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Abstract. In this paper, we will explain the basics of Galois representations

coming from elliptic curves, including examples. We will also give a foundation

of the theory of elliptic curves from a scheme-theoretic perspective. We assume
some basic algebraic number theory and algebraic geometry. A good reference

would be Algebraic Number Theory by J. Neukirch for the former and Algebraic

Geometry by R. Hartshorne for the latter.
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1. Introduction

The absolute Galois group Gal(Q/Q) of Q is a central object of study for al-
gebraic number theory. One key tool for studying it is the representation theory.
To that end, our first task is to give a definition for a Galois representation. In
order to fully appreciate the definition, we need to recall some key features of the
Krull topology on Gal(Q/Q). Under the Krull topology, the closed subgroups are
Gal(Q/K) for intermediate extensions Q ⊂ K ⊂ Q and the open subgroups are
Gal(Q/K) for K/Q finite. Moreover, Gal(Q/Q) is a topological group with respect
to the Krull topology.

Definition 1.1. Let V be a module over a topological ring R. A continuous Galois
representation is a continuous homomorphism

ρ : Gal(Q/Q)→ GL(V )

with respect to the Krull topology on Gal(Q/Q) and the induced topology on V by
the topology of R.
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Essentially all Galois representations we consider will be continuous, and we
will simply call them Galois representations by abuse of notation. Familiar exam-
ples of Galois representations include Artin representations (representations of the
absolute Galois group on complex vector spaces), adelic Galois representations (rep-

resentations over modules over Ẑ, the profinite completion of the integers), ℓ-adic
Galois representations (representations over modules over Zℓ, the ℓ-adic integers
Zℓ), and Galois representations over finite fields such as Fp.

To demonstrate the usefulness of Galois representations, it is perhaps instructive
to consider the easy special case of Artin representations.

Example 1.2. An Artin representation is a continuous homomorphism

ρ : Gal(Q/Q)→ GLn(C)

for some integer n. Immediately, one sees that an easy way to produce such repre-
sentations is by first projecting Gal(Q/Q) to the Galois group Gal(K/Q) for some
finite Galois extension K/Q, and then invoking the representation theory of the
finite group Gal(K/Q) to produce a representation

ρ : Gal(K/Q)→ GLn(C).

Surprisingly, this is the only way Artin representation arises. This is largely due to
the “continuous” requirement. Notice that Gal(Q/Q) is isomorphic (as a topological
group) to a profinite group, and is therefore totally disconnected. As ρ is continuous,
the image of ρ must be a compact totally disconnected topological group. However,
since the target GLn(C) carries the subspace topology of Euclidean space, by basic
topology, one concludes that the image of ρ must be finite. In particular, the kernel
of ρ must be a closed subgroup of finite index of Gal(Q/Q), and so must be an open
subgroup by basic properties of topological groups. By the definition of the Krull
topology, one concludes that

ker(ρ) ≃ Gal(Q/K)

for some finite Galois extension K/Q. In particular, the image must be Gal(K/Q).
Hence, any Artin representation must factor through Gal(K/Q) for some finite Ga-
lois extension K/Q. Heuristically, the interaction between the different topologies
between the source and target of Galois representations makes the image of Galois
representations “simple”, which in turn makes Galois representations a particularly
useful tool in studying Gal(Q/Q). In fact, the difference in topologies is so large in
the case of Artin representations that it tells us nothing more than the represen-
tation theory of finite Galois groups. In the case of ℓ-adic representations, we will
see that the image can actually be infinite.

Another important easy example of Galois representation is the cyclotomic char-
acters.

Example 1.3. Given positive integer n, let µn be the group of nth roots of unities.

Let ζn be a fixed generator. Given σ ∈ Gal(Q/Q), we must have σ(ζn) = ζ
χn(σ)
n

for some χn : Gal(Q/Q) → (Z/nZ)×. One easily checks that χn is a group homo-
morphism and is independent of our choice of ζn as a generator. In fact, χn is the
restriction map Gal(Q/Q) → Gal(Q(µn)/Q) (note that Gal(Q(µn)/Q) is canoni-
cally isomorphic to (Z/nZ)×). We call χn the mod n cyclotomic character. By
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definition, χn is a 1-dimensional Galois representation over the ring Z/nZ. Now
suppose p is a prime. One can check that the diagram

Gal(Q/Q)
χpr //

χp &&

(Z/prZ)×

mod p

��
(Z/pZ)×

commutes. In particular, we may take a limit and obtain a p-adic cyclotomic
character χp,∞ : Gal(Q/Q)→ Z×

p . More generally, the above diagram commutes if
we replace p and pr with any m, k such that m | k. If we take a limit, we then get

the adelic cyclotomic character χ : Gal(Q/Q)→ Ẑ×, where we have

limGal(Q(µn)/Q) = lim(Z/nZ)× = Ẑ×.

The study of such representations is fruitful. The Kronecker-Weber theorem tells
us that

Qab = colimQ(µn),

where Qab is the maximal abelian extension of Q and µn is the set of nth roots of
unity. In particular, we have

Gal(Qab/Q) = limGal(Q(µn)/Q).

This shows that the adelic cyclotomic character is just the restriction to the maximal
abelian extension. In particular, χ tells us the abelianization of all the Galois groups
over Q. As a side remark, notice that unlike in Artin representations, all cyclotomic
characters are surjective (being reduction maps).

The bulk of Galois representations in nature arise from geometry. The main
topics of this paper, Galois representations from elliptic curves, are of such type.
The general method for one to obtain Galois representations from elliptic curves
(and more generally abelian varieties) is by considering the action of the Galois
group on the n-torsion points of the elliptic curve. For special modular forms
known as eigenforms, one can obtain an abelian variety called the Jacobian, and
obtain Galois representations from the Jacobian. In fact, we have the following
result by Khare and Wintenberger (see [3]).

Theorem 1.4 (Serre’s Modularity Conjecture). Any two-dimensional absolutely
irreducible odd Galois representation over a finite field arises from a modular form.

One interpretation of the result is that most reasonable two-dimensional Galois
representations come from geometry. Something more precise could be said along
those lines.

