 2.1.2].
We begin with proving part (a). Let v, w ∈ Rd. Without loss of generality, we assume that

g(v) < g(w). Then, by part (i) of the hypothesis,

g(v + w) ≤ max {g(v), g(w)} = g(w)(5.6)

= g(v + w − v) ≤ max {g(v + w), g(v)} .

If g(v + w) < g(v), then we will have

g(w) = g(w + v − v) ≤ max{g(v + w), g(v)} = g(v) ,

contradicting our assumption that g(v) < g(w). Thus, we must have g(v + w) ≥ g(v), but this
implies

g(w) ≤ max {g(v + w), g(v)} = g(v + w) .

Combing with (5.6), we have g(v + w) = g(w), which proves (a).
Now we proceed to prove (b). By contradiction, suppose g(a1), ..., g(am) are distinct and

a1, ..., am ∈ R\{0} are linearly dependent. Then there exists c1, ..., cm ∈ R, not all zero, such
that

c1a1 + ...+ cmam = 0 .

Since g(a1), ..., g(am) are distinct, they cannot all take on the value −∞, so we have

−∞ = g(0) = g(c1a1 + ...+ cmam)

= max {g(ciai) | 1 ≤ i ≤ m}
= max {g(ai) | 1 ≤ i ≤ m, ci ̸= 0} ≠ −∞ .

Contradiction.
For (c), observe that if g attains more than d distinct values on Rd\{0}, then there will be more

than d linearly independent vectors in Rd. Thus, this forces g to attain at most d distinct finite
values.

□

Proof of Lemma 5.5. Suppose we set a′n := max{an, bn, }, b′n := min{an, bn}. Then b′n/a′n ≤ 1 and
for all n ≥ 1, one has

log (an + bn) = log (a′n + b′n) = log

(
1 +

b′n
a′n

)
︸ ︷︷ ︸

≤log 2

+ log a′n .
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Therefore, we obtain

lim sup
n→∞

1

n
log (an + bn) = lim sup

n→∞

1

n
log

(
1 +

b′n
a′n

)
︸ ︷︷ ︸

=0

+ lim sup
n→∞

1

n
log a′n

= lim sup
n→∞

1

n
log (max{an, bn, })

= max

{
lim sup
n→∞

1

n
log an, lim sup

n→∞

1

n
log bn

}
.

A similar argument can be used to prove the case for the liminf and
√
a2n + b2n.

□

5.2. Measurability. In this subsection, we show that the functions x 7→ k(x), x 7→ λi(x), and
x 7→ V i

x are measurable (part (b) of Theorem 5.1). Note that for each x ∈M , V i
x is a linear subspace

of Rd. Thus, before proving part (b), we first give a brief characterization of how measurability is
defined for set and space valued functions.

Suppose (Y, d) is a complete separable metric space. We useHc(Y ) to denote the space consisting
of all non-empty compact subsets of Y , endowed with the Hausdorff metric dHausdorff : for A,B ∈
Hc(Y ),

dHausdorff(A,B) := max

{
sup
a∈A

d(a,B) , sup
b∈B

d(b, A)

}
,

where

d(a,B) = inf
b∈B

d(a, b)

denotes the distance between the point a and the set B. The metric dHausdorff induces a topology
and thus a Borel σ−algebra B(Hc(Y )) onHc(Y ). See [10, Chapter 11] or [9, Chapter 18] for details
about the construction of this topology. A set-valued function g : M → Hc(Y ) is measurable if
g−1(B) ∈ B for all B ∈ B(Hc(Y )).

Let Gr(d) be the Grassmannian of Rd, i.e., the disjoint union of all Grassmannian manifolds
Gr(l, d), 1 ≤ l ≤ d. Each of Gr(l, d) is the collection of all l−dimensional linear subspaces of Rd.
We define a metric dGrass on Gr(d) via

dGrass(V,W ) := dHausdorff(S
d−1 ∩ V, Sd−1 ∩W ) ,

where Sd−1 is the unit sphere in Rd and V,W ∈ Gr(d). The metric dGrass also induces a Borel
σ−algebra on Gr(d), and the measurability of a function g : M → Gr(d) is defined with respect
to this σ−algebra.

The following Lemmas are used to characterize the measurability of functions with values in
Hc(Y ) and Gr(d).

Lemma 5.7. Let (M,B, µ) be a complete probability space, and (Y, d) be a complete separable
metric space. Denote by B(Y ) the Borel σ−algebra of Y and Hc(Y ) the collection of compact
subsets of Y . Then, the following statements are equivalent:

(i) A map g :M → Hc(Y ), g(x) = Kx is measurable.
(ii) The graph of g, i.e., the set {(x, y) ∈ M × Y : y ∈ Kx} is in the product σ−algebra

B × B(Y ) on M × Y .
(iii) {x ∈M | Kx ∩ U ̸= ∅} ∈ B for any open set U ⊆ Rd.

Moreover, any of these conditions implies that there is a measurable map σ : M → Rd (called a
measurable selection) such that σ(x) ∈ Kx for every x ∈M .

Proof. See a proof of (ii)⇐⇒(iii) in [10, Theorem III.30]. See a proof of (i)⇐⇒(iii) in [9, Theorem
19.2], and a proof of the measurable selection in [9, Theorem 19.6]. □

Lemma 5.8. Let (M,B, µ) be a complete probability space. Denote by B(Rd) the Borel σ−algebra
of Rd and Gr(d) the Grassmannian of Rd. Then, the following statements are equivalent:

(i) The map g :M → Gr(d), g(x) = Vx is measurable.
(ii) The graph of g, i.e., the set {(x, y) ∈ M × Rd : y ∈ Vx} is in the product σ−algebra

B × B(Rd) on M × Rd.
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(iii) For each 1 ≤ l ≤ d, the set Ml := {x ∈ M | dimVx = l} is measurable and there exist
measurable vector fields vi, : Ml → Rd, 1 ≤ i ≤ l, such that {v1(x), ..., vl(x)} is a basis of
Vx for every x ∈Ml.

