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Abstract. Bordism homology is a generalized homology theory that is based
on singular manifolds, i.e., maps from compact manifolds to a given space.
Very few sources in the literature provide a complete proof of this fact. In
this paper, we present a detailed description of bordism homology and give a
geometric proof that it satisfies the four Eilenberg-Steenrod axioms. We will
also discuss some of the consequences of these axioms.
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1. Introduction

The notion of bordism first appeared in Thom’s 1954 paper [9]. Bordism is an
equivalence relation on manifolds: loosely speaking, two manifolds are bordant if
their disjoint union is the boundary of some other manifold. We say that a manifold
is null bordant if it is bordant to the empty set.

At first glance, this is a rather crude equivalence relation. For instance, Sn is
null bordant since it is the boundary of Dn+1. However, it turns out that bordism
is a fundamental concept in algebraic topology and other areas.

There are many motivations for this definition. For instance, classifying mani-
folds up to diffeomorphism or homeomorphism in dimensions 4 or higher is impos-
sible because it is equivalent to the word problem in group theory, which is known
to be unsolvable. Hence, it is natural to consider a weaker notion of equivalence
between manifolds, namely bordism. Indeed, classifying manifolds up to bordism
has been completely understood. This information is encoded in the bordism ring,
as we will see later.

Another reason why people are interested in bordism is that it gives rise to a
generalized homology theory, which is the main subject of this paper. Recall that
the essential idea in defining homology groups is “kernel modulo image.” In other
words, the nth homology group is just n-dimensional objects without boundary
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modulo the boundary of n + 1-dimensional objects. Therefore, it is natural to
require the boundary of a manifold to be zero in our equivalence relation, and
that is precisely what bordism guarantees, since the boundary of a manifold is, by
definition, bordant to the empty set.

In this paper we shall follow Conner and Floyd’s exposition [1] and give a self-
contained introduction to bordism homology. We would assume that the readers are
reasonably familiar with the basic concepts in algebraic topology, such as homology
theories.

We still need quite a few technical tools from differential topology, so in section
2 we will review these relevant results for the readers. We shall follow Lee’s [5] and
tom Dieck’s [10] books for this part.

In section 3, we define the bordism groups and the bordism ring, which will then
be followed by a brief discussion of the various results on their structures.

In section 4, we define the relative bordism groups of a pair of spaces. This
definition is slightly different from the one given in section 3, and the readers will
see why. We will also discuss the functoriality of our constructions.

In section 5, we shall prove the four Eilenberg Steenrod axioms for bordism
homology and point out why the dimension axiom fails. Thus, bordism homology
is a generalized homology theory. It is the excision axiom that requires the most
extensive use of the tools we developed in section 2.

In section 6, we discuss a few important consequences of the Eilenberg Steenrod
axioms. We shall compute the bordism groups of spheres, discuss the Steenrod
question, and finaly delve into the Mayer Vietoris sequence in the context of bordism
homology.

2. Some Tools from Differential Topology

Most proofs related to bordism homology involve some technical tools from dif-
ferential topology. We need to use some “big theorems,” such as Sard’s theorem
and the collaring neighborhood theorem. These are all fundamental results in dif-
ferential topology, whose proofs can be found in many standard textbooks such as
Lee [5] and [10]. We also need some more subtle tools, such as giving a manifold
an appropriate smooth structure. For this part, we mainly follow [1] and [10].

2.1. Gluing manifolds along boundaries. Suppose M and N are two manifolds
with diffeomorphic boundaries. Intuitively, it is clear that we can glue them together
to obtain a manifold without boundary. The following theorem makes precise and
generalizes this intuition.

Theorem 2.1 (15.10.1 from from [10]). Let M0 and M1 be smooth manifolds with
boundary. Let Ni ⊆ Mi be a union of components of ∂Mi, and let ϕ : N0 → N1 be
a diffeomorphism. Let M be the space obtained from M0 ⊔M1, with Ni identified
under ϕ. Then there is a smooth structure on M such that Mi\Ni → M are smooth
embeddings.

Proof. The central ingredient of the proof is the existence of collaring neighbor-
hoods. For a smooth manifold M with boundary, there always exists a neighbor-
hood U of ∂M and a diffeomorphism f : U → ∂M × [0, 1) so that f(x) = (x, 0) for
all x ∈ ∂M . The neighborhood U is called the collaring neighborhood.

Hence, we let M = M1 ∪ϕ M2, which is seen to be a topological manifold of
the same dimension. Let N ⊆ M be the image of N1 or N2 in M under the
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identification. We give M a smooth structure as follows. For (M1 \N1)∪ (M2 \N2)
in M , we have an evident smooth structures, as they are open subsets of M1 and
M2. For N ⊆ M , there is an open neighborhood U of N and a homeomorphism
f : U → N × (−1, 1), which restricts to diffeomorphisms onto N × (−1, 0] and
N × [0, 1). We give U the smooth structure inherited from that of N × (−1, 1).
Since the two smooth structures clearly agree on their overlap, we see that M is a
smooth manifold. !

In particular, we see that the boundary of this new manifold M is just the union
of ∂Mi −Ni, i = 1, 2.

2.2. Smoothing the corner. The second tool we need is called smoothing the
corner, which is arguably the most subtle technique used in this paper. In Conner
and Floyd’s book [1], this technique was referred to as straightening the angle. An-
other excellent reference for this part is the short article [7] by Milnor, in particular
the section entitled “pasting and straightening”.

Suppose we are given two manifolds M and N with boundary. If we use products
of charts, then the resulting structure on M × N is not smooth, since the upper
half plane R × [0,∞) is homeomorphic but not diffeomorphic to the closed first
quadrant [0,∞)2. In other words, there will be corners at ∂M ×∂N . This can be a
problem, since we would often need to work with spaces of the form M × I, where
M is a manifold with boundary.

