
Bourgain’s Embedding Theorem,

Johnson-Lindenstrauss Lemma, and the Sparsest

Cut Problem

Richard Ye

June 2023

Abstract

This paper will go over two major theorems in the field of metric dimension
reduction, the Bourgain Embedding Theorem and the Johnson-Lindenstrauss
Theorem, and their respective proofs. In addition, we will examine some appli-
cations of metric dimension reduction, and these theorems in particular, to the
Sparsest Cut algorithm problem.

1 Introduction

Metric embeddings and metric dimension reduction are critical tools in com-
puter science and mathematics and can be useful in tackling the curse of dimen-
sionality. These techniques allow for the transformation of higher dimensional
metric spaces into lower ones without significantly altering the distances be-
tween points.

Two major results in this field that we will examine in this paper are the Bour-
gain embedding theorem and the Johnson-Lindenstrauss Lemma. The Bour-
gain embedding theorem provides a method to embed any finite metric space
into Hilbert space with minimal distortion. The Johnson-Lindenstrauss Lemma
shows that high-dimensional data can be projected into a lower-dimensional
space while nearly maintaining pairwise distances.

In addition, we will examine some applications of metric embedding, and these
theorems in particular, to the Sparsest Cut algorithm problem, an NP-hard
problem in combinatorial optimization.

Definition 1.1: Bi-Lipschitz Embedding
We say a metric space (M,dM) embeds with distortion α, α ≥ 1, into metric
space (N, dN) if there is a embedding given by a mapping, f : M → N , and

1

scaling factor τ , τ > 0, such that for every a, b ∈ M,

τdM (a, b) ≤ dN (f(a), f(b)) ≤ ατdM (a, b)

Denote cN (M) the infimum of α ∈ [1,∞] for which α is the distortion of
an embedding of (M,dM) into (N, dN). When N is a Lp space, then denote
cLp(M) = cp(M).

Definition 1.2:
c2(M) is called Euclidean Distortion, since it measures how close to being a
subset of Euclidean space M is.

2 Bourgain’s Embedding Theorem

Theorem 2.1: Bourgain’s Embedding Theorem(General Case)

Consider (X, d) be a metric space with n points. Then c2(X) ≲ log(n). i.e.
c2(X) = O(log(n))

So this theorem implies that the Euclidean distortion of a n-point metric space
is O(log(n)).

This theorem is particularly interesting because it gives the result that we can
represent arbitrary metric space into a nice normed space(such as Euclidean),
with only a logarithmic distortion.

Proof:

Outline: For this proof, we will be following the argument of [2]. So the idea is
to construct a function, f , for any metric space, X, such that f embeds from X
to a space with Euclidean norm, and then show that embedding f has distortion
of O(log n)

To start, consider we take a random subset of X, B, by independently adjoin-
ing elements in X each with probability 1/2j to get B. Then for every subset
A ⊆ X, we can denote

P(B = A) = πj(A) =
1

2j×|A| (1− 1/2j)n−|A|

(The intuition for πj(A) is chopping the metric space up at dyadic scales)

Now consider k = ⌊log2n⌋+1. We can define function f : X → R2X (note that

R2X is equipped with euclidean norm).

f(x) = (f(x)A)A⊆X

Where f(x)A = (1k
∑k

j=1 πj(A))1/2d(x,A).
(Note d(x,A) is defined as the distance between x and the closest element of A).

2

Now we just want to show that embedding f has bi-lipschitz distortion of
O(logn).

To show the RHS(upper bound), it follows that for any a, b ∈ X,

||f(a)− f(b)||22 =
∑
A⊆X

1

k

k∑
j=1

πj(A)(d(a,A)− d(b, A))2

≤
∑
A⊆X

k∑
j=1

1

k
πj(A)(d(a, b))2

since x → d(x,A) is 1-Lipschitz, and since {πj(A)}A⊆X sums to 1 ∀j(i.e. prob-
abilities sum to 1), thus we have

=
1

k
kd(a, b)2 = d(a, b)2

so we get that
||f(a)− f(b)||22 ≤ d(a, b)2

and we are done with the upper bound(RHS).

Now for the lower bound(LHS), again take points a, b ∈ X, and now take some
j ∈ [1, k].