Proof. See a proof of this lemma in [4, Theorem 7]. □

We further mention a useful fact about the canonical projection map π :M × Y →M :

Fact 5.9. Let B × B(Y ) be the product σ−algebra on M × Y , and π : M × Y → M be the
projection map π(x, y) := x. Then, one has π(E) ∈ B for every E ∈ B × B(Y ).

Proof. See a proof of this fact in [10, Theorem III.23]. □

Assuming the above results, we prove the following proposition:

Proposition 5.10. The functions x 7→ k(x), x 7→ λi(x) and x 7→ V i
x found in Proposition 5.2 are

measurable.

Proof. We use a recursive argument. First note that it is trivial that the set

k−1 ((−∞, 1]) = {x ∈M | k(x) ≥ 1} =M

is measurable. Moreover, note that for almost all x ∈M , we have V 1
x = Rd, so for each 1 ≤ l ≤ d,{

x ∈M | dimV 1
x = l

}
is a measurable set and any arbitrary basis {e1, ..., ed} of Rd is a basis for V 1

x = Rd. Therefore, by
Lemma 5.8, we know that the map x 7→ V 1

x is measurable.
Now, let {e1, ..., ed} be an arbitrary basis of V 1

x = Rd. Then, at least one of ei is in the set
V 1
x \V 2

x , since V
2
x is of a dimension strictly lower by the construction of the Oseledets flag. Thus,

we have

max {λ(x, ei) | 1 ≤ i ≤ d} = λ1(x) .

Since (x, v) 7→ λ(x, v) is measurable, we have that x 7→ λ1(x) is a measurable function on M .
Thus, we showed that k−1 ((−∞, 1]) is measurable and, x 7→ λ1(x), x 7→ V 1

x are measurable
functions on M . Next, we show that the same holds for i = 2. Observe that since λ(x, v), λ1(x)
are measurable, the function g(x, v) := λ(x, v)− λ1(x) is measurable. Thus, the set

V 2
∗ : =

{
(x, v) ∈M × Rd\{0} | λ(x, v) < λ1(x)

}
=

{
(x, v) ∈M × Rd\{0} | g(x, v) < 0

}
= g−1((−∞, 0))

is a measurable subset of M × Rd. By Fact 5.9, we see that the set

M ⊇ π
{
V 2
∗
}
=

{
x ∈M | λ(x, v) < λ1(x) for some v ∈ Rd\{0}

}
= {x ∈M | k(x) ≥ 2}
= k−1((−∞, 2])

is measurable. Also, by Lemma 5.8, since the set{
(x, v) ∈M × Rd | v ∈ V 2

x

}
=

{
(x, v) ∈M × Rd\{0} | λ(x, v) ≤ λ2(x)

}
∪ (M × {0})

= V 2
∗ ∪ (M × {0})

is a measurable subset of M × Rd, the function x 7→ V 2
x is a measurable function on π

(
V 2
∗
)
.

Since x 7→ V 2
x is a measurable, it follows from Lemma 5.8 that each

M2
l :=

{
x ∈ π

(
V 2
∗
)
| dimV 2

x = l
}
, 1 ≤ l ≤ d

is a measurable subset ofM and for each l there are measurable functions vj :M
2
l → Rd, 1 ≤ j ≤ l

such that {v1(x), ..., vl(x)} forms a basis of V 2
x for every x ∈M2

l . Thus, for each x, at least one of
vj(x) is in V

2
x \V 3

x , since V
3
x is of a dimension strictly lower. Thus, we have

max {λ(x, vj(x)) | 1 ≤ j ≤ l} = λ2(x)

is a measurable function on M2
l , for all 1 ≤ l ≤ d. Since π(V 2

∗ ) =
⋃

1≤l≤dM
2
l , the map x 7→ λ2(x)

is a measurable function on π(V 2
∗ ).
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Therefore, we showed that k−1 ((−∞, 2]) is measurable, and x 7→ λ1(x), x 7→ V 1
x are measurable

functions on π(V 2
∗ ). To show measurability for i = 3 we may proceed to define

V 3
∗ : =

{
(x, v) ∈M × Rd\{0} | λ(x, v) < λ2(x)

}
.

and use the same argument. Continuing this recursive construction yields that

(i) k−1((−∞, i]) is measurable for all i ≥ 1, so x 7→ k(x) is measurable;
(ii) x 7→ λi(x), x 7→ V i

x are measurable functions on π(V i
∗ ) = {x ∈M | k(x) ≥ i}.

□

5.3. Lemma for the Base Case. In the previous subsections we showed that a weaker version of
Theorem 5.1 holds. In this subsection, we prove a useful lemma for the base case of the inductive
argument.

We say that a map x 7→ Vx is a measurable sub-bundle of M × Rd if one, and hence all,
of the statements in Lemma 5.8 hold. A measurable sub-bundle x 7→ Vx is called invariant if
A(x)Vx = Vf(x) for µ−almost every x.

Lemma 5.11. Consider the linear cocycle F : M × Rd → M × Rd. Let x 7→ Vx be a measurable
invariant sub-bundle of M × Rd, then for µ−almost every x, one has

(a) lim
n→∞

1

n
log ∥An(x)|Vx∥ = max {λ(x, v) | v ∈ Vx\{0}} ,

(b) lim
n→∞

1

n
log

∥∥(An(x)|Vx)−1
∥∥−1

= min {λ(x, v) | v ∈ Vx\{0}} .

Remark 5.12. A direct consequence of Lemma 5.11 is that λ1(x) = λ+(x) and λk(x) = λ−(x),
where λ± are the extremal Lyapunov exponents of F . This is obtained by taking Vx = Rd.

To prove Lemma 5.11, we will need tools from the dynamics of skew products (Theorem 5.14
and Corollary 5.15 below). In the following, we state the needed results.

Let P be a compact metric space. Let C0(P ) denote the space of continuous real-valued functions
on P , endowed with the norm

∥g∥0 := sup
x∈P

|g(x)| .