All is not lost. One way to get around with this issue is to use “manifolds with
corners” throughout the discussion, which however complicates the situation quite
a bit. The other way is to use the technique of smoothing the corner.

Theorem 2.2 (15.10.2 from from [10]). Let M and N be smooth manifolds with
boundary. There exists a smooth structure on M×N such that M×N\(∂M × ∂N) ⊂
M × N and λ : R2

+ × ∂M × ∂N → M × N are diffeomorphisms onto open parts
of M × N . Here, R+ = [0,∞), and ∂M × R+, or equivalently ∂M × [0, 1), is the
collaring neighborhood of ∂M .

Proof. Fix a homeomorphism τ : R2
+ → R+ × R that restricts to a diffeomorphism

of R2
+\(0, 0) onto R+×R\(0, 0). For instance, we can take τ(r, θ) = (r, 2θ), written

in polar coordinates. We give (M×N)\(∂M×∂N) the canonical smooth structure
obtained from the product charts on M and N .

For ∂M ×∂N , the collaring neighborhood theorem implies that there is a neigh-
borhood U and a homeomorphism f : U → R2

+×∂M×∂N that restricts to a diffeo-
morphism onto (R2

+ \(0, 0))×∂M×∂N . Composing f with the map τ we chose (or
τ× id, to be precise), we have a homeomorphism τf : U → R+×R×∂M×∂N . We
now give the open set U the smooth structure inherited via τf . The two smooth
structures on U and (M ×N) \ (∂M × ∂N) are seen to agree, whence M ×N now
has a smooth structure with the desired properties. !

It follows from the proof of this theorem that the boundary of M × N is the
union of ∂M×N and M×∂N . Hence, hereafter in this paper, we shall treat spaces
of the form M × I as smooth manifolds without worrying about their corners.

2.3. Smooth Urysohn’s lemma. The Urysohn’s lemma states that for normal
(i.e., T4) topological spaces, closed sets can be separated by continuous functions.
In other words, if P,Q ⊆ X are disjoint closed subsets of a normal space X, then
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there is a continuous function from X to [0, 1] that restricts to 0 on P and 1 on Q.
This theorem can be generalized to smooth manifolds, which can be proved easily
if we assume the existence of partitions of unity.

Theorem 2.3. Let P and Q be disjoint closed subsets of a smooth manifold M
with or without boundary. Then there is a smooth function α : M → [0, 1] such that
α|P = 0 and α|Q = 1.

Proof. Let {ρ1, ρ2} be a partition of unity subordinate to the open cover {P c, Qc},
where supp ρ1 ⊆ P c. Then ρ1 is the desired smooth function. !

In fact, even more is true. One can choose α so that α−1(0) = P and α−1(1) = Q.
This is exercise 2-14 from Lee [5], but we will not need this fact.

2.4. Sard’s Theorem. The following tools are central to the proofs in sections 5
and 6. They allow us to build submanifolds from smooth functions.

Definition 2.4. Let f : M → N be a smooth map. A point c ∈ N is said to be a
regular value of f if either

(1) f−1(c) = ∅, or,
(2) for every p ∈ f−1(c), the map dfp : TpM → TcN is surjective.

If c ∈ N is not regular, then it is said to be critical.

Regular values play an important role in differential topology. The well-known
Sard’s theorem asserts that for a smooth map, almost all points are regular values.

Theorem 2.5 (Sard’s Theorem, 6.10 from [5]). Suppose M and N are smooth
manifolds with or without boundary and F : M → N is a smooth map. Then the
set of critical values of F has measure zero in N .

Recall that a map is called proper if preimages of compact sets are compact. A
map between manifolds is an immersion (resp. a submersion) if all induced maps
on tangent spaces are injective (resp. surjective). A map between manifolds is a
(smooth) embedding if it is both an immersion and a topological embedding.

Definition 2.6. If M is a smooth manifold with or without boundary, a regular
domain in M is a properly embedded codimension-0 submanifold with boundary.

As we mentioned earlier, regular values allow us to construct submanifolds (in
fact, regular domains). This idea is important in the proof of the excision axiom
later on.

Theorem 2.7 (5.47 from [5]). Suppose M is a smooth manifold without boundary
and f ∈ C∞(M). For each regular value r of f , the sublevel set f−1((−∞, r]) is a
regular domain in M .

This concludes our short discussion of the tools we need from differential topol-
ogy. Hereafter in this paper, we shall make the following conventions.

Convention. The word “manifold” means a compact smooth manifold with or
without boundary, unless otherwise stated.

Convention. The empty set ∅ is a manifold of all dimensions.
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M0

M1

Figure 1. A “pair of pants”. Here, M0 is the union of the lower
two circles, andM1 is the upper circle, andM0⊔M1 is the boundary
of this pair of pants. It follows that M0 ∼ M1

3. Definition of Bordism

Now we begin our formal discussion of bordism.

3.1. Bordism groups.

Definition 3.1. Two closed n-manifolds M0 and M1 are bordant if there exists an
n + 1-manifold N with boundary such that ∂N is diffeomorphic to M0 ⊔ M1. In
this case, we write M0 ∼ M1.

Definition 3.2. A closed n-manifold M is said to be null bordant if it is bordant
to the empty set, i.e., there is an n+1-manifold N with boundary such that ∂N is
diffeomorphic to M .

Figure 1 is a canonical example of bordism, which is commonly referred to as a
“pair of pants.”