Let’s define rj(x, y) as the smallest positive r such that for balls B(a, r) and
B(b, r), we have that

|B(a, r)| ≥ 2j

|B(b, r)| ≥ 2j

Now we need this following lemma:

Lemma 2.2:
Let us denote

r̃j(a, b) = min{rj(a, b),
1

3
d(a, b)}

Consider any random subset of X, Aj , that we get with respect to πj . Then,
∀a ̸= b ∈ X, we have that

Eπj (d(a,Aj)− d(b, Aj))
2 ≳ (r̃j(a, b)− r̃j−1(a, b))

2

Proof of Lemma 2.2:

So we want to show(probability with respect to measure πj) that

P(|d(a,Aj)− d(b, Aj)| ≥ r̃j(a, b)− r̃j−1(a, b)) ≳ 1

3

Then the lemma follows by the Markov inequality. Assume r̃j(a, b) > r̃j−1(a, b),
since otherwise it is trivial. Thus, by definition, it implies that r̃j−1(a, b) =
rj−1(a, b). Now again by definition of rj(a, b), we know that

|B(a, r̃j−1(a, b))| ≥ 2j−1 and |B(b, r̃j−1(a, b))| ≥ 2j−1

Now from this statement, if we consider open balls, we can get that,

|Bo(a, rj(a, b))| > 2j and |Bo(b, rj(a, b))| > 2j

Note that by definition of r̃j(a, b), we know that the open and closed balls,
Bo(a, rj(a, b)) and B(b, r̃j−1(a, b)) are disjoint.

Now let us take a random subset A as we illustrated previously.

Notice that if A ∩Bo(a, rj(a, b)) = ∅ and A ∩B(b, r̃j−1(a, b)) ̸= ∅, we have

|d(a,A)− d(b, A)| > r̃j(a, b)− r̃j−1(a, b)

Now,
P(|d(a,A)− d(b, A)| ≥ r̃j(a, b)− r̃j−1(a, b))

From what we noticed previously, and that the balls are disjoint, we get the
previous quantity is

≥ P(A ∩Bo(a, r̃j(a, b) = ∅) AND A ∩Bo(b, r̃j−1(a, b)) = ∅)

= P(A ∩Bo(a, r̃j(a, b) = ∅))P(A ∩Bo(b, r̃j−1(a, b)) = ∅))

Where we used properties of independence for the last equality.

Applying the values from definitions, we get

(1− 1

2j
)|B

o(x,r̃j(a,b))|(1− (1− 1

2j
)|B

o(x,r̃j−1(a,b))|)

by definition,

≥ (1− 1

2j
)2

j

(1− (1− 1

2j
)2

j

) ≳ 1

So we have shown that

P(|d(a,Aj)− d(b, Aj)| ≥ r̃j(a, b)− r̃j−1(a, b)) ≳ 1

Now Markov’s inequality states that

P(X ≥ c) ≤ E(X)

c

Thus, we directly get

E(d(a,Aj)− d(b, Aj)) ≳ (r̃j(a, b)− r̃j−1(a, b))

4

i.e.
Eπj (d(a,Aj)− d(b, Aj))

2 ≳ (r̃j(a, b)− r̃j−1(a, b))
2

Now we can finish the LHS proof of the Bourgain embedding theorem by ap-
plying this lemma, so

||f(a)− f(b)||22 =
∑
A⊆X

1

k

k∑
j=1

πj(A)(d(a,A)− d(b, A))2

=
1

k

k∑
j=1

Eπj
(d(a,Aj)− d(b, Aj))

2

by the lemma,

≳
1

k

k∑
j=1

(r̃j(a, b)− r̃j−1(a, b))
2

by Jensen’s inequality,

≥ 1

k2
(

k∑
j=1

(r̃j(a, b)− r̃j−1(a, b)))
2

=
1

k2
r̃k(a, b)

2

≃ 1

k2
d(a, b)2

(Note that ≃ means is equal up to a constant, i.e. = O(1
k2 d(a, b)

2))

Plugging in k we can just rewrite that as:

||f(a)− f(b)||2 ≳
1

log(n)
d(a, b)

And we have proved the LHS.

Thus by definition of bi-lipschitz embedding, we proved that f has bi-lipschitz
distortion of at most O(log(n)). .