Denote by F the space of all measurable functions Ψ :M × P → R such that Ψ(x, ·) ∈ C0(P ) for
µ−almost every x ∈M and the function x 7→ ∥Ψ(x, ·)∥0 is µ−integrable. Then,

∥Ψ∥1 =

∫
∥Ψ(x, ·)∥0 dµ(x)

defines a complete norm on F .
Let M (µ) be the space of probability measures onM×P such that π∗η = µ, where π :M×P →

M is the canonical projection map. The weak∗ topology on M (µ) is the smallest topology such
that the operator ϕ : M (µ) → R, defined as

ϕ(η) :=

∫
Ψ dη, is continuous for all Ψ ∈ F .

We take for granted the following fact about M (µ):

Fact 5.13. The weak∗ topology on M (µ) is compact and two probability measures η, ξ ∈ M (µ)
are equal if and only if

∫
Ψ dη =

∫
Ψ dξ for all Ψ ∈ F .

Next, we proceed to state the needed claims.

Theorem 5.14. Let G :M × P →M × P be a measurable map of the form

G (x, v) = (f(x),Gx(v)) ,

where Gx : P → P is continuous for µ−almost every x ∈M . Given any Φ ∈ F , define

I(x) := lim
n→∞

1

n
inf
v∈P

n−1∑
j=0

Φ(G j(x, v)) , S(x) := lim
n→∞

1

n
sup
v∈P

n−1∑
j=0

Φ(G j(x, v)) .
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The limits I(x), S(x) exist for µ−almost every x and there exist G−invariant measures ηI , ηS ∈
M (µ) such that ∫

Φ dηI =

∫
I dµ ,

∫
Φ dηS =

∫
S dµ .

Corollary 5.15. For µ−almost every x ∈M , there are vI(x), vS(x) ∈ P such that

lim
n→∞

1

n

n−1∑
j=0

Φ(G j(x, vI(x))) = I(x) , lim
n→∞

1

n

n−1∑
j=0

Φ(G j(x, vS(x))) = S(x) .

Assuming these results, we first prove Lemma 5.11. The proofs of Theorem 5.14 and Corollary
5.15 will be given at the end of this subsection.

Proof of Lemma 5.11. Note that {x : dimVx = l} is measurable by Lemma 5.8, and x 7→ Vx is
invariant. Thus, without loss of generality, we may assume that dimVx is constant for all x ∈ M
by restricting to measurable subsets of M . Suppose dimVx = l and let x ∈M .

We want to construct a new linear cocycle whose extremal Lyapunov exponents correspond to the
limits given by the claim of the theorem. By Lemma 5.8 and Gram-Schmidt, there exist measurable
functions vj such that {v1(x), ..., vl(x)} is an orthonormal basis of Vx. Using an isometry Tx : Vx →
Rl, Tx(vi(x)) = ei, we may identify Vx with Rl ⊆ Rd. Therefore, we may assume Vx = Rl and
A(x)|Vx ∈ GL(l).

Let D(x) := A(x)|Vx, and let G :M ×Rl →M ×Rl be the linear cocycle defined by D over f .
Since ∥∥(D(x))±

∥∥ = sup
v∈Vx\{0}

|(A(x))±v|
|v|

≤
∥∥(A(x))±∥∥ ,

we know that log+
∥∥(D(·))±1

∥∥ ∈ L1(µ), and so by Furstenberg and Kesten’s theorem (Theorem
4.2), the extremal Lyapunov exponents of G exist for µ−almost every x. Denote by u±(x) the
extremal Lyapunov exponents of G, then by our construction,

lim
n→∞

1

n
log

∥∥(An(x)|Vx)±
∥∥± = lim

n→∞

1

n
log

∥∥(Dn(x))±
∥∥± = u±(x) .

We want to show that u±(x) is equal to the max/min in the claim respectively by applying
Corollary 5.15 to the linear cocycle G, but Rl is not compact. Thus, we projectivize G by consid-
ering the function G :M ×PRl →M ×PRl (see [11, Lemma 5.1] for a proof that PRl is a compact
metric space),

G (x, [v]) = (f(x), [D(x)v]) .

Note that an element [v] ∈ PRl is equivalent to a line {tv | t ∈ R} ⊆ Rl for some v ∈ Rl\{0}. Now,

define a function Φ :M × PRl → R as

Φ(x, [v]) := log
|D(x)v|

|v|
.

Then, we have Φ ∈ F , since Φ is measurable, Φ(x, ·) ∈ C0(PRl) for every x ∈M , and log+ ∥(D(x))±∥ ≤
log+ ∥(A(x))±∥ ∈ L1(µ).

Thus, for every n ≥ 0, v ∈ Rl\{0}, we have

n∑
j=0

Φ(G j(x, [v])) =

n∑
j=0

Φ
(
x, [Dj(x)v]

)
=

n∑
j=0

log

∣∣Dj+1(x)v
∣∣

|Dj(x)v|
= log

|Dn(x)v|
|v|

.

It follows that

Sn(x) = sup
v∈Rl\{0}

n∑
j=0

Φ(G j(x, [v])) = sup
v∈Rl\{0}

log
|Dn(x)v|

|v|
= log ∥Dn(x)∥ ,

In(x) = inf
v∈Rl\{0}

n∑
j=0

Φ(G j(x, [v])) = inf
v∈Rl\{0}

log
|Dn(x)v|

|v|
= log

∥∥(Dn(x))−1
∥∥−1

,

and so I(x) = u−(x), S(x) = u+(x), and the functions I, S have properties as in Theorem 5.14.
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Moreover, for any v ∈ Vx\{0} = Rl\{0}, we have

lim sup
n→∞

1

n

n−1∑
j=0

Φ(G j(x, [v])) = lim sup
n→∞

1

n
log

|Dn(x)v|
|v|

= lim sup
n→∞

1

n
log

|An(x)v|
|v|

= λ(x, v) .

Thus, by Corollary 5.15, there exists vS(x), vI(x) ∈ Rl\{0} such that

λ(x, vS(x)) = S(x) = u+(x) , λ(x, vI(x)) = I(x) = u−(x) .

Note that if v ∈ Rl\{0}, by Lemma 5.3 we have u−(x) ≤ λ(x, v) ≤ u+(x) for µ−almost every x.
Thus, in summary,

u+(x) = λ(x, vS(x)) = max{λ(x, v) | v ∈ Rl\{0}} ,

u−(x) = λ(x, vI(x)) = min{λ(x, v) | v ∈ Rl\{0}} .

