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Abstract. This paper aims to provide an elementary introduction to differ-

ent versions of the modularity theorems, a remarkable theorem in number

theory. Starting by constructing the modular curves, this paper introduces
all necessary concepts to state the modularity theorems, including modular

curves, oldforms and newforms, Hasse L-function of elliptic curves, and Ga-

lois representations. Finally, the last section proves some of the equivalences
between the modularity theorems with certain results in algebraic geometry

taken as granted. The paper assumes some familiarity in complex analysis,

elliptic curves, and algebraic curves.
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Introduction

This paper aims to provide an introduction to different versions of the Modularity
Theorem. We start by introducing the modular objects ,i.e. modular curves and
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modular forms, which pin down the concept of modularity. We then associate them
with L-function and Galois representation, through which their relations to elliptic
curve become explicit. In Section 1, we motivate the concept of modular curves
through the moduli problem of elliptic curves over C and then state one version
of modularity that uses modular curves. Section 2 aims to associate L-functions
with a special kind of modular form and with elliptic curves over Q, enabling the
statement of the modularity conjecture using L-functions. Relevant background
on modular forms, Hecke operators, and elliptic curves will be introduced. Similar
to Section 2, Section 3 associates Galois representations with both elliptic curves
and modular forms and introduces the version of the modularity conjecture in
Galois representations, which is the version that Andre Wiles partially proved in
1996. In Section 4, we sketch the proof of equivalences between different versions
of modularity conjectures introduced in the previous sections.

1. Modular Curve

Modular curves naturally arises when considering the following question: can we
find a parametization of elliptic curves, say over C? If we want to parameterize
the simpler curves such as conics instead, it suffices to provide the six coefficients
a1, a2, a3, a4, a5, a6 so that they determine the conic a1x

2 + a2xy + a3y
2 + a4x +

a5y + a6 = 0 up to a scalar. Such tuple [a1, ..., a6] are precisely the points in space
P5, the projective space. Thus, the class of cubics can be parameterized by points
in P5. We call P5 a moduli space of the conics.

Question: Can we find a moduli space Ell of the elliptic curves?
Unfortunately, elliptic curves over a general field K are abstract and are hard

to parameterize (and is not parameterizable by varieties!). Elliptic curves over C,
on the other hand, can be identified with the complex analytic objects: compact
Riemann surfaces of genus 1, which correspond to lattices in the complex plane.
Thus, we start our parameterization on the class of lattices. (Terminology reminder:
All moduli spaces in this paper refer to coarse moduli space.)

1.1. Complex Elliptic Curve and Lattice. In this subsection, we establish an
equivalence between the category of elliptic curves over C and the category of
lattices in C to transform the moduli problem of elliptic curve into a simpler moduli
problem of lattices.

Definition 1.1. A lattice in C is a set Λ = ω1Z⊕ω2Z with ω1

ω2
∈ C−R. A complex

torus is the quotient C/Λ. The parallelogram D with vertices O,ω1, ω2, ω1 + ω2 is
called the fundamental parallelogram of the torus.

The fundamental parallelogram contains exactly one representative in each equiv-
alence class of the quotient C/Λ, except on the edge where the opposite edges are
identified, making the quotient C/Λ topologically a torus.

Proposition 1.2. Suppose ϕ : C/Λ1 → C/Λ2 is a holomorphic map between com-
plex tori which perserves the addition structure. Then there exists m ∈ C such that
mΛ1 ⊂ Λ2 and that ϕ(z1+Λ1) = mz1+Λ2. ϕ is invertible if and only if mΛ1 = Λ2.
We call such morphism an isogeny between complex tori.

A surprising fact is that a complex torus is actually a complex elliptic curve! In
particular, we may find an embedding i : C/Λ ↪→ CP2 such that i(C/Λ) is a complex
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elliptic curve. The key to find such embedding lies in the field of meromorphic
functions over C/Λ.

A meromorphic function f : C/Λ → C can be naturally identified with a mero-
morphic function f : C → C such that f(z + ω) = f(z) for ω ∈ Λ, which we call
Λ-periodic. It would be useful to construct some Λ-periodic meromorphic functions
explicitly to understand the function field of C/Λ. The most natural way to achieve
this is to write a sum of terms over the whole lattice, e.g. f(z) =

∑
ω∈Λ(z − ω)−2.

Since it sums over all the lattice, f(z+ω) = f(z) always holds. However, the series
does not converge absolutely, so we need to modify it slightly.

Definition 1.3. The Weierstrass ℘ function is defined to be

℘(z) =
1

z2
+

∑
ω∈Λ,ω ̸=0

(
1

(z − ω)2
− 1

ω2
)

It is straightforward from the construction that ℘ and its derivative ℘′ are Λ-
periodic.

Proposition 1.4. The field of meromorphic function on C/Λ is C(℘, ℘′).

Proof. One may construct a rational function of ℘ that has the same number of
zeros and poles away from O of any given Λ-periodic even function. By Liouville’s
theorem and the fact that the number of zeros and poles are equal for meromor-
phic function on compact Riemann surface, it follows that the two functions differ
by a scalar multiple. The general case follows since f(z) = 1

2 (f(z) + f(−z)) +
1

2℘′(z) (f(z) − f(−z))℘′(z), where both f(z) + f(−z) and (f(z) − f(−z))℘′(z) are

Λ-periodic even functions. □

Since C(℘, ℘′) as the meromorphic function field over C/Λ has transcendence
degree 1, we should be able to find a polynomial F (x, y) such that F (℘, ℘′) = 0.
We can find that F (x, y) is a cubic polynomial by computing Laurent series of ℘, ℘′

and match the negative terms, so it defines an elliptic curve over C.

Theorem 1.5. The functions ℘ and ℘′ satisfy the relation

℘′2 = 4℘3 − g2(Λ)℘− g3(Λ)

where g2, g3 are constants determined by Λ.
Therefore, complex tori are complex elliptic curves. More explicitly, there is an

embedding i : C/Λ ↪→ CP2 given by

z + Λ → [℘(z), ℘′(z), 1]

whose image is the zero set of the homogenization of y2 = 4x3 − g2(Λ)x− g3(Λ).

The mapping taking complex torus C/Λ1 to the complex elliptic curve y2 = 4x3−
g2(Λ)x− g3(Λ) turns out to be a bijection between the set of complex tori and set
of complex elliptic curve. The surjectivity is demonstrated through a construction
involving theta function (See [2]). The isomorphism can be further extended to an
identification between the category of complex torus and the category of complex
elliptic curve, where the morphisms are isogenies.

The preceding discussion, coupled with Proposition 1.2, leads to the following
theorem that establishes the correspondence between the categories of elliptic curves
over C and lattices. Further details of the proof can be found in [3]

Theorem 1.6. The following categories are equivalent:
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(1) Objects: Elliptic curves over C up to isomorphism.
Morphism: Isogenies.

(2) Objects: Complex tori over C up to isomorphism.
Morphism: Isogenies.

(3) Objects: Lattices Λ ⊂ C, up to homothety.
Morphism: Mor(Λ1,Λ2) = {a ∈ C : aΛ1 ⊂ Λ2}

Where two lattices are called homothetic if Λ1 = aΛ2 for some a ∈ C.

1.2. Construction of Modular Curve. By Theorem 1.6, we may transform the
problem of finding a moduli space of elliptic curves over C (up to isomorphism) into
finding a moduli space of lattices in C (up to homothety). This is a much simpler
problem as the following proposition shows.

Proposition 1.7. Two lattices Λ1 = Zτ ⊕ Z and Λ2 = Zτ ′ ⊕ Z are the same
up to homothety if and only if τ ′ = aτ+b

cτ+d where a, b, c, d are entries of the matrix

A = ( a bc d ) ∈ SL2(Z). Define the group action of SL2(Z) on H by Az = az+b
cz+d .

Each orbit of the group action of SL2(Z) on the upperhalf plane H determines a
unique lattice up to homothety. Thus the set of orbits SL2(Z)/H is a moduli space
of complex elliptic curves. We denote it by Y0(1).

Proof. Let Λ = ω1Z ⊕ ω2Z, Λ′ = ω′1Z ⊕ ω′2Z be two lattices. Without loss of

generality, we may assume that ω1

ω2
,
ω′

1

ω′
2

∈ H. Suppose Λ = Zω1 ⊕ Zω2, Λ′ =

Zω′1 ⊕ Zω′2. By solving linear equations we have that Λ = Λ′ if and only if[
ω′1
ω′2

]
=

[
a b
c d

] [
ω1

ω2

]
for some matrix

[
a b
c d

]
∈ SL2(Z). Thus Zτ ⊕ Z is homothetic to Zτ ′ ⊕ Z ⇐⇒

Zτ ⊕ Z = Zατ ′ ⊕ Zα ⇐⇒ ατ ′ = aτ + b, α = cτ + d ⇐⇒ τ ′ = aτ+b
cτ+d . □

We now extend the definition above to a more general class of modular curves,
the significance of which we will soon see.

Definition 1.8. The group Γ(N) is defined by

Γ(N) : {A ∈ SL2(Z), A ≡ I mod N}
A subgroup Γ of SL2(Z) containing Γ(N) for some N ∈ Z+ is called a congruence
subgroup.

Example 1.9. The subgroup Γ(N) itself is a congruence subgroup. Also, the
subgroup

Γ1(N) : {A ∈ SL2(Z), A ≡ ( 1 ∗0 1 ) (modN)}
and

Γ0(N) : {A ∈ SL2(Z), A ≡ ( ∗ ∗0 ∗ ) (modN)}
both contains Γ(N) and are thus congruent as well.

We define the modular curve Y (Γ) to be the quotient Γ\H. We will use the fol-
lowing notation throughout the rest of this paper: Y (Γ0(N)) = Y0(N), Y (Γ1(N)) =
Y1(N), Y (Γ(N)) = Y (N).