This is for the case of embedding into L2. In addition, we have the general
case:

Theorem 2.3: For any n-point metric space (X, d) and any 1 ≤ p < ∞,
then

cp(X) ≲
log(n)

p

5

Proof Idea:
We can Use the same argument as proof for Theorem 2.1, however, instead of
using 1/2j when defining πj(A), use qj , with q ∈ (0, 1), and optimize with re-
spect to q.

3 Johnson-Lindenstrass Lemma

Theorem 3.1: JL Lemma

Let any 0 < ϵ < 1, and a n-point set, X, with elements ∈ Rd, suppose

k ≥ 4(ϵ2/2− ϵ3/3)−1log(n)

Then there is an embedding f : Rd → Rk such that for any a, b ∈ X, we have

(1− ϵ)||a− b||2 ≤ ||f(a)− f(b)||2 ≤ (1 + ϵ)||a− b||2

In addition, this map/embedding can be found with a polynomial runtime
algorithm.

Basically, this lemma states one can find, in polynomial time, an embedding
such that a set of points in a higher dimensional space can be mapped to a
lower dimensional space with the distances between points nearly preserved(up
to bi-lipschitz constant).

Proof:

Outline: For this proof we will be following the argument of [4]. So the idea is
that we show that the squared length of a random vector is tightly concentrated
about its mean when it is projected to a lower dimensional subspace. In partic-
ular, the length of the random vector is not distorted by more than (1± ϵ), with
probability O(1/n2), which means that there is a ≥ O(1/n) probability that the
embedding procedure gives us the properties that we want. Then we can just
repeat the procedure a polynomial number of times to get the desired constant
probability of success of finding the embedding with desired properties.

ConsiderX1, X2, ..., Xd i.i.d. N(0, 1) random variables and Y = 1/||X||(X1, ..., Xd) ∈
Rd, i.e. Y is d-dimensional unit random vector constructed from Xi’s. Let
Z ∈ Rk be the projection of Y onto its first k dimensions, now it is clear that
the expected squared norm of Z is µ = E[||Z||2] = k/d

Now we have this following lemma:

6

Lemma 3.2:

If k < d, then

1. If β > 1,

P(L ≤ βk

d
) ≤ βk/2(1 +

(1− β)k

d− k
)(d−k)/2 ≤ exp(

k

2
(1− β + lnβ))

2. If β < 1,

P(L ≥ βk

d
) ≤ βk/2(1 +

(1− β)k

d− k
)(d−k)/2 ≤ exp(

k

2
(1− β + lnβ))

This lemma basically states that L is probabilistically tightly concentrated about
µ.

Proof of lemma 3.2:
Another way of stating Lemma 3.2 is

P[d(X2
1 + ...+X2

k) ≤ kβ(X2
1 + ...+X2

d)] ≤ βk/2(1 +
k(1− β)

d− k
)(d−k)/2

Let’s first focus on part 1,
To show this,

P[d(X2
1+...+X2

k) ≤ kβ(X2
1+...+X2

d)] = P[kβ(X2
1+...+X2

d)−d(X2
1+...+X2

k) ≥ 0]

Now for t > 0, this is equal to

= P[exp(t(kβ(X2
1 + ...+X2

d)− d(X2
1 + ...+X2

k))) ≥ 1]

Applying the Markov inequality,

≤ E[exp(t(kβ(X2
1 + ...+X2

d)− d(X2
1 + ...+X2

k)))]

Since Xi are i.i.d. N(0, 1), and using the easily proved fact that E(esX
2

) =
1/
√
1− 2s,−∞ < s < 1/2 when X is such, we have

E[exp(tkβ2X)]d−kE[exp(t(kβ − d)X)2]k

= (1− 2tkβ)−(d−k)/2(1− 2t(kβ − t))−k/2 = g(t)

Which we will denote as g(t). (Note: this means we have constraints tkβ <
1/2 and t(kβ − d) < 1/2, i.e. 0 < t < 1/2kβ)
Now, to minimize g(t) is the same as maximizing

(1− 2tkβ)(d−k)(1− 2t(kβ − t))k = f(t)

7

Which we will denote f(t).
Now we can just take first order conditions, we get that the minimum is at

t0 =
1− β

2β(d− kβ)

Since g(t0) = 1/
√
f(t0), thus

g(t0) = f(t0)
−1/2 = [(

d− k

d− kβ
)d−k(

1

B
)k]−1/2

= βk/2(
d− kβ

d− k
)(d−k)/2

= βk/2(1 +
k(1− β)

d− k
)(d−k)/2

Thus we show the inequality for Lemma 3.2(1).