□

We conclude this subsection by proofs of Theorem 5.14 and Corollary 5.15.

Proof of Theorem 5.14. The roles of supremum and infimum can be interchanged if we replace Φ
by −Φ, so it suffices to only prove the claim for I(x).

To begin with, we want to use the subadditive ergodic theorem (Theorem 4.1) to show that the
limit I(x) exists for µ−almost every x ∈M . For x ∈M , define

In(x) := inf
v∈P

n−1∑
j=0

Φ(G j(x, v)) .

We first verify that each In(x) is measurable. Note that P is separable since it is compact, and

for a continuous function g : P → R, one always has g(A) ⊆ g(A). Thus, if A is a countable dense
subset of P , then

In(x) = inf
v∈P

n−1∑
j=0

Φ(G j(x, v)) = inf
v∈A

n−1∑
j=0

Φ(G j(x, v)) .

Moreover, note that the operation of taking an infimum over a countable set of measurable functions
is measurable: for gα : P → R, α ≥ 0, measurable, the set(

inf
α≥0

gα

)−1

((−∞, c)) =

{
t ∈ P | inf

α≥0
gα(t) < c

}
=

⋃
α≥0

{t ∈ P | gα(t) < c}

is a countable union of measurable sets and so it is measurable. It follows that each In is measurable
since they are compositions of measurable functions.

We then verify that In(x) is superadditive (so that −In(x) is subadditive). For m,n ≥ 1, for all
x ∈M ,

Im+n(x) = inf
v∈P

m+n−1∑
j=0

Φ(G j(x, v)) = inf
v∈P

m−1∑
j=0

Φ(G j(x, v)) +

n+m−1∑
j=m

Φ(G j(x, v))

≥ inf
v∈P

m−1∑
j=0

Φ(G j(x, v)) + inf
v∈P

n−1∑
j=0

Φ(G j+m(x, v))

≥ Im(x) + In(f
m(x)) .

Finally, note that I1 is integrable since ∥Φ(x, ·)∥0 ∈ L1(µ). Thus, we can apply Theorem 4.1 to
{−In}n∈N to show that the limit

I(x) = lim
n→∞

1

n
In(x)

exists for µ−almost every x ∈M .
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Next, we proceed to construct a measure ηI which satisfies the condition in the claim. For
n ≥ 0, consider measurable subsets of M × P defined by

Γn :=

(x, v) ∈M × P |
n−1∑
j=0

Φ(G j(x, v)) = In(x)

 ∈ B × B(P ) .

Additionally, for x ∈M , define

Γn(x) := {v ∈ P | (x, v) ∈ Γn} =

v ∈ P | v is a minimum of

n−1∑
j=0

Φ(G j(x, v))

 .

Since P is compact and the map v 7→ Φ(G j(x, v)) is continuous for every j, Γn(x) is non-empty
and compact for µ−almost every x ∈ M . Therefore, x 7→ Γn(x) is a map with values in the set
of compact subsets of P , and its graph is measurable, so by Lemma 5.7, there exists a measurable
selection vn :M → P such that vn(x) ∈ Γn(x) for µ−almost every x.

Now, for n ≥ 0, we define the following probability measures on M × P :

ξn(A) :=

∫
A

δ(x,vn(x)) dµ(x) , ηn(A) :=
1

n

n−1∑
j=0

G j
∗ ξn(A) ,

for arbitrary measurable A ⊆M × P . Note that for B ⊆M measurable, we have

π∗ξn(B) = ξn(π
−1(B)) =

∫
π−1(B)

δ(x,vn(x)) dµ(x)

=

∫
B

1 dµ(x)

= µ(B) ,

so ξn ∈ M (µ) for each n. Since f preserves the measure µ and G (x, v) = (f(x),Gx(v)), we also
have π∗ηn = µ for each n. It follows that ηn ∈ M (µ) for all n ∈ N.

By compactness of M (µ) (Fact 5.13), there exists a subsequence {ηnk
}k∈N that converges to

some ηI ∈ M (µ) in the weak∗ topology.
We first verify G−invariance of ηI . Observe that for any Ψ ∈ F , by µ−invariance of f , we have∣∣∣∣∫ Ψ ◦ G dηnk

−
∫

Ψ dηnk

∣∣∣∣ = 1

nk

∣∣∣∣∫ Ψ ◦ G nk −Ψ dηnk

∣∣∣∣
≤ 1

nk

∫
|Ψ ◦ G nk(x, vnk

(x))−Ψ(x, vnk
(x))| dµ(x)

≤ 2

nk

∫
∥Ψ(x, ·)∥0 dµ(x)

=
2

nk
∥Ψ∥1 .

By the definition of weak∗ topology on M (µ), the left side converges to
∣∣∫ Ψ ◦ G dµI −

∫
Ψ dµI

∣∣.
At the same time, the right side converges to 0, so we obtain∫

Ψ ◦ G dηI =

∫
Ψ dηI .(5.16)

Fact 5.13 and (5.16) implies that G∗ηI = ηI , so ηI is G−invariant. Finally, by the subadditive
ergodic theorem (Theorem 4.1), we have∫

Φ dηI = lim
k→∞

∫
Φ dηnk

= lim
k→∞

∫
1

nk

nk−1∑
j=0

Φ(G j(x, vnk
(x))) dµ(x)

= lim
k→∞

1

nk

∫
Ink

(x) dµ(x)

=

∫
I dµ .

□
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Proof of Corollary 5.15. The roles of I, S can be interchanged if we replace Φ by −Φ, so it suffices
to only prove the claim for I(x). First note that is obvious that

I(x) ≤ lim inf
n→∞

1

n

n−1∑
j=0

Φ(G j(x, v)) ≤ lim sup
n→∞

1

n

n−1∑
j=0

Φ(G j(x, v)) ≤ S(x) .

Also, note that by the Birkhoff ergodic theorem (Theorem 4.7), given any G−invariant measure
η, the limit

Φ̃(x, v) = lim
n→∞

1

n

n−1∑
j=0

Φ(G j(x, v))

exists for η−almost every point (x, v), and satisfies
∫
Φ̃ dη =

∫
Φ dη.