Given an algebraic variety X over Q, set XQ = X ×Q Q. Then the absolute

Galois group Gal(Q/Q) acts on the étale cohomology groups Hi((XQ)ét,Z/nZ),
which produces Galois representations. Under this interpretation, we may recover
the representation given by torsion points on an abelian variety A by setting i = 1
and X = A, with suitable coefficient rings. One can then conjecture that all
reasonable Galois representations arise in this fashion. The precise statement is
known as the Fontaine-Mazur conjecture. Due to the scope of this paper, we will
not attempt to state the conjecture. For a precise formulation of the conjecture,
see [2].
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2. Galois Representations from Elliptic Curves

2.1. Preliminaries. We will first survey some basic concepts and properties re-
lated to elliptic curves, and then discuss how Galois representations are related to
elliptic curves. We would first work over a general field k. For simplicity, we may
assume that k is perfect.

Definition 2.1. Let k be a field. An elliptic curve (E,O) over k have the following
three equivalent definitions:

(1) A nonsingular irreducible projective plane curve E of degree 3 over k along
with a distinguished k-point O;

(2) A nonsingular irreducible projective curve E of genus 1 over k along with a
distinguished k-point O;

(3) A projective plane curve E over k defined by the Weierstrass equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

where ai ∈ k and O = [0 : 1 : 0].

At an elementary level, the third definition is the most commonly presented.
While being the most concrete definition, it is also a bit ad hoc. Its equivalence to
the first definition resolves this issue. Elliptic curves are actually the next logical
step when one considers solving Diophantine equations (as the degree 1 case is
easily solved and the degree 2 case is solved by appealing to the Hasse-Minkowski
theorem).

Here’s a quick sketch of the equivalence of these three definitions. Definition (1)
implies definition (2) by the degree-genus formula. Definition (2) implies definition
(3) by computation of the dimension of the global section of OE(3O) via Riemann-
Roch, then using a basis {1, x, y} of OE(3O) to form an embedding E \ {O} → P2

with P 7→ [x(P ) : y(P ) : 1] that extends to an embedding E → P2 by O 7→
[0 : 1 : 0], which satisfies the given equation by computation of the dimension
of Γ(E,OE(6O)), again by Riemann-Roch. Definition (3) implies definition (1) is
immediate by setting O = [0 : 1 : 0]. For a complete proof, see [1] page 45.

When k is algebraically closed, E could be viewed as an algebraic variety in the
traditional sense and there is no harm in only considering the closed points. When
k is not algebraically closed, the closed points of E are in natural bijection with the
closed points in P2

k
satisfying the defining Weierstrass equation whose coordinates

lie in k. For field extensions L/k, one can consider the fiber product EL = E×k L,
whose closed points can be thought of as the closed points in P2

k
satisfying the same

Weierstrass equation whose coordinates lie in L. Notice that there can be multiple
defining Weierstrass equations for an elliptic curve, via change of coordinates. To
each Weierstrass equation, one attaches two quantities, the discriminant ∆ and a
quantity known as c4. The discriminant is a handy quantity that can be used to
test whether something written in the form of a Weierstrass equation is an elliptic
curve or not, i.e., whether or not it is singular. A Weierstrass equation represents
a singular elliptic curve if and only if the discriminant is zero. Neither quantity is
invariant under change of basis. However, the quantity j = c34/∆, known as the
j-invariant, is independent of basis change. A fact that is often convenient for us is
when the characteristic of k is not 2 or 3, we can always change variables to make
the Weierstrass equation into

Y 2Z = X3 + aXZ2 + bZ3.
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We now proceed to define a central notion of the theory of elliptic curves, the
group law. For elliptic curves over algebraically closed fields, there are two ways that
one can construct the group law. We first present the more general and abstract
way. For an elliptic curve E over a field k, denote its Picard group Pic(E). As
principal divisors have degree 0, we have the natural degree map deg : Pic(E)→ Z
inherited from that of the divisor group. We call the kernel of the degree map the
degree-0 part of the Picard group and denote it by Pic0(E). For a field extension
L/k, we denote by E(L) the L-valued points of E. One can then formulate a key
observation.

Proposition 2.2. Let E be an elliptic curve over k and L/k a field extension.
There is a natural bijection between Pic0(EL) and E(L).

Proof. LettingD be a Weil divisor of EL with degree 0, it suffices to show that there
exists a unique L-point (P ) of E such that D is linearly equivalent to (P ) − (O).
We do this by Riemann-Roch. By definition, E has genus 1, so Riemann-Roch tells
us that dimL(D+(O)) = 1. We may pick a nonzero f ∈ L(EL) such that div(f) ≥
−D − (O). As the degree of div(f) is 0, we must have div(f) = −D − (O) + (P )
for some L-point P of E. We have thus demonstrated the existence of such a
point. For uniqueness, suppose (P ′) also has the property. We then have (P ′)
is linearly equivalent to (P ). In particular, there exists f ∈ L(EL) such that
div(f) = (P )− (P ′), so f ∈ L((P ′)). By Riemann-Roch, one has dimL((P ′)) = 1,
but L ⊂ L((P ′)), so we must have that f is a constant, and so P = P ′, which shows
uniqueness. □

The above proposition allows us to identify L-points on E with elements of
Pic0(EL), which gives a group structure on E(L). This is known as the algebraic
group law of E(L).

Correspondingly, there is a geometric group law on E(L) given by the following.
Choose an embedding EL → P2

L. Let P,Q ∈ (EL)(L) = E(L). As E has degree 3,
the line connecting P and Q intersects a third L-point R of E by Bézout’s theorem.
We set P +Q to be the third intersection point of the line connecting R and O with
E. One can show that this gives an abelian group structure on E with identity O.

One can also check that if we a priori endow E(L) with the geometric group law,
then the map in Proposition 2.2 becomes an isomorphism of groups, i.e., the two
group laws agree, and we will from now on refer them as the group law on E(L).
More generally, one can show that E is a group variety, that is, for any k-variety S,
the S-valued points of E form a group. Moreover, as we require elliptic curves to be
smooth, E is automatically an abelian variety over characteristic zero fields. This
property is true over arbitrary characteristic and is in fact a defining property. An
alternative definition for an elliptic curve would be a 1-dimensional abelian variety.

Remark 2.3. At a higher level, one can construct a k-variety called the Picard
variety whose set of L-points is exactly Pic0(EL), and there is an isomorphism of
k-schemes between the Picard variety of E and E that will induce the bijection of
L-points described by Proposition 2.2.

