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Abstract. The shadowing property of hyperbolic dynamical systems is vital

to understanding their behavior. Unfortunately, many proofs of this result use
techniques which do not intuitively demonstrate the link between hyperbolicity

and shadowing. In order to address this issue, I offer a direct approach to the

proof. Then, in order to highlight its importance, I use the shadowing lemma
to prove the structural stability of Anosov diffeomorphisms.
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1. Introduction

We define a dynamical system to be a homeomorphism f : X → X of a compact
space X. Of interest to us is the differentiable case where f is a diffeomorphism of
a smooth manifold. We would like to use the smooth structure of X to describe the
dynamical behavior of f . In particular, we will consider smooth dynamical systems
with a splitting of the tangent bundle into sub-bundles along which f contracts and
expands. This property is called hyperbolicity. When hyperbolicity holds on the
whole space X we say that f is an Anosov Diffeomorphism.

One of the interesting features of hyperbolic systems is how “stable” they are.
The goal of this paper is to introduce two important results that illustrate this
stability. First we prove the shadowing lemma which shows that the orbit structure
of an Anosov diffeomorphism is resilient to compounded error over time. We will
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then use this lemma to prove that Anosov diffeomorphisms are “structurally stable”,
meaning their dynamical behavior is preserved under C1-perturbation.

2. Stability

Our interest in dynamical systems lies in their effects under iteration, their ‘dy-
namical behavior’. In this section we will discuss what it means to preserve this
behavior, and as a consequence what it means for a dynamical system to be ‘struc-
turally stable’.

2.1. Topological Conjugacy. The focus on the iterative behavior of f motivates
the following rephrasing of the dynamical system definition: A dynamical system
is a compact Z-space. The Z-action associated to f is given by n · x = fn(x) for
any n ∈ Z and x ∈ X and conversely, f is given by f(x) = 1 · x.

This alternate definition is useful because it clearly indicates what the proper
notion of equivalence should be for dynamical systems:

Definition 2.1. We say dynamical systems f : X → X and g : Y → Y are
topologically conjugate if there exists a homeomorphism h : X → Y such that
hfh−1 = g.

This homeomorphism can equivalently be thought of as an isomorphism of Z-
spaces since it preserves the action: h(fn(x)) = gn(h(x)) for any n ∈ Z.

To illustrate this notion of equivalence, we consider the simplest useful example—
homeomorphisms of [0, 1]. In particular, we restrict our attention to orientation
preserving homeomorphisms of [0, 1].

Lemma 2.2. Let f and g be orientation preserving homeomorphisms from [0, 1] to
itself. If f and g have no fixed points on (0, 1) then they are topologically conjugate.

Moreover, the conjugating homeomorphism h is orientation preserving if and
only if f − id and g − id have the same sign on (0, 1).1

Proof. First we construct h. We will assume f − id and g − id are positive for
now. Fix any point p ∈ (0, 1). The orbits of p with respect to f and g are strictly
increasing Z-indexed sequences and therefore partition [0, 1] into countably many
intervals. Let

In = [fn(p), fn+1(p)] Jn = [gn(p), gn+1(p)]

for all n ∈ Z. We now fix some orientation preserving homeomorphism h0 : I0 =
[p, f(p)] → J0 = [p, g(p)]. Since In = fn(I0) and Jn = gn(J0) we can pushforward
h0 along the following diagram

I0
h0 //

fn

��

J0

gn

��
In // Jn

to get a homeomorphism hn = gn ◦ h0 ◦ f−n : In → Jn. Since h0 is orientation
preserving it maps p 7→ p and f(p) 7→ g(p). Therefore

hn(f
n+1(p)) = gn ◦ h0 ◦ f(p) = gn+1(p)

1Wen[1] theorem 1.8, page 11.
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and

hn+1(f
n+1(p)) = gn+1 ◦ h0(p) = gn+1(p).

In other words, the hn agree on the boundaries of their domains and so we can
paste them together into a map h : (0, 1) → (0, 1). This map must be strictly in-
creasing and surjective since all hn are. Thus h extends to an orientation preserving
homeomorphism from [0, 1] to itself.

Since f , g, and h all fix 0 and 1, conjugacy holds on the boundary of the unit
interval. Any x in the interior is contained in some In in which case f(x) ∈ In+1

and so

hf(x) = hn+1f(x) = gn+1 ◦ h0 ◦ fn(x) = ghn(x) = gh(x).

Thus h is a topological conjugacy of f and g.

Now suppose more generally that f − id and g − id are not both positive. We
repeat the above construction but account for orientations of intervals as necessary.
For example, if f − id ≤ 0 but g − id ≥ 0 our I0 and J0 become [f(p), p] and
[p, g(p)]. This requires us to choose an orientation reversing h0 so that p 7→ p and
f(p) 7→ g(p). If both f − id and g− id are negative h0 returns to being orientation
preserving.

Simply put, if the signs are different then we need an orientation reversing h0
to make sure we can paste the hn together. This orientation reversing h0 makes h
itself orientation reversing

We have constructed an h which is orientation preserving if and only if f−id and
g− id have the same sign. We now want to show that this holds for any conjugating
map h.

Suppose first that f − id ≥ 0. Consider any point x ∈ (0, 1). The sequence
x, f(x), f2(x), . . . is strictly increasing because f − id is positive on (0, 1). The limit
of this sequence must be a fixed point by continuity and therefore the only option
is 1. Similarly, if f − id ≤ 0 all points in the interior of the interval approach 0.
Orientation preserving and reversing homeomorphisms of [0, 1] can be characterized
by whether they preserve or reverse the endpoints. Conjugacy preserves orbits and
thus by continuity preserves limit points of orbits. Therefore if fn|(0,1) and gn|(0,1)
pointwise approach p, q ∈ {0, 1}, any conjugacy h of the two must associate p and
q. We have h orientation preserving if and only if p = q if and only if f − id and
g − id have the same sign. □

Visually, if f − id is positive on (0, 1) we can think of this dynamical system
using the following diagram:

In this case all the points in the interior of the interval move monotonically
towards the limit 1. If f − id is negative we simply reverse the direction of the
arrow.

Following lemma 2.2, it is natural to ask what happens when we string together
multiple orientation preserving homeomorphisms. For example:

where the dots indicate fixed points. The answer turns out to be a fairly quick
consequence of lemma 2.2. We first more precisely define the graphs we drew
above:
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Definition 2.3. Suppose f : [0, 1] → [0, 1] is an orientation preserving homeomor-
phism with finitely many fixed points. We construct the graph representation of f
as follows:

Take Fix(f) = {x0 = 0, x1, . . . , xn = 1} to be the vertex set. If f − id is positive
on the interval (xk, xk+1) add an edge from xk to xk+1. If f − id is negative on this
interval, add and edge from xk+1 to xk.

We now have the following characterization of topological conjugacy:

Theorem 2.4. Suppose f and g are orientation preserving homeomorphisms of
[0, 1] each with finitely many fixed points. Then f and g are topologically conjugate
if and only if their graph representations are isomorphic as directed graphs.

Proof. Any conjugacy h of f and g restricts to an order preserving or reversing
bijection of Fix(f) and Fix(g). Therefore any conjugacy h must also define an
order preserving or reversing bijection of the intervals bounded by the fixed points.
This gives us an isomorphism of the undirected graphs with the vertices as the
fixed points and edges as the intervals between. Initial and terminal vertices can
then be determined by taking ‘negative’ and ‘positive’ limits limn→−∞ fn(x) and
limn→+∞ fn(x) of points x on the edge in question. Since h conjugates these limits
in f to the analogous limits in g, it must also preserve the orientations of the edges.

Conversely, suppose the graphs representing f and g are isomorphic as directed
graphs. For each pair of associated edges choose a map which conjugates f and g
on those intervals. Because the conjugating map is orientation preserving if and
only if the edges point in the same direction, the piecewise conjugacies will paste
together into a global one. □

Note that by replacing fixed points with intervals we can strengthen this result to
characterize topological conjugacies for all orientation preserving f and g on [0, 1]
where Fix(f) and Fix(g) have finitely many components. While this theorem does
not classify all order preserving homeomorphisms of [0, 1], it hopefully provides
some geometric insight into the meaning of topological conjugacy.

As mentioned previously, this paper’s focus is on differentiable dynamical sys-
tems. To that end, one might expect that we would need to upgrade the regularity
of our conjugating maps. However, even when we work with differentiable struc-
tures, topological conjugacy is usually sufficient to preserve dynamical behavior.
Equivariance allows us to associate the group theoretic aspects of the dynamical
systems— orbits, fixed points, stabilizers, and so on— while continuity preserves
the topological data of these objects and their limiting behavior. Moreover, differ-
entiable conjugacy is very strong and in practice much more difficult to obtain.

To illustrate this, take f, g, h :M →M to be C1-diffeomorphisms with hf = gh.
If f has a fixed point p ∈ M and g has a corresponding fixed point h(p) = q then
DphDpfDph

−1 = Dqg. In other words, the Jacobian matrices f ′(p) and g′(q) must
be similar. For example, suppose f, g : [0, 1] → [0, 1] are orientation preserving
diffeomorphisms with f − id > 0 and g − id > 0 on (0, 1). These systems seem
to have the same dynamical behavior and they are topologically conjugate, but
if f ′(0) ̸= g′(0) or f ′(1) ̸= g′(1) then they cannot even be C1-conjugate. Since
we will consider only topological conjugacy in this paper, ‘conjugacy’ will indicate
topological conjugacy.
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2.2. Structural Stability. In order to determine whether a given dynamical sys-
tem is ‘stable’, we need to consider perturbations of it in the Ck-topology. We
begin with the Ck topology for maps of Euclidean spaces.