Now similarly for lemma 3.2(2), we get that

P[d(X2
1+...+X2

k) ≤ kβ(X2
1+...+X2

d)] ≤ (1+2tkβ)−(d−k)/2(1+2t(kβ−t))−k/2 = g(−t)

(Note: we get constraints 0 < t < 1/2(d− kβ))
Denote upper bound g(−t). Clearly, this expression is minimized at −t0, where
t0 is the same as defined in the proof for 3.2(1).

Now similarly, plug in t0 from above and we get that

P[d(X2
1 + ...+X2

k) ≤ kβ(X2
1 + ...+X2

d)] ≤ βk/2(
d− kβ

d− k
)(d−k)/2

= βk/2(1 +
k(1− β)

d− k
)(d−k)/2

Thus we have proven the statements for both parts of the lemma 3.2.

Now back to the proof of Theorem 3.1,

Clearly, if d ≤ k then it is trivial, so let’s assume d > k. Now take k di-
mensional subspace S at random. Consider v′i be the projection of point vi ∈ V
onto S.

Now consider L = ||v′i − v′j ||2 and µ = (k/d)||vi − vj ||2.

Now knowing the lemma, we apply 3.2(1) to get,

P(L ≤ (1− ϵ)µ) ≤ exp(
k

2
(1− (1− ϵ)) + log(1− ϵ))

8

And since log(1− a) ≤ −a− a2/2 for any 0 ≤ a < 1, so

≤ exp(
k

2
(ϵ− (ϵ+ ϵ2/2)))

= exp(−kϵ2

4
)

≤ exp(−2 log n) = 1/n2

Now applying 3.2(2),

P(L ≥ (1 + ϵ)µ) ≤ exp(
k

2
(1− (1 + ϵ)) + log(1 + ϵ))

And since log(1 + a) ≤ a− a2/2 + a3/3, so

≤ exp(
k

2
(−ϵ+ (ϵ− ϵ2

2
+

ϵ3

3
)))

= exp(−k(ϵ2/2− ϵ3/3)

2
)

≤ exp(−2 log n) =
1

n2

Now given these conclusions, consider map f(vi) = (
√
(d/k))v′i. Now for an

arbitrary fixed pair, vi, vj , applying the above derivation, we know that the
probability that the distortion, ||f(vi)− f(vj)||2/||vi − vj ||2 not in [1− ϵ, 1 + ϵ]
is at most equal to 2/n2 i.e.

P(||f(vi)− (vj)||2/||vi − vj ||2 /∈ [1− ϵ, 1 + ϵ]) ≤ 1/n2 + 1/n2 = 2/n2

Thus, the probability that any pair of points has a large distortion is bounded
by

(
n
2

)
× 2/n2 = 1 − 1/n. So the embedding f has the desired properties with

probability ≥ 1/n. Now if we repeat this projection procedure O(n) times, then
we can find an embedding that satisfies the desired properties. Thus we have
the randomized polynomial run-time algorithm that we wanted.

.

4 Sparsest Cut Problem

As an application of the previously discussed theorems and the topic of metric
embeddings, we will examine the Sparsest Cut algorithms problem.

Informally, the goal of this problem is to partition a weighted undirected graph
into two large-as-possible sets while keeping as many total edges as possi-
ble(minimizing number of edges removed or ”cut” by the partition).

The context for this problem is:

9

• There is a weighted, undirected graph, G = (V,E), with set of vertices,
V , and set of edges, E(assigned with positive edge weights/capacities).

• For every pair of vertices, si, ti ∈ V , in the graph, they are assigned some
non-negative demand value, Di.

Definition 4.1a : A cut, (S, S̄), is a partitioning of the nodes, V , of the graph,
G, into two sets, S and S̄.