In the simple case where k has characteristic 0, up to change of variables, one
can use the differential equation satisfied by the Weierstrass ℘-function to create
an explicit isomorphism as complex varieties between the analytification of E×k C
and the torus C/Λ for some lattice Λ. In this case, the group law on E(C) is simply
given by addition in C/Λ.
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Another good thing about the group law is that it allows us to characterize
principal divisors. A divisor is principal if and only if it has degree zero and is in
the kernel of the map Div0(E)→ E. Hence, to check whether a divisor is principal
or not, it suffices to compute the degree and to add the points in the elliptic curve
according to the group law and see if one gets O.

Now we define the correct notion of ”morphisms” between elliptic curves.

Definition 2.4. A morphism between elliptic curves over k is a morphism as k-
group schemes.

This is more commonly known as an isogeny between elliptic curves. Two elliptic
curves E1 and E2 over k are said to be isogenous if there is an isogeny ϕ : E1 → E2

that does not factor through the structure morphism E1 → Spec(k). In fact, due to
the wonderful properties of elliptic curves, the notion of an isogeny can be weakened.

Proposition 2.5. Let (E1, O1) and (E2, O2) be elliptic curves over k and ϕ : E1 →
E2 a morphism of k-schemes that does not factor through the structure morphism
of E1 and maps O1 to O2. Then ϕ is an isogeny.

Proof. This is a direct consequence of the group law on elliptic curves. We will
show that such a map induces a group homomorphism on the geometric points.
Recall the bijection between E(k) and Pic0(Ek). For the sake of this proof, we

denote κ1 : E1(k)→ Pic0(E1,k) and κ2 : E2(k)→ Pic0(E2,k). As ϕ does not factor
through the structure morphism, it is finite and induces a group homomorphism
ϕ∗ : Pic0(E1,k) → Pic0(E2,k) by point-wise application of ϕ. Moreover, since ϕ
maps O1 to O2, by checking with the definition of κ1 and κ2, we have the following
commutative diagram.

E1(k)
κ1 //

ϕ

��

Pic0(E1,k)

ϕ∗

��
E2(k)

κ2 // Pic0(E2,k)

Hence, ϕ induces a group homomorphism on the level of geometric points. □

The set of isogenies between E1 and E2 is denoted Hom(E1, E2), and is, in fact,
an abelian group. However, the addition operation is a bit hard to define. On the
level of k-points, it is clear that the addition should just be point-wise addition. One
way to proceed is to check that the map of k-points satisfies a certain polynomial
equation, and then invoke the property of the elliptic curves being a k-variety to
show that there must be exactly one morphism of schemes that represents the sum.
However, this method is not natural. With the above proposition, one can formulate
a much more natural addition law. Consider the category of “based k-varieties”,
which we denote as Var•k, with objects diagrams of form

Spec(k) // X // Spec(k)

with X a k-variety and morphisms commutative diagrams

Spec(k) //

##

X

��

// Spec(k)

Y

;;
.
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By Proposition 2.5,

Hom(E1, E2) ≃ HomVar•k
(E1, E2).

By Yoneda’s lemma,

HomVar•k
(E1, E2) ≃ NatFun(Var•k,Sets)

(hE1 , hE2),

where hE : (Var•k)
op → Sets is the representable functor given by

hE(X) = HomVar•k
(X,E).

As elliptic curves are abelian varieties, hE(X) is an abelian group, and hE is in fact
a representable functor to the category of abelian groups. In particular, we have

NatFun(Var•k,Sets)
(hE1

, hE2
) ≃ NatFun(Var•k,AbGrps)(hE1

, hE2
).

Notice that the abelian group structure on this set is clearly definable point-wise.
This pulls back to an abelian group structure on Hom(E1, E2).

In the special case where E1 and E2 coincide, Hom(E,E) = End(E) is a ring
with multiplication given by composition. If we restrict to isomorphisms, we have
the automorphism group Aut(E).

Moreover, notice that for any elliptic curve E over k, there is a natural homo-
morphism Gal(k/k) → Aut(EL) for any Galois extension L/k. Let σ ∈ Gal(k/k),
set σL = σ|L and Spec(σL) : Spec(L)→ Spec(L) the induced map of affine schemes,
and

σE,L = idE ×k Spec((σL)
−1)

the map EL → EL. One can easily check that the map σ 7→ σE,L defines a

homomorphism Gal(k/k)→ Aut(EL). This homomorphism gives a natural action
of Gal(k/k) on Hom(E1,L, E2,L).

Let E1 and E2 be two elliptic curves over k, σ ∈ Gal(k/k), f ∈ Hom(E1,L, E2,L),

and L/k a Galois extension. We have a natural action of Gal(k/k) on Hom(E1,L, E2,L)
by

σ(f) = σE2,L ◦ f ◦ σ−1
E1,L

.

Diagrammatically, one has the following.

E1,L

σ−1
E1,L //

σ(f)

��

E1,L

f

��
E2,L

σ−1
E2,L //

��

E2,L

��
Spec(L)

σ−1
L

// Spec(L)

For an algebraic extension L/k, we say that an isogeny E1,k → E2,k is defined

over L if it is fixed by the action of Gal(k/L) and denote the set of isogenies over
L to be HomL(E1, E2). In other words, we have

HomL(E1, E2) = Hom(E1,k, E2,k)
Gal(k/L)

and similarly for EndL(E) and AutL(E). One can check that

HomL(E1, E2) ≃ Hom(E1,L, E2,L).
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Indeed, via base change, it suffices to show that

Homk(E1, E2) ≃ Hom(E1, E2).

For proof, consider the following diagram of pullback squares.

E1,k

σ−1
E1 //

σ(f)

��

E1,k

f

��

// E1

g

��
E2,k

σ−1
E2 //

��

E2,k

��

// E2

��
Spec(k)

σ−1

// Spec(k) // Spec(k)

Given g ∈ Hom(E1, E2), we see that the induced isogeny f : E1,k → E1,k is fixed

by Gal(k/k) because σ−1
E1

is invertible so by the universal property of pullback

squares, the structure map E1,k → E1 is invariant under composition by σ−1
E1

, and

so σ(f) = f by universal property as all the other maps are obviously the same.
This shows that HomL(E1, E2) is also an abelian group. Moreover, this shows

that it suffices to study Hom(E1, E2).
Notice that the group law gives a natural family of isogenies. Let E be an elliptic

curve over k and m be a natural number, we denote [m] ∈ End(E) the morphism
given by m copies of the identity morphism of E added together under the group
structure of End(E) as we have established before. One can show that Hom(E1, E2)
is torsion-free. To do so, we first recall the following definition.

Definition 2.6. Let f : X → Y be a finite surjective morphism of k-varieties. The
degree of f is deg(f) = [k(X) : f∗(k(Y ))].