Let η = ηI as in Theorem 5.14. We obtain∫
Φ̃ dηI =

∫
Φ dηI =

∫
I dµ .

Note that ηI ∈ M (µ), so π∗ηI = µ. Thus, we can think of I as a function I(x, v) constant for

every v ∈ P . Then, we have
∫
Φ̃ dηI =

∫
I dηI . Therefore, it follows that the set

E :=
{
(x, v) ∈M × P | Φ̃(x, v) = I(x)

}
is measurable and has ηI−full measure. By Fact 5.9, the projection π(E) is measurable and since
π∗ηI = µ,

µ(π(E)) = ηI(π
−1(π(E))) ≥ ηI(E) = 1 .

Hence, for all x ∈ π(E), there exists v ∈ P such that (x, v) ∈ E, which proves the corollary.
□

5.4. Lemma for the Inductive Step. In this subsection, we prove a useful lemma for the
inductive step of the inductive argument.

Throughout this subsection, we take x 7→ Vx to be a measurable invariant sub-bundle and
α(x) < β(x) to be f−invariant, µ−integrable functions such that for µ−almost every x ∈M , one
has

(i) λ(x, v) ≤ α(x) for every v ∈ Vx\{0},
(ii) λ(x, u) ≥ β(x) for every u ∈ Rd\Vx.
For x ∈ M , let V ⊥

x denote the orthogonal complement of Vx. Note that since x 7→ Vx is
measurable and the orthogonal complement map ⊥: Gr(l, d) → Gr(d − l, d) is a diffeomorphism
for every l, the map x 7→ V ⊥

x is also measurable.
We think of A(x) as a linear map A(x) : (Vx ⊕ V ⊥

x = Rd) → (Rd = Vf(x) ⊕ V ⊥
f(x)). Recall that

by invariance we have A(x)Vx = Vf(x) for µ−almost every x (part (a)). Let

A(x) =

(
B(x) 0
C(x) D(x)

)
(5.17)

denote the expression of A(x) relative to the direct sum decomposition Rd = Vx ⊕ V ⊥
x . Then,

D(x) : Vx → Vf(x) is the restriction of A(x) to Vx, B(x) : V ⊥
x → V ⊥

f(x) gives a new linear cocycle,

and C(x) is a linear transformation C(x) : V ⊥
x → Vf(x). Since log+

∥∥A±1
∥∥ is µ−integrable, we

know that

log+
∥∥B±1

∥∥ , log+ ∥C∥ , log+
∥∥D±1

∥∥ ∈ L1(µ) .(5.18)

Based on the above set-up, we prove the following Lemma:

Lemma 5.19. For µ−almost every x ∈M , for all u ∈ V ⊥
x \{0} and v ∈ Vx, we have

(a) lim supn
1
n log |Bn(x)u| = lim supn log |An(x)(u+ v)|;

(b) if limn
1
n log |Bn(x)u| exists, then limn

1
n |An(x)(u+ v)| exists and the two limits are equal.

To prove this lemma, we need the following fact, which will be proven at the end of this
subsection.
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Fact 5.20. Given any ϵ > 0, there exists a measurable function dϵ(x) > 0, finite µ−almost
everywhere, such that for all m,n ≥ 0.

∥Dn (fm(x))∥ ≤ dϵ(x)e
α(x)n+(m+n)ϵ .

Proof of Lemma 5.19. The the following, we first show that it suffices to prove the claim of part
(a) for v = 0. Let u ∈ V ⊥

x \{0} and v ∈ Vx. Observe that Lemma 5.5 and assumptions (i) and (ii)
imply

lim sup
n→∞

1

n
log |An(x)(u+ v)| ≤ lim sup

n→∞

1

n
log(|An(x)u|+ |An(x)v|)

= max

{
lim sup
n→∞

1

n
log |An(x)u| , lim sup

n→∞

1

n
log |An(x)v|

}
= lim sup

n→∞

1

n
log |An(x)u| .

Similarly, since u+ v ∈ Rd\Vx,

lim sup
n→∞

1

n
log |An(x)u| ≤ lim sup

n→∞

1

n
log(|An(x)(u+ v)|+ |An(x)v|)

= max

{
lim sup
n→∞

1

n
log |An(x)(u+ v)| , lim sup

n→∞

1

n
log |An(x)v|

}
= lim sup

n→∞

1

n
log |An(x)(u+ v)| .

Therefore, it suffices to prove (a) for u ∈ V ⊥
x and v = 0, since for all u ∈ V ⊥

x \{0}, v ∈ Vx, we have

lim sup
n→∞

1

n
log |An(x)(u+ v)| = lim sup

n→∞

1

n
log |An(x)u| .

Recall that An(x) = A(fn−1(x)) · · ·A(x), so according to the decomposition in (5.17), we have

An(x) =

(
Bn(x) 0
Cn(x) Dn(x)

)
,

where

Cn(x) :=

n−1∑
j=0

Dn−j−1(f j+1(x))C(f j(x))Bj(x) .

For x ∈M and u ∈ V ⊥
x , define

γ := max

{
α(x), lim sup

n→∞

1

n
log |Bn(x)u|

}
.

We want to find an estimate for |Cn(x)u| in terms of γ. To do so, we need to bound
∣∣Bj(x)u

∣∣,∥∥C(f j(x))∥∥, and ∥Dn(fm(x))∥ respectively.

Let ϵ > 0. Since lim supn→∞
1
n log |Bn(x)u| ≤ γ, by definition of the limsup, there is a constant

bϵ ∈ R such that ∣∣Bj(x)u
∣∣ ≤ bϵe

j(γ+ϵ) , for all j ≥ 0 .

Now, observe that by (5.18), the function x 7→ log ∥C(f(x))∥ − log ∥C(x)∥ is µ−integrable. Thus,
by Corollary 4.8, for µ−almost every x, we have

lim
n→∞

1

n
log ∥C(fn(x))∥ = 0 .

It follows that there exists a measurable function cϵ > 0 such that∥∥C(f j(x))∥∥ ≤ cϵ(x)e
jϵ , for all j ≥ 0 .