The bordism we have just defined is actually unoriented bordism, and there is
also an oriented version. Instead of considering all closed manifolds, we consider
only oriented closed manifolds.

Definition 3.3. Two oriented closed manifolds are said to be bordant if M0⊔−M1

is the boundary of some oriented n+1-manifold N , where −M1 denotes the opposite
orientation.

In this paper, we shall focus on the unoriented case, but the constructions for
the oriented case are mostly similar. We will point out their distinctions when
necessary.

Convention. In this paper, the word “bordism” means unoriented bordism unless
otherwise stated.

The first thing to check is that bordism is indeed an equivalence relation. To
this end we shall need the tools from the previous section, namely gluing manifolds
along their boundaries.

Theorem 3.4. Bordism is an equivalence relation.

Proof. Symmetry is trivial. Suppose M is a closed n-manifold. Then M × I is a
compact manifold with boundary equal to M ⊔M , so reflexivity holds.

For transitivity, suppose M0 ∼ M1 and M1 ∼ M2. Then there exist n + 1-
manifolds N and N ′ such that ∂N = M0 ⊔M1 and ∂N ′ = M1 ⊔M2. By theorem
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2.1, we may glue N and N ′ alongM1. The resulting setW = N∪M1N
′ can be given

a smooth structure so that the inclusions M0,M2 ↩→ W are smooth embeddings,
whence ∂W = M0 ⊔M2. Thus, transitivity holds. !

We write the equivalence class of M as [M ].

Definition 3.5. The nth unoriented bordism group, denoted by Nn, is defined as
the set of all closed n-manifolds up to bordism, where addition is defined as disjoint
union: [M0] + [M1] = [M0 ⊔M1]. The identity element is the empty manifold. It
is not hard to check that this operation is well defined. From the proof of theorem
3.4 it is immediate that M ⊔M is null bordant, so every element in Nn is its own
inverse.

Example 3.6. Since closed 0-manifolds are just finite sets of discrete points, and
compact 1-manifolds with boundary are just finite disjoint unions of [0, 1], we con-
clude that a closed 0-manifold is null bordant if and only if it has an even number
of points. Hence, N0 = Z/2.

Example 3.7. Since closed 1-manifolds are just disjoint unions of S1, and S1 is
null bordant, we conclude that N1 = 0.

Example 3.8. Orientable closed 2-manifolds are exactly spheres and connected
sums of tori, so they are all null bordant. On the other hand, one can show that
RP 2 is not null bordant, say using Euler characteristic. Hence, N2 ∕= 0. In fact,
N2 = Z/2. For the proof of this fact and the calculation of Nn in higher dimensions,
readers may look at Thom’s original paper [9].

3.2. Bordism ring. In fact, bordism groups together form a graded ring.

Definition 3.9. The unoriented bordism ring is defined as N∗ =
!∞

n=0 Nn, where
the multiplication is induced by products of manifolds: [M0] · [M1] = [M0 × M1].
We leave it to the readers to check that this is well defined.

Since every nonzero element in N∗ has order 2, N∗ is actually a graded algebra
over Z/2. The oriented bordism groups and the oriented bordism ring are defined
entirely analogously and are denoted by Ωn and Ω∗, respectively. But in the oriented
case, elements may no longer have order 2, since ∂(M × I) = M ⊔−M if one takes
orientation into account.

Thom in his remarkable 1954 paper [9] first determined the structure of the ring
N∗: it is isomorphic to the graded polynomial ring cover Z/2, with one generator
in each dimension not of the form 2k − 1, i.e.,

N∗ ∼= Z/2
"
xi | i ∕= 2k − 1

#
.

This gives us a complete and computable description of all bordism groups.

(1) When n = 0, there is one generator “1”, so N0 = N2 = Z/2.
(2) When n = 1, 3, there is no polynomial in these degrees, so N1 = N3 = 0.
(3) When n = 2, there is one generator x2, so N0 = N2 = Z/2.
(4) When n = 4, there is one generator x4, as well as an element x2

2 in degree
4, so N4 = Z/2⊕ Z/2.

Following this pattern, one can easily compute Nn for arbitrary n. One might
wonder: what manifolds can be taken as the representatives of these generators?
Thom showed in [9] that the generators in even dimensions can be taken as RP 2n.
The explicit generators in odd dimensions were described by Dold in [2].
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As the readers may expect, the oriented bordism ring Ω∗ has a much more
complicated structure. In Thom’s paper [9], it was shown that Ωk are finitely
generated abelian groups. Furthermore, Thom proved that Ω∗ ⊗ Q is isomorphic
to the polynomial algebra whose generators are CP 2n for n ≥ 0. Milnor showed in
his 1960 paper [8] that Ω has no odd torsion; furthermore, Ω/Ωtor is a polynomial
algebra with a generator in each dimension 4k. A complete algebraic description
of Ω∗ was given by Wall in [11].

In this paper we shall not focus on the bordism groups and ring themselves, but
rather on the homology theory they give rise to. In particular, we will study in
the next section the bordism homology groups of a space, just like in the theory of
singular homologies.

4. Bordism Homology of a Space

Now we work towards constructing our (generalized) homology theory from bor-
dism. Recall that a homology theory assigns, to each pair of spaces (X,A), a
sequence of abelian groups. Singular homology is defined in terms of singular chain
complexes. Our definition of bordism homology will not involve such chain com-
plexes, since bordism is entirely geometric in nature.

4.1. Relative bordism groups. Instead of working with singular simplices, we
now consider singular manifolds.

Convention. A pair (X,A) of topological spaces is just a space X together with a
subspace A ⊆ X.