For the case of isogenies of elliptic curves, one can show that they are all finite
surjective morphisms, and the notion of degree is well-defined. Further, a morphism
between elliptic curves has degree zero if and only if the map is the constant map
that maps the source to O. One property of [m] is that it is nonconstant. In
particular, Hom(E1, E2) is torsion-free by the multiplicativity of degree. As End(E)
is torsion-free, one sees that Z embeds into End(E). For proof of the above facts,
see [4, Chapter III]. It turns out that for most elliptic curves, End(E) = Z, which
leads to the following definition.

Definition 2.7. An elliptic curve E over k is said to have complex multiplication
or CM if End(E) ̸= Z.

We will see that elliptic curves with CM enjoy various nice properties.

2.2. The Tate Module. Now we proceed to an important construction of elliptic
curves, the Tate module.

Definition 2.8. Let E be an elliptic curve over k. The kernel of [m] is called the
m-torsion points of E and is denoted E[m].

The m-torsion points of E is a finite group scheme. For our purposes, we need
only consider the k-valued points of E[m]. As the functor of points is a Hom functor,
it is left exact and thus commutes with kernels. In particular, E[m](k) = E(k)[m],
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where E(k)[m] is the kernel of the induced map on E(k) by [m]. The structure of
the group E(k)[m] is well-known.

Proposition 2.9. Given an elliptic curve (E,O) over k a field and m ∈ Z. If
char(k) = 0 or 0 < p = char(k) ∤ m, then E(k)[m] ≃ Z/mZ× Z/mZ. If char(k) =
p > 0, then either E[pe] = {O} for all e ≥ 1 or E[pe] = Z/peZ for all e ≥ 1.

Proof. See [4], page 86, Corollary 6.4. □

When K = C, then E is isomorphic to the torus C/Λ, and the above fact is
obvious.

For a prime ℓ, notice that there is a natural projective system

· · ·
[ℓ]// E(k)[ℓn+1]

[ℓ] // E(k)[ℓn]
[ℓ] // · · · .

Definition 2.10. Given ℓ prime, and E an elliptic curve over k, the ℓ-adic Tate
module of E is the inverse limit

Tℓ(E) = lim←−E(k)[ℓn].

Each E(k)[ℓn] is naturally a Z/ℓnZ module, upon taking limit of the projective
system of diagrams, one obtains a natural Zℓ-module structure for Tℓ(E). Being
such, we have an induced topology on Tℓ(E) with base {x+ ℓnTℓ(E)}x∈Tℓ(E), that

is equivalent to the limit topology. From the structure of the torsion points of E(k),
one obtains the following by taking limit.

Corollary 2.11. Given an elliptic curve (E,O) over k a field and ℓ a prime. If
char(k) = 0 or 0 < p = char(k) ̸= ℓ, then Tℓ(E) ≃ Zℓ × Zℓ. If char(k) = p > 0,
then either Tp(E) = 0 or Tp(E) ≃ Zp.

The Tate module is of central importance in the study of Galois representations.
We first show some applications to elliptic curves.

Let E1 and E2 be elliptic curves over k and ϕ : E1,k → E2,k be an isogeny, then
we know that it induces a group homomorphism on the level of closed points. In
particular, ϕ maps m-torsion points to m-torsion points. By taking the limit, we
have an induced map ϕℓ : Tℓ(E1) → Tℓ(E2) of Zℓ-modules. We thus have a group
homomorphism Homk(E1, E2) → Hom(Tℓ(E1), Tℓ(E2)) given by ϕ 7→ ϕℓ. One can
show that the map is injective. In fact, one can show something stronger.

Proposition 2.12. Let E1 and E2 be elliptic curves over k, ℓ ̸= char(k) a prime,
then

Homk(E1, E2)⊗ Zℓ → Hom(Tℓ(E1), Tℓ(E2))

given by ϕ⊗ 1 7→ ϕℓ, is injective.

Proof. See [4], page 107, Theorem 7.4. □

Corollary 2.13. Let E1 and E2 be elliptic curves over k. Then Homk(E1, E2) is
a free Z-module of rank at most 4.

Proof. One notes that Homk(E1, E2) is torsion-free and Z is a PID, so to show
that it is free, it suffices to show that it is finitely-generated. By the flatness of
Zℓ over Z, it suffices to show that Homk(E1, E2) ⊗ Zℓ is finitely generated. By
the above embedding, Homk(E1, E2)⊗ Zℓ is a submodule of Hom(Tℓ(E1), Tℓ(E2)).
Since the Tate modules are free Zℓ-modules of rank 2, Hom(Tℓ(E1), Tℓ(E2)) is a
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free Zℓ-module of rank 4. As Zℓ is a PID, this shows that Homk(E1, E2) ⊗ Zℓ is
a free finitely generated Zℓ-module, with Zℓ-rank less than or equal to 4. By the
flatness of Zℓ over Z, the Z-rank of Homk(E1, E2) is the same as the Zℓ-rank of
Homk(E1, E2)⊗ Zℓ, and we are done. □

Let E be an elliptic curve over k, L/k an algebraic extension, and ℓ a prime.
For any σ ∈ Gal(k/L) ⊂ Gal(k/k), we have a corresponding σE,k,ℓ ∈ Autk(E). As

before, this gives a Galois action of Gal(k/L) on Hom(Tℓ(E1), Tℓ(E2)) given by

σ(f) = σE2,k,ℓ
◦ f ◦ σ−1

E2,k,ℓ
.

We define HomL(Tℓ(E1), Tℓ(E2)) to be the Zℓ-linear maps between the Tate mod-
ules that are fixed by the Galois action of Gk/L.

By restricting the source and target, one obtains the natural map

Hom(E1, E2)⊗ Zℓ → Homk(Tℓ(E1), Tℓ(E2)),

which is injective by the previous proposition. In fact, it is oftentimes an isomor-
phism.

Theorem 2.14 (Isogeny Theorem). Let ℓ ̸= char(k) be prime and E1 and E2 be
elliptic curves over k. Then the natural map

Hom(E1, E2)⊗ Zℓ → Homk(Tℓ(E1), Tℓ(E2))

is an isomorphism if k is finite or a number field.

The above theorem is highly nontrivial, and we will omit the proof. For a
historical note, the finite field case is proven by Tate in [5] and the number field
case is proven by Faltings in [6]. One should note that the theorem fails easily over
other fields, for instance local fields.