Moreover, by Fact 5.20, there exists a measurable function dϵ > 0 such that for all m,n ≥ 0.

∥Dn (fm(x))∥ ≤ dϵ(x)e
α(x)n+(m+n)ϵ .
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Therefore, we have

|Cn(x)u| ≤
n−1∑
j=0

∣∣Dn−j−1(f j+1(x))C(f j(x))Bj(x)u
∣∣

≤
n−1∑
j=0

bϵcϵ(x)dϵ(x)︸ ︷︷ ︸
=:aϵ(x)<+∞

exp {(n− j − 1)α(x) + (n+ j)ϵ+ j(γ + ϵ)}

≤ aϵ(x)e
n(γ+3ϵ) .

Taking a limsup yields

lim sup
n→∞

1

n
log |Cn(x)u| ≤ γ + 3ϵ .

Now, observe that according to our decomposition of the matrix A(x) in (5.17), we can express
the vector An(x)u ∈ Rd as An(x)u = (Bn(x)u,Cn(x)u), so

|An(x)u|2 = |Bn(x)u|2 + |Cn(x)u|2 .

Thus, by Lemma 5.5, we obtain

lim sup
n→∞

1

n
log |An(x)u| = max

{
lim sup
n→∞

1

n
log |Bn(x)u| , lim sup

n→∞

1

n
log |Cn(x)u|

}
≤ max{γ, γ + 3ϵ}
= γ + 3ϵ .

Since ϵ > 0 is arbitrary, follows that

lim sup
n→∞

1

n
log |Bn(x)u| ≤ lim sup

n→∞

1

n
log |An(x)u| ≤ γ(5.21)

But assumption (i) and (ii) implies that

α(x) < β(x) ≤ lim sup
n→∞

1

n
log |An(x)u| ≤ γ ,

so α(x) is strictly smaller than γ. Hence, by definition of γ, we must have

lim sup
n→∞

1

n
log |Bn(x)u| = γ.

Therefore, combining with (5.21), this forces

lim sup
n→∞

1

n
log |Bn(x)u| = lim sup

n→∞

1

n
log |An(x)u| .

We proceed to prove part (b). Note that if u ∈ V ⊥
x \{0}, v ∈ Vx, we can write the vector

An(x)(u+ v) as

An(x)(u+ v) = An(x)u+An(x)v = (Bn(x)u,Cn(x)u+Dn(x)v) ,

which implies

|An(x)(u+ v)|2 = |Bn(x)u|2 + |Cn(x)u+Dn(x)v|2 .

If the limit limn
1
n log |Bn(x)u| exists, then by Lemma 5.5,

lim inf
n→∞

1

n
log |An(x)(u+ v)|

≥ max

{
lim inf
n→∞

1

n
log |Bn(x)u| , lim inf

n→∞

1

n
log {|Cn(x)u|+ |Dn(x)u|}

}
≥ lim inf

n→∞

1

n
log |Bn(x)u| = lim sup

n→∞

1

n
log |Bn(x)u| .

Combining with part (a), this proves part (b).
□
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Proof of Fact 5.20. Define

bϵ(x) := sup
n≥0

∥Dn(x)∥ e−n(α(x)+ϵ) .

We want to bound the function bϵ(f
m(x)) for arbitrary m ≥ 0 by applying Corollary 4.8.

By assumption (i) and Lemma 5.11, we have

lim
n→∞

1

n
log ∥Dn(x)∥ = lim

n→∞

1

n
log ∥An(x)|Vx∥ ≤ α(x) ,

so by definition of the limsup we must have 1 ≤ bϵ(x) < +∞, for µ−almost every x ∈M .
We proceed to verify that bϵ ◦ f − bϵ is µ−integrable. First, observe that for all x ∈M ,

bϵ(f(x)) = sup
n≥0

∥Dn(f(x))∥ e−n(α(x)+ϵ)

≤ sup
n≥0

∥D(fn(x)) · · ·D(x)∥ e−(n+1)(α(x)+ϵ)
∥∥(D(x))−1

∥∥ eα(x)+ϵ

=
∥∥(D(x))−1

∥∥ eα(x)+ϵ sup
n≥0

∥∥Dn+1(x)
∥∥ e−(n+1)(α(x)+ϵ)

≤
∥∥(D(x))−1

∥∥ eα(x)+ϵbϵ(x) ,

and so we have

log bϵ(f(x))− log bϵ(x) ≤ log+
∥∥(D(x))−1

∥∥+ α(x) + ϵ .(5.22)

Next, observe that since the operator norm is sub-multiplicative (i.e., ∥XY ∥ ≤ ∥X∥ ∥Y ∥), we
have

bϵ(f(x)) = sup
n≥0

∥Dn(f(x))∥ e−n(α(x)+ϵ)

= sup
n≥1

∥∥D(fn−1(x)) · · ·D(f(x))
∥∥ e−n(α(x)+ϵ) ∥D(x)∥

∥D(x)∥
eα(x)+ϵ

≥ ∥D(x)∥−1
eα(x)+ϵ · sup

n≥1
∥Dn(x)∥ en(α(x)+ϵ) .(5.23)

Therefore, there are two possibilities:

(1) If bϵ(x) = supn≥1 ∥Dn(x)∥ e−nα(x)+ϵ, then by (5.23) we have

bϵ(f(x)) ≥ ∥D(x)∥−1
eα(x)+ϵ · bϵ(x) ,

which implies

log bϵ(f(x)) ≥ log ∥D(x)∥−1
+ log bϵ(x) + α(x) + ϵ .

(2) If bϵ = 1 (i.e., the supremum is attained at n = 0), then we have bϵ(f(x)) ≥ 1 = bϵ(x), so

log bϵ(f(x)) ≥ log bϵ(x) .