Let Γ be a congruence subgroup. Since Γ ⊂ SL2(Z), there is a natural surjection
π : Y (Γ) → Y (1) defined by Γτ → SL2(Z)τ . Consider the collection of cosets
Γ\SL2(Z) = {Γβi}. Recall that the points in Y (1) corresponds to complex elliptic
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curves up to isomorphism. Will the points in Y (Γ) corresponds to some equivalence
classes of elliptic curves as well? Note that the points in Y (Γ) are essentially
a further division of points in Y (1), so it should break the equivalence class of
isomorphic elliptic curves further. The next theorem shows that this is indeed the
case.

Theorem 1.10. The modular curve Y1(N) is the moduli space of

{[E,Q], E is an elliptic curve, Q a N -torsion point on E}

where two pairs [E,Q], [E′, Q′] are considered isomorphic when the two elliptic
curves E,E′ are isomorphic and the N -torsion point Q,Q′ are mapped to each
other by the isomorphism maps.The explicit correspondence is given by

Γ1(N)τ → [C/Λ,
1

N
+ Λ]

where Λ = Zτ ⊕ Z.
Similarly, the modular curve Y0(N) is the moduli space of

{[E, ⟨Q⟩], E is an elliptic curve, ⟨Q⟩ a cyclic subgroup of order n on E}

where two pairs are considered isomorphic if the isomorphism between the elliptic
curves take the order N cyclic subgroups to each other.

Proof. (Sketch) For an arbitrary pair [E,Q], we may find some lattice Λ such that E
is identified with C/Λ by Theorem 1.6. One may then choose an appropriate basis
of the lattice by Proposition 1.7 such that the point Q corresponds to 1

N +Λ. The
correspondence can be checked by simply examining the condition of SL2(Z) action
preserving the N -torsion point, which shows that the matrix belongs to Γ1(N). The
argument for Y0(N) is exactly the same, except that SL2(Z) action only needs to
map a N -torsion point to some of power of the given generating N -torsion points,
which shows that the matrix is in Γ0(N).

□

The modular curves Y (Γ) can be endowed with the structure of Riemann sur-
faces.

Lemma 1.11. Take τ1, τ2 ∈ H (not necessarily distinct), then there exists U1, U2

open in H, such that τ1 ∈ U1, τ2 ∈ U2, and that for any γ ∈ SL2(Z),

γ(U1) ∩ U2 ̸= ∅ =⇒ γ(τ1) = τ2

The lemma is essentially saying that the action of Γ on H is discrete.

Corollary 1.12. Y (Γ) is Hausdorff.

Proof. Take distinct points Γτ1,Γτ2 ∈ Y (Γ). By Lemma 1.11, there exists U1, U2

such that τ1 ∈ U1, τ2 ∈ U2, and that γ(U1) ∩ U2 = ∅ for every γ ∈ SL2(Z) since
γ(τ1) ̸= τ2. On the other hand, π(U1)∩ π(U2) ̸= ∅ implies that there exists a ∈ U1,
b ∈ U2 and SL2(Z)a = SL2(Z)b, i.e. b = γa for some γ ∈ SL2(Z). But this means
b ∈ γ(U1) ∩ U2, which is a contradiction. Y (Γ) is Hausdorff. □

Another useful corollary of Lemma 1.11 greatly reduces the work of laying down
atlas on Y (Γ): It tells us the projection map π : H → Y (Γ) is locally injective at
most points.
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Corollary 1.13. Define the fixing group Γτ = {γ ∈ Γ, γ(τ) = τ}. If Γτ contains
matrices other than possibly ±I, then we call such τ an elliptic point. π : H → Y (Γ)
is locally injective at non-elliptic points.

Proof. Take τ1 = τ2 = τ in Lemma 1.11 where τ is not an elliptic point, we get open
set U such that τ ∈ U satisfying that if γ(U)∩U ̸= ∅ then γ(τ) = τ , i.e. γ ∈ Γτ , so
γ = ±I and acts trivially. Now U cannot contains Γ− equivalent points: suppose
that a, b ∈ U such that γ(a) = b, then b ∈ γ(U) ∩ U implies γ = ±I and a = b.
This proves no two points are Γ equivalent in U and thus the mapping U → π(U)
is bijective, i.e. π : H → Y (Γ) is locally injective at non-elliptic point. □

We have proved that Y (Γ) is Hausdorff and put coordinate charts at non-elliptic
points. It remains to put coordinate chart at the (finitely many) elliptic points. We
omit the proof here. See [3] Chapter 2.

Now, we move on to study the fundamental domain of modular curves, which
allows us to see the modular curves visually.

Definition 1.14. The fundamental domain D ⊂ H of the modular form Y (Γ) is
a region that contains exactly one point from each orbit of Γ action except some
possible duplication on the edge.

Figure
1. Fundamental
Region of X0(1)

Figure
2. Edges Identi-
fied

The fundamental region D of Y (1) is given by D : {z ∈ H, |z| > 1, |Re(z)| < 1
2}.

The Z periodicity comes from the acction of ( 1 1
0 1 ) sending z to z + 1. The other

matrix ( 0 1
−1 0 ) send z to − 1

z . Checking that the two matrices generate SL2(Z)
(which essentially follows from Euclidean algorithm), with some calculation one may
show D is the fundamental domain satisfying Definition 1.14. Its two straight edges
are identified, and the circular part is symmetrically identified. After identifying
the edges, the fundamental region of X0(1) is almost a sphere with the center point
missing, which is the point at infinity.(See Figure 1 and 2 below. These are taken
from [1]).

Thus we may compactify modular curve Y (1) by adding the point at infinity to
it. More generally, to compactify Y (Γ), note that matrices in SL2(Z) may send ∞
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to any rational number a
b by ( a bc d ). This proves that Γ∞ = Q ∪ {∞}. The points

lying above Γ∞ (i.e. the Γ equivalence points in Q∪{∞}) are missing in Y (Γ) and
we must add all these points to the curve Y (Γ) to compactify it.

Definition 1.15. The compactified modular curve X(Γ) is given by the set of
orbits Γ\H∗, where H∗ = H∪Q∪{∞}, which can be made into a compact Riemann
surface by choosing appropriate topology and charts. It is the modular curve Y (Γ)
adjoining the Γ equivalence points in Q ∪ {∞}, which we call the cusps of X(Γ).

Lemma 1.16. X(1) has one cusp. More generally, X(Γ) has finitely many cusps.

Proof. Again uses SL2(Z) = ⊔dj=1Γγj to conclude there is at most d cusps. □

One important motivation of compactifying modular curves is that compact
Riemann surfaces, as we have seen in the special case of tori, are algebraic.

We have now set the stage to present the initial version of the Modularity The-
orem

Theorem 1.17 (Modularity Theorem, Modular Curve Version). Let E/C be a
complex elliptic curve with j(E) ∈ Q. Then there exists some N such that a surjec-
tion exists between the modular curve X0(N) and E as compact Riemann surfaces.

However, this version of modularity theorem is naive in the sense that complex
analytic objects reveal little arithmetic information. To get meaningful arithmetic
information, we shall move from Riemann surfaces to algebraic varieties over Q.

1.3. Modular Curve as Algebraic Curve. The first version of the modularity
theorem is complex analytic. However, given the general fact that every compact
Riemann surface is projective curve, one may expect an algebraic version of the
theorem exists. The first step is to realize the modular curves as complex projective
curves. To do this, we use the same strategy in Theorem 1.5.

Theorem 1.18. The meromorphic function field on the modular curve X0(N) is
C(j, f0). Similarly, the meromorphic function field on the modular curve X1(N) is
given by C(j, f1), , where

f1 =
g2(τ)

g3(τ)
℘(

1

N
)

f0 =
g2(τ)

g3(τ)

N−1∑
d=1

℘(
d

N
)

The polynomials relating the generators all have coefficients in Q.

Proof. See [3], Chapter 7. □

By embedding the modular curves into projective space CP2, we get the complex
algebraic version of the modularity theorem: A surjection exists between X0(N)
and E while this time both objects are complex algebraic varieties and the map is
morphism between varieties.

However, what we really want is to change both side to varieties defined over Q.
Any elliptic curve E/C with j(E) ∈ Q is isomorphic to the universal elliptic curve
Ej over C, and Ej is defined by the Weierstrass equation with coefficient in Q. See
[2]. Realizing modular curves as algebraic curves over Q, on the other hand, needs
more work. Unlike the case of elliptic curve which we can construct the Q model
explicitly by the universal elliptic curve, we give a function field over Q. By the well
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known equivalence between the category of nonsingular curves over k and function
field of transcendence degree 1 defined over k, This is equivalent to provide a curve
over Q.

Definition 1.19. The algebraic modular curve X0(N)alg is the nonsingular pro-
jective curve over Q given by the function field Q(j, f0). Similarly X1(N)alg is also
a nonsingular projective curve over Q given by the function field Q(j, f1).

Now we can state the algebraic version of the modularity theorem.

Theorem 1.20 (Modularity Theorem, Modular Curve Version Q). Let E/Q be an
elliptic curve over Q. Then there exists some N such that a surjection exists between
the modular curve X0(N)alg and E as algebraic variety over Q. The smallest such
N is called the conductor of E.

It turns out that the two modularity theorems are equivalent. One direction is
easy: a morphism defined over Q is automatically a morphism defined over C. The
other direction is quite complicated. We refer readers to the appendix of [6] for a
proof.

2. Modular Form and Modularity Theorem

In this section, we turn to the second version of the modularity theorem. We
introduces modular forms, Hecke operators, and the theory of newforms in order
to associate a L-function to a newform. We also define the Hasse L-functions
associated to elliptic curves. These would provide enough background to state the
L-function version of the modularity theorem.

2.1. Modular forms. What would be a holomorphic function from X(Γ) to C?
Since X(Γ) = Γ\H∗, such function should be invariant when its input are two Γ-
equivalent points. Furthermore, it should be holomorphic on the cusps we added
to Y (Γ). How should we define the latter? Since cusps are all transformed from
∞, we just need to find a definition for f to be holomorphic at ∞: We define it for
1
f to be holomorphic near 0, and define holomorphic condition at other cusps by

saying after performing the same transformation taking the cusp to ∞ on f , the
resulting function is holomorphic at infinity. We will make this idea precise in this
section.