2.3. The Weil Pairing. The Weil pairing is a natural pairing one can define on
the m-torsion points on elliptic curves. We now construct it.

Let E be an elliptic curve over a field k and P,Q ∈ E(k)[m]. Consider the divisor

m∑
n=1

(P + nQ)− (nQ).

It is clear that it has degree zero and the sum of the points with respect to the group
law on E is O, so it is a principal divisor of some f ∈ k(E). Set τQ : E(k)→ E(k)

to be given by R 7→ R+Q under the group law. Then f ◦ τQ ∈ k(E). Moreover,

(f ◦ τQ) =
m∑

n=1

(P + (n+ 1)Q)− ((n+ 1)Q) = (f)

since P,Q ∈ E(k)[m]. Hence, em(P,Q) = f ◦ τQ/f is a constant. Repeating this
argument, one has (f ◦τQ/f)m = f ◦τmQ /f = 1, so we have em : E[m]×E[m]→ µm.
Moreover, one can show that it is Galois-invariant. That is, for some σ ∈ GK/K ,

σ(em(P,Q)) = em(σ(P ), σ(Q)). In addition, one can show that it is nondegenerate
antisymmetric, and bilinear. By those properties, we can easily check that the
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following is a compatible projective system.

· · · // E(k)[ℓn+1]× E(k)[ℓn+1]
[ℓ]×[ℓ] //

eℓn+1

��

E(k)[ℓn]× E(k)[ℓn] //

eℓn+1

��

· · ·

· · · // µℓn+1 // µℓn
// · · ·

.

Therefore, we may take a limit and obtain the ℓ-adic Weil pairing e : Tℓ(E) ×
Tℓ(E)→ Zℓ.

2.4. Galois Representations and Elliptic Curves. Now we are ready to dis-
cuss in detail how Galois representations arise naturally from elliptic curves. As
mentioned before, one does this by considering the torsion points on the elliptic
curve. Let us first consider the following motivating example.

Example 2.15. Consider the multiplicative group schemeGm = SpecQ[t, t−1] over
Q. Denote by Gm(Q) the Q-valued points of Gm. Notice that one can interpret
the mod n cyclotomic character as being induced by the action of Gal(Q/Q) on
the group of Q-points of order dividing n, which we call the n-torsion points and
denote as Gm(Q)[n]. One can also note that as a curve, Gm has genus 0 and is
isomorphic to the non-singular part of the nodal elliptic curve cut out by

Y 2Z = X3 +X2Z,

which implies that somehow Gm is “almost” an elliptic curve. This is a strong hint
that we should consider the same approach for getting Galois representations from
elliptic curves.

Let E be an elliptic curve over a field k and P ∈ E(k)[m], σ an element of
Gal(k/k), and char(k) = p ∤ m. Notice that we have [m](σ(P )) = σ([m]P ) = O
as [m] is defined over k. In particular, Gal(k/k) acts on E(k)[m]. This gives a
Galois representation Gal(k/k) → Aut(E(k)[m]) ≃ GL2(Z/mZ) upon choosing a
basis for E(k)[m]. This is known as the mod m representation associated to the
elliptic curve E.

As is with the cyclotomic characters, we can now let ℓ ̸= p be a prime and take
the limit over the projective system

· · ·
[ℓ]// E(k)[ℓn+1]

[ℓ] // E(k)[ℓn]
[ℓ] // · · · .

and obtain the ℓ-adic representation ρE,ℓ : Gal(k/k) → Aut(Tℓ(E)) ≃ GL2(Zℓ) of

Gal(k/k) with respect to E. If we further compose with the natural embedding
Aut(Tl(E)) 7→ Aut(Tl(E)) ⊗Zl

Ql ≃ Aut(Vℓ(E)), where Vℓ(E) ≃ Tℓ(E) ⊗Zℓ
Qℓ,

we obtain a representation Gal(k/k)→ GL2(Ql), which we also denote by ρE,ℓ by
abuse of notation.

We have seen previously that the 1-dimensional Galois representations coming
from studying the torsion points of Gm, i.e., the cyclotomic characters, are always
surjective. This is not true for 2-dimensional representations coming from elliptic
curves, and we will see counterexamples when we have more tools. For the special
case where k is a number field and E is an elliptic curve without CM, one has the
following.
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Theorem 2.16. Let k be a number field and E and elliptic curve over k without
complex multiplication. Then im(ρE,ℓ) has finite index in Aut(Tℓ(E)) for all ℓ ̸=
char(k) and im(ρE,ℓ) = Aut(Tℓ(E)) for almost all ℓ.

Proof. See [7]. □

We are nowhere near giving a sketch of the above theorem. Instead, we will try
to explain more about how one may compute images of Galois representations. For
simplicity, we only consider mod m representations.

We start with an explicit method. Let E be an elliptic curve over Q. Notice that
the image of any Galois representation must be the Galois group of some Galois
extension k of Q. The kernel must then be Gal(Q/k), whose elements must fix
E(Q)[m]. If one chooses an embedding of E in P2

Q by Riemann-Roch, say E ∩ A2
Q

is cut out by

Y 2 = X3 + aX + b,

where a, b ∈ Q, one may identify elements of E(Q)[m] with certain points in Q2

along with the point at infinity. Under this identification, the action of Gal(Q/Q)
on E(Q)[m] is just coordinate-wise application, i.e., σ((x, y)) = (σ(x), σ(y)) for

σ ∈ Gal(Q/Q) and (x, y) ∈ Q2
. In particular, k must be the normal closure of

Q adjoined with the coordinates of the non-identity elements of E(Q)[m] (as O is
a Q-point by definition), which we denote as Q(E(Q)[m]). It turns out that k is
exactly equal to Q(E(Q)[m]) because Q(E(Q)[m])/Q is Galois, due to the following
analog of cyclotomic polynomials.

Definition 2.17. Let a, b be free variables. The division polynomials associated
to (a, b) are defined recursively as follows:

ψ0 = 0,

ψ1 = 1,

ψ2 = 2Y,

ψ3 = 3X4 + 6aX2 + 12bX − a2,
ψ4 = 4Y (X6 + 5aX4 + 20bX3 − 5a2X2 − 4abX − 8b2 − a3),
ψ2n+1 = ψn+2ψ

3
n − ψm−1ψ

3
m+1 for n ≥ 2,

ψ2n =

(
ψn

2Y

)
· (ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1) for n ≥ 3.

We call ψm the m-division polynomial associated to (a, b).