Definition 2.5. Suppose U ⊆ Rn is open with K = U compact. For any Ck map
f : K → Rm we define the Ck norm by

∥f∥Ck = sup
x∈K

{|f(x)|, ∥Dxf∥, . . . , ∥Dk
xf∥}

where ∥.∥ indicates the operator norm.
This norm defines the Ck topology on Ck(K,Rm)

This definition generalizes to manifolds.

Definition 2.6. We say a chart (U,φ) is admissible if there exists (U ′, φ′) such
that U ⊆ U ′ and φ = φ′|U .

Suppose M and N are compact manifolds. Using compactness we can choose
finite covers {(Ui, φi)} and {(Vj , ψj)} of M and N by admissible charts. For any
Ck maps f, g :M → N define

d(f, g) =
∑
i,j

∥ψjfφ
−1
i − ψjgφ

−1
i ∥Ck .

This metric depends on the covers we choose, but the resulting topology does not
since the transition functions are diffeomorphisms. We define this to be the Ck

topology on Ck(M,N).
Note that to take Ck norms in the definition of d(f, g) we needed to be working

over a compact domain, which the φi(Ui) are not. Extending to φi(Ui) solves this
problem which is why we require admissible charts.

For k ≥ 1 the Ck topology on Ck(M,M) induces the subspace topology on

Diffk(M). Similarly, the C0 topology on C0(M,M) induces the subspace topology
on Homeo(M).

The C0 topology is equivalently the uniform topology given by any Riemannian
metric on N . More generally we can define a topology on C0(X,Y ) for any compact
X and metric space Y as the uniform topology. The metric on Homeo(X) for a
metric space X is often defined as

dHomeo(f, g) = sup
x∈X

{d(f(x), g(x)), d(f−1(x), g−1(x))}.

The resulting topology is equivalent to the subspace topology induced by C0(X,X),
but this metric has the added benefit of being complete.

The Ck topology allows us to perturb maps which leads to the notion of stability:

Definition 2.7. Suppose f : M → M is a Ck-diffeomorphism for some k ≥
1. We say that f is a Ck structurally stable dynamical system if there exists a
neighborhood U ⊆ Diffk(M) of f such that every g ∈ U is topologically conjugate
to f .

Intuitively, f is Ck structurally stable if small Ck perturbations do not change
its dynamical structure. For large k these perturbations can become hard to visu-
alize. We will only discuss C1 structural stability in this paper. The unit interval
dynamical systems are again a useful example:



6 DINO ZAVATTINI

Theorem 2.8. Suppose f : [0, 1] → [0, 1] is an orientation preserving C1 diffeo-
morphism without fixed points in (0, 1). Then f is C1 structurally stable if and only
if f ′(0) ̸= 1 and f ′(1) ̸= 1.2

Proof. First suppose f ′(0) = 1. For any ε > 0 we can choose a g which is within the
C1 topology ε-ball of f but agrees with id on some interval [0, α). Such a g would
not be topologically conjugate to f . An analogous argument works for f ′(1) = 1.

For the converse direction suppose f ′(0) ̸= 1 ̸= f ′(1). For simplicity we will also
assume f − id > 0 on the interior of the interval but the other case is analogous.
We must have f ′(0) > 1 > f ′(1). For some δ > 0 and α > 0 we can require
f ′(x) > 1 + 2α for all x ∈ [0, δ) and f ′(y) < 1 − 2α for all y ∈ (1 − δ, 0]. By
choosing a small enough C1 neighborhood of f , we can require that all g in that
neighborhood satisfy f ′(x) > 1+α and f ′(y) < 1−α for the same x and y as above.
Call this neighborhood U . We can now choose a C0 (and thus C1) neighborhood
V of f such that for any g ∈ V , g(x) > x for all x ∈ [δ, 1 − δ]. By lemma 2.2 it
suffices to prove that any g ∈ U ∩ V has no fixed points on (0, δ)∪ (1− δ, 1). Since
g′(x) > 1 for all x ∈ [0, δ], g(x) > x for all x ∈ (0, δ] otherwise we would have
(g(x) − g(0))/(x − 0) = 1 for some x on that interval which would contradict the
mean value theorem. A similar argument shows that g(x) > x for x ∈ [1− δ, 1) and
so we are done. □

For any m ≥ n the Cm topology is finer than the Cn topology. It follows that
Cn perturbations are larger and thus that Cn stability is stronger. The strongest
useful notion of structural stability is C1 structural stability. The reason we have
not defined C0 structural stability is because it is too strong to be of any use. This
is demonstrated by the following:

Example 2.9. Consider any dynamical system f : [0, 1] → [0, 1] with at least
one isolated fixed point p. Any ε-neighborhood of f in the uniform topology will
contain a homeomorphism g which is fixed on a neighborhood of p.

p

Fix(g)

f

g

Figure 1.

In fact we can require g to be fixed on a neighborhood of each of its fixed points.
Since g has no isolated fixed points, it cannot be conjugate to f . Conversely, if f

2Wen[1] theorem 1.9, page 13.
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had only fixed points which were not isolated, we could use this same technique to
isolate them.

This argument generalizes. SupposeX is a compact metric space and f : X → X
has an isolated fixed point p ∈ X. Fix ε > 0. There is some neighborhood U ⊆ X
of p on f is within ε/2 of p. If we also require U ⊆ B(p, ε/2) it then follows that
d(f, id) < ε on U . If X is a manifold we can then extend id |U to a function over
X which stays within ε of f .

As this example demonstrates, structural stability under the C0 topology is
too stringent of a criterion to be useful. However, we still would like a notion of
(partial) preservation of dynamical behavior under topological perturbation. The
case of homeomorphisms on the unit interval in the above example hints at how to
do this: We could contract and expand fixed points at will, but not fully do away
with them. While we have lost the bijective correspondence between fixed points
which topological conjugacy would give us, if f : [0, 1] → [0, 1] has non-isolated
fixed points, then Fix(g) retracts onto Fix(f) for g sufficiently close to f . This
indicates that it might be useful to replace the homeomorphism h in our definition
of conjugacy with a surjection.

2.3. Topological Semi-conjugacy. Occasionally two dynamical systems may have
some similar characteristics without being fully conjugate. For such purposes we
define a weaker version of conjugacy:

Definition 2.10. We say that a dynamical system f : X → X is topologically
semi-conjugate to g : Y → Y if there is a surjective map h : X → Y such that
hf = gh. If such an h exists we say that g is a factor of f .

The map h can be thought of as a surjective Z-equivariant map from the Z-space
X to the Z-space Y .

The first thing to note is that this relation is not symmetric and therefore should
not be thought of as an equivalence. Instead, we think of semi-conjugacy as conju-
gacy with a loss of information from g to f . We introduce a sequence of examples
to illustrate what this means:

Example 2.11. Consider a map with a single fixed point g : {p} → {p}. For any
f : X → X, the constant map h : X → Y = {p} gives us hf(x) = p = g(p) = gh(x).
In other words the dynamical system on a point is a factor of every other dynamical
system. This is intuitively reasonable in the sense that any f : X → X fixes the
entire space X as an invariant set. Collapsing X to a point erases everything
interesting about the map f , but maintains this overall ‘fixed’ structure. In other
words, g is a simplified version of f . The loss in detail from f to g corresponds to
the failure of h to be injective.

Example 2.12. A more interesting example of this effect is covering spaces. Sup-
pose p : X̃ → X is the universal cover of X and f : X → X is a homeomorphism. If
we want to be strict about our definition of dynamical system, we can require thatX
and X̃ are compact (for example, taking X = RPn). Fix x0 ∈ X and x̃0 ∈ p−1(x0).

Let x1 = f(x0) and choose some x̃1 ∈ p−1(x1). We can lift fp : X̃ → X to get
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f̃ : X̃ → X̃ making the diagram

X̃
fp

��

f̃ //

p

��

X̃

p

��
X

f
// X

commute and satisfying f̃(x̃0) = x̃1. We can now lift f−1 in the same manner,

requiring that f̃−1(x̃1) = x̃0. Lifting is unique up to basepoint. In particular, since
basepoints have been properly accounted for, the composite f ◦ f−1 = id in the
diagram

X̃
f̃ //

p

��

X̃

p

��

f̃−1

// X̃

p

��
X

f
// X

f−1

// X

must lift uniquely to the identity on X̃ and so f̃ ◦ f̃−1 = id. The same logic shows
that the other composition is also the identity and that f̃ is a homeomorphism on
X̃. We thus have that fp = pf̃ where both f and f̃ are homeomorphisms. In other
words, f̃ is semi-conjugate to f . Just as in the fixed point example, the factor
of the semi-conjugacy encodes the target homeomorphism along with some extra
information. In this case that extra information can be thought of as the choice of
basepoint x̃0. Along with the fixed point example, covering spaces emphasize that
semi-conjugacy is a way of collapsing one dynamical system into another.