Definition 4.1b : The capacity, ce, of an edge, e ∈ E, is the weight that
is assigned to that edge.

Definition 4.1c : The demand, Di, between two nodes, si, ti, is a value
assigned to every one of the

(|V |
2

)
pairs of vertices in V.

Definition 4.2 : The sparsity of a cut is

ϕ(S) =
C(S, S̄)

D(S, S̄)

Where
C(S, S̄) = |E(S, S̄)| =

∑
e’s that cross the cut

ce

And
D(S, S̄) =

∑
i’s s.t. si,ti are separated by the cut

Di

So the goal of the problem is to find the cut, (S, S̄), with the minimum sparsity
as defined above.

Let us denote the minimum sparsity, minS⊆V Φ(S) = Φ(S∗) = Φ∗.

Note: A special case, what is called the ”uniform” case, of this problem, say we
have unit demands between all vertices, then our problem can be rewritten as
minimizing

min
C(S, S̄)

|S||S̄|

where |S|, |S̄| are just the size of the sets. So we would want to minimize the sum
capacity of the edges cut by (S, S̄), while maximizing the |S||S̄|. i.e. partition
the graph such that it minimizes the edges lost, while maximizing the size of
the pieces. This gives a rough intuition of what this problem is trying to achieve.

We can note that this is known to be an NP-hard problem.

At a glance, this problem is not related to metrics, so we now want to refor-
mulate this problem to be finding the minimum over what are called cut metrics.

10

Definition 4.3: For a given cut, S ⊆ V , a Cut metric, δS , associated with
S, is

δS(u, v) =

{
0, if u, v ∈ S or u, v ∈ S̄
1, otherwise

}
(Note this is not an actual metric, since metrics of different points cannot be 0).

Now, we can try to view any n-point graph as a vector in R(n2), so each co-
ordinate corresponds to a pair of vertices in the the graph(for our purposes, for
pairs of vertices with no edges between them can just take value 0).

Notationally, for a metric d from cut S, the corresponding vector is d̄ ∈ R(n2).
With this, we have

1. αd̄+ (1− α)d̄, α ∈ [0, 1] is a metric

2. kd̄ is a metric.

(i.e. the set of all metrics forms a convex cone ∈ R(n2)).
Now we can rewrite the sparsest cut problem from before as

min
all cut metrics S

c̄ · δ̄S
D̄ · δ̄S

Where δS is the cut metric for cut S, and δ̄S is its corresponding vector in R(n2).
So, for example if vertex i, j is separated by cut S, then their corresponding

cooridnate in R(n2) would have value 1, and 0 otherwise. And c̄ is a vector in

R(n2), and c̄ij is just the capacity of the edge between vertex i, j, and D̄ij is
similarly just the demand between vertex i, j.

Now denote
CUTn = {d̄|d =

∑
S⊆V

αsδs, α ≥ 0}

i.e. convex combination sum of all cut metrics, is the positive cone formed by
all of the cut metrics.

In addition,

Claim 4.4: CUTn is in one-to-one correspondence to the n-point subsets of
Rt where each subset is equipped with the l1 norm, and t is the total number
of possible cuts in the n-point graph.

In other words:
Any metric in l1 can be represented by a positive linear combination of cuts.

Proof:

11

- ⊆ direction: Consider any metric in CUTn, for every cut, S, αS > 0, we have
a dimension, in which has value 0 for x ∈ S and value αS for x ∈ S̄. Thus, this
shows CUTn ⊆ l1.
- Other direction: So the idea is to look at each coordinate, Consider taking
one dimension, d, from a n-point set in Rn, and order the points in increasing
value in dimension d. Say WLOG we get v1, ..., vk distinct values. Then we can
define k− 1 cut metrics Si = {x|xd ≤ vi+1}, and consider αi = vi+1 − vi. Then

along dimension d, |xd−yd| =
∑k

i=1 αiδSi . And we can construct cut metrics in
this way for every dimension. i.e. there is a metric in CUTn for every n-point
metric in l1, so l1 ⊆ CUTn

Note, for algorithmic implementation, we have the lemma 4.5:
Given metric µ ∈ l1 of dimension D, then there is a poly(n,d) time procedure
that outputs a set of αS ≥ 0, S ⊆ V s.t. µ =

∑
S⊆V αsδs

Now, since the optimum of the sparsest cut problem has to be achieved at
an extreme point, we thus can rewrite our problem as,

Φ∗ = min
d∈CUTn

c̄ · δ̄S
D̄ · δ̄S

And using Claim 4.4, we can rewrite as optimizing for ϕ∗ over CUTn,

Φ∗ = min
d∈l1

c̄ · δ̄S
D̄ · δ̄S

However, since the sparsest cut problem is NP-hard, it is impossible to solve
this problem over the metrics in l1.