The division polynomials are analogs of the cyclotomic polynomials because
for an elliptic curve over Q with Weierstrass equation Y 2 = X3 + aX + b, the
elements of E(Q)[m], besides from O, are exactly the solutions of ψm associated
to (a, b) and the Weierstrass equation. In general, one has ψ2n+1 ∈ Z[X, a, b] and
ψ2n ∈ 2Y Z[X, a, b], and it is easily seen that Q(E(Q)[m])/Q is Galois. Therefore, to
compute the image of a mod m Galois representation associated to an elliptic curve
over Q, it suffices to find the Galois group of Q(E(Q)[m])/Q, which is the splitting
field of certain polynomials. Hence, we may reduce the problem of finding images
of Galois representations to finding Galois groups of splitting fields. However,
this method does not always work as well as we want because it is quite hard to
find splitting fields in general and our division polynomials are defined recursively,
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making it even harder. To establish a general theory, one can study the distribution
of the traces and determinants of the Frobenius elements.

We first recall some definitions.

Definition 2.18. LetK/Q be a Galois extension and OK denote its ring of integers
and p ⊂ OK a nonzero prime ideal above (p) ⊂ Z for some prime number p. A
Frobenius element at p is an element φp ∈ Gal(K/Q) such that

φp(a) ≡ ap mod p

for all a ∈ OK .

Notice that the above definition also works for K = Q. A Frobenius element of
Gal(Q/Q) is called an absolute Frobenius and (up to conjugation and inertia) will
be denoted as Frobp is it is over p and (p) = p∩Z. In fact, any Frobenius element of
Gal(K/Q) for some finite Galois extension K/Q is the restriction of some Frobenius
element of Gal(Q/Q) to K. The Chebotarev density theorem roughly says that for
a finite Galois extension K/Q, every element of Gal(K/Q) is a Frobenius element
for (infinitely many) primes of K. In particular, for any σ ∈ Gal(Q/Q) and finite
Galois K/Q, one can always find a Frobenius element φp ∈ Gal(Q/Q) such that
σ|K = φp|K . In other words, we have the following.

Theorem 2.19. The set of Frobenius elements in Gal(Q/Q) is dense in Gal(Q/Q).

As Galois representations are continuous, the above theorem says that the values
of ρE,ℓ on Frobenius elements completely determine the Galois representation. To
this end, the following proposition comes in handy.

Theorem 2.20. Let E be an elliptic curve over Q, p a prime of good reduction for
E. Then for any ℓ ̸= p,

det(ρE,ℓ(Frobp)) = p and tr(ρE,ℓ(Frobp)) = p+ 1−#E(Fp),

where #E(Fp) denotes the number of Fp-points of E.

Proof. See [4]. □

Remark 2.21. Notice that the determinant and trace of images of Frobenii would
be the same regardless of the chosen ℓ. This tells us a lot of information about the
Galois representation.

2.5. Elliptic Curves over Local Fields. In this section, we give a sketch of the
basic theory of elliptic curves over local fields. We refer the reader to [4, Chap-
ter VII] for a detailed exposition. Throughout, K is a local field, R its valuation
ring, m is the maximal ideal, π is a uniformizer, k is the residue field, and v is the
additive valuation, normalized so that v(π) = 1.

One operation we would like to perform on an elliptic curve E over a local field
K is to reduce modulo the unique maximal ideal of the valuation ring R, or a
uniformizer π. However, it does not a priori make sense as the defining Weier-
strass equation may have coefficients not in R. Fortunately, one can always clear
denominators to make the Weierstrass equation have coefficients in R. One has
to caution, however, that if we multiply by a power of π too high, the equation
becomes zero after reduction, which is undesirable. We thus choose the equation
such that the coefficients lie in R and the discriminant has minimal valuation. This
is the minimal Weierstrass equation of E. One checks that the equation is unique
up to change of coordinates over R.
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Definition 2.22. Let E be an elliptic curve over local field K, then its reduction
modulo π is the projective plane curve Ẽ over k defined by a minimal Weierstrass
equation for E with coefficients reduced modulo π.

To give a cleaner construction, one can first construct a Néron model ER for
E, which is “the best” approximation of E as a R-scheme. The reduction is then
ER ×R k.

Notice that the reduced curve may fail to be an elliptic curve because it may fail
to be nonsingular. The K-points of E get mapped to k-points of Ẽ. If we assume
that Ẽ is nonsingular, then the reduction E(K)[m]→ Ẽ(k) is in fact injective form
relatively prime to the residue characteristic. We now use the Galois action on E to
formulate this into a necessary and sufficient condition for when Ẽ is nonsingular.

Definition 2.23. Let E be an elliptic curve over K and Ẽ be its reduction. We set
Ẽns(k) to be the set (group) of nonsingular geometric points of Ẽ over k and E0(K)
its preimage under reduction. We also denote E1(K) the kernel of the reduction

E0(K)→ Ẽns(k).

We have the following exact sequence

0→ E1(K)→ E0(K)→ Ẽns(k)→ 0.

Some important facts to note are that E0(K) always has finite index in E(K)
and E1(K) is torsion-free.

Definition 2.24. Let Knr be the maximal unramified extension of K and Iv =
Gal(K/Knr) be the inertia subgroup.

Definition 2.25. Let S be a Gal(K/K)-set, then S is unramified if the action of
Iv on S is trivial.

In the case where L is a global field. Let v be a finite place. Then we may
extend the above definition. As Gal(Lv/Lv) ⊂ Gal(L/L), any Gal(L/L)-set is a
Gal(Lv/Lv)-set, and we say that a Gal(L/L)-set is unramified at v if the inertia
subgroup Iv of Gal(Lv/Lv) acts trivially on the set.

We have seen before that Gal(K/K) acts on the torsion points and the Tate
module of elliptic curves, which allows us to use our language to formulate the
following.

Proposition 2.26. Let E be an elliptic curve over K whose reduction is nonsin-
gular over k. Then for m relatively prime to char(k), E(K)[m] is unramified.