Example 2.13. We will now generalize both of the previous examples. Suppose
f : X → X is a homeomorphism on a compact space X. Consider any identification
∼ on X such that x ∼ x′ if and only if f(x) ∼ f(x′). Let q : X → Y := X/ ∼
be the quotient map. The map qf : X → Y is constant on equivalence classes and
thus gives us a map g : Y → Y such that

X
f //

q

��

qf

  

X

q

��
Y

g
// Y

commutes. Since qf−1 is constant on equivalence classes it too descends to a map
on Y . This map will be g−1 by the same uniqueness argument we made in the
covering space examples. It follows that g is a homeomorphism. We thus have a
semi-conjugacy from f to g defined by q.

Suppose Λ ⊆ X is an invariant set of f . Then the equivalence relation corre-
sponding to the quotient map X → X/Λ is preserved by f and f−1. Thus the
induced homeomorphism g : X/Λ → X/Λ is a factor of f . In other words, semi-
conjugacy allows us to contract invariant sets into fixed points.

At the end of the previous subsection we motivated semi-conjugacy by implying
that we wanted a surjection between the fixed points of the dynamical systems in
question. As example 2.11 illustrates, this is not true in general for semi-conjugacy
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since invariant subsets may be collapsed to fixed points. We have the following
compromise:

Proposition 2.14. Suppose h : X → Y defines a semi-conjugacy from f : X → X
to g : Y → Y .

(1) The semi-conjugacy h induces a surjection from invariant sets of f to in-
variant subsets of g.

(2) h(Fix(f)) ⊆ Fix(g).

Proof. Suppose Λ ⊆ X is an invariant set of f . Any µ = h(λ) ∈ h(Λ) satisfies
g(µ) = gh(λ) = hf(λ) = h(f(λ)) ∈ h(Λ) since f(λ) ∈ Λ. Thus h(Λ) is an invariant
set of g.

Now suppose M ⊆ Y is an invariant set of g. For any λ ∈ h−1(M) we have
hf(λ) = gh(λ) ∈ M since h(λ) ∈ M which is g-invariant. It follows that f(λ) ∈
h−1(M). Thus h−1(M) is an invariant set of f . Now note that since h is surjective,
h(h−1(M)) =M and so we get the desired surjection of invariant sets.

We now move on to (2). Suppose p is a fixed point of f and q = h(f). Then
g(q) = gh(p) = hf(p) = h(p) = q and so q is a fixed point of g. Thus h restricts to
a map from Fix(f) to Fix(g). □

Example 2.15. While h : Fix(f) → Fix(g) is not a surjection in general, it does
become one when we consider orientation preserving homeomorphisms with finitely
many (ie. isolated) fixed points on the unit interval. To demonstrate, first note that
the minimal invariant subsets of f are the fixed points and the intervals between
them. Moreover, each preimage under h of a fixed point of g is a closed invariant
subset of f . Any f -invariant set without fixed points will be a union of open
intervals between fixed points of f . Therefore any closed invariant set of f must
contain fixed points. In particular, the preimage under h of any fixed point of g
must contain a fixed point of f .

2.4. Topological Semi-Stability. We can now offer a useful replacement to the
notion of “C0 structural stability”.

Definition 2.16. Suppose f : X → X is a homeomorphism of a compact metric
space. We say that f is a topologically semi-stable dynamical system if there exists
a neighborhood U ⊆ Homeo(X) of f such that f is a factor of every g ∈ U . That
is to say, for every g ∈ U there exists a surjection h : X → X such that fh = hg.

Semi-stability is often referred to as topological stability since there is little risk
of confusion with the unused notion of C0 structural stability. We will stick to
“semi-stability” for consistency with “semi-conjugacy”.

3. Hyperbolicity

3.1. Hyperbolic Sets. For the remainder of the paper we will take f : M → M
to be a C1-diffeomorphism of a closed smooth Riemannian manifold unless stated
otherwise.

Definition 3.1. We say an f -invariant subset Λ ⊆ M is hyperbolic if there exists
an f -invariant splitting of the tangent space TxM = Es(x)⊕Eu(x) for each x ∈ Λ
which satisfies the following property:
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There exist constants C > 0 and 0 < λ < 1 such that for any x ∈ Λ and all
n ∈ N,

|Dfn(v)| ≤ Cλn|v| for all v ∈ Es(x) ⊆ TxM

|Df−n(w)| ≤ Cλn|w| for all w ∈ Eu(x) ⊆ TxM

where Df : TM → TM is the basepoint free derivative of f . The subbundles Es

and Eu are respectively referred to as stable and unstable.

Note that any hyperbolic set Λ of a diffeomorphism f : M → M is also a
hyperbolic set of f−1. The splitting for f−1 is the same but with the stable and
unstable subbundles swapped. Note also that we did not specify the regularity of
the splitting Es ⊕ Eu in the definition of hyperbolicity. This is justified by the
following result.

Proposition 3.2. If f : M → M has a hyperbolic set Λ ⊆ M then the splitting
Es⊕Eu on Λ is continuous. It follows that the dimensions of Es and Eu are locally
constant.3

The simplest example of a hyperbolic set is a hyperbolic fixed point.

Example 3.3. Suppose f : M → M has a hyperbolic fixed point p. The hy-
perbolicity of this fixed point is wholly determined by the linear automorphism
Dpf : TpM → TpM . For convenience let T = Dpf and V = TpM . We have an
invariant splitting V = Es ⊕ Eu and constants C > 0 and 0 < λ < 1 such that

|Tn(v)| ≤ Cλn|v| for all v ∈ Es

|T−n(w)| ≤ Cλn|w| for all w ∈ Eu

for all n ∈ N. A linear automorphism which satisfies this property is called a
hyperbolic linear automorphism.

We can think of hyperbolic sets as hyperbolic linear automorphisms with a mov-
ing basepoint. It is therefore intuitively valuable to characterize these linear auto-
morphisms.

Proposition 3.4. A linear automorphism T : V → V is hyperbolic if and only if
it has no eigenvalue of absolute value 1.

Proof. It is clear that if T has an eigenvalue of absolute value 1 then it cannot be
hyperbolic. For the converse direction we claim that we can take Es to be the direct
sum of the generalized eigenspaces with eigenvalues of modulus less than 1 and Eu

to be the direct sum of the generalized eigenspaces with eigenvalues of modulus
greater than 1.

Since all norms on a finite dimensional vector space are equivalent, we note that
the hyperbolicity of T is invariant under change of basis. It therefore suffices to
assume T is a d × d Jordan block with an eigenvalue λ ∈ C of modulus not equal
to 1:

T =


λ 1

λ 1
. . .

. . .

λ 1
λ

 = λI + J

3Wen[1] theorem 4.3, page 80.
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where J is the matrix of superdiagonal 1’s. Since J is a nilpotent with Jd = 0 we
have

Tn = λnI +

(
n

1

)
λn−1J + · · ·+

(
n

d− 1

)
λn−(d−1)Jd−1.

First we consider the case |λ| < 1. It follows from the above identity that

∥Tn∥ ≤ |λ|n · (1 + n|λ|−1∥J∥+ · · ·+ nd−1|λ|−(d−1)∥J∥d−1) = |λ|n · p(n)

where p(n) is a polynomial in n. For any µ ∈ (|λ|, 1),

∥Tn∥ ≤ µn ·
(
|λ|
µ

)n

· p(n) ≤ Cµn

for some positive constant C uniform over n ∈ N since |λ|/µ < 1. It follows that any
matrix with all eigenvalues of modulus less than 1 is contracting up to a constant
C.

If we now take |λ| > 1 we immediately have that all eigenvalues of T−1 are 1/λ
and in particular have modulus less than 1. It follows from the treatment of the
previous case that for any µ ∈ (1/|λ|, 1) there exists C > 0 such that

∥T−n∥ ≤ Cµn

for all n ∈ N. □

The underlying theme of the above proof is that diagonalizable matrices with
no modulus 1 eigenvalues immediately satisfy hyperbolicity. That is to say, they
exponentially dilate and contract along Eu and Es without the need for a constant
C. We would more generally like to be able to do away with the constant C for any
hyperbolic dynamical system. Fortunately, since all norms on a finite dimensional
vector space are equivalent, we can adjust the norm as desired:

Proposition 3.5. Suppose f :M →M has a hyperbolic set Λ. There exist a norm
∥.∥ on the tangent space and a constant τ ∈ (0, 1) such that

∥Dfn(v)∥ ≤ τn∥v∥ for all v ∈ Es(x) ⊆ TxM

∥Df−n(w)∥ ≤ τn∥w∥ for all w ∈ Eu(x) ⊆ TxM

for all n ∈ N.4

Proof. Suppose |.| is the norm induced by the metric on M and λ ∈ (0, 1), C > 1
are the constants which give us hyperbolicity on Λ. Let n ∈ N be such that Cλn < 1
and define

∥v∥ = |v|+ |Df(v)|+ |Df2(v)|+ · · ·+ |Dfn−1|.
If a = 1 + Cλ+ Cλ2 + · · ·+ Cλn−1 ≥ 1 we have

∥v∥ ≤ a|v| for all v ∈ Es

∥w∥ ≤ a|Dfn−1(w)| for all w ∈ Eu.

It follows that for any v ∈ Es

∥Df(v)∥ = ∥v∥ − |v|+ |Dfn(v)| ≤ ∥v∥ − (1− Cλn)|v|
≤ ∥v∥ − a−1(1− Cλ)∥v∥ = (1− a−1(1− Cλn))∥v∥

4Wen[1] theorem 2.3, page 28.
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since 1− Cλn > 1 by assumption. Similarly, for any w ∈ Eu

∥Df−1(w)∥ = ∥w∥ − |Dfn−1(w)|+ |Df−1(w)|
≤ ∥w∥ − (1− Cλn)|Dfn−1(w)|
≤ ∥w∥ − a−1(1− Cλ)∥w∥ = (1− a−1(1− Cλn))∥w∥.