Combining the two cases, we have

log bϵ(f(x))− log bϵ(x) ≥ min
{
log ∥D(x)∥−1

+ α(x) + ϵ, 0
}

≥ min
{
− log+ ∥D(x)∥+ α(x) + ϵ, 0

}
.(5.24)

Therefore, integrability of ∥D±(·)∥ and α(x), equations (5.24) and (5.22) implies that bϵ ◦ f − bϵ
is µ−integrable. By Corollary 4.8, we see that for µ−almost every x,

lim
m→∞

1

m
log bϵ(f

m(x)) = 0 ,

which implies that for µ−almost every x,

0 < dϵ(x) := sup
m≥0

bϵ(f
m(x))e−ϵm < +∞ .

It follows that for µ−almost every x, there is a measurable function dϵ such that for all m,n ≥ 0,

∥Dn(fm(x))∥ ≤ bϵ(x)e
n(α(x)+ϵ) ≤ dϵe

nα+(n+m)ϵ .

□



LYAPUNOV EXPONENTS AND THE MULTIPLICATIVE ERGODIC THEOREM 23

5.5. Induction. In this subsection, we prove part (c) of Theorem 5.1. Recall that we proved in
propositions 5.2 and 5.10 that parts (a), (b), (c)′ hold. We now use the results we obtained in
the previous subsections (Lemmas 5.11 and 5.19) to show that for µ−almost every x ∈ M , for
1 ≤ i ≤ k, one has

lim
n→∞

1

n
log |An(x)v| = λi(x) , for all v ∈ V i

x\V i+1
x .(5.25)

Proposition 5.26. Part (c) of Theorem 5.1 holds.

Proof. Note that the functions V i(x), k(x), λi(x) are invariant (Lemma 5.2). Thus, without loss
of generality, we may assume that k = k(x) is independent of x, and the dimension l of the linear
subspace Vx = V k

x is constant, by restricting measurable invariant subsets of M .
We will prove the claim using a recursive argument. To do so, we first show that (5.25) holds for

i = k (base case), by applying Lemma 5.11 to Vx = V k
x . Observe that since x 7→ Vx is a measurable

invariant sub-bundle, by Lemma 5.11, we have

lim
n→∞

1

n
log

∥∥∥(An(x)|Vx)−1
∥∥∥−1

= min {λ(x, v) | v ∈ Vx\{0}}

= λk(x)

= max {λ(x, v) | v ∈ Vx\{0}} = lim
n→∞

1

n
log ∥An(x)|Vx∥ .

Thus, this forces

lim
n→∞

1

n
log |An(x)v| = λk(x) , for all v ∈ Vx\{0} .

Now, we proceed to show that the limit exists for i = k− 1 by applying Lemma 5.19 (inductive
step). Let α(x) := λk(x), β(x) := λk−1(x). Then, by construction, conditions (i) and (ii) in the
set-up of Subsection 5.4 are satisfied. Consider A(x) relative to the direct sum decomposition
Rd = Vx ⊕ V ⊥

x , as in (5.17):

A(x) =

(
B(x) 0
C(x) D(x)

)
.

Since x 7→ V ⊥
x is measurable, by Lemma 5.8, we may choose a measurable orthonormal basis

{w1(x), ..., wd−l(x)} of V ⊥
x and assume that V ⊥

x = Rd−l via an isometry. Thus, we may consider
B(x) as an element of GL(d− l).

For each 1 ≤ i ≤ k, we define U i
x := V ⊥

x ∩ V i
x . Observe that for each 1 ≤ i ≤ k − 1 and

u ∈ U i
x\U i+1

x , we have u ∈ (V i
x\V i+1

x ) ∩ V ⊥
x , so by Lemma 5.19(a), we obtain

lim sup
n→∞

1

n
log |Bn(x)u| = lim sup

n→∞

1

n
log |An(x)u| = λi(x) .

In general, recall that for all 1 ≤ i ≤ k − 1, if w ∈ V i
x\V i+1

x , we can write w = u + v where
0 ̸= u ∈ U i

x\U i+1
x and v ∈ Vx. Via Lemma 5.19(a), we will get

lim sup
n→∞

1

n
log |An(x)w| = lim sup

n→∞

1

n
log |Bn(x)u| = λi(x) .(5.27)

Therefore, there is a new linear cocycle defined by B over f , such that V ⊥
x = Rd−l = U1

x ⊋ · · · ⊇
Uk−1
x ⊇ {0} is the Oseledets flag of B. This is a linear cocycle with one less subspace in its flag

than the linear cocycle defined by A over f , and we showed in (5.27) that the former completely
determines the latter.

Note that x 7→ Uk−1
x is a measurable invariant sub-bundle since x 7→ Vx, V

k−1
x are measurable

invariant. So we may apply Lemma 5.11 to the linear cocycle defined by B and Uk−1
x to show that

for all u ∈ Uk−1
x \{0},

lim
n→∞

1

n
log |Bn(x)u| = λk−1(x) .(5.28)

Using Lemma 5.19(b), if the limit in (5.28) exists, then the corresponding limit for the linear
cocycle defined by A(x) exists, so for all v ∈ V k−1

x \V k
x , we have

lim
n→∞

1

n
log |An(x)v| = λk−1(x) .



24 ALINA ZHU

We can show that the limit for i = k−2 exists by repeating the same argument and decomposing
B relative the the direct sum Rd−l = Uk−1

x ⊕ (Uk−1
x )⊥. Recursively applying this argument yields

that for all 1 ≤ i ≤ k, for almost every x ∈M , all v ∈ V i
x\V i+1

x ,

lim
n→∞

1

n
log |An(x)v| = λi(x) ,

which concludes the proof of Theorem 5.1. □

6. Applications

In this subsection, we discuss some applications of the multiplicative ergodic theorem to product
of random matrices and Schrödinger cocycles. To do so, we first introduce some elementary notions
from ergodic theory.

Definition 6.1. Let (M,B, µ) be an arbitrary probability space. A measure preserving transfor-
mation f : M → M is called ergodic if for all B ∈ B such that f−1(B) = B, one has µ(B) = 0
or µ(B) = 1.

There are several equivalent characterizations of ergodicity, but the one most important to us
is the following:

Theorem 6.2. Let (M,B, µ) be a probability space. If a map f :M →M is measure preserving,
then the following statements are equivalent:

(1) f is ergodic;
(2) Whenever a measurable map g : M → R satisfies g ◦ f(x) = g(x) for µ−almost every

x ∈M , g is constant µ−almost everywhere.