Proof. We know that E(K)[m] is finite, so by adjoining the coordinates of E(K)[m],
one has a finite extension K ′/K such that E(K)[m] ⊂ E(K ′). Set the residue field

of K ′ to be k′ and the valuation on K ′ to be v′. Since the reduction Ẽ of E is
nonsingular, one must be able to choose a Weierstrass equation for E such that the
discriminant ∆ is coprime to π, or v(∆) = 0. By basic properties of extension of

local fields, v′(∆) = 0. In particular, Ẽ is nonsingular over k′. We then have the

reduction map E(K ′)[m] = E(K)[m]→ Ẽ(k′) is injective. Let σ ∈ Iv, then σ acts

trivially on Ẽ(k′), so for P ∈ E(K)[m], the reduction of σ(P )− P is the reduction
of O. By the injectivity of reduction, we have σ(P ) = P , so E(K)[m] is unramified
as desired. □

Corollary 2.27. Let ℓ be a prime not equal to char(k). Then Tℓ(E) is unramified.
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Proof. One simply applies the previous proposition to ℓn and takes a limit. □

The above two conditions are in fact both equivalent to E having nonsingular
reduction. This fact will be established shortly and is part of what is known as the
Néron-Ogg-Shafarevich criterion.

Definition 2.28. Let E be an elliptic curve over K and Ẽ its reduction. We
say that E has good reduction if Ẽ is nonsingular over k. Otherwise, E has bad
reduction. If E has bad reduction, we say that E has multiplicative reduction if Ẽ
has a node, and E has additive reduction if Ẽ has a cusp.

Moreover, in the case that E has good reduction, Ẽ is an elliptic curve over a
field of characteristic p, and so Ẽ(k)[p] ≃ Z/pZ or Ẽ(k)[p] ≃ 0. We say that E has
ordinary reduction in the first case and supersingular reduction in the second.

Proposition 2.29. Let E be an elliptic curve over K with a fixed minimal Weier-
strass equation. Then

(1) E has good reduction if and only if the discriminant has valuation equal to
0.

(2) E has multiplicative reduction if and only if v(∆) > 0 and v(c4) = 0. In this

case, Ẽns(k) ≃ k
×
.

(3) E has additive reduction if and only if v(∆) = 0 and v(c4) > 0. In this case,

Ẽns ≃ k.

Proof. The part that does not concern the group structure of Ẽns(k) is immediate.
For the group structure, one can construct explicit isomorphisms between the two
groups, which can be found in [4, Chapter VII.5], Proposition 5.1. □

Now we can prove the Néron-Ogg-Shafarevich criterion.

Theorem 2.30 (The Néron-Ogg-Shafarevich Criterion). Let E be an elliptic curve
over K. Then the following are equivalent.

(a) E has good reduction over K.
(b) E(K)[m] is unramified for all m ≥ 1 relatively prime to char(k).
(c) The Tate module Tℓ(E) is unramified for some prime ℓ ̸= char(k).
(d) E(K)[m] is unramified for infinitely many m ≥ 1 relatively prime to char(k).

Proof. By our previous work, we have already established (a) ⇒ (b) ⇒ (c). Note
that (c) implies (d) since Tℓ(E) is unramified if and only if E(K)[ℓn] is unramified
for all n, and that’s infinitely many numbers.

Now we proceed to show that (d)⇒ (a). By the fact that E(K)/E0(K) is finite
and (d), we may pick integer m relatively prime to the residue characteristic and
larger than |E(Knr)/E0(K

nr)| such that E(K)[m] is unramified. In particular, this
implies that E(K)[m] ⊂ E(Knr). We know that E(K)[m] ≃ (Z/mZ)2, so E(Knr)
contains a subgroup isomorphic to (Z/mZ)2. By assumption, |E(Knr)/E0(K

nr)| <
m, so E0(K

nr) contains a subgroup of E(K)[m] of index less than m. In particular,
it must contain a subgroup of form (Z/ℓZ)2, where ℓ | m so is prime to char(k).
Now we consider the exact sequence

0→ E1(K
nr)→ E0(K

nr)→ Ẽns(k)→ 0.

We know that E1(K
nr) is torsion-free, so Ẽns(k) must contain a subgroup iso-

morphic to (Z/ℓZ)2. We know the structure of the group Ẽns(k) when E has bad
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reduction. In particular, if E has additive reduction, then Ẽns(k) is torsion-free, and

so cannot contain (Z/ℓZ)2. If E has multiplicative reduction, then the ℓ-torsion

points of Ẽns(k) are the ℓth roots of unities, and can’t contain (Z/ℓZ)2. Hence, E

must have good reduction over K, as desired. □

Notice that any elliptic curve over Q may be viewed as one over Qp, and we say
that an elliptic curve over Q has good (resp. multiplicative, additive) reduction over
a prime p if it has good reduction over Qp. Hence, we have a Néron-Ogg-Shafarevich
criterion over Q.

Theorem 2.31 (The Néron-Ogg-Shafarevich Criterion overQ). Let E be an elliptic
curve over Q. Then the following are equivalent.

(a) E has good reduction at prime p.
(b) E[m] is unramified for all p ∤ m.
(c) The Tate module Tℓ(E) is unramified for some (in fact, all) prime ℓ ̸= p.
(d) E[m] is unramified for infinitely many p ∤ m.

Now we note that this helps make sense of Theorem 2.19. As the absolute
Frobenius Frobp is well-defined up to conjugation and inertia, it doesn’t make sense
a priori to consider the quantities det(ρE,ℓ(Frobp)) and tr(ρE,ℓ(Frobp)). However,
by the Néron-Ogg-Shafarevich criterion, the inertia group at p is contained in the
kernel of ρE,ℓ because E has good reduction at p. Moreover, both the trace and
determinant are conjugacy invariant, so the two quantities indeed make sense.

3. Example: Image of mod 3 Galois Representation from Elliptic
Curves

To illustrate the theory we’ve described in the previous sections, we now consider
an example.

Let E be an elliptic curve over K, then we know that the absolute Galois group
Gal(K/K) acts on the m-torsion points E(K)[m] ≃ Z/mZ × Z/mZ of E, which
gives a mod m Galois representation

ρE,m : Gal(K/K)→ GL2(Z/mZ).
In this section, we will try to derive some facts about the image of ρE,3, with the
intended goal being the classification of mod 3 Galois representations.

Theorem 3.1. Let E be an elliptic curve over a number field K of characteristic
zero and ∆ its discriminant. Then the image of ρE,3 is contained in a Sylow 2-

subgroup of GL2(F3) if and only if x3 −∆ = 0 has a root in K.

Proof. By our assumption on the characteristic of K, via a change of coordinates,
we may assume that E is defined by

Y 2 = X3 + aX + b.