Since a ≥ 1 and Cλn < 1 we have that 1 − a−1(1 − Cλn) ∈ (0, 1). Therefore let
τ = 1− a−1(1− Cλn) and we are done. □

This norm is called the adapted norm and the minimal τ is called the skewness of
f with respect to the norm ∥.∥. Since f is at least C1 this norm varies continuously
by basepoint. Moreover, because all norms on a finite dimensional vector space are
equivalent and M is a compact manifold, it follows that ∥.∥ induces a metric on
the manifold comparable to the original one. In other words, though we require
a Riemannian metric to state hyperbolicity, the property is independent of which
metric we choose. In other words it is purely dependent on the differential topology
of f and its manifold M .

We can make one further adjustment to the adapted norm by defining the norm
of any vector v to be max(∥πs(v)∥, ∥πu(v)∥) where πs and πu are projection onto
Es and Eu respectively. This new norm is called the box adapted norm. It has the
same skewness as the adapted norm it was derived from and can be more convenient
to work with.

3.2. Anosov Diffeomorphisms. Once we have defined hyperbolic sets, it seems
obvious to question what happens when hyperbolicity extends over the whole man-
ifold:

Definition 3.6. Suppose f : M → M is a C1-diffeomorphism of a closed smooth
Riemannian manifold. We say f is an Anosov diffeomorphism if the whole manifold
M is a hyperbolic set.

Anosov diffeomorphisms can be hard to come by due to the complexity of the
hyperbolicity criterion. For example, no Anosov diffeomorphism exists on S2 be-
cause the hairy ball theorem does not allow the existence of a global splitting
TM = Es ⊕ Eu. Fortunately, we have a class of Anosov diffeomorphisms that are
easily constructed:

Example 3.7. Let T : R2 → R2 be a hyperbolic linear automorphism with deter-
minant ±1 and suppose the matrix representation of T has integer entries. Since T
has integer entries, it maps Z2 → Z2. This means that the kernel of the composite

R2 T−→ R2 → R2/Z2 = T2 contains Z2 and thus that T descends to a smooth map
f : T2 → T2 on the torus. The 2× 2-matrix inverse formula tells us that T−1 also
has integer entries and so it too induces a map on the torus which is the inverse of
f . Thus f is a diffeomorphism.

The derivative of f at any point can be identified with T : R2 → R2. Since we
have already required that T be hyperbolic, f must be Anosov. Diffeomorphisms
induced in this way by hyperbolic linear isomorphisms are called Anosov toral
automorphisms.



SHADOWING AND STRUCTURAL STABILITY OF ANOSOV DIFFEOMORPHISMS 13

4. Shadowing and Expansiveness

Hyperbolicity describes functions which locally stretch and compress the mani-
fold in a way which is globally consistent. As alluded to by the notation, the duality
between stability and instability is the underlying intuition. We can talk about this
duality between controlled and chaotic behavior in a more concrete topological sense
by looking at approximations of orbits and how disruptive these approximations are
to the orbit structure.

Definition 4.1. Let f : X → X be a homeomorphism on a compact metric space
(X, d). If δ > 0 δ-pseudo orbit is a Z-indexed sequence {xn}n∈Z ⊆ X such that
d(f(xn), xn+1) ≤ δ for all n ∈ Z.

Definition 4.2. We say that a pseudo orbit {xn}n∈Z is ε-shadowed by y ∈ X if
d(xn, f

n(y)) ≤ ε for all n ∈ Z.

It turns out that the question of which pseudo orbits are shadowed is closely
related to hyperbolicity. Our first instinct to try to force shadowing of pseudo orbits
might be to require f to be contracting. For example, consider a differentiable map
f : M → M with a degenerate form of hyperbolicity where Eu is trivial. In other
words, there exist λ ∈ (0, 1) and C > 0 such that |Dfn(v)| ≤ Cλn|v| for all v ∈ TM .
Under the metric induced by the adapted norm from proposition 3.5 f becomes a
contraction map with constant τ , the skewness. Now consider a positive δ-pseudo
semi-orbit x0, x1, x2, . . . with d(f(xn), xn+1) ≤ δ. We have d(f(x0), x1) ≤ δ and

d(fn(x0), xn) ≤ d(f(fn−1(x0)), f(xn−1)) + d(f(xn−1), xn)

≤ τd(fn−1(x0), xn−1) + δ.

By induction we get

d(fn(x0), xn) ≤ δ + τδ + · · ·+ τn−1δ ≤ δ

1− τ
.

It follows that for any positive semi-orbit y, f(y), f2(y), . . .

d(fn(y), xn) ≤ d(fn(y), fn(x0)) + d(fn(x0), xn) ≤ d(y, x0) +
δ

1− τ
.

In other words, if we require δ/(1 − τ) < ε we get that any positive δ-pseudo
semi-orbit is ε-shadowed by any y sufficiently close to x0.

The issues with this example map arise when we consider the other half of the
orbit. If f is invertible, the stable contracting properties in the positive directions
become unstable exponential expansion in the negative. Shadowing in the negative
direction over whole pseudo orbits or even negative pseudo semi-orbits becomes
impossible. Note that by a symmetrical argument, the properties of the unstable
space Eu give us shadowing over negative pseudo semi-orbits. However, such maps
are likewise unable to account for the positive direction.

Fortunately, if we require f to be an Anosov diffeomorphism of a compact man-
ifold M , it is impossible for either Eu or Es to be trivial. If Eu were trivial then
for Cλn < 1 the map fn would be locally measure decreasing. As a result, the
compactness of M would tell us that the finite measure of im fn is less than that
of M , contradicting surjectivity.

It is a surprising fact that when working with Anosov diffeomorphisms, shadow-
ing is possible. In a sense, the positive shadowing and negative shadowing we would
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expect if it was fully stable or fully unstable are synthesized. Moreover, since the
stable and unstable properties operate within complementary subspaces, the pos-
itive and negative semi-shadowing points we get from each intersect transversely
to give us a unique solution. This is somewhat unexpected since the shadowing
semi-orbits we found for contracting f were resistant to small perturbation. In
other words, although we might expect some amount of topological control when
approximating like this, the shadowing of Anosov diffeomorphisms is rigid:

Theorem 4.3. The Shadowing Lemma. Suppose f : M → M is a diffeomor-
phism of a closed manifold and Λ ⊆ M is a hyperbolic set. For every ε > 0 there
exists δ > 0 such that every δ-pseudo orbit is ε-shadowed.

Moreover, if ε is sufficiently small then δ can be chosen so that any ε-shadowing
orbit is unique. In other words, there exist ε0 > 0 and δ0 > 0 dependent on f such
that every δ0-pseudo orbit is ε0-shadowed by at most one orbit.

The shadowing lemma states that as δ approaches zero, δ-pseudo orbits uniformly
approach actual orbits. The conditions with ε0 and δ0 are necessary because large
ε make uniqueness of a shadowing impossible irrespective of how small δ is.

Before proving the shadowing lemma we require a basic extension result:

Lemma 4.4. Suppose f : U → Rn is a local diffeomorphism defined on a bounded
neighborhood U of 0 such that f(0) = 0. Then for any ε > 0 there exists δ > 0 and
an extension f̄ : Rn → Rn such that:

(1) ∥f̄ −D0f∥C1 ≤ ε
(2) f̄ = f on B(0, δ).5

Proof. For any δ > 0 define φ : Rn → [0, 1] to be a smooth function which is 1 on
B(0, δ) and 0 outside of B(0, 2δ). Let

f̄ = φ · f + (1− φ) ·D0f

so that f̄ −D0f = φ · (f −D0f). By differentiability ∥φ · (f −D0f)∥C0 = o(δ). In
other words, as δ becomes small, the difference vanishes with respect to δ. For the
derivative we use the product rule

∥D(f̄ −D0f)∥ ≤ ∥(Dφ) · (f −D0f)∥+ ∥φ · (Df −D0f)∥.
Since f is C1 the second term becomes small for small δ. Since ∥Dφ∥ ≤ C/δ for
small δ > 0 and some constant C, and since we have already shown that f −D0f
is o(δ) with respect to δ, it follows that ∥(Dφ) · (f −D0f)∥ = o(1) as δ → 0. Thus,
∥D(f̄ −D0f)∥ approaches 0 when δ does. Since we have bounded both f̄ and its
derivative to D0f for small δ we are done. □

Note that as a consequence of this lemma, if we require ε small enough we can
force f̄ to be invertible.

Proof. (Shadowing Lemma) We will prove the case where M is a 2-manifold with
dimEs = dimEu = 1. The same method generalizes with virtually no changes to
higher dimensions but it is harder to visualize and some of the details become less
streamlined.

Though the proof is long, the main ideas are intuitive. We first lift to the
tangent spaces TxnM via the exponential maps expxn

at the points in our pseudo

5Katok and Hasselblatt[2] lemma 6.2.7, page 242.
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orbit. This preserves the composition structure of f as well as the radial distance
from the points xn.

The second step is to prove that for any n we can find orbits which ε-shadow
the finite segment x0, . . . , xn of the pseudo orbit. We do this by considering the
generating points of these orbits in Tx0

M . In particular, we will show that the
solution set to the ε-shadowing problem over x0, . . . , xn contains the image Γn of
some path in Tx0M .