Definition 2.1. Let Γ be a congruence subgroup. A meromorphic function f :
H → C is weakly modular of weight k with respect to Γ if f(γτ) = (cτ + d)kf(τ) for
all τ ∈ H and γ ∈ Γ, where γ =

(
a b
c d

)
.

One may notice that we need specific entries of γ to define modular condition,
which is based on coordinate. Here is a coordinate free version of it that also
simplifies the notation.

Definition 2.2. Let γ ∈ SL2(Z). We denote (cτ + d)−1 by j(γ, τ), and define the
operator [γ]k that sends f to f [γ]k = j(γ, τ)kf . The weak modularity condition
can be rephrased into f [γ]k = f for all γ ∈ Γ.

The holomorphic condition on cusps are reflected in the following definition.

Definition 2.3. A weakly modular function is modular with respect to Γ if it
further satisfies
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(1) f is holomorphic on H
(2) f [γ]k is defined and holomorphic at ∞

Now we turn to some examples of modular forms:

Example 2.4. The function Gk(τ) defined by τ →
∑

(m,n)∈Z2−{(0,0)}(mτ + n)−k

is a weight k modular form corresponds to SL2(Z).

Gk(γτ) =
∑

(m,n)̸=(0,0)

(m
aτ + b

cτ + d
+ n)−k

= (cτ + d)−k
∑

(m,n)̸=(0,0)

(ma+ nc)τ +mb+ nd)−k

When (m,n) varies through Z2 − (0, 0), (ma + nc,mb + nd) also varies through
Z2 − (0, 0), so the equation reduces to

f(γ(τ)) = (cτ + d)−kf(τ)

It is holomorphic at infinity by checking its q-expansion, which we define below.

Next, we introduce q-expansion of modular form.
The mapping τ → e2πiτ takes H to D×, the unit disk without center on C. Given

a modular form f with respect to Γ, since Γ(N) ⊂ Γ for some N The function g(z)

defined by g(e
2πiτ
N ) = f(τ) is well defined and holomorphic as composition of log

function with f , and f holomorphic at cusps correpsonds to the fact that g can be
extended holomorphically at 0, so we get a holomorphic function g : D → C, for
which we may compute its power series expansion g(z) =

∑∞
i=0 aiz

i. Substituting

back to f gives f(τ) =
∑∞
n=0 anq

n where q = e
2πiτ
N .

Definition 2.5. A modular form f is a cusp form if a0 = 0 in its q-expansion.

2.2. Hecke Operators and Eigenform. The motivation to define Hecke oper-
ators is as follows. We may define the Petersson Inner Product on Sk(Γ), under
which this special class of operators in End(V ) would be normal. The Spectral
theorem tells us that the vectorspace Sk(Γ) has a basis of modular forms that are
eigenvectors of all Hecke operators {Tn, ⟨n⟩|gcd(n,N) = 1}. Such modular forms
are called eigenforms. A special kind of eigenforms has nice properties, that they are
eigenvectors of all Hecke operators, and that their coefficient an(f) in q-expansions
are given by the eigenvalue of Tn. This allows us to construct a L-function that
look like the Hasse-Weil L-function of elliptic curve.

To motivate the specific construction of Hecke operator, consider the following
general problem. Let Γ1,Γ2 be two congruence subgroup. How can we define
operators mapping Mk(Γ1) to Mk(Γ2)? Once we know this, taking Γ2 = Γ1 gives
us a way to construct endomorphisms on Sk(Γ1). There is the double coset operator
that does the trick and can construct lots of such operators: Take any α ∈ GL2(Q)
where det(α) > 0. Then consider the set Γ1αΓ2 = {γ1αγ2, γ1 ∈ Γ1, γ2 ∈ Γ2}. Γ1

acts on this set by left multiplication. Consider the orbits Γ1\Γ1αΓ2 = ⊔jΓ1βj .
The orbits are actually finite by the following lemma:

Lemma 2.6. Let Γ1,Γ2 be congruence subgroups, and α ∈ GL2(Q), det(α) > 0.
Then Γ3 = αΓ1α

−1 ∩ SL2(Z) is again a congruence subgroup, and there exists a
bijection between Γ3\Γ2 and Γ1\Γ1αΓ2, sending Γ3γ to Γ1αγ.
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Also, any two congruence subgroups are commensurable, i.e. [G1 : G1∩G2], [G2 :
G1 ∩ G2] < ∞ . Hence the number of orbits in Γ1\Γ1αΓ2 is finite, and we may
define the double coset operator as

Definition 2.7. The double coset operator [Γ1αΓ2]k :Mk(Γ1) →Mk(Γ2) is defined
as f [Γ1αΓ2]k =

∑
f [βj ]k

In particular, take Γ1 = Γ2 = Γ1(N), we get [Γ1αΓ2]k ∈ End(Mk(Γ1(N))).
Among these operators, there are two kinds that stand out to be crucial in the
theory.

Definition 2.8. The Diamond operators ⟨d⟩ ∈ End(Mk(Γ1(N))) are the double
coset operators [Γ1(N)αΓ1(N)] where α ≡ ( a bc d )(mod N). The Hecke operators Tp
are the double coset operators [Γ1(N)αΓ1(N)] where α = ( 1 0

0 p ) and p any prime
number.

As we mentioned at the start of the section, the q-expansion coefficient of eigen-
forms behave nicely under the Hecke operators Tp. In order to know this, we need to
calculate the q-expansion coefficient of Tp(f) from q-expansion of f , which requires
us to find coset representatives of Γ1(N)/Γ1(N)αΓ1(N).

Proposition 2.9. When p|N , the coset representatives of Γ1(N)/Γ1(N)αΓ1(N)
are given by

γj =

(
1 j
0 p

)
If p ̸ |N , then there is an additional representative(

m n
N p

)(
1 0
0 p

)
Therefore,

Tp(f) = (

p−1∑
j=0

f [ 1 j0 p ]k) + 1N (p)f [m n
N p ]k[

p 0
0 1 ]k

where 1N (p) = 1 if p ̸ |N and 0 otherwise, m,n are any integer that satisfy mp −
nN = 1. and

⟨d⟩f = f [ a bc d ]k

where ( a bc d ) ∈ Γ0(N).

We state the way to calculate the q expansion of Tp(f) and ⟨d⟩f explicitly here,
which will be useful when constructing L-functions associated to modular forms.

Proposition 2.10. Suppose f ∈Mk(Γ1(N)) have q expansion f =
∑∞
n=0 an(f)q

n.
(Here we make the convention that an(f) denotes the n-th q-coefficient of f . Also
an

p
(f) = 0 if p ̸ |n)

(2.11) an(Tp(f)) = anp(f) + 1N (p)pk−1an
p
(⟨P ⟩f)

In particular, let χ : (Z/nZ)∗ → C be a character. If f ∈ Mk(N,χ) then Tp(f) ∈
Mk(N,χ) as well, and

(2.12) an(Tp(f)) = anp(f) + χ(p)pk−1an
p
(f)

We have defined Hecke operators ⟨d⟩ for gcd(d,N) = 1 and Tp for p prime. Now
we define Hecke operator ⟨n⟩ and Tn for arbitrary n in an inductive manner.
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Definition 2.13. The Hecke operators Tn, ⟨n⟩ are defined as follows:T1 = Id,
Tpn = TpTpn−1 − pk−1⟨P ⟩Tpn−2 for n > 1, and finally Tab = TaTb if gcd(a, b) = 1.
Define ⟨n⟩ = 0 if gcd(n,N) > 1.

We have a nice-looking formula to calculate the coefficient of Tnf .

Proposition 2.14.

(2.15) am(Tn(f)) =
∑

d|gcd(m,n)

dk−1amn
d2

(⟨d⟩f)

To close this subsection, we state without proof the definition of Petersson Inner
product on Sk(Γ1(N)) and the fact that Hecke operators are normal with respect
to the inner product. The proof comes from calculating adjoints of double coset
operator in general and the commutativeness of Hecke operators. See [3] Chapter
5.

Definition 2.16. The Petersson Inner Product on Sk(Γ1(N)) is defined by

⟨f, g⟩ = 1

VΓ

∫
X1(N))

f(τ)g(τ)Im(τ)k dµ

Where dµ is dxdyy2 , the hyperbolic measure on the upper-half planeH, vΓ =
∫
XΓ1(N)

dµ.

Proposition 2.17. The Hecke operators Tn and ⟨n⟩ in End(Sk(Γ1(N))) are nor-
mal for all n satisfies that gcd(n,N) = 1

Corollary 2.18. The vectorspace Sk(Γ1(N)) has a basis consists of simultane-
ous eigenvectors for all Tn, ⟨n⟩, gcd(n,N) = 1. We call the simultaneous vectors
eigenforms.

2.3. Oldform and Newform. This section aims to define a special kind of eigen-
forms. They have the magical property that while apriori we only know they are
eigenvectors of Hecke operators coprime to the level, they are in fact eigenvectors of
all Hecke operators, and the eigenvalues of Tn gives the n-th q-expansion coefficient
of f . Such eigenforms are the so called new forms.

We begin with an observation: Since Γ1(N) ⊂ Γ1(M) when M |N , a modu-
lar form at level M is also a modular form at level N . Furthermore, take d
satisfies dM |N , and γ = [ a0 b0c0 d0

] ∈ Γ1(N), the modular form f(dτ) satisfy that

f(dτ)[ a0 b0c0 d0
]k = f [ da0 b0dc0 d0

]k. Since da0 ≡ d mod N hence da0 ≡ 1 mod M and

f ∈Mk(Γ1(M)), f [ da0 b0dc0 d0
]k = f , hence f(dτ) ∈Mk(Γ1(N)).