Definition 4.1. Let (X,A) be a pair of topological spaces. A singular n-manifold
on (X,A) is a pair (M, f) where M is a compact n-manifold and f : M → X is a
continuous map, with f(∂M) ⊆ A.

Now we need to define the bordism of such singular manifolds. One might be
tempted to write: two singular manifolds (Mi, fi) are bordant if there is another
manifold W and a map g : W → X with ∂W = M0 ⊔ M1 and g|Wi = fi. We
may then define the bordism group Nn(X,A) to be the set of all such singular
n-manifolds up to bordism, with the group operation being disjoint union. This
seems to be a natural generalization of definition 3.1.

However, this definition does not work well. The most obvious reason is that
∂W should not have boundaries, but M0 and M1 might. Furthermore, this is not
even an equivalence relation, as it is not reflexive. Suppose (M, f) is a singular
manifold on (X,A). Then ∂(M × I) is not just the disjoint union of M and itself,
but has the additional piece ∂M × I.

The exactness axiom also fails miserably. ConsiderNn(A) → Nn(X) → Nn(X,A).
The composition of these two arrows is not necessarily zero. Indeed, if we have a
singular manifold on A, a priori there is no reason to believe that it is the boundary
of some other manifold, so it can fail to be null bordant in Nn(X,A).

How can we get around with these issues? Recall how we define the relative
singular homology groups of a pair. We first define the relative chains Ck(X,A) =
Ck(X)/Ck(A), and then take its homology groups. The subset A is in the quotient,
so its information is meant to be “ignored.” With this in mind, we have the following
definitions.
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Definition 4.2. Two singular n-manifolds (Mi, fi) on (X,A) are said to be bordant
if there exist a compact n+ 1-manifold W and a map g : W → X such that

(1) M0 ⊔M1 is an embedded submanifold of ∂W , and g|Mi = fi,
(2) g(∂W \M0 ⊔M1) ⊆ A.

This makes precise the idea that A is in the “quotient:” two singular manifolds
Mi are bordant if their disjoint union forms the boundary of another manifold, up
to an additional piece whose image lies in A. In other words, we are allowed to
freely add pieces that lie in A without changing the equivalence class of a manifold.

In particular, this new definition of relative bordism is reflexive: ∂(M × I) =
(M ⊔M) ∪ (∂M × I), and we have by assumption that g(∂M × I) = f(∂M) ⊆ A,
where g is the natural map g(p, t) = g(p). We leave it to the readers to verify that
relative bordism is an equivalence relation. (Theorem 15.10.3 from [10] might be
helpful.)

Definition 4.3. The nth (relative) bordism group of a pair (X,A), denoted by
Nn(X,A), is the set of all singular n-manifolds on (X,A) up to bordism, with the
group operation being disjoint union. We denote the equivalence class of (M, f) by
[M, f ].

Definition 4.4. The nth (absolute) bordism group of a space X is, just like in
singular homology, defined as Nn(X) := Nn(X,∅).

Remark 4.5. In particular, if A = ∅, then we have the following.

(1) All singular manifolds are closed, i.e., without boundary.
(2) We are no longer allowed to put in the “additional piece” that lies in A.

Hence, relative bordism reduces to the case described at the beginning of this section.

Example 4.6. If X is taken to be the one point space pt, then its bordism groups
are just the usual bordism groups, i.e., Nn(pt) = Nn, since there is only one map
into a one point space.

4.2. Functoriality of N. If φ : (X,A) → (Y,B) is a map of pairs, then there is
an induced map φ∗ : Nn(X,A) → Nn(Y,B), given by

φ∗[M, f ] = [M,φf ].

It is easy to see that Nn are functors from the category of pairs of topological spaces
to the category of abelian groups.

We still need the boundary map ∂ : Nn(X,A) → Nn−1(A), which is defined in
the obvious way:

∂[M, f ] = [∂M, f |∂M ].

This is well defined since we imposed the condition that f(∂M) ⊆ A. It is not hard
to check that ∂ is a natural transformation, i.e., we need to check that the following
square commutes:

Nn(X,A)
∂ !!

φ∗

""

Nn(A)

φ∗

""
Nn(Y,B)

∂ !! Nn(B)

and this holds since

∂ ◦ φ∗[M, f ] = ∂[M,φf ] = [∂M, (φf)|∂M ] = [∂M,φ(f |∂M)]



A GEOMETRIC VIEW OF BORDISM HOMOLOGY 9

= φ∗[∂M, f |∂M ] = φ∗ ◦ ∂[M, f ].

Finally, note that ∂2 = 0 by construction.

Remark 4.7. Note that there is a slight abuse of notation here: we are using the
symbol Nn to denote both the nth bordism group, as in definition 3.5, and to denote
the functor from the category of pairs of topological spaces to the category of abelian
groups, but it should be clear from the context which one is being used.

4.3. Modules over the bordism ring. We conclude this section with a brief
remark that the direct sum N∗(X,A) =

!∞
n=0 Nn(X,A) is a module over the

bordism ring N∗ we constructed in section 3.
Indeed, given [M, f ] ∈ Nm(X,A) and [W ] ∈ Nn, we have [M × W, f ◦ π] ∈

Nm+n(X,A), where π : M × W → M is the projection. It is easy to check that
the operation thus defined satisfies the associative and distributive laws. Notice
that this is a right module. We could have put [W ] on the left. However, in this
case of oriented bordism, a left module structure would introduce a sign in the
multiplication. It turns out that the sign is always positive, but to prove it requires
nontrivial results about the structure of the oriented bordism ring Ω∗, such as those
listed at the end of section 3.

5. The Eilenberg-Steenrod Axioms

Now we have all the tools necessary for proving that bordism defines a generalized
homology theory. The proofs presented in this section can be easily generalized to
the oriented case.