In the third step we prove that Γn are actually the graphs of functions αn which
map the stable axis to the unstable axis in Tx0

M . Moreover, these functions are
uniformly Lipschitz with constant C < 1.

Step four is to show that αn converge uniformly to some α and that the graph
Γ of α is the solution set of orbits which ε-shadow {xn}n≥0.

Finally, in our fifth step, we note that by the same argument applied in the
negative direction, the solution set of orbits which ε-shadow {xn}n≤0 is the graph
of some function β from the unstable axis to the stable axis in Tx0

M . The graphs
of α and β must intersect, and because they are both Lipschitz this intersection is
unique.

1. Preliminaries. Just like hyperbolicity, the shadowing lemma is topological.
In other words, there is no loss of generality if we choose an equivalent norm to
work with onM . We fix the box adapted norm onM and let τ ∈ (0, 1) be its skew.

Txn−1
M Txn+1

MTxn
M

Ūn−1
Ūn Ūn+1ϕ̄n−1

ϕ̄n

M

f(xn−2)

f(xn−1)

f(xn)

f

expn−1 expn expn+1

f

xn−1 xn xn+1

Figure 2.

Our general approach will be to think of f as some C1-perturbation of Df . We
will do this by lifting to the tangent space at each xn using the Riemannian expo-
nential. Lifting f gives us ϕn : Un ⊆ Txn

M → Txn+1
M defined by the commutative
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diagram

Un ⊆ Txn
M

ϕn //

expxn

��

Txn+1
M

M
f // M

exp
x
−1
n+1

OO

for Un a sufficiently small neighborhood around 0 ∈ TxnM that expxn+1
is invertible

on f ◦ expxn
(Un). While the exponential map must be derived from the original

Riemannian metric on the manifold, it does not make much difference since the
adapted box norm is continuous and therefore globally comparable to the original
metric.

We now apply lemma 4.4 to get ϕ̄n defined over all of Txn
M which agrees with

ϕn on some neighborhood Ūn and is C1-close to ϕn(0)+D0ϕn. As noted previously
we can also require ϕ̄n to be a invertible. Since ϕ̄n will be a diffeomorphism, we can
also require ϕ̄−1

n to be C1-close to (ϕn(0) +D0ϕn)
−1 by making Ūn small enough.

Note that by compactness of the manifold, the size of Ūn is uniform over n.
By the chain rule,

T0Txn
M

D0ϕn //

D0 expxn

��

Tϕn(0)Txn+1
M

Txn
M

Dxnf // Tf(xn)M

Df(xn) expx
−1
n+1

OO

commutes. We want D0ϕn to look like a hyperbolic derivative, for example Dxnf .
Under the canonical identification T0Txn

M ∼= Txn
M the derivative D0 expxn

in the

composition is the identity. Therefore the problematic factor is the Df(xn) exp
−1
xn+1

.
We know that the exponential is continuous as a map TM →M . We also have that
∥.∥ and Es⊕Eu vary continuously by propositions 3.2 and 3.5. Therefore by making
∥f(xn)− xn+1∥ < δ small we can require that Df(xn) exp

−1
xn+1

is close to preserving

the norm ∥.∥ and the splitting Es ⊕ Eu. We can thus perturb Df(xn) exp
−1
xn+1

to a
linear map

Ln : Tf(xn)M → Tϕn(0)Txn+1
M ∼= Txn+1

M

which is norm and splitting preserving. To do this take a basis v ∈ Es and w ∈
Eu. There are two vectors in Txn+1M which are of norm ∥v∥. Let Ln(v) be
whichever of them is closer to Df(xn) exp

−1
xn+1

(v). Define Ln(w) similarly. Since

Df(xn) exp
−1
xn+1

is close to preserving the norm and the splitting, we must have that

∥Df(xn) exp
−1
xn+1

−Ln∥ is small under the operator norm. Now consider the linear
map Θn defined by the diagram

T0Txn
M

Θn //

D0 expxn

��

Tϕn(0)Txn+1
M

Txn
M

Dxnf // Tf(xn)M .

Ln

OO

We will think of Θn as a map TxnM → Txn+1M . Since Ln was constructed to
preserve norm and splitting, we know that the hyperbolic properties of Dxn

f are
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pushed forward to Θn. In other words, Θn preserves the splitting and

∥Θn(v)∥ ≤ τ∥v∥ for all v ∈ Es

∥Θ−1
n (w)∥ ≤ τ∥w∥ for all w ∈ Eu

where τ ∈ (0, 1) is the skew of our box adapted norm. Now since Ln is close to
Df(xn) exp

−1
xn+1

in a way which is controlled by δ we know the same is true of Θn

and D0ϕn. Because Θn and D0ϕn are close under the operator norm, they must
be C1-close within bounded regions of T0Txn

M ∼= Txn
M . In particular, since Ūn

are assumed to be bounded and ϕn(0)+D0ϕn is close to ϕ̄n, it follows that for any
ι > 0 we can require, by taking δ small, that

∥ϕ̄n − Φn∥C1(Ūn) ≤ ι

∥ϕ̄−1
n − Φ−1

n ∥C1(Ūn+1) ≤ ι

where Φn = ϕn(0) + Θn.
For notational convenience we define

ϕ :
∐
n∈Z

Un →
∐
n∈Z

TxnM ϕ̄,Θ,Φ :
∐
n∈Z

Txn
M →

∐
n∈Z

Txn
M

as ϕn, ϕ̄n, Θn, and Φn respectively on each TxnM . We will also write Bn for the
closed ball of radius ε centered at 0. Since ∥.∥ is a box norm, these balls look
like boxes. We will assume ε is small enough so that Bn ⊆ Ūn. It is actually not
obvious why we can make this assumption but it will be simpler to postpone the
explanation until the end of the proof.

2. Constructing Γn. Any shadowing orbit {yn}n∈N with ϕ̄(yn) = yn+1 and
yn ∈ Bn is uniquely determined by

y0 ∈
⋂
n∈Z

ϕ̄−n(Bn).

Therefore it suffices to show that this intersection is non-empty. For our purposes
it will be convenient to split it into the positive and negative directions( ∞⋂

n=0

ϕ̄n(B−n)

)
∩

( ∞⋂
n=0

ϕ̄−n(Bn)

)
.

We will begin by working with the positive direction ϕ̄−n(Bn) for n ≥ 0. The idea
will be to use Φ to analyze the behavior of ϕ̄.

s

u

s

u

s

u

Bn
Φ−1(Bn)

Bn−1

Φ−2(Bn)
Φ−1(Bn−1)

Bn−2

Figure 3.
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Since Θ is a hyperbolic linear transformation, pulling back the Bn along Φ will
dilate them by a factor of τ−1 along the stable axis and contract them by τ along
the unstable axis.

We will begin by showing that for ι, δ chosen uniformly over n we can make each
ϕ̄−n(Bn) intersect B0. We take coordinates u and s for the unstable and stable
axes in each tangent space. Since ϕ̄ is close to Φ we would expect Bn to approach a
vertical line the further we pull it back. Therefore to capture this limiting behavior
we consider ℓ = {u = 0} ∩Bn. We will show by induction that

Γn = B0 ∩ ϕ̄−1(B1) ∩ · · · ∩ ϕ̄−(n−1)(Bn−1) ∩ ϕ̄−n(ℓ)

is non-empty.
We begin with ϕ̄−1(ℓ) = ϕ̄−1

n−1(ℓ) which we know is a path in Txn−1
M . We would

like to show that this intersects Bn−1. Since everything expands rapidly along the
stable axis when we pull back, we would like to remove this axis from the picture.
To do this we will choose δ and ι to be small enough that the path ϕ̄−1(ℓ) crosses
the horizontal lines s = ε and s = −ε. In the ideal hyperbolic model Φ, the pullback
Φ−1(ℓ) is a vertical line of length 2ετ−1 with midpoint at ϕ̄−1(xn). In this case we
can easily get ϕ̄−1(ℓ) to pass s = ε and s = −ε by making ετ−1 − δ > ε.

u

s

≤ δ

≥ τ−1ε

Bn−1
Φ−1(ℓ)

Figure 4.

Now since ϕ̄ is within ι of Φ we can simply require ετ−1 − δ − ι > ε. In other
words, δ + ι < ε · (τ−1 − 1) which we can do because τ ∈ (0, 1) and ι is controlled
by δ.

Now note that the same computations uniformly give us that if γ is a path in
Txn

M with initial point on s = −ε and terminal point on s = ε then ϕ̄−1(γ) still
crosses those lines in Txn−1

M . Let Sn = {s ∈ [−ε, ε]} ⊆ Txn
M . We have already



SHADOWING AND STRUCTURAL STABILITY OF ANOSOV DIFFEOMORPHISMS 19

shown that Sn−1 ∩ ϕ̄−1(ℓ) is a path crossing Sn−1. Thus taking γ = Sn−1 ∩ ϕ̄−1(ℓ)
and reapplying ϕ̄−1 we get a path

ϕ̄−1(γ) = ϕ̄−1(Sn−1 ∩ ϕ̄−1(ℓ)) = ϕ̄−1(Sn−1) ∩ ϕ̄−2(ℓ)

which crosses s = −ε and s = ε. Continuing inductively we see that by forcing
ϕ̄−1(ℓ) to cross s = −ε and s = ε in Txn−1

M , we have actually guaranteed that

ϕ̄−1(S1 ∩ ϕ̄−1(S2 ∩ . . . ϕ̄−1(Sn−1 ∩ ϕ̄−1(ℓ)) . . . ))

= ϕ̄−1(S1) ∩ · · · ∩ ϕ̄−(n−1)(Sn−1) ∩ ϕ̄−n(ℓ)

crosses s = −ε and s = ε in Tx0
M . Each intersection with a ϕ̄−m(Sm) restricts

the domain of the path to a subinterval of ℓ so that no ϕ̄m(γ) extends beyond Sm.
This is necessary because ϕ̄−1 is only close to Φ−1 within the Ūn and since ϕ̄n(ℓ)
lengthens exponentially it quickly exits those bounds.