The 3-torsion points of E are those whose X-coordinates satisfy the third division
polynomial

ψ3(X,Y ) = 3X4 + 6aX2 + 12bX − a2.
In particular, besides O, there will be a total of eight 3-torsion points, which may
be grouped into 4 doubles based on their x-coordinates (the y-coordinates would
be inverses of each other). Let the four different x-coordinates be x1, x2, x3, x4
respectively. By Galois theory, there exists an element τ ∈ Gal(K/K) that fixes xi
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and swaps the two y-coordinates corresponding to each xi. Notice that Gal(K/K)
acts on the set {x1, x2, x3, x4}, which induces a homomorphism f : Gal(K/K) →
S4. By the parametrization we have chosen, the inverse of (x, y) ∈ E(K) under

the group law is (x,−y). In particular, ρE,3(τ) =

(
−1 0
0 −1

)
. One can also obtain

a homomorphism g : GL2(F3) → PGL2(F3). One can check that there is a choice
of isomorphism h : PGL2(F3) ≃ S4 such that h ◦ g = f . Further, notice that S4

also acts on the set {xixj + xkxl} consisting of 1
2

(
4
2

)
= 3 elements. Hence, we have

homomorphisms S4 → S3 and Gal(K/K)→ S3. Moreover, we have

Lemma 3.2. For {i, j, k, l} = {1, 2, 3, 4}, ∆1/3 = 2a − 3(xixj + xkxl), where
different choices of {i, j, k, l} gives different cube roots of ∆.

Proof. One uses the symmetric polynomial relations of {x1, x2, x3, x4} given by the
coefficients of ψ3 to expand

(y−x1x2−x3x4)(y−x1x3−x2x4)(y−x1x4−x2x3) = (y−2a/3)3−64b3/27−16a2.

We can obtain the desired formula by setting the above to be 0 and solve for
xixj + xkxl. □

Finally, one can check that the action by Gal(K/K) on the three cube roots of
∆ coincides with the homomorphism Gal(K/K) we obtained before by identifying
the three roots of ∆ with {xixj + xkxl}. But since ∆1/3 ∈ K for one of the cube

roots, Gal(K/K) fixes that cube root, so the action is not transitive. Notice that
any 3-cycles in S4 gets sent to a 3-cycle in S3, so the image of ρE,3 does not contain
an element of order divisible by 3. On the other hand, if we trace our argument,
it is clear that if ∆1/3 /∈ K, it would lie in the splitting field and thus the image
would contain an element of order divisible by 3. In other words, as GL2(F3) has
order 48, the image of ρE,3 lies in a Sylow 2-subgroup if and only if ∆1/3 ∈ K. □

A natural next step is to consider images of subgroups of Gal(K/K) under ρE,3.

In particular, we may consider the decomposition group Gal(Kv/Kv) at a place v
of K above 3. We can acquire information about the image of this group under
some good circumstances. One way we can narrow down the size of subgroups of
general linear groups is to look if they are contained in a Borel subgroup.

Definition 3.3. Let R be a ring. Then a Borel subgroup of GL2(R) is any conju-
gate of the group of upper-triangular matrices in GL2(R).

It turns out that under two types of nice conditions, the image of Gal(Kv/Kv)
under ρE,3 is contained in a Borel subgroup of GL2(F3). We now show the first
case.

Proposition 3.4. Let E be an elliptic curve of good ordinary reduction over a
local field K with char(K) = 0 and residue field k with char(k) = p. Then the
image of the corresponding Galois representation is contained in a Borel subgroup
of GL2(Fp).

Proof. Notice that it suffices to demonstrate that there exists a nontrivial proper
subgroup of E(K)[p] that is stable under the Galois action. This is because we
would then have a cyclic group of order p, and we may pick a generator, complete it
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to become a basis of E(K)[p], and the corresponding representation must be upper-

triangular. Notice that the kernel of the induced reduction map E(K)[p]→ Ẽ(k)[p]

is exactly such a group. As E has good ordinary reduction, Ẽ(k)[p] ≃ Z/pZ, so the
kernel must have order p, and is a nontrivial proper subgroup of E(K)[p]. Moreover,
the kernel is Galois-stable because the reduction map commutes with the Galois
action. □

The next case is when E has split multiplicative reduction over v. This case is
resolved by a construction called the Tate curve.

Recall that for an archimedean complete discrete valuation field L, such as C or
R, the geometric points of an elliptic curve E over L is isomorphic to the group C/Λ
for some lattice Λ = ⟨1, λ⟩. Through exponentiating, the group is further isomophic
to C×/qZ for q = ei2πλ, where 0 < |q| < 1. It turns out that for a nonarchimedean
local field K, one can start with such a q and produce an elliptic curve E over K

with E(K) ≃ K×
/qZ as Galois modules. This construction is called the Tate curve.

The structure of the p-torsion group of a Tate curve is especially simple to
describe, as we must have E(K)[p] ≃ ⟨ζp, q1/p⟩, where ζp ∈ K is a primitive pth

root of unity. Moreover, the subgroup generated by ζp is Galois-stable for obvious
reasons. Hence, the image of the mod p Galois representation associated to E would
lie in a Borel subgroup of GL2(Fp).

The following theorem tells us when an elliptic curve over a local field K is a
Tate curve.

Proposition 3.5. Let E be an elliptic curve over a local field K of split multi-
plicative reduction. Then there exists a unique q ∈ K× with |q| < 1 such that

E(K) ≃ K×
/qZ as groups.

Proof. See [8]. □

In particular, if E has split multiplicative reduction over v, its image is also
contained in a Borel subgroup. Notice that the above gives examples of Galois
representations that are not surjective that we alluded to before.

Acknowledgments

It is a pleasure to thank my mentor, Jinyue Luo, who provided me with numerous
excellent resources for me to understand the material, as well as great explanations.
I would also like to thank Professor Peter May, who organized the REU program
and provided me with an opportunity to interact with my extremely talented peers.
Finally, I thank Ruiyou Xia for her invaluable emotional support.

References

[1] J. S. Milne, Elliptic Curves, BookSurge Publishers 2006.

[2] J. -M. Fontaine and B. Mazur, Geometric Galois representations, in “Elliptic curves, modular

forms and Fermat’s last theorem”, International Press 1995.
[3] C. Khare and J. -P. Wintenberger, Serre’s modularity conjecture (I), Invent. Math. 178 (2009),

485-504.
[4] J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd Edition, Springer Science+Business

Media, 2008.

[5] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144.
[6] G. Faltings. Endlichkeitssatze für abelsche Varietäten über Zahlkörpern, Invent. Math.
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