Now let’s consider a relaxation.

We can relax the problem by changing the domain of d to all metrics. Thus we
get

λ∗ := min
d a metric

c̄ · δ̄S
D̄ · δ̄S

It is clear that λ∗ ≤ Φ∗ since l1 ⊆ {set of all metrics}.

Note that now, we can compute λ∗ using a linear program(LP):

min cijdij

subject to the following:

dij ≤ dik + djk

Dijdij = 1

dij ≥ 0

12

Assuming that the LP finds the metric d that minimizes λ∗, now we need a way
to find the cut (S, S′) such that Φ(S) ≈ Φ∗.

The idea is to embed the metric we get from the LP into a l1 metric a way
that the distances are not changed too significantly. Then, we can recover a cut
metric from the l1 metric with the same optimizing objective, and we are done,
and we get what we want, up to what we lose from the distortion.

First let us define,
Definition 4.6:
The integrality gap is the ratio between the optimal value we obtain from solving
the LP relaxation and the optimal value of the original problem.

Now, applying the metric embedding knowledge that we discussed in previ-
ous sections, we have that:

Theorem 4.7:
For any metric space (V, d) equipped with metric d, ∃ a metric µ = µ(d) ∈ l1
such that ∀x, y ∈ V ,

d(x, y) ≤ µ(x, y) ≤ αd(x, y)

Then the integrality gap for the sparsest cut linear program(LP) from before is
α.

Proof:
Suppose the LP returns metric d, and consider the metric µ ∈ l1 such that
d ≤ µ ≤ αd.
Applying this, we have c̄ · µ̄ ≤ αc̄ · d̄ and D̄ · µ̄ ≥ D̄ · d̄

Then, we have

Φ(µ) :=
c̄ · µ̄
D̄ · µ̄

≤ αc̄ · d̄
D̄ · d̄

= α
c̄ · d̄
D̄ · d̄

= αλ∗ ≤ αΦ∗

i.e. The LP finds solution with value at most α times the optimal sparsest cut,
Φ∗, in other words, integrality gap of the LP is upper bounded by/at most α.

Now, applying the Bourgain Embedding Theorem that we examined previously,
and a result from Linial et al.[3], we can directly get

Theorem 4.8:
For all metrics d, ∃ µ ∈ l1 s.t. integrality gap α = O(log n). Moreover, the
number of dimensions needed is at most O(log2 n)[3].

And following 4.7 and 4.8, we have

Corollary 4.9: The LP for the relaxation of the sparsest cut has integral-

13

ity gap of O(log n).

So after all of this, we have shown that the integrality gap between Φ∗ and
λ∗ are small by applying metric embeddings and the theorems examined previ-
ously. But, we want to find the sparsest cut, i.e. we want to find a cut, (S, S̄)
such that Φ(S) is minimized.

To find this, we need to construct a cut, (S, S̄), from µ ∈ l1 metric such that,

Φ(S) ≤ Φ(µ)

So we have,

Φ(µ) =
c̄ · µ̄
D̄ · µ̄

And by Claim 4.4, we know any metric in l1 can be represented by positive
linear combination of cuts, so

=
c̄ ·

∑
αSδS

D̄ ·
∑

αSδS

=

∑
αS(c̄ · δS)∑
αS(D̄ · δS)

≥ min
S,αS>0

αS(c̄ · δS)
αS(D̄ · δS)

= min
S,αS>0

Φ(S)

i.e. This means we can just pick the best cut S among the ones with αS > 0 in
the cut decomposition of µ.

And now, using Lemma 4.5 and Theorem 4.8, we can find the positive linear
combination representation of µ in polynomial runtime, poly(n), and with at
maximum O(n log2 n) cuts.