Since ϕ̄−1(S1) ∩ · · · ∩ ϕ̄−(n−1)(Sn−1) ∩ ϕ̄−n(ℓ) spans S0 we have reduced the
problem of showing that ϕ̄−1(B1) ∩ · · · ∩ ϕ̄−(n−1)(Bn−1) ∩ ϕ̄−n(ℓ) intersects B0 to
showing that the u-coordinates of ϕ̄−1(S1) ∩ · · · ∩ ϕ̄−(n−1)(Sn−1) ∩ ϕ̄−n(ℓ) always
lie within [−ε, ε].

To resolve the u-coordinate direction we again start by considering Φ. Since Φ
is affine it suffices to consider points w ∈ Eu. Since Φn = ϕn(0) + Θn we have

Φ−1
n (w) = Θ−1

n (w − ϕn(0)).

Now considering the norm of the horizontal coordinate we have

∥Θ−1
n (w − ϕn(0))∥u = τ∥w − ϕn(0)∥u ≤ τ∥w∥u + τδ.

Accounting for the ι error we are left with

∥Φ−1
n (w)∥u ≤ ι+ τ∥w∥u + τδ.

Since ℓ = {u = 0} ∩ Bn we begin with ∥w∥u = 0. Applying our recursive rule we
get the sequence

0, ι+ τδ, ι+ τδ+ τι+ τ2δ, . . . , ι · (1+ τ + · · ·+ τn−1)+ δ · (1+ τ + · · ·+ τn).
Therefore we see that the horizontal deviation from the origin is bounded by the
infinite sum

ι · (1 + τ + τ2 + . . . ) + δ · (1 + τ + τ2 + . . . ) =
ι+ δ

1− τ
.

Thus we want to require that ι+ δ < ε · (1− τ). As before, note that our ι estimate
only works within the Ūn. Since ϕ̄−n(ℓ) blows up in the vertical direction, the
estimate cannot hold over the whole path. However, if after each application of
ϕ̄−1 we restrict to the segment of the path going between the lines s = −ε and
s = ε then there is no issue. Let this iteratively truncated version of ϕ̄−n(ℓ) be
called

Γn = B0 ∩ ϕ̄−1(B1) ∩ · · · ∩ ϕ̄−(n−1)(Bn−1) ∩ ϕ̄−n(ℓ).

Since the bounds we have set are uniform, we know by induction that each

Bm ∩ ϕ̄−1(Bm+1) ∩ · · · ∩ ϕ̄m−n(ℓ)

is non-empty and is the image of a path in Bm from s = −ε to s = ε. In particular,
this holds for Γn. It is immediate from the definition that have

Γn ⊆
n⋂

m=0

ϕ̄−m(Bm).
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In summary, within each partial intersection we have found a set Γn which is the
image of a path with initial point lying on s = −ε, terminal point on s = ε, and
whose u-coordinates remain within [−ε, ε].

3. The Γn are graphs of Lipschitz functions αn. We now want to use the
fact that ∥ϕ̄−1−Φ−1∥C1(Un) ≤ ι to show that Γn is the graph of a function in s. We

already know Γn is the image of a C1 path γn : I → B0 where I is some subinterval
of [−ε, ε] ∼= ℓ. Suppose Γn were not the graph of a function. In other words, that
there were a, b ∈ I distinct such that the stable coordinates (γn)s(a) = (γn)s(b)
agreed. Then by Rolle’s theorem we would have some t ∈ I at which (γ̇n)s(t) = 0.
We will use induction to find ι to make this impossible and thus give us that Γn

is the graph of some function αn(s). Our induction will also simultaneously prove
that the Lipschitz constant of αn(s) is less than 1. Since αn(s) is C1 this second
claim is equivalently ∥α′

n∥∞ = sup ∥(γ̇n)u∥/∥(γ̇n)s∥ < 1.
The base case of ℓ is a vertical line which is of course a function in s with Lipschitz

constant less than 1. Now suppose im γn is the graph of a function, ie. (γ̇n)s(t) ̸= 0,
and ∥(γ̇n)u∥ < ∥(γ̇n)s∥. Then (γn+1)s = ϕ̄−1

s ◦ γn(t) and (γn+1)u = ϕ̄−1
u ◦ γn(t).

Therefore, using the fact that ∥ϕ̄−1 − Φ−1∥C1(Ūn) ≤ ι and Φ−1 is a diagonal affine
transformation with respect to s and u we get

∥(γ̇n+1)s∥ =

∥∥∥∥ ddt ϕ̄−1
s ◦ γn

∥∥∥∥ =

∥∥∥∥dϕ̄−1
s

ds
· (γ̇n)s +

dϕ̄−1
s

du
· (γ̇n)u

∥∥∥∥
≥
∥∥∥∥dϕ̄−1

s

ds

∥∥∥∥ · ∥(γ̇n)s∥ − ∥∥∥∥dϕ̄−1
s

du

∥∥∥∥ · ∥(γ̇n)u∥
≥
(∥∥∥∥dΦ−1

s

ds

∥∥∥∥− ι

)
· ∥(γ̇n)s∥ −

(∥∥∥∥dΦ−1
s

du

∥∥∥∥+ ι

)
· ∥(γ̇n)u∥

= (τ−1 − ι)∥(γ̇n)s∥ − ι∥(γ̇n)u∥ > (τ−1 − 2ι)∥(γ̇n)s∥.

Note that we used the Lipschitz part of the inductive hypothesis in the second line.
Since we also have ∥(γ̇n)s∥ > 0 by the inductive hypothesis, requiring ι < τ−1/2
gives us (γ̇n+1)s ̸= 0. Now for the Lipschitz part of this induction we compute the
derivative of the other component

∥(γ̇n+1)u∥ =

∥∥∥∥ ddt ϕ̄−1
u ◦ γn

∥∥∥∥ =

∥∥∥∥dϕ̄−1
u

du
· (γ̇n)u +

dϕ̄−1
u

ds
· (γ̇n)s

∥∥∥∥
≤ (τ + ι)∥(γ̇n)u∥+ ι∥(γ̇n)s∥ < (τ + 2ι)∥(γ̇n)s∥.

Dividing by the inequality for the stable component we get

∥(γ̇n+1)u∥/∥(γ̇n+1)s∥ ≤ τ + 2ι

τ−1 − 2ι
.

Therefore not only can we force the Lipschitz constant to be less than 1, we can
also, for any C ∈ (τ2, 1), choose ι small enough that the Lipschitz constant of any
αn is less than C.

Note that our inductive notation “γn+1” was somewhat of an abuse of notation:
The running assumption has been that every γn is a path in B0 corresponding to a
segment of ϕ̄−n(ℓ). From our usage, γn+1 = ϕ̄−1 ◦ γn. However this poses no issue
since everything we have done holds uniformly over n. In other words the important
part of the induction was how many times we pulled back, not which chart we ended
up in. We therefore get a sequence of functions αn(s) whose graphs lie in B0 and
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which are C1 with Lipschitz constants bounded by C < 1. The graph of each αn(s)
is Γn which is contained in the partial intersection B0 ∩ ϕ̄−1(B1) ∩ · · · ∩ ϕ̄−n(Bn).

4. The positive solution set is the limit of Γn. Let

In =

n⋂
m=0

ϕ̄−m(Bm)

be the partial intersections. This region in B0 is bounded on either side by the
paths

B0 ∩ ϕ̄−1(B1) ∩ · · · ∩ ϕ̄−n({u = −ε}) B0 ∩ ϕ̄−1(B1) ∩ · · · ∩ ϕ̄−n({u = ε}).
The same arguments made for Γn prove that these two paths are actually graphs of
functions φn(s) and ψn(s) respectively with Lipschitz constants less than 1. I claim
that the width of In given by ω(In) = ∥ψn − φn∥∞ converges to 0. We will prove
this by induction. Suppose R is some region in Bn bounded by φ(s) on the left and
ψ(s) on the right. The derivative of Φ−1 along any R∩{s = r} = [φ(r), ψ(r)]×{r}
is τ . Therefore the derivative of ϕ̄−1 along R ∩ {s = r} is no greater than τ + ι. It
follows that the length ℓ(R ∩ {s = r}) is no greater than

(τ + ι) · (ψ(r)− φ(r)) ≤ (τ + ι) · ω(R)
where ω(R) = ∥ψ − φ∥∞ is the width of R.

Now look at any slice ϕ̄−1(R) ∩ {s = r} ⊆ Txn−1M whose length we would like

to compute. Parametrize ϕ̄−1(R) ∩ {s = r} ⊆ Txn−1
M as a path ρ. Suppose p

is the left endpoint of ρ and let r′ = ϕ̄s(p). Define σ to be the path given by
ϕ̄−1(R ∩ {s = r′}) so that ρ and σ intersect at their left endpoint p. Let h be
the vertical distance between the right endpoints of ρ and σ. Suppose q and q′

are respectively the endpoints of ρ and σ. Since both q and q′ lie on the right
boundary of ϕ̄−1(R), which is Lipschitz with constant less than 1, we know that
∥q − q′∥u < ∥q − q′∥s = h.