Proof. See a proof in [13, Theorem 1.6]. □

Thus, for a linear cocycle F defined by A over f , it follows directly from Theorem 6.2 that if f
is ergodic, then the functions x 7→ k(x), x 7→ λi(x) found in Theorem 5.1 are constant, and so are
the dimensions of the subspaces V i

x . Therefore, we have the following corollary:

Corollary 6.3. Suppose f : M → M is ergodic and log+
∥∥A±1

∥∥ are integrable with respect to µ.
Then, there are constants 1 ≤ k ≤ d, λ1 > ... > λk such that for µ−almost every x ∈ M , there is
a flag Rd = V 1

x ⊋ · · · ⊋ V k
x ⊋ {0} such that for all 1 ≤ i ≤ k, the following holds:

(a) the map x 7→ V i
x is measurable and satisfies A(x) · V i

x = V i
f(x),

(b) one has

lim
n→∞

1

n
log |An(x)v| = λi , for all v ∈ V i

x\V i+1
x .

6.1. Products of Random Matrices. Now, we discuss some implications of Theorem 5.1 for
product of random matrices (see Example 2.4).

In particular, as we mentioned in Example 2.4, products of i.i.d. random matrices models are
equivalent to random transformations for which A : M → GL(d) is the function {An}n 7→ A0.
Moreover, the shift map f :M →M in any Bernoulli scheme is ergodic (see [13, Theorem 1.12] for
proof). Thus, Corollary 6.3 applies to all products of i.i.d. random matrices, and in the language
of probability, we have:

Corollary 6.4. Suppose the sequence A0, A1, . . . is a sequence of invertible, i.i.d, d × d random
matrices. Suppose E

[
log+

∥∥A±
0

∥∥] < ∞. Then, there are constants 1 ≤ k ≤ d, λ1 > ... > λk and

random subspaces Rd = V 1 ⊋ · · ·V k ⊋ {0} such that for all 1 ≤ i ≤ k, for all v ∈ V i\V i+1, one
has

lim
n→∞

1

n
log |An−1 · · ·A0v| = λi .

Therefore, the multiplicative ergodic theorem allows us to establish the existence of Lyapunov
exponents for products of random matrices.

We conclude this subsection by mentioning some further results about the Lyapunov exponents
of products of random matrices. These results provide examples of responses to three key questions
that have been historically important to the theory of Lyapunov exponents [16, Part I]. The first
one is non-triviality: when is it the case that there are more than one Lyapunov exponents, i.e.,
k ̸= 1? The second is simplicity: when do we have d distinct Lyapunov exponents, i.e., k = d?
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The third question is concerned with continuity: how do the Lyapunov exponents depend on
their underlying linear cocycle?

• (Conditions for distinct Lyapunov exponents) Note that a 2d× 2d symplectic matrix is
a matrix M with real entries satisfying MTΩM = Ω, for

Ω =

(
0 Id

−Id 0

)
,

where Id is the d × d identity matrix. In 1970, Virster proved the following theorem for
products of symplectic random matrices:

Theorem 6.5 (Virster, 1970). For a sequence of i.i.d. 2d×2d symplectic random matrices,
we have the following:
(i) the Lyapunov spectrum is nondegenerate (i.e., k = 2d, so there are 2d distinct Lya-

punov exponents);
(ii) λ1 > ... > λd > 0;
(iii) λ2d−i+1 = −λi .

See [14, pp. 22] for more details.
• (Generalized law of large numbers) In his monograph, Bougerol proved that for a sequence
of i.i.d. random matirces A0, A1, ..., under some irreducibility and integrability assump-
tions, there is a real number λ1 such that with probability 1,

lim
n→∞

1

n
log |Anv| = λ1 , for all v ∈ Rd\{0} .

See [15, Theorem 3.4] for more details.
• (Continuity of Lyapunov exponents) Let X = {B0, ..., Bm} ⊆ GL(d) and (p0, ..., pm) be an
element of the open simplex

∆o
m :=

{
(p0, p1, ..., pm) ∈ Rm+1 | 0 < pi < 1 and

m∑
i=0

pi = 1

}
.

Consider a sequence of i.i.d. random matrices {A0, A1, ...} taking values in X with proba-
bility given by

P(Ai = Bj) = pj .

Let λ1 ≥ ... ≥ λd be the Lyapunov exponents of the random matrix product formed by
the sequence {A0, A1, ...}. Avila, Eskin, and Viana proved in [16] that these Lyapunov
exponents depend continuously on the underlying linear cocycle:

Theorem 6.6. For each 1 ≤ j ≤ d, the number λj depends continuously on the Bi and
and pi at every point in the domain GL(d)m ×∆o

m.

In particular, Example 1.5 in the introduction demonstrates how continuity cannot be
extended to the closed simplex.

6.2. Schrödinger Cocycles. In this subsection, we mention some preliminary applications of the
multiplicative ergodic theorem to Schrödinger cocycles.

Note that irrational rotation map and the shift map are both ergodic (see, e.g., [12, Theorem
4.2.2] and [13, Theorem 1.12] for proof). Therefore, Corollary 6.3 applies to both random and
quasi-periodic Schrodinger cocycles. In both cases, if the Lyapunov exponents exist, they must be
constant.

Let FE :M ×R2 →M ×R2 be a Schrödinger cocycle as defined in Example 2.5, satisfying the
desired integrability conditions of the multiplicative ergodic theorem. Then:

Corollary 6.7. For µ−almost every x ∈M ,

(i) Either there is a constant λ± such that

lim
n→∞

1

n
log |An

E(x)v| = λ± for all v ∈ R2\{0} ,

(ii) or there are constants λ+ > λ−, and a line Ex such that

lim
n→∞

1

n
log |An

E(x)v| =

{
λ− if v ∈ Ex\{0}
λ+ if v ∈ R2\Ex .
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The Lyapunov exponents of FE tell us a lot about the the spectral properties of the operator
H : l2 → l2 in Example 2.5. For instance, if λ± ̸= 0, then E cannot be an eigenvalue of H. See [3,
Chapter 2.1.3].
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