The following lemma is going to be extremely useful, so we state it early here.

Lemma 5.1. Let [M, f ] ∈ Nn(X,A) and V be an embedded submanifold of M of
codimension 0. Suppose [V, f |V ] ∈ Nn(X,A) and f(M \ V ) ⊆ A. Then [M, f ] =
[V, f |V ] in Nn(X,A).

Proof. Consider the manifold W = M × I. Its boundary consists of two copies of
M , call them M0 and M1, together with ∂M × I. Let g be the map g(p, t) = f(p).
We may break down M1 as M1 = (M1 \ V )∪ V , so M × I is a bordism between M
and V , since

g(∂W −M ⊔ V ) = g((M1 \ V ) ∪ (∂M × I)) = f(M \ V ) ∪ f(∂M) ⊆ A,

so the claim holds by the definition of relative bordism. !
5.1. Dimension axiom. We first note that the dimension axiom fails for bordism
homology. As pointed out in Example 4.6, the nth bordism group of a point is just
Nn itself. We have seen that N2 ∕= 0. In fact, it is well known that RP 2n is not the
boundary of any manifold, so N2n ∕= 0 for all n ≥ 1.

5.2. Homotopy axiom.

Theorem 5.2. Suppose φ ≃ ψ : (X,A) → (Y,B) are homotopic maps of pairs.
Then Nn(φ) = Nn(ψ) for all n.

Proof. By definition, there exists a continuous map H : X × I → Y with H(x, 0) =
φ(x), H(x, 1) = ψ(x), and H(A, t) ⊆ B for all t.

Let [M, f ] ∈ Nn(X,A). We need to show that [M,φ◦f ] = [M,ψ◦f ] in Nn(Y,B).

Let $H : M × I → Y be defined as

$H(p, t) = H(f(p), t).
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Then $H is continuous. Furthermore, $H|(M × 0) = φ ◦ f and $H|(M × 1) = ψ ◦ f .
It remains to show that $H maps ∂(M × I)−M × {0, 1} into B. This is true since

$H(∂M × I) =
%

t∈[0,1]

$H(∂M × t) =
%

t∈[0,1]

H(f(∂M), t) ⊆
%

t∈[0,1]

H(A, t) ⊆ B.

Therefore, (M × I, $H) is a bordism between (M,φ ◦ f) and (M,ψ ◦ f). !

5.3. Sum axiom.

Theorem 5.3. If X =
&

α Xα and iα : Xα → X are the inclusions, then ⊕αiα∗ :!
α Nn(Xα) → Nn(X) is an isomorphism.

Proof. The map ι = ⊕αiα∗ is given by the following

ι (⊕α[Mα, fα]) = [
&
Mα,

&
fα] .

Since [Mα, fα] = 0 for all but finitely many α, we may assume that
&
Mα is

compact, so ι is a well defined homomorphism.
To show that ι is injective, suppose ι(⊕α[Mα, fα]) = 0 in Nn(X). Then there

exists a n + 1-manifold W and a map g : W →
&
Xα such that ∂W =

&
Mα and

g|Mα = fα. Note that W is the disjoint union (as a space) of Wα := g−1(Xα), each
of which is open and closed in W . Hence, Wα is compact, and it is a manifold since
it is a union of the components in W . Furthermore, ∂Wα = ∂W ∩Wα = Mα and
g|∂Wα = fα. It follows that (Mα, fα) are all null bordant in Xα via (Wα, g|Wα).
Hence, ι is injective.

To show that ι is surjective, suppose [M, f ] ∈ Nn(X). By the same argument,
M is the disjoint union of Mα := f−1(Xα), and each Mα is a compact manifold. It
follows that ⊕α[Mα, f |Mα] is sent to [M, f ] under ι. !

5.4. Long exact sequence axiom. Before proving the long exact sequence axiom,
we need a preliminary lemma.

Lemma 5.4. Suppose (M, f) has no boundary and is null bordant in Nn(X,A) via
W . Then ∂W −M is a compact n-manifold without boundary.

Proof. By definition ∂W containsM as an embedded submanifold. SinceM is com-
pact and W is Hausdorff, M is closed in ∂W . Recall that embedded submanifolds
without boundary of codimension 0 in a manifold without boundary are precisely
the open submanifolds. For a proof, see proposition 5.1 in Lee [5]. It follows that
M is also open in ∂W . Hence, M is a union of components in ∂W , which implies
that ∂W −M is a compact n-manifold without boundary, since ∂W itself has no
boundary. !

Theorem 5.5. For a pair (X,A), let i : A → X and j : (X,∅) → (X,A) be the
inclusions. Then the following sequence is exact:

· · · !! Nn(A)
i∗ !! Nn(X)

j∗ !! Nn(X,A)
∂ !! Nn−1(A) !! · · ·

Proof. There are six inclusions to verify.

(1) Im i∗ ⊆ ker j∗. Suppose [M, f ] ∈ Nn(A). Take V = ∅ in lemma 5.1, we see
that [M, f ] = 0 in Nn(X,A), so j∗i∗ = 0.
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(2) ker j∗ ⊆ Im i∗. Suppose [M, f ] ∈ Nn(X) is such that [M, f ] = 0 in
Nn(X,A). Then there exists a pair (W, g) satisfying the conditions in def-
inition 4.2. Note that M has no boundary. By lemma 5.4, N := ∂W −M
is a compact n-manifold without boundary. Furthermore, g(N) ⊆ A by
assumption, so [N, g|N ] ∈ Nn(A). It follows that i∗[N, g|N ] = [M, f ] in
Nn(X), since ∂W = M ⊔N .