ψn

σ

ρ

q′

p
q

h

≤ h

Figure 5.

If we parametrize σ by ϕ̄−1|R∩{s=r′} according to its definition then we have
that σ̇u is within ι of τ and σ̇s is within ι of 0. Therefore by requiring 2ι < τ we
can force ∥σ̇s∥ < ∥σ̇u∥. Since we are working with a box norm it will follow that
∥σ̇∥ = ∥σ̇u∥ and so the length ℓ(σ) is equal to the horizontal distance ∥q − q′∥u.
We then have |ℓ(ρ)− ℓ(σ)| ≤ h.
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Now note that

h ≤ (ℓ(ρ) + h) · ∥σ̇s∥
∥σ̇u∥

≤ (ℓ(ρ) + h) · ι

τ − ι
.

Isolating for h in the inequality we get

h ≤ ι

τ − 2ι
ℓ(ρ).

Thus we have

|ℓ(ρ)− ℓ(σ)| ≤ ι

τ − 2ι
ℓ(ρ).

We have already shown that ℓ(σ) ≤ (τ + ι) · ω(R) and so

ℓ(p) ≤ (τ + ι) · ω(R) + ι

τ − 2ι
ℓ(ρ).

This finally leaves us with the inequality

ℓ(p) ≤ τ − 2ι

τ − 3ι
· (τ + ι) · ω(R).

By taking ι small, (τ − 2ι)/(τ − 3ι) can be made close to 1 and τ + ι can be made
close to τ . Therefore for some number λ close to τ we have ℓ(p) ≤ λω(R) and thus

ω(ϕ̄−1(R)) ≤ λω(R).

It follows that ω(B0 ∩ ϕ̄−1(B1) ∩ · · · ∩ ϕ̄−n(Bn)) ≤ λn · 2ε which converges to 0.
Since any Im contains the graphs of αn for all n ≥ m, the convergence of the

width ω(Im) → 0 tells us that αn have a uniform limit α. Because αn are all C-
Lipschitz for some uniform C < 1, their limit αmust also be C-Lipschitz. Moreover,
since we took the balls Bm to be closed, we know that Im are closed. It follows
that the graph Γ of α is contained in Im for all m and therefore

Γ ⊆ I =

∞⋂
n=0

In =

∞⋂
n=0

ϕ̄−n(Bn).

Finally, for each r ∈ [−ε, ε] we have

I ∩ {s = r} =

∞⋂
n=0

In ∩ {s = r}

which is an intersection of nested intervals with lengths converging to 0. Therefore
each I ∩ {s = r} is a point and so we actually have I = Γ.

5. Finding a unique solution. So far we have described the points solving
the shadowing problem in the positive direction as the graph of some C-Lipschitz
function α in s. An analogous argument shows that the shadowing problem in the
negative direction is solved by a C-Lipschitz function β in u.

The shadowing orbits are in bijection with the intersections of the graphs of α
and β so we want to show that these graphs have a unique intersection. First we
show that an intersection exists. At an intersection point we have

(α(s), s) = (u, β(u)) = (α(s), β(α(s))).

In other words the intersection points are the fixed points of β◦α : [−ε, ε] → [−ε, ε].
We have β ◦α(−ε) ≥ −ε and β ◦α(ε) ≤ ε. Thus by the intermediate value theorem
applied to β ◦α(s)− s we have a fixed point. This fixed point must be unique since
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s

u

Bn
αn(s)

βn(u)

Figure 6. Since α and β are Lipschitz with constant C < 1 there
is a unique intersection between their graphs.

β ◦ α is C2-Lipschitz and C2 < 1.

6. Concluding remarks. In summary, we have found a point y ∈ B0 such
that ϕ̄n(y) ∈ Bn for any n ∈ Z. Since ϕ̄ agrees with ϕ on Ūn and Bn ⊆ Ūn this
means

ϕn(y) ∈ Bn for all n ∈ Z.

Since all norms on a finite dimensional vector space are comparable, we can assume
that ϕn(y) is within ε of 0 ∈ TxnM under the original metric. Explicitly, since

ϕm = exp−1
xm+1

◦f ◦ expxm
ϕ−1
m = exp−1

xm
◦f−1 ◦ expxm+1

we get that

ϕn(y) = ϕn−1 ◦ · · · ◦ ϕ0(y) = exp−1
xn

◦fn ◦ expx0

and

ϕ−n(y) = ϕ−n ◦ · · · ◦ ϕ−1(y) = exp−1
x−n

◦f−n ◦ expx0

for all n ≥ 0. In other words ϕn(y) = exp−1
xn

◦fn ◦ expx0
for all n ∈ Z. Since exp−1

xn

is radially distance preserving, ϕn(y) being within ε of 0 implies that fn(expx0
(y))

is within ε of xn. In other words, expx0
(y) generates the ε-shadowing orbit. This

demonstrates that existence projects down from our tangent charts to the manifold.
Before we get to uniqueness we must address the way our variables ε, δ and

ι were chosen in the proof. We restricted ι and δ based on ε, but then we also
required that the ε-balls Bn be contained in Ūn, whose size was dependent on ι.

To resolve this circular dependence, we consider all of the restrictions placed on
ι. In step 2 of the proof we required

δ + ι < ε · (τ−1 − 1) and δ + ι < ε · (1− τ).
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In step 3 we required

2ι < τ−1 and
τ + 2ι

τ−1 − 2ι
≤ C ∈ (τ2, 1).

In step 4 we required

2ι < τ and
τ − 2ι

τ − 3ι
· (τ + ι) ≤ λ ∈ (τ, 1).

The restrictions from steps 3 and 4 pose no issues since they are not reliant on ε.
When we restrict ι in step 2, we only make use of the C0 aspect of this bound. In
other words, step 2 only requires

∥ϕ̄−1
n − Φ−1

n ∥C0(Ūn) ≤ ι

for which we only need

∥ϕ̄−1
n − (ϕn(0) +D0ϕn)

−1∥C0(Ūn) ≤ ι/2.

From the proof of the extension lemma, or more directly from the definition of the
derivative, we see that

∥ϕ̄−1
n − (ϕn(0) +D0ϕn)

−1∥C0(Ūn) = o(diam Ūn).

In other words we can choose Ūn based on ι such that ι/diam Ūn → 0 as ι → 0.
Since the restrictions in step 2 are linear in ε, we see that as ε→ 0, we can choose
ι→ 0 to be proportional to ε. But then if we choose Ūn so that diam Ūn blows up
with respect to ι, it will also blow up with respect to ε. In summary, as ε is made
arbitrarily small, we can eventually choose Ūn such that ι satisfies the restrictions
and Bn ⊆ Ūn.

Now for uniqueness, suppose ε0 is small enough that we can require Bn ⊆ Ūn as
described above and δ0 is the δ which the proof assigns to ε0. If {xn}n∈Z is a δ0-
pseudo orbit which is ε0-shadowed by some orbit {yn}n∈Z then the lifts exp−1

xn
(yn)

must lie within Bn and therefore within Ūn. It follows that exp
−1
xn

(yn) are an orbit

of ϕ̄ and that

y0 ∈
⋂
n∈Z

ϕ̄−n(Bn)

which we have already showed contains precisely one point. Thus {yn}n∈Z is
the unique ε0-shadowing orbit and we have obtained uniqueness in the shadow-
ing lemma. □

The shadowing lemma as we have stated it is often thought of as a combination
of two properties. The first of these is the shadowing property, that is, existence
of a shadowing orbit. The uniqueness conclusion is separated and rephrased as
follows.

Corollary 4.5. Expansiveness. Suppose f : M → M is an Anosov diffeomor-
phism. There exists ε > 0 such that if, for any x, y ∈ Λ, d(fn(x), fn(y)) ≤ ε for all
n ∈ Z then x = y.

Proof. Let ε = ε0 with ε0 as in the shadowing lemma. The orbits of x and y are δ-
pseudo orbits for any δ > 0. In particular, they are δ0-orbits and are therefore each
ε0-shadowed by at most one point. However, x and y each shadow their own orbits,
and each ε0-shadow each others’ orbits. The uniqueness clause of the shadowing
lemma therefore guarantees that x = y. □
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For our purposes, we only care about the shadowing and expansiveness theorems
in the case where f is an Anosov diffeomorphism. However, they also hold over any
hyperbolic set Γ ⊆M of a diffeomorphism f :M →M .

It is interesting to note that though we used the uniqueness part of the shadowing
lemma to prove expansiveness, the converse implication also holds: Expansiveness
is sufficient to guarantee uniqueness of shadowing for some ε0 > 0 and δ0 > 0. To
see why this is true note that if the orbits of x and y both ε-shadow a pseudo orbit
{xn}n∈Z then the orbits 2ε-shadow each other.

In essence, the shadowing lemma as we have stated it is a combination of two
properties of hyperbolic sets: Expansiveness and (non-unique) shadowing. We
precisely define these properties as follows:

Definition 4.6. Let f : X → X be a homeomorphism of a compact metric space
(X, d). We say that f has the shadowing property (sometimes also referred to as
the pseudo orbit tracing property) if for any ε > 0 there exists δ > 0 such that every
δ-pseudo orbit of X is ε-shadowed by at least one point.