In other words, some forms at level N are essentially forms coming from lower
levels. Since the vectorspace Sk(N) is closed under addition, these cusp forms
coming from lower levels span out a subspace of Sk(Γ1(N)). We summarize the
idea in the following definition:

Definition 2.19. Let Imd(Sk(Γ1(
N
d )) denotes the image of Sk(Γ1(

N
p )) in Sk(Γ1(N))

under the embeddings id : f → f [γ]k , where γ = d ∈ Γ0(N)/Γ1(N). The subspace
of old forms at level N is

Sk(Γ1(N))old =
∑
p|N

∑
d

Imd(Sk(Γ1(
N

p
)))

The subspace of new forms at level N is

Sk(Γ1(N))new = Sk(Γ1(N))old⊥
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By computation, we may prove that the subspace of old forms and new forms are
stable under Hecke operators. (See [3] Chapter 5.) Therefore, Sk(Γ1(N))old and
Sk(Γ1(N))new each has an orthogonal basis consisting of simultaneous eigenforms
of Hecke operators Tn, ⟨n⟩, where gcd(n,N) = 1. We proceed to show that an
eigenform that is also a new form will be the eigenvector of all Hecke operators,
including those that are not coprime to the level, and that the eigenvalue of Tn is
an(f), the n-th coefficient in the q-expansion of f .

Theorem 2.20. Let f ∈ Sk(Γ1(N))new be an eigenform with respect to Hecke
operators Tn, ⟨n⟩, where gcd(n,N) = 1. Then f is in fact a newform. It is
unique in the sense that if f ′ is another eigenform with respect to Hecke opera-
tors Tn, ⟨n⟩|gcd(n,N) = 1 and have same eigenvalues for all Hecke operators, then
they differ by a scalar multiple. Furthermore, the eigenvalues for all Tn are given
by an(f), the n-th coefficient in the q expansion of f , respectively.

We need a nontrivial lemma to prove the theorem.

Lemma 2.21. Suppose a cusp form f ∈ Sk(Γ1(N)) has q-expansion f =
∑
n anq

n

that satisfies an(f) = 0 for all gcd(n,N) = 1. Then f =
∑
p|N ipfp(pτ) with each

fp ∈ Sk(Γ1(
N
p )).

Proof. The only if direction is easy. Observe that the q-coefficients of forms g ∈
Sk(Γ1(N)) obtained by g(τ) =

∑
d fd(dτ) for f ∈ Sk(Γ1(

N
d )) for d > 1, d|N satisfy

that an(f) = 0 if gcd(n,N) = 1. Indeed, suppose f(τ) =
∑
n anq

n. Then the q
expansion is given by f(dτ) =

∑
anq

nd, so the coefficient of qn will always be zero
if n ̸= dx for some d|N , i.e. gcd(n,N) = 1. The proof of the if direction involves
rather technical calculation and we omit the details here. See [3] section 5.7. □

Now we may prove Theorem 2.20.

Proof. Let f ∈ Sk(Γ1(N))new be an eigenform for the Hecke operators Tn and ⟨n⟩
for all gcd(n,N) = 1. Suppose Tnf = cnf and ⟨n⟩f = dnf . The map n → dn
defines a Dirichlet character χ : (Z/nZ)∗ → C∗, so f ∈ Sk(N,χ). Proposition 2.14
shows that a1(Tn(f)) = an(f) for all n ∈ Z+. Since f is eigenform away from the
level, a1(Tn(f)) = cna1(f) when gcd(n,N) = 1. Thus if a1(f) = 0, then an(f) = 0
whenever gcd(n,N) = 1, and f is an old form by Lemma 2.21, thus f = 0.

Now suppose f ̸= 0 a new form. Then a1(f) ̸= 0, and we may normalize it so
that a1(f) = 1. The form Tnf − an(f)f is a new form since the space of new forms
is stable under Hecke operators. Its first coefficient is zero, so the discussion above
shows that Tnf − an(f)f = 0. □

We say a nonzero modular form f ∈ Sk(Γ1(N)) is a Hecke eigenform if it is the
eigenvector for all Tn, ⟨n⟩, n ∈ Z+. The Hecke eigenform f =

∑
anq

n is said to
be normalized when a1(f) = 1. A Hecke eigenform in Sk(Γ1(N))new is called a
newform.

We have seen that newforms give a basis of the subspace of new forms. In
fact, the newforms and the forms grow out of it provides a basis the whole space
Sk(Γ1(N)). This will become useful when we construct Galois representation of
modular forms in the next section.

Theorem 2.22. The set

Bk(N) = {f(nτ) : f is a newform of level M and nM |N}
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span Sk(Γ1(N)). In fact, it is a basis of Sk(Γ1(N)).

Proof. (partial) To prove linear independence, we need a result called Strong Mul-
tiplicity One. So we only prove that the set span all of Sk(Γ1(N)) here. We prove
by induction. When N = 1 there are no old forms, so Sk(Γ1(N)) = Sk(Γ1(N))new

which has a basis of newforms. Suppose Sk(Γ1(M)) has basis in the form of Bk(M)
for all M < N .

Consider the decomposition

Sk(Γ1(N)) = Sk(Γ1(N))new ⊕ Sk(Γ1(N))old

= Sk(Γ1(N))new ⊕
∑
p|N

Im(Sk(Γ1(
N

p
)))

The first subspace is spanned by newforms as proved in . By induction hypothesis
each Im(Sk(Γ1(

N
p ))) is spanned by Bk(

N
p ). Hence Bk(N) spans all of Sk(Γ1(N)).

□

From Theorem 2.20, we know that the coefficients in q expansion are exactly
eigenvalues for the newforms. Recall the recursion definition of Hecke operators
Tn, we may check whether a modular form is normalized newform by looking at its
coefficients in q expansion:

Proposition 2.23. Let f ∈ Sk(N,χ). Then f is a normalized newform if and only
if its q expansion coefficients satisfy the conditions

(1) a1(f) = 1,
(2) arp(f) = ap(f)apr−1(f)− χ(p)pk−1apr−2(f) for all p prime and r ≥ 2,
(3) amn(f) = am(f)an(f) if gcd(m,n) = 1.

L function of modular forms. The definition Let f be a modular form with q
expansion f =

∑
anq

n. Then the L function associated to f is given by L(s, f) =∑
ann

−s.

Theorem 2.24. Let f ∈ Sk(N,χ). Then f is a normalized newform if and only if
the L function L(f, s) has the Euler product form

L(f, s) =
∏
p

(1− ap(f)p
−s + χ(p)pk−1−2s)−1

Remark 2.25. The L-function defined above can always be extended meromor-
phically to the whole complex plane by Mellin transformations. For details, see [3].
The existence of meromorphic extensions of various L-functions can be really hard
in general. For example, the Artin’s conjecture just asks about whether every Artin
L-functions have such an extension. The Hasse L-functions associated to elliptic
curves, which we will define in the next section, is also very hard to extend. In con-
trast, the L-functions associated to eigenforms are fairly easy to extend. Therefore,
the modularity theorem becomes significant as it relates hard L-functions to much
easier ones! In particular, it solves the problem of extending Hasse L-functions by
showing that they are always L-functions of some eigenform.

2.4. Hasse L-function and Modularity Theorem. In the last section, we de-
fined the L-functions associated to normalized Hecke eigenforms. In this section,
we define the Hasse L-functions associated to elliptic curves E/Q. The L-function
version of modularity theorem tells us that any Hasse L-function coincides with a
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L-function of some normalized Weight 2 Hecke eigenform. We will soon recognize
some observations that convince us the validity of the theorem.

The reduction of an elliptic curve E is defined by the following process. Consider
a general Weierstrass equation E defined over Q,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ Q

The linear change of variable (x, y) = (u2x′, u3y′) gives a Weierstrass equation E′

with a′i = aiu
−i. Any two Weierstrass equation that can be transformed by such

map is said to be equivalent. Therefore, any Weierstrass equation is equivalent to
one Weierstrass equation with coefficients ai ∈ Z

For any prime p and Weierstrass equation E, let vp(E) be the largest integer N
such that pN |△(E). Also define vp(0) = +∞. Define

vp(E)min = min{vp(E′), E′ equivalent to E, △(E′) ∈ Z}
It can be shown that for Weierstrass equation E defined over Q, there exists an
equivalent Weierstrass equation E′ that satisfies vp(E

′) = vp(E)min for all p simu-
taneously. We call E′ the global minimal Weierstrass equation. The reduction
Ẽ/Fp is an algebraic curve over Fp defined by the equation

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6

where ãi is the image of coefficient ai from the global minimal Weierstrass equation
E′ under mod p reduction.

The reduced curve Ẽ/Fp, while is defined by a Weierstrass form with coefficient
ãi ∈ Fp, may not be an elliptic curve as it will be singular if vp(E)min > 0, in

which case △(Ẽ) = 0 in Fp. In particular, we have the following categorization of
different reduction phenomena.

Definition 2.26. An elliptic curve E/Q
(1) has good reduction (stable) at p if Ẽ is singular, or equivalently

if p ̸ |∆min(E). Such reduction is ordinary if Ẽ[p] = Z/pZ, or it is super-

singular if Ẽ[p] = 0.

(2) has multiplicative reduction at p if Ẽ has a node, i.e. if p|∆min(E) and the
two tangent lines have different slopes. It is said to split if the two tangent
lines at the node have slope in Fp and nonsplit otherwise.

(3) have additive reduction at p if Ẽ has a cusp, i.e. p|∆min(E) and the two
tangent lines have the same slope.

The reduction behavior of elliptic curve E/Q at different primes combine to
indicate global properties of E.

Proposition 2.27. Define ap(E) = p+1− (̃E)(Fp), and σp the Frobenius map on
E. Let E be an elliptic curve over Q and let p be a prime such that E has good

reduction modulo p. Let σp,∗ and σ∗p be the forward and reverse maps on Pic0(Ẽ)

induced by σp. (Here Pic0(E) denote Picard group of degree 0. Then

ap(E) = σp,∗ + σ∗p as endomorphisms of Pic0(Ẽ).