(3) Im j∗ ⊆ ker ∂. Suppose [M, f ] ∈ Nn(X). Since M has no boundary,
∂j∗[M, f ] = ∂[M, f ] = [∅,∅], so the result holds trivially.

(4) ker ∂ ⊆ Im j∗. Suppose [M, f ] ∈ Nn(X,A) and ∂[M, f ] = [∂M, f |∂M ] = 0
in Nn−1(A). By definition, there exists an n-manifold W on A and a map
g : W → A with ∂W = ∂M and g|∂W = f |∂M . By theorem 2.1, we may
glue together M and W along their common boundary. We now obtain
us a manifold B without boundary and a map h = f ∪∂M g, h : B → X.
Then [B, h] ∈ Nn(X). Furthermore [M, f ] is bordant to [B, h] by lemma
5.1, since h(B \M) ⊆ g(W ) ⊆ A. Hence, j∗[B, h] = [M, f ].

(5) Im ∂ ⊆ ker i∗. Suppose [M, f ] ∈ Nn+1(X,A). Then [∂M, f |∂M ] ∈ Nn(A).
When considered as an element in Nn(X), [∂M, f |∂M ] becomes trivial
because it is null bordant via M itself, so i∗∂ = 0.

(6) ker i∗ ⊆ Im ∂. Suppose [M, f ] ∈ Nn(A) and [M, f ] = 0 in Nn(X). By
definition, there exists an n + 1-manifold W and a map g : W → X with
∂W = M and g|∂W = f . It follows that g(∂W ) = f(M) ⊆ A, whence
[W, g] ∈ Nn+1(X,A), so we have ∂[W, g] = [M, f ]. !

5.5. Excision axiom. The final axiom we need to verify is the excision axiom. In
addition to all the tools we have developed in this section and section 2, we will
need the following crucial lemma.

Lemma 5.6. Let P and Q be disjoint closed subsets of a compact smooth mani-
fold M . There exists a closed topological submanifold B ⊆ M with boundary that
contains P and is disjoint from Q. Furthermore, B can be given a smooth structure.

Proof. We shall only prove this lemma in the special case that M has no boundary,
and this version will be also useful in section 6.3. We use the smooth Urysohn’s
lemma (2.3). Take a smooth function α : M → [0, 1] such that α|P = 0 and
α|Q = 1. By Sard’s theorem (2.5), there exists a regular value r ∈ (0, 1). Consider
B = α−1([0, r]) = α−1((−∞, r]). Then B is closed, nonempty, and is a regular
domain in M by theorem 2.7. !

Remark 5.7. The proof of the general case can be found in theorem 3.1 of [1],
which is slightly beyond the scope of this paper. The proof is similar to the one given
above, in the sense that the submanifold B is also constructed as a regular sublevel
set α−1([0, r]) of some smooth function. However, theorem 2.7 fails when M has
boundary, and one needs to smooth certain corners, using additional techniques.

The following lemma tells us that the boundary of the submanifold B built this
way only falls into a certain part of the big manifold.

Lemma 5.8. Under the same hypothesis and notation as in lemma 5.6, we have
that

∂B ⊆ ∂M ∪ α−1(r) ⊆ ∂M ∪ (P c ∩Qc).
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Proof. Suppose p ∈ ∂B \ ∂M . We will show that α(p) = r. Since p /∈ ∂M , p is an
interior point of M , so there is a chart (ϕ, U) in M about p.

Since p ∈ B, we know that α(p) ≤ r. Suppose α(p) = r0 < r. Take r1 ∈ (r0, r),
and consider V = α−1([0, r1)). Then p ∈ V and V ⊆ B. Note that V is open
in M , and hence also in B. Then U ∩ V is an open neighborhood of p in B that
is diffeomorphic to an open subset of Rn. Hence, p is an interior point of B, a
contradiction. Finally, α−1(r) ⊆ P c ∪Qc because α|P = 0 and α|Q = 1. !
Remark 5.9. Lemma 5.8 is a purely topological consequence of our construction.
Hence, it works for the general case as well.

Now we can prove the excision axiom. The argument is a bit convoluted, and
the readers are encouraged to draw pictures themselves.

Theorem 5.10. Suppose X is a space with subspaces Z and A satisfying Z ⊆ IntA.
Then the inclusion of pairs i : (X \ Z,A \ Z) ↩→ (X,A) induces an isomorphism
i∗ : Nn(X \ Z,A \ Z) → Nn(X,A) on the bordism homology groups.

Proof. We first show surjectivity. Suppose [M, f ] ∈ Nn(X,A). Then P = f−1(X \
IntA) and Q = f−1(Z) are disjoint closed subsets of M . Apply lemma 5.6 to obtain
a closed submanifold B ⊆ M with boundary such that P ⊆ B and B ∩Q = ∅.

Since B ∩ Q = ∅, we know that f(B) ⊆ X \ Z. By lemma 5.8, ∂B ⊆ ∂M ∪
(P c ∩ Qc). Thus, for a point p ∈ ∂B, either p ∈ ∂M , in which case f(p) ∈ A, or
p ∈ P c ∩ Qc, in which case p ∈ P c implies f(p) ⊆ IntA. In either case, we have
f(∂B) ⊆ A \Z. Therefore, [B, f |B] ∈ Nn(X \Z,A \Z). Furthermore, f(M \B) ⊆
IntA because B contains f−1(X \ IntA). By lemma 5.1, i∗[B, f |B] = [M, f ].