We say that f is expansive if there exists ε0 > 0 such that for any x, y ∈ X,
d(fn(x), fn(y)) ≤ ε0 for all n ∈ Z implies x = y.

If f : X → X is expansive and has shadowing then we will call f an Anosov
homeomorphism.

Anosov homeomorphisms generalize Anosov diffeomorphisms. For example, we
will see that most of the structural stability of Anosov diffeomorphisms can be
derived using shadowing and expansiveness.

5. Stability of Anosov Diffeomorphisms

We return to our original purpose of demonstrating the stability of Anosov Dif-
feomorphisms. Shadowing and expansiveness will play a vital role.

5.1. Topological Semi-Stability of Anosov Homeomorphisms. For Anosov
homeomorphisms in general we require an even weaker version of stability which
we will then strengthen in the case of f acting on a closed manifold M .

Definition 5.1. A dynamical system f : X → X is weakly topologically semi-
conjugate to g : Y → Y if there is a map h : X → Y such that hf = gh.

Definition 5.2. A dynamical system f : X → X is weakly topologically semi-stable
if there exists some C0 neighborhood U ⊆ Homeo(X) of f such that every g ∈ U is
weakly topologically semi-conjugate to f .

To begin proving stability results we need the following finite version of expan-
siveness:

Lemma 5.3. Suppose X is a compact metric space and f : X → X is an expansive
homeomorphism under the constant ε0. Then for any λ > 0 there exists N ∈ N
such that

d(fn(x), fn(y)) ≤ ε0 for all |n| ≤ N

implies d(x, y) < λ.6

6Walters[3] lemma 2, page 235.
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Proof. If this lemma did not hold for some λ > 0 we could find xN , yN such that

d(fn(xN ), fn(yN )) ≤ ε0 for all |n| ≤ N

and d(xN , yN ) ≥ λ. Since X is a compact metric space we can extract convergent
subsequences xNi

→ x and yNi
→ y. For arbitrarily large Ni we have

d(fn(x),fn(y))

≤ d(fn(x), fn(xNi
) + d(fn(xNi

), fn(yNi
)) + d(fn(yNi

), fn(y))

≤ d(fn(x), fn(xNi
) + ε0 + d(fn(yNi

), fn(y))

for all |n| ≤ Ni. For any fixed n the error terms d(fn(x), fn(xNi)+d(f
n(yNi), f

n(y))
become arbitrarily small as Ni → ∞. It therefore follows that

d(fn(x), fn(y)) ≤ ε0 for all n.

But since d(xNi
, yNi

) ≥ λ we also have d(x, y) ≥ λ > 0 which contradicts expan-
siveness. □

We now address the most general case of stability.

Theorem 5.4. Any Anosov homeomorphism f : X → X of a compact metric space
X is weakly topologically semi-stable. In fact, for any ε > 0 there exists δ > 0 such
that for any g satisfying d(f, g) < δ

(1) There exists a unique weak semi-conjugacy h from g to f
(2) d(h, id) < ε.7

Proof. Suppose f is expansive under the constant ε0. Let 0 < ε < ε0/3 and δ > 0
correspond to ε as given to us by the shadowing property. We take our neighborhood
of stability U to be the ball of radius δ around f ∈ Homeo(X).

Suppose g ∈ U , in other words d(f, g) < δ. Fix x ∈ X and let xn = gn(x). Note
that

d(f(xn), xn+1) = d(f(xn), g(xn)) ≤ d(f, g) < δ.

In other words, {xn}n∈Z is a δ-pseudo orbit of f . We therefore find that it is ε-
shadowed by some unique orbit {fn(y)}n∈Z. Let h(x) = y.

For any x ∈ X we have found h(x) ∈ X such that

d(fn(h(x)), gn(x)) ≤ ε

for all n ∈ Z. For n = 0 we see that d(h, id) < ε so we can make h uniformly close
to id as desired. By substituting x for g(x) we see that

d(fn(h(g(x))), gn(g(x))) ≤ ε

and by replacing n with n+ 1 we get

and d(fn+1(h(x)), gn+1(x)) ≤ ε.

Adding these two together leaves us with

d(fn(hg(x)),fn(fh(x)))

≤ d(fn(h(x)), gn(x)) + d(fn(h(g(x))), gn(g(x))) < 2ε < ε0

for all n ∈ Z. By expansiveness it follows that hg(x) = fh(x) for all x ∈ X.

7Walters[3] theorem 4, page 236.
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We now address the continuity of h. Fix λ > 0 and choose a corresponding
N ∈ N as given by lemma 5.3. Since g is continuous we can find µ such that
d(x, y) < µ implies d(gn(x), gn(y)) < ε for all |n| ≤ N . Then for any such x, y it
also follows that

d(fn(h(x)),fn(h(y)))

≤ d(fn(h(x)), gn(x)) + d(gn(x), gn(y)) + d(fn(h(y)), gn(y))

< 3ε < ε0

which implies d(h(x), h(y)) < λ and so we have continuity.

Finally for uniqueness, suppose k were another weak semi-conjugacy within ε of
id. Then

d(fn(h(x)),fn(k(x))) = d(h(gn(x)), k(gn(x)))

≤ d(h(gn(x)), gn(x)) + d(gn(x), k(gn(x))) < 2ε < ε0

for all n ∈ Z and so it follows by expansiveness that h(x) = k(x). □

If X is a closed manifold then we get semi-stability as promised.

Corollary 5.5. If f : M → M is a Anosov homeomorphism on a closed manifold
M then f is topologically semi-stable.8

Proof. We want to show that h : M → M is surjective. In general, any surjective
homeomorphism between two manifolds without boundary has a C0 neighborhood
in which every map is also surjective.9 Using theorem 5.4 we can make h as close
to id as is necessary to force it to be surjective. □

5.2. Structural Stability of Anosov Diffeomorphisms. We can now use hy-
perbolicity to strengthen this result for Anosov diffeomorphisms.

In order to prove that h is injective we need to first show that C1-perturbations
of Anosov diffeomorphisms are expansive. This fact follows from the proof of the
shadowing lemma.

Lemma 5.6. Persistence of Expansiveness. Suppose f :M →M is an Anosov
diffeomorphism. There is a neighborhood U ⊆ Diff1(M) of f such that every g ∈ U
is expansive.

Proof. In the proof we gave of the shadowing lemma (4.3) the hyperbolicity of f
was only used to show ∥ϕ̄n − Φn∥C1(Ūn) ≤ ι and the analogous statement for the

inverses. Now suppose we want to repeat the proof but for g. We can construct ψ̄n

for g in the same way that ϕ̄n were constructed for f , and by making U ⊆ Diff1(M)
and Ūn sufficiently small, we can guarantee that

∥ϕ̄n − ψ̄n∥C1((̄Un))
≤ ι/2 and ∥ϕ̄n − Φn∥C1(Ūn) ≤ ι/2.

In other words we get the same restriction

∥ψ̄n − Φn∥C1(Ūn) ≤ ι

which allows us to complete the same proof but for g. This does not prove that
g satisfies the conclusion of the shadowing lemma because we chose U based on ι.

8Walters[3] remark, page 237.
9Munkres[4] lemma 3.11, page 36.
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However, it does prove that for any fixed ε > 0 there exists a neighborhood U ⊆
Diff1(M) such that any g ∈ U satisfies the shadowing lemma for ε. In particular,
taking U ⊆ Diff1(M) corresponding to ε = ε0, we get the uniqueness part of the
shadowing lemma for all g ∈ U .

More concretely, the uniqueness part of the proof of the shadowing lemma was
dependent on our ability to make αn uniformly C-Lipschitz and to force ω(In) → 0.
We brought about these two conditions in steps 3 and 4 of the proof respectively.
As noted in the concluding remarks of the shadowing lemma proof, steps 3 and 4
put bounds on ι that were dependent only on τ and not ε. This is why we only
need to make U small enough so that ι satisfies those restrictions in terms of τ . □

Note from this proof we see that the expansiveness constant ε0 which the shad-
owing lemma calculates for f will also hold for all g ∈ U . This is by no means the
maximal constant for either f or g, however it proves that the elements of U are
uniformly expansive. Structural stability follows quickly.

Theorem 5.7. Structural Stability. Anosov diffeomorphisms are C1-structurally
stable.10 11

Proof. Suppose f :M →M is our Anosov diffeomorphism. Using corollary 5.5 and
lemma 5.6 choose a C1 neighborhood U ⊆ Diff1(M) of f over which topological
semi-stability and persistence of expansiveness both hold. In other words, for every
g ∈ U we expect g to be expansive and semi-conjugate to f . As remarked upon
above, the elements of U are uniformly expansive. In other words there is some ε0
over which they all satisfy expansiveness. We can now further restrict U according
to theorem 5.4 so that for any g ∈ U the associated semi-conjugacy h to f satisfies
d(h, id) < ε0/2.

Finally, fix any g ∈ U and its associated semi-conjugacy h. If h(x) = h(y) then

d(gn(x),gn(y))

≤ d(gn(x), h(gn(x))) + d(h(gn(x)), h(gn(y))) + d(h(gn(y)), gn(y))

= d(gn(x), h(gn(x))) + d(gn(h(x)), gn(h(y))) + d(h(gn(y)), gn(y))

< ε0/2 + 0 + ε0/2 = ε0

for all n ∈ Z and so by the expansiveness of g we find x = y. It follows that h is a
bijection. Since M is compact Hausdorff this means h is a homeomorphism and a
conjugacy. □
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