(Here the left side means multiplication by ap(E).)

Proof. An element x ∈ Fp satisfies xp = x if and only if x ∈ Fp. Thus

Ẽ (Fp) =
{
P ∈ Ẽ : Pσp = P

}
= ker (σp − 1) ,
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and so since σp − 1 is separable,∣∣∣Ẽ (Fp)
∣∣∣ = |ker (σp − 1)| = deg (σp − 1) .

Now the result follows from the fact that [deg(ϕ)] = ϕ∗ϕ
∗. □

Definition 2.28. The Zeta-counting function is defined by

Zp(E,X) = exp(

∞∑
e=1

#Ẽ(Fpr )
Xe

e
)

Finally, the Hasse L-function associated to E is defined by L(E, s) =
∏
p Zp(E, p

−s).

The Hasse L-function can be thought as some way to pack up information of all
reductions.

Lemma 2.29. Define the solution counting coefficients by tpr = pr + 1− Ẽ(Fpr ).
Then they satisfy the recursive relation

tpr (E) = tp(E)tpr−1(E)− 1E(p)ptpr−2(E)

Proof. By direct computation. See [2]. □

Theorem 2.30.

Zp(E, p
−s) = (1− ap(E)p−s + 1E(p)p

1−2s)−1

where ap(E) are the same as defined in Proposition 2.27.
Thus, the Hasse L-function has the following product form

L(E, s) =
∏
p

(1− ap(E)p−s + 1E(p)p
1−2s)−1

Proof. It suffices to prove

∞∑
e=1

tpe(E)

e
Xe = − log(1− ap(E) + 1E(p)pX

2)

When X = 0, both sides are zero, so it suffices to show their derivatives are equal,
i.e.

∞∑
e=1

tpe(E)Xe−1 =
ap(E)− 1E(p)2pX

1− ap(E)X + 1E(p)pX2

which follows from the recursive relation stated in Lemma 2.29. □

Compare Theorem 2.30 and Theorem 2.24, we notice that the Hasse L-functions
has similar Euler product form to the L-function associated to weight 2 Hecke
eigenforms. This is not merely a coincidence. In fact,

Theorem 2.31 (Modularity Theorem, L function version). Let E/Q be an elliptic
curve over Q with conductor N . Then there exists f ∈ S2(Γ0(N)) that satisfies

L(f, s) = L(E, s)

This version of modularity theorem, despite looks vastly different from the mod-
ularity theorem we stated at Theorem 1.20, is in fact equivalent to the modular
curve version by the Eichler-Shimura relation, which we will come to in section 4.
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3. Galois Representation and Modularity Theorem

The last version of the modularity theorem is perhaps the least intuitive version
at the first glance. The idea is that the arithmetic information of both elliptic
curves and cusp forms at level N are encoded in some l-adic representations of the
absolute Galois group GQ, and, just as other versions of modularity, the representa-
tions coming from elliptic curves always correspond to the representations coming
from cusp forms. This version of modularity theorem is the one Andre Wiles proved
directly. By Taylor-Wiles method one may study the deformation of Galois rep-
resentations to study modularity. For an introduction on Galois deformation, see
[8].

3.1. Basics of Galois representation. In this section we will show how to extract
Galois representations from elliptic curve and modular forms and state our last
version of modularity theorem.

The algebraic closure Q is the union of all algebraic elements in C over Q. Define
the algebraic integer Z to be the collection of all algebraic integers. This is a ring
in Q and we have that Frac(Z) = Q. Its prime ideals include prime ideals β in
OK , the ring of integers of in any number fields.

Recall that the Galois group of the infinite dimensional extension Q over Q
consists of g ∈ Aut(Q) fixing elements in Q. From classical Galois theory we know
every ρ ∈ Gal(K/Q) can be extended into some ρ′ : Gal(Q/Q) and ρ(K) = K
for any ρ ∈ Gal(Q/Q) and K/Q Galois extension. These fact combine to give the
alternative definition of the Galois group GQ = Gal(Q/Q):

Gal(Q/Q) = lim
←
Gal(K/Q)

To recognize some interesting elements in GQ, we investigate the concept of decom-
position group.

Let Dβ = {σ ∈ GQ, σ(β) = β}. Then any automorphism σ on Q first restricts

to Z and then to Z/β, and we have

π : Dβ → Gal((Z/β)/(Q/(β ∩Q))) = Gal(Fp/Fp)

This map is surjective with kernel Iβ = {σ ∈ GQ, σ(x) ≡ x(mod β for x ∈ Z)},
which we call inertia group. The Frobenius element Frobβ is defined to be the

preimage of frobp : x→ xp ∈ Gal(Fp/Fp). Thus Frobβ is defined up to conjugacy

class of the inertia subgroup and satisfies that σ(x) ≡ xpmod β, for all x ∈ Z.
We also note that Frobσ(β) = σFrobβσ

−1, so if β is inside an abelian extension
of Q, then Dβ = Dσ(β) for any σ ∈ GQ. In this case we may denote it by Frobp.
(Recall that prime ideals in K lies over a unique prime p = β ∩Z ⊂ Z, and suppose
pK =

∏
βeii and K/Q Galois, then the Galois group acts transitively on βi and

ei = e, fi = f for all i.)

Definition 3.1. A l-adic Galois representation with respect to Q is a continuous
homomorphism ρ : Gal(Q/Q) → GLd(K) where the Galois group is endowed with
Krull topology and K is finite dimensional over Ql. The representation is said to
be unramified at prime p ∈ Z if Iβ ⊂ ker(ρ) for some prime ideal β ⊂ Z lying over
p.

When ρ is unramified at p, the image ρ(Frobβ) is well defined for any β lies over
p since Iβ′ = σIβσ

−1 ⊂ σker(ρ)σ−1 = ker(ρ). In our context, we will see that ρ is
unramified at all but finitely many primes.
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Example 3.2. The l-adic character χl : GQ → Q∗l is given by the composi-
tion GQ → Gal(Q(µl∞/Q)) ∼= Q∗l . It is continuous, unramified at p ̸= l, and
χl(Frobp) = p for p ̸= l.

We also need a lemma about the Krull topology of GQ.

Lemma 3.3. The sets Uσ(F ) = {σσ′, σ′|F = id} are open and form a basis for

σ ∈ GQ and F Galois over Q. Furthermore, the elements which takes the form
Frobβ are dense.

A subset U ⊂ GQ is open normal subgroup if and only if it is given by U1(F ).

3.2. Galois Representations by Tate Module. Both the elliptic curves and
modular forms have their corresponding Galois representation constructed by Tate
modules, which we now define.

Given elliptic curve E/Q, the absolute Galois group act on points of E, fixing
the n-torsion points E[n] ∼= Z/nZ × Z/nZ. (The former holds because the map
[n] : E → E is essentially a rational map, thus [n](σ(P )) = σ(nP ) = 0. To see the
latter holds, we consider the case when the elliptic curve is defined over C. In that
case we may view it as a complex torus C/Λ, whose n-torsion points is given by
{a+bτN + Λτ , a, b = 0, 1, .., n− 1}, which is isomorphic to Z/nZ× Z/nZ.

Consider the set of ln-torsion points E[ln] for n = 1, 2, .... There is a natural
inclusion i : E[ln−1] → E[ln] as a subset, hence compatible with the action by GQ.
Thus GQ acts on the inverse limit

lim
←
E[ln] = lim

←
Z/nZ× Z/nZ = Zl × Zl

Definition 3.4. The l-adic Tate Module Tl(E) is defined to be the inverse limit of
the ln-torsion points.

Tl(E) := lim
←
E[ln]

which is isomorphic to Zl × Zl as a group. Thus, we have associated elliptic curve
E with a representation ρE : GQ → GL2(Zl).

Associating a Galois representation to a weight 2 normalized eigenform with
respect to level N is much more complicated. The idea is to find some geometry
object for each Hecke eigenform, and then defines the Tate module of that object
similar to the case of elliptic curve.

Definition 3.5. Let Γ be a congruence subgroup. The Jacobian of the correspond-
ing modular curve X(Γ) is

Jac(X(Γ)) = S2(Γ)
∗\H1(X,Z)

where S2(Γ)
∗ is the dual space of weight 2 cusp forms with respect to Γ.

The dimension of S2(Γ) as well as the the number of generators of H1(X1(N),Z)
are both given by the genus g of X1(Γ). Thus the Jacobian is a 2g dimensional
torus.

Definition 3.6. The Hecke algebra over Z is the subalgebra of the endomorphisms
of S2(Γ1(N)) generated by the Hecke operators,

TZ = Z[{Tn, ⟨n⟩}]
The Hecke algebra acts on f by composing the actions of Hecke operators. The

kernel of the eigenvalue map

If = {T ∈ TZ : Tf = 0}
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Theorem 3.7. There exists an isomorphism

TZ/If ∼= Of where Of = Z[{an(f)}]

Proof. Consider the homomorphism λf : TZ → C which satisfy that

Tf = λf (T )f

Since TZ is generated by Tn, ⟨n⟩, its image im(λf ) is generated by λf (Tn) = an(f)
and χ(n) over Z (where f ∈ S2(N,χ). The χ(n) terms are actually redundant. □

The Hecke operator also acts on the Jacobian by composition.

Proposition 3.8. The number field Kf associated to normalized eigenform f given
by Q[{an(f)}] is finite dimensional.

Proof. The Hecke operators Tp acts on S2(Γ1(N))∗ and also descends to J1(N) =
Jac(X1(N)), so it restricts to an endomorphism on H1(X1(N),Z), which is a free
abelian group. Hence, the eigenvalues of Tp should be algebraic integers as the
roots of the characteristic polynomial corresponds to Tp restricted toH1(X1(N),Z).
Moreover, viewing TZ has the ring of endomorphism of H1(X1(N),Z) shows that
TZ is finitely generated as a Z-module as well. □

Definition 3.9. The (analytic) abelian variety Af associated to f is

Af := J1(N)/IfJ1(N)

Proposition 3.10. The abelian variety Af is a 2d dimensional torus, where d =
[Kf ,Q].