Now we show injectivity. Suppose [M, f ] ∈ Nn(X \ Z,A \ Z) and i∗[M, f ] = 0
in Nn(X,A). Then there exists an n+ 1-manifold W and a map g : W → X such
that M is an embedded submanifold of ∂W , g(∂W \M) ⊆ A, and g|M = f . Let
us use the same trick: let P = g−1(X \ IntA) and Q = g−1(Z). Find an embedded
submanifold B ⊆ W such that P ⊆ B and B ∩ Q = ∅. Clearly [∂B, g|∂B] ∈
Nn(X \ Z,A \ Z) and is null bordant.

We claim that M ∩∂B = M ∩B. One inclusion is clear. For the other inclusion,
suppose p ∈ M ∩ B. Then p ∈ ∂W , so there is a chart ϕ : U → Hn+1 about p in
W such that ϕ(p) ∈ Rn × 0. It follows that p ∈ ∂B, so the equality holds.

This implies that M ∩ ∂B is an embedded submanifold in M , since

(∗) M ∩ ∂B = M ∩B = (α|M)−1([0, r]),

where, by changing r if necessary, we may assume that r is also a regular value of
α|M , since the set of critical values has measure zero.

To simplify our notation, let L = M ∩ ∂B = M ∩ B. Observe that [L, f |L] ∈
Nn(X \ Z,A \ Z). To see this, first note that f(L) ⊆ f(M) ⊆ X \ Z. It remains
to show that f maps ∂L into A \ Z. This follows from (∗) and lemma 5.8, since
∂L ⊆ ∂M ∪ (P c ∩Qc).

We now claim that [M, f ] = [L, f |L] in Nn(X \ Z,A \ Z). By lemma 5.1, it
suffices to show that f(M \L) = f(M \∂B) ⊆ A \Z. If p ∈ M \∂B = M \B, then
f(p) ∈ X \ Z because p ∈ M , and f(p) ∈ IntA because p /∈ B. The claim then
follows.

We can show by the same argument that [L, f |L] = [∂B, g|∂B] in Nn(X \Z,A \
Z). Since L is an embedded submanifold of M , it is also an embedded submanifold
of ∂B. Now, it suffices to show that g(∂B \ L) = g(∂B \ M) ⊆ A \ Z. Recall
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that ∂B ⊆ ∂W ∪ (P c ∩ Qc). If p ∈ ∂B \ M , then either p ∈ (P c ∩ Qc) \ M or
p ∈ ∂W \M . In the first case, we are obviously done. In the second case, we know
that p /∈ Q since B and Q are disjoint, so g(p) /∈ Z. Furthermore, we have by
assumption that g(∂W \M) ⊆ A, so g(p) ∈ A. Hence, in either case, g(p) ∈ A \Z.
Therefore, (M, f), (L, f |L) and (∂B, g|∂B) are bordant, as desired, but since the
last one is obviously null bordant in Nn(X \Z,A \Z), we conclude that [M, f ] = 0
in Nn(X \ Z,A \ Z). !

6. Consequences of the Axioms

Having proved the Eilenberg Steenrod axioms for bordism homology, we now
have a number of new tools and definitions.

For instance, we may define the reduced bordism homology groups $Nn(X) as
the kernel of the map ε : Nn(X) → Nn(pt). For a good pair (X,A), i.e., where A
has a neighborhood that deformation retracts onto A, we can prove using excision
that

Nn(X,A) ∼= $Nn(X/A).

Note that $Nn (pt) = 0 for all n. Furthermore, we have

Nn(X) = $Nn(X)⊕Nn(pt) = $Nn(X)⊕Nn.

This can be proved using the fact that the long exact sequence of the pair (X, pt)
splits via the retraction of X onto pt.

6.1. Computation of Nn(S
k). For any homology theory, one often is interested

in computing the homology groups of spheres.

Proposition 6.1. There are isomorphisms

$Nn(S
k) = Nn−k and Nn(S

k) = Nn−k ⊕Nn.

Proof. We may use the suspension isomorphisms $Nn(X) ∼= $Nn+1(SX), where S
denotes the suspension functor. This holds for any generalized homology theory.

Hence, $Nn(S
k) ∼= $Nn−k(S

0), so it boils down to calculating $Nn(S
0). We claim that

$Nn(S
0) = Nn, which is defined to be the kernel of h∗ : Nn(S

0) → Nn(pt), where
h : S0 → pt is the collapse map.

By example 4.6, we may identify Nn(pt) with Nn. Since S
0 is the disjoint union

of two discrete points, the sum axiom implies that ι : Nn ⊕ Nn → Nn(S
0) is an

isomorphism. Here ι sends a pair [M ]⊕ [M ′] to [M ⊔M ′, i⊔ i′], where i and i′ send
M and M ′ to the two distinct points of S0, respectively. It suffices to calculate
ker(h∗ ◦ ι). Note that

h∗ ◦ ι([M ]⊕ [M ′]) = [M ⊔M ′] = [M ] + [M ′].

Therefore, [M ]⊕ [M ′] ∈ ker(h∗ ◦ ι) iff [M ] = [M ′], so kerh∗ = Nn. !

6.2. Steenrod problem. There is a close connection between bordism homology
and singular homology. Consider [M, f ] ∈ Nn(X). M contains a fundamental class
[M ] ∈ Hn(M ;F2) if we use F2 coefficients. Hence, we have f∗[M ] ∈ Hn(X;F2).
This gives us a map µ from Nn(X) to Hn(X;F2).