Now, similar to the construction Tate module for elliptic curve, the ln-torsion
points on the abelian variety Af [l

n] ∼= Z2d
ln forms the l-adic Tate module Tl(Af ) ∼=

Zdl by taking inverse limit. Meanwhile, the Hecke algebra TZ also acts on Af , or
really the quotient TZ/If ∼= Of , since If action is inert on Af . This makes Tl(Af )
a O{ module.

Proposition 3.11. Vl(Af ) = Tl(Af )⊗Q is a free module of rank 2 over Kf ⊗QQl.

Proof. Since Taℓ (Af ) is the inverse limit of the torsion groups Af [ℓ
n], we need to

describe Af [ℓ
n] in a fashion that will help establish the freeness.

As above, let S2 = S2 (Γ1(N)) and let H1 = H1 (X1(N)C,Z) ⊂ S∧2 . Consider

the quotients S∧2 = S∧2 /IfS∧2 and H̄1 = (H1 + IfS∧2 ) /IfS∧2 , both Of modules.
Compute that

Af = J1(N)/If J1(N) = (S∧2 /H1) / ((IfS∧2 +H1) /H1)

∼= S∧2 / (IfS∧2 +H1)

∼= (S∧2 /IfS∧2 ) / ((H1 + IfS∧2 ) /IfS∧2 ) = S∧2 /H̄1.

ThusAf [ℓ
n] ∼= ℓ−nH̄1/H̄1 for any n ∈ Z+. TheOf -linear isomorphisms ℓ−nH̄1/H̄1 −→

H̄1/ℓ
nH̄1 induced by multiplication by ℓn on ℓ−nH̄1 assemble to give an isomor-

phism of Of ⊗ Zℓ-modules,

Taℓ (Af ) = lim
n

{Af [ℓn]} = lim
n

{
ℓ−nH̄1/H̄1

} ∼= lim
n

{
H̄1/ℓ

nH̄1

} ∼= H̄1 ⊗ Zℓ,

where the transition maps in the last inverse limit are the natural projection maps.
The fact that Af is a complex torus of dimension d and the calculation a moment

ago that Af ∼= S∧2 /H̄1 combine to show that the Of -module H̄1
∼= H1/ (H1 ∩ IfS∧2 )
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has Z-rank 2d. Since Kf is a field, H̄1 ⊗ Q is a free Kf− module whose Q-rank is
2d and whose Kf -rank is therefore 2 . Consequently, H̄1 ⊗Qℓ = H̄1 ⊗Q⊗QQℓ is
free of rank 2 over Kf ⊗Q Qℓ. So finally,

Vℓ (Af ) = Taℓ (Af )⊗Q ∼= H̄1 ⊗ Zℓ ⊗Q ∼= H̄1 ⊗Qℓ

□

Lemma 3.12. Let Kf be a number field. Then

Kf ⊗Ql =
∏
λ|l

Kf,λ

where λ are prime ideals in Kf lying over l and Kf,λ is the local field obtained from
completing Kf at λ.

Proof.

Kf ⊗Ql = Kf ⊗ Zl = Kf ⊗ (lim
←

Z/lnZ) = lim
←

(Kf ⊗ Z/lnZ)

= lim
←

(Kf/l
nKf ) = lim

←
(
∏
λ|l

(Kf/λ
nKf ) =

∏
lim
←
Kf/λ

nKf =
∏

Kf,λ

. □

Proposition 3.11 and Lemma 3.12 combine to give the desired representation
associated to the weight 2 eigenform: The fact that Vl(Af ) is a GQ module and is
free over Kf ⊗Ql of rank two gives a Galois representation ρf : GQ → GL2(Kf ⊗
Ql) and the factorization by Lemma 3.12 gives projections π : Kf ⊗ Ql → Kf,λ.
Composing then gives a representation

ρf,λ : GQ → GL2(Kf,λ)

Theorem 3.13 (Modularity Theorem, Galois Representation Version). Let E be
an elliptic curve defined over Q. Then there exists some prime l and a weight two
newform f , such that Kf = Q , and that

ρE,l ∼ ρf,l

4. Eichler Shimura Relation

So far, we have settled all the necessary ground to state different versions of
the modularity theorems. What we have not proved is the equivalences between
them, so that they can be regarded as one single theorem. This would be partially
achieved in this section by Eichler-Shimura relation that connects Hecke operators
over modular curves in positive characteristics with Frobenius maps on Elliptic
curve, which builds bridges between the modularity conjectures. We will define
the Hecke operators on modular curves over C in the first section, following by a
brief discussion shifting them to modular curves over Q. This allows us to explore
reduction of modular curves into positive characters and to define Hecke operators
on the reduced curves.

We have to skipped over a few proofs since they require heavy machineries from
advanced algebraic geometry.
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4.1. Hecke Operators on Modular Curves. The section begins with an obser-
vation: the double coset operators defined in Definition 2.7 carry modular forms
on Γ1 to those on Γ2. Can we imitate the process to obtain a map from X(Γ1) to
X(Γ2)? Such map should take Γ1τ , a point in X(Γ1), to

∑
Γ1βjτ , where βj are

again the coset representatives of Γ1/Γ1αΓ2. However, unlike the case of modular
forms, addition of points on X(Γ2) does not make sense, so what we actually get
is a map from Div(X(Γ1)) to Div(X(Γ2).

Explicitly, the Hecke operators on divisor group of modular curve is given by

Tp : Div(X1(N)) → Div(X1(N)), Γ1(N)τ →
∑
j

Γ1(N)βj(τ)

where again, the βs are the coset representative given by βj = [ 1 j
0 1

] for 0 ≤ j < p

and if p ̸ |N , also includes the term β∞ = [m n
N p ][

1 p
0 1 ].

Furthermore, the isomorphism between the modular curve Y1(N) and the moduli
space of enhanced elliptic curve S1(N) motivates the following definition of Hecke
operators acting on Div(S1(N)):

Definition 4.1. The Hecke operators Tp : Div(S1(N)) → Div(S1(N)) sends
[C/Λτ , 1

N + Λτ ] to
∑

[C/Λβjτ ,
1
N + Λβjτ ]. Moreover, we may define the Hecke

operators Tp : Div(S1(N)) → Div(S1(N), such that the following diagram com-
mute:

(4.2)

Div(S1(N)) Div(S1(N))

Div(X1(N)) Div(X1(N))

Tp

i i

Tp

Remark 4.3. With the perspective that modular forms can be regarded as sections
of line bundles over the modular curves, this formulation of Hecke operators is in
fact more intrinsic. We will not come to it in this paper.

The hecke operators Tp action on an arbitrary class of complex elliptic curve is
given in the following way (which can be proved by combining Definition 4.1 and
Theorem 1.10)

(4.4) Tp : [E,P ] →
∑
C

[E/C,P + C]

where C are all order p subgroups of the elliptic curve E such that C ∩ ⟨P ⟩ = O.
To summarize, we have three compactible versions of Hecke operator Tp, starting

from the double coset Γ1(N)[ 1 0
0 p ]Γ1, we get Tp as a linear operator in End(Mk(Γ1(N)).

On the other hand, the Hecke operator is defined on divisor group of modular curve
X1(N), which is identified with the mapping on divisor group of the moduli space
S1(N).

Similarily, the diamond operators ⟨d⟩ also acts on Div(X1(N)) and Div(S1(N)),
given by ⟨d⟩ : Div(X1(N)) → Div(X1(N)), ⟨d⟩(Γ1(N)τ) = Γ1(N)βτ , ⟨d⟩ : S1(N) →
S1(N), ⟨d⟩[C/Λτ ] = C/Λβτ , where β =

(
a b
c d

)
. The following diagram also com-

mutes by definition.

4.2. Shifting from complex analytic curves to algebraic curves over Q.
After providing a Q model of modular curves X0(N), X1(N), we shall expect the
moduli spaces S0(N) ∼= Y0(N), S1(N) ∼= Y1(N) has a corresponding Q model as
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Div(S1(N)) Div(S1(N))

Div(X1(N)) Div(X1(N))

⟨d⟩

i i

⟨d⟩

well. Then, we hope to find (4.2) still works in such context after some appropriate
modifications.

Definition 4.5. The pairs (E,Q) consists of complex algebraic elliptic curve with
Q an N -torsion point. Two such pairs (E,Q), (E′, Q) are equivalent if there exists
an isomorphism ϕ : E → E′ such that ϕ(Q) = Q′. The complex algebraic moduli
space for Γ1(N) is the set of equivalence classes

S1(N)alg,C = {Enhanced complex algebraic elliptic curves/ ∼}
Similarly, the algebraic moduli space for Γ1(N) is the set of equivalence classes

S1(N)alg = {Enhanced algebraic elliptic curves over Q/ ∼}

Lemma 4.6. The intersection of the set of equivalence class [E,Q] in S1(N)alg,C
and S1(N)alg is an equivalence class in S1(N)

By Lemma 4.6, S1(N)alg can be seen as subset of S1(N)alg,C, which can be
identified with S1(N), the moduli space of complex analytic elliptic curve, via the
map

[C/Λτ ,
1

N
+ Λtau] → [Eτ , (℘(

1

N
), ℘′(

1

N
]

Also, the N -torsion group is retained from C → Q (See Theorem 7.1.3). Thus,
Hecke operator Tp on the top row of diagram (4.2) restricts to Div(S1(N)alg). The
bottom row of diagram (4.2) also restricts to Div(X1(N)alg) once we prove Tp as
an endomorphism on Div(X1(N)) is defined over Q. (See P306,[3]. The sides of
diagram (4.2) extends the map given in Theorem 1.10,

i : S1(N) → X1(N) [C/Λτ ,
1

N
+ Λτ ] → Γ1(N)τ

Since we have identified S1(N) with S1(N)alg,C and X1(N) with X1(N)alg,C, we
obtain a map ialg,C : S1(N)alg,C → X1(N)alg,C. This map also restricts to an
algebraic map ialg : S1(N)alg → X1(N)alg. To see this, consider the following
diagram with mapping given by Since the element [E,Q] ∈ S1(N)alg,C belongs to

S1(N)alg,C S1(N)alg,C

X1(N)alg,C X1(1)alg,C

ialg,C

[E,Q] [E]

P j(E)
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S1(N) when E is defined over Q, which means j(E) ∈ Q, i.e. P ∈ Q.
From the discussion above, we obtain the algebraic version of (4.2):

(4.7)

Div(S1(N)alg) Div(S1(N)alg)

Div(X1(N)alg) Div(X1(N)alg)

Tp

ialgialg

Tp

The diagram restricts to the degree 0 divisors groups. Since Tp takes f to
∑
f [βj ]k,

it takes principal divisors to principal divisors, which is also true as morphism
defined over Q, the bottom line induces mapping between the Picard groups. That
is, we get

(4.8)

Div0(S1(N)alg) Div0(S1(N)alg)

Pic(X1(N)alg) Pic(X1(N)alg)

Tp

ialgialg

Tp

Similarly, we have another commutative diagram for Diamond operators ⟨d⟩:

(4.9)

Div0(S1(N)alg) Div0(S1(N)alg)

Pic(X1(N)alg) Pic(X1(N)alg)

⟨d⟩

ialgialg

⟨d⟩

4.3. Reduction of Modular Curve and Hecke Operators. Starting from this
section, we will drop the index alg and denote the modular curve over Q by X1(N).

First, we reduce the moduli space S1(N) at prime p. Let p be an maximal ideal
over p. Only elliptic curves over Q with good reduction at p reduce to elliptic curve
over Fp, so we need to restrict the moduli space a little bit. Also, for purpose
will be clear very soon, we further exclude the elliptic curves with j invariant
j(E) = 0, 1728. We define

S1(N)′ = {[E,Q] : E/Q has good reduction at p, ˜j(E) ̸= 0, 1728

and similarly

S̃1(N)′ = {[E,Q], E/Fp, j(E) ̸= 0, 1728}
We may then define

S1(N)′ → S̃1(N)′ , [E,Q] → [Ẽ, Q̃]

The reduction map surjects since any Weierstrass equation with coefficients in Fp
naturally lifts to a Weierstrass equation over Z with non-zero discriminant. The N -
torsion point Q̃ also has a lift since the torsion group of elliptic curves over surjects
in reduction. (See [3] Proposition 8.4.4)

We now construct a planar curve C that will be useful to the reduction of modular
curve. Take any [E,Q] ∈ S̃1(N), and denote j(E) = j. Consider the universal

elliptic curve Ẽj defined over Fp(j),

Ẽj : y
2 + xy = x3 − (

36

j − 1728
)x− 1

j − 1728
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This curve has discriminant j2

(j−1728)3 and j-invariant j. Since j ̸= 0, 1728, it is an

elliptic curve over Fp and is isomorphic to E over Fp.
Take a point Q ∈ Ẽj of order N , and let ϕ1,N ∈ Fp(j)[x] be the minimal

polynomial of the x-coordinate of point Q. Define the field

K1(N) = Fp(j)[x]/(ϕ1,N )

It is true that K1(N) ∩ Fp = Fp, so K1(N) is a function field over Fp. Viewing j
as a variable, the polynomial ϕ1,N ∈ Fp(j)[x] defines a planar curve whose points
are (j, x(Q)).

Reducing the modular curve as an algebraic curve is hard. The way we con-
structed modular curve as algebraic curve over Q is implicit, and it is almost
impossible to find a general polynomial equation that defines X1(N) for all N .
Thus, we confine ourselves to only give a definition of reduction of curves in gen-
eral. Then we state the Igusa theorem, which says that our planar curve C is
birationally equivalent to X̃1(N).

Definition 4.10. Let C be a nonsingular affine algebraic curve over Q, defined by
polynomials ϕ1, ..., ϕm ∈ Z(p)[x1, ..., xn]. Then C has good reduction at p if

(1) The ideal I = ⟨ϕ1, ..., ϕm⟩ of Z(p)[x1, ..., xn] is prime.

(2) The reduced polynomials ϕ̃i ∈ Fp[x1, ..., xn] defines a nonsingular affine

algebraic curve C̃ over Fp.

Definition 4.11. Let C be a nonsingular projective curve over Q defined by the
homogenization I ∈ Z(p)[x0, ..., xn] of a prime ideal I(0) ∈ Z(p)[x1, ..., xn]. Then
C has good reduction at p if for i = 1, 2, ..., n, either the affine curve Ci de-
fined by dehomogenizing I at xi has good reduction at p or I reduces to all of
Fp[x0, ..., xi−1, xi+1, ..., xn].

Theorem 4.12 (Igusa). The modular curve X1(N) has good reduction at p if p ̸ |N .
There is an isomorphism of function fields

Fp(X̃1(N)) → K1(N)

Moreover, reducing the modular curve is compatible with reducing the moduli space
in the sense that the following diagram commutes:

S1(N)′ X1(N)

S̃1(N)′ X̃1(N)

The top and bottom map is given by [E,Q] → (j, x(Q)) followed by the birational
equivalence from the planar model C to X1(N).

Proof. See [4] □

Remark 4.13. The modular curve X0(N) may be reduced in the same way by
replacing ϕ1,N with ϕ0,N , the minimal polynomial of

∑
Q x([d]Q) (i.e. sum over

x-coordinate in the cyclic group ⟨Q⟩ attached to elliptic curve E) over Fp(j)[x].
The theorem still holds by replacing S1(N) by S0(N) and X1(N) by X0(N).
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4.4. Eichler-Shimura Relation. We start this section by stating a theorem of
the reduction of algebraic curves that we need to reduce the Diamond operators
⟨d⟩.

Theorem 4.14. Let C and C ′ be nonsingular projective algebraic curves over Q
with good reduction at p, and let C ′ has positive genus. For any morphism h : C →
C ′, there exists a unique morphism h̃ : C̃ → C̃ ′ that commutes with the reduction
maps. It satisfies that deg(h̃) = deg(h). Furthermore, let h∗ : Pic

0(C) → Pic0(C ′)

and h̃∗ : Pic0(C̃) → Pic0(C̃ ′) be the induced pushforward maps, the following
diagram commutes:

Pic0(C) Pic0(C ′)

Pic0(C̃) Pic0(C̃ ′)

h∗

h̃∗

Proof. See Theorem 9.5.1 in [7]. □

Now, recall that the Diamond operator ⟨d⟩ gives a morphism ⟨d⟩ : X1(N) →
X1(N), Γ1(N)τ → Γ1(N)τ

(
a b
c d

)
.

Theorem 4.15. The Hecke operator ⟨d⟩ on X1(N) reduces modulo p and passes
to the Picard groups to give a commutative diagram

Pic0(X1(N)) Pic0(X1(N))

Pic0(X̃1(N)) Pic0(X̃1(N))

⟨d⟩∗

˜⟨d⟩∗

Proof. When the genus of X0(N) is zero, the Picard group is trivial and there is
nothing to prove. Otherwise, apply Theorem 4.14 to the morphism ⟨d⟩. □

The reduction of the Hecke operators, on the other hand, cannot be obtained in
the same manner, since Tp is not a morphism from X1(N) to itself. Nevertheless,
it can be seen as an endomorphism of Pic0(X1(N)), which can be identified as an
abelian variety.

Theorem 4.16. There exists an unique operator T̃p such that the diagram com-
mutes:

Pic0(X0(N)) Pic0(X0(N))

Pic0(X̃0(N)) Pic0(X̃0(N))

Tp

T̃p

Proof. See Theorem 9.5.1 in [7]. □

The brilliant idea is that we may compute the reduction by Frobenius morphism.
To prove this relation, we study the Hecke operators on modular curves while
identifying them as moduli spaces.

We may define a map f : Pic0(S̃1(N)′) → Pic0(S̃1(N)′) by

f([Ẽ, Q̃]) =
∑
βi

[Ẽ/C, Q̃+ C]
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By equation (4.4), the following diagram commutes:

Div0(S1(N)′) Div0(S1(N)′)

Div0(S̃1(N)′) Div0(S̃1(N)′)

Tp

f

The relation between Hecke operators and Frobenius maps finally becomes explicit
by the following proposition that express f in Frobenius maps.

Proposition 4.17. Let E be an elliptic curve over Q with ordinary reduction at
p and let Q ∈ E be a point of order N . Let C0 be the kernel of the reduction map
E[p] → Ẽ[p]. Then C0 is an order p subgroup of E. For any order p subgroup C of
E,

[Ẽ/C, Q̃+ C] =

{
[Ẽσp , Q̃σp ] if C = C0,

[Ẽσ
−1
p , [p]Q̃σ

−1
p ] if C ̸= C0

If E is an elliptic curve over Q with supersingular reduction at p, then [Ẽσp , Q̃σp ] =

[Ẽσ
−1
p , [p]Q̃σ

−1
p ] and the proposition still holds.

Proof. First suppose C = C0. Let E′ = E/C, and ψ : E′ → E the dual of the
quotient isogeny. Consider the commutative diagram

E′[p] E[p]

Ẽ′[p] Ẽ[p]

ψ

ψ̃

Since E is over field of characteristic 0, all extensions are separable, and we have
degs(ψ) = deg(ψ) = deg(ϕ) = p. The kernel of ψ should contain p points. The
kernel is contained in E′[p] since [p]Q = ϕ ◦ ψQ = 0. Thus ψ(E′[p]) contains
#(E′[p])/p = p points. We claim that ψ(E′[p]) coincide with C0 = ker(ϕ). Since
ϕ ◦ ψ(E′[p]) = [p]ψ(E′[p]) = 0, ψ(E′[p]) ⊂ ker(ϕ), and they both contain p points.