One needs to show that this map is well defined. It suffices to consider the
case where (M, f) is null bordant, i.e., (M, f) = (∂W, g|∂W ) for some W, g. Then
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W contains a fundamental class [W ] ∈ Hn+1(W, ∂W ;F2), which is sent to the
fundamental class [M ] under the boundary map ∂ in the long exact sequence:

Hn+1(W,M ;F2)

∂

""
Hn(M ;F2)

i∗

""

f∗
##❚❚❚

❚❚❚❚

Hn(X;F2)

Hn(W ;F2)
g∗

$$❥❥❥❥❥❥❥

Hence, f∗[M ] = g∗i∗∂[W ] = 0 because i ◦ ∂ = 0. Therefore, µ is well defined. For
each map of spaces φ : X → Y , we have the following diagram:

Nn(X)
µ !!

φ∗

""

Hn(X;F2)

φ∗

""
Nn(Y )

µ !! Hn(Y ;F2)

One sees that this square commutes since

φ∗µ[M, f ] = φ∗f∗[M ] = µ[M,φf ] = µφ∗[M, f ].

Hence, µ is a natural transformation from bordism homology to ordinary homology.
Similarly, one can define a natural transformation from oriented bordism homology
to ordinary homology, with coefficients in Z rather than F2.

Steenrod raised the following question, which appeared in Eilenberg’s 1949 paper
[3], problem 25. It was formulated as follows.

Question 6.2 (Steenrod Problem). Given a space X and a homology class α ∈
Hn(X;R), does there always exist a closed singular manifold (M, f) such that
f∗[M ] = α? Here, R = F2 in the unoriented case, and R = Z in the oriented
case.

In other words, is the natural transformation µ defined above always surjective?
This problem was first solved by Thom in [9], where he showed that the answer
to the unoriented case is affirmative, and that the statement does not hold in the
oriented case. The proofs are quite involved. Interested readers may look at Thom’s
original paper or Miller’s notes [6] on this subject.

6.3. Mayer Vietoris sequence in bordism homology. One of the most useful
tools built from the Eilenberg Steenrod axioms is the Mayer Vietoris sequence. To
derive this fact from the axioms, one needs to invoke the following algebraic version
of the theorem.
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Lemma 6.3. Suppose the following diagram commutes, where the the rows are
exact and every third vertical arrow is an isomorphism (as indicated in the diagram).

· · · !! Cn+1

δn+1 !!

∼= kn+1

""

An
fn !!

in

""

Bn
gn !!

jn

""

Cn

∼= kn

""

δn !! An−1
!!

in−1

""

· · ·

· · · !! C ′
n+1

δ′n+1 !! A′
n

f ′
n !! B′

n

g′
n !! C ′

n

δ′n !! A′
n−1

!! · · ·

Then the following sequence is exact.

· · · !! An
in⊕fn !! A′

n ⊕Bn

f ′
n−jn !! B′

n

∂n !! An−1
!! · · ·

where ∂n = δn ◦ k−1
n ◦ g′n.

The proof of this lemma is a standard exercise in homological algebra, which
involves lots of diagram chasing.

Now suppose X is covered by the interiors of A and B. We have an inclusion of
pairs (B,A ∩ B) ↩→ (X,A), and hence following maps between the two long exact
sequences.

· · · !! Nn(A ∩B)
i∗ !!

""

Nn(B)
j∗ !!

""

Nn(B,A ∩B)
∂ !!

k∗

""

Nn−1(A ∩B) !!

""

· · ·

· · · !! Nn(A)
i∗ !! Nn(X)

j∗ !! Nn(X,A)
∂ !! Nn−1(A) !! · · ·

The maps k∗ are isomorphisms because they there is a homeomorphism B/(A∩B) ∼=
X/A. Hence, we have a long exact sequence

· · · !! Nn(A ∩B) !! Nn(A)⊕Nn(B) !! Nn(X)
∂n !! Nn−1(A ∩B) !! · · ·

In our case, the boundary homomorphism ∂n : Nn(X) → Nn−1(A ∩ B) has a
nice geometric formula. To construct it, we follow the recipe in lemma 6.3.

Given a singular n-manifold [M, f ] ∈ Nn(X), we need to construct a singular
n− 1-manifold on A ∩B. We follow the diagram.

(1) The first map j∗ does nothing but viewing [M, f ] as a singular manifold on
(X,A). Note that M has no boundary.

(2) Next, we need to find an element in Nn(B,A∩B) whose image under k∗ is
[M, f ]. To this end, we consult the proof of the excision axiom (5.10). Note
that the set that is being excised is Z = X\B, where Z = X\IntB ⊆ IntA.
Hence, let P = f−1(X \ IntA) and Q = f−1(X \ IntB). Since M has no
boundary, the special case of lemma 5.6 we proved applies. Thus, pick a
smooth function α : M → [0, 1] such that α|P = 0 and α|Q = 1. Choose any
regular value 0 < r < 1. Then L = α−1([0, r]) satisfies k∗[L, f |L] = [M, f ].

(3) Finally, we apply the boundary map to L. In this situation, we actually
have ∂L = α−1(r). This follows from the elementary fact that the boundary
of a regular domain B, inside a manifold M without boundary, coincides
with its topological boundary, as proposition 5.46 in Lee [5] shows. We
refer the readers to [4] for more details

In summary, the boundary map does the following to M : first choose a smooth
function α : M → [0, 1] satisfying α|P = 0 and α|Q = 1, then take the preimage
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α−1(r) for any regular value r of α. It is not obvious that this formula is well
defined (i.e., independent of the choice of α or r), but since we are following the
diagram and the proof of excision, well-definedness is automatic.

The formula above is precisely the recipe described by tom Dieck in theorem
21.1.7 of [10]. However, the author presents this formula before proving the excision
axiom and then shows that this is well defined. What we just did is to motivate
the construction of this formula. Alternatively, since the Mayer-Vietoris sequence
and the excision axiom are, in some sense, equivalent, one could also proceed in the
opposite direction as tom Dieck did.
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