Therefore ϕ̃ ◦ r = r ◦ ϕ = 0, and since the reduction map on torsion points
is surjective, ϕ̃ = 0. This means kernel of ϕ̃ contains all of Ẽ[p], which has p

points since E has ordinary reduction. We get p ≤ degs(ψ̃) ≤ deg(ψ̃), which by

Theorem 4.14 equals to deg(ψ) = p. Since degs(ψ̃) · degs(ϕ̃) = degs( ˜ψ ◦ ϕ) =

degs( ˜[p]) = #ker( ˜[p]) = p, we conclude that degs(ϕ̃) = 1, i.e. ϕ̃ : Ẽ → Ẽ′ is a
purely inseparable extension of degree p. Thus, there exists a canonical isomorphism

between Ẽ′ and Ẽσp . The morphism sends Q to Qσp .
If C ̸= C0, consider the diagram

E[p] E′[p]

Ẽ[p] Ẽ′[p]

ϕ

ϕ̃

The image ϕ(C0) is order p since C0 and C = ker(ϕ) intersect only at O. It is

thus all of ϕ(E[p]). Composition of r ◦ ϕ = ϕ̃ ◦ r is 0 when restricted to C0 since
C0 := ker(r). Therefore r ◦ ϕ is 0 on all of E[p] since ϕ(E[p]) = ϕ(C0). Again

by surjectivity of reduction, we get ϕ̃ = 0, which similarly implies that ψ̃ is purely
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inseparable extension of degree p. This gives a canonical isomorphism between Ẽ

and Ẽ′
σp
. Thus Ẽ′ = Ẽσ

−1
p . Since ψ takes Q′ = ϕ(Q) to ψ ◦ϕ(Q) = [p]Q, ψ̃ = i◦σp

takes Q̃′ to [p]Q̃.
We omit the case of supersingular reduction here. See [3]. □

Proposition 4.18. The following diagram commutes:

Div0(S̃1(N)′) Div0(S̃1(N)′)

Pic0(X̃1(N)) Pic0(X̃1(N))

σp+p⟨̃p⟩σ−1
p

σp,∗+⟨̃p⟩σ∗
p

Proof. It suffices to verify commutativeness term by term. See [3] Chapter 8. □

Theorem 4.19 (Eichler-Shimura Relation). Let p ∤ N . The following diagram
commutes:

Pic0(X1(N)) Pic0(X1(N))

Pic0(X̃1(N)) Pic0(X̃1(N))

Tp

σp,∗+⟨̃p⟩∗σ
∗
p

In particular, ⟨̃p⟩∗ acts trivially on X0(N), thus

Pic0(X0(N)) Pic0(X0(N))

Pic0(X̃0(N)) Pic0(X̃0(N))

Tp

σp,∗+σ
∗
p

Proof. Consider this cubic diagram that commutes except possibly for the back of
the cube.

Pic0(X1(N)) Pic0(X1(N))

Div0(S1(N)′) Div0(S1(N)′)

Pic0(X̃1(N)) Pic0(X̃1(N))

Div0(S̃1(N)′) Div0(S̃1(N)′)

Tp

Tp

σp+[p]⟨̃p⟩σ−1
p

σp,∗+⟨̃p⟩∗σ
∗
p

Consider

Div0(S1(N)′) Pic0(X1(N)) Pic0(X̃1(N)) Pic0(X̃1(N))
σp,∗+⟨̃p⟩∗σ

∗
p

By applying the commutativeness of the face on the left, bottom, front, right, top
faces respectively, this map equals to

Div0(S1(N)′) Pic0(X1(N)) Pic0(X1(N)) Pic0(X̃1(N))
Tp
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However, this does not show the commutativeness of the back square as the mapping
Div0(S1(N)′) → Pic0X1(N) is not surjective. We further require that there exists

a unique map T̃p : Pic
0(X̃1(N)) → Pic0(X̃1(N)) such that the diagram commutes.

This is where we need Theorem 4.16. Now

Div0(S1(N)′) Pic0(X1(N)) Pic0(X̃1(N)) Pic0(X̃1(N))
T̃p

will agree with

Div0(S1(N)′) Pic0(X1(N)) Pic0(X1(N)) Pic0(X̃1(N))
Tp

back the commutativeness of the back square, which equals to

Div0(S1(N)′) Pic0(X1(N)) Pic0(X̃1(N)) Pic0(X̃1(N))
σp,∗+⟨̃p⟩∗σ

∗
p

The compositionDiv0(S1(N)′) → Pic0(X1(N)) → Pic0(X̃1(N)) is surjective. This
is true since we may skip finitely many points and still get surjectivity in reduction
of algebraic curves. See Theorem 7.3.1 in [3] for a complete discussion. The sur-
jectivity together with the uniqueness of reduction map by Theorem 4.16 implies

that T̃p = σp,∗ + ⟨̃p⟩∗σ∗p . □

5. Equivalences between Modularity Theorems

Theorem 5.1. Let E be an elliptic curve over Q. The following statements are
equivalent:

(1) There exists some N ′ and a nonconstant morphism from X0(N
′) and E as

complex Riemann surface.

(2) There exists some N and a nonconstant morphism from X0(N) and E as
algebraic variety over Q.

(3) There exists a weight two newform of level N such that L(f, s) = L(E, s).
(4) There exists a weight two newform of level N such that there exists a non-

constant morphism from the abelian variety Af to E.
(5) There exists a weight two newform of level N and some prime l such that

ρE,l ∼ ρf,l.
(6) There exists a weight two newform of level N such that ρE,l ∼ ρf,l for all

prime l.

If any of these conditions holds, we say the elliptic curve E is modular.

Proof. (Partial, Sketch) The sketch below skips some technical details without ad-
dressing them. (1) ⇐⇒ (2): See [6].

(2) → (3): Consider the diagram

Pic0(X0(N)) Pic0(X0(N)) Pic0(E)

Pic0(X̃0(N)) Pic0(X̃0(N)) Pic0(Ẽ)

Pic0(X̃0(N)) Pic0(Ẽ) Pic0(Ẽ)

r

a∗

r

Tp−ap(E)

σ∗
p+σp,∗−ap(E)

r

1

α̃∗ σ∗
p+σp,∗−ap(E)

α∗
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Which is commutative by Eichler-Shimura relation Theorem 4.19, and that the
frobenius morphism σp : E → E commutes with α : X0(N) → E. The bottom
row is 0, thus the top row is also zero. A morphism from X0(N) to E give rise to
a morphism from J0(N) to E. Now J0(N) is a direct sum of Af (see [3] Chapter
6), and since morphism between abelian variety is either surjective or constant,
this gives rise to a morphism Af → E. The operator Tp − ap(E) = 0 evaluates as
ap(f)− ap(E) on Af , which is proves ap(E) = ap(f). Proving the levels agree and
the other directions here require much more machinary. See [9] for a complete and
rigorous proof.

To prove that (5), (6) ⇐⇒ (3), we need a result on the characteristic polynomial
of the Galois representations. □

Theorem 5.2. Let l be a prime, N ∈ Z+. The Galois representation ρX1(N),l

is unramified at p ̸ |lN . The linear map ρX1(N),l(Frobp) satisfies the polynomial
equation

x2 − Tpx+ ⟨p⟩p = 0

Similarly, the Galois representation ρAf ,λ is unramfied and the linear map ρAf ,λ(Frobp)
satisfies the polynomial equation

x2 − ap(f)x+ p = 0

Proof. (Sketch) To check the Galois representation of Tate module, we first check
on each ln torsion. Since the Frobenius morphism is purely inseparable, σp,∗

send [P ] to [Pσp ] and σ∗p send [P ] to p[Pσ
−1
p . Thus σp,∗ = ρX1(N),l(Frobp),

σ∗p = pρX1(N),l(Frobp)
−1 as linear maps in Aut(Pic0(X̃1(N))[ln]). The Eichler

Shimura relation from Theorem 4.19 restricted to ln torsion points gives the com-
mutative diagram

Pic0(X1(N))[ln] Pic0(X1(N))[ln]

Pic0(X̃1(N))[ln] Pic0(X̃1(N))[ln]

Tp

σp,∗+⟨p⟩σ∗
p

The vertical rows are in fact isomorphisms. (See[3] Chapter 9). This shows
Tp = ρX1(N),l(Frobp) + p⟨p⟩ρX1(N),l(Frobp)

−1. Since this is true for all n and
is compatible with the natural inclusions between ln torsion points, the result
passes to Tate module, and the characteristic polynomial follows. To show the
Af version, since Tp act as ap(f) on Af := J1(N)/IfJ1(N), and the mapping
Pic0(X1(N))[ln] → Af [l

n] is stable under the Galois group action.
□

continued. Similar to the proof in Theorem 5.2, Proposition 2.27 implies that the
Galois representation associated to elliptic curve E satisfies that

x2 − ap(E)x+ p = 0

where x = ρE,l(Frobp). Now, if the two Galois representations are similar, then the
two characteristic polynomial agrees, which implies ap(E) = ap(f). On the other
hand, given that there exists newform f such that ap(f) = ap(E), consider the
Galois representation ρf,l and ρE,l associated to the abelian variety Af and elliptic
curve E respectively, for any prime l. Theorem 5.2 shows that the characteristic
polynomial of ρE,l(Frobp), ρAf ,l(Frobp) agrees at all unramified primes p, which is
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the case at all but finitely many p. Such Frobenius element is dense in GQ by a
weak form of Chebotarev density theorem. Since both trace and determinant are
continuous function, this implies that the two Galois representations are equivalent.
Thus (5) → (3) → (6) → (5), and we are done. □

In the end, we are able to state the modularity theorem in a concise and elegant
way.

Theorem 5.3 (The Modularity Theorem). All elliptic curves over Q are modular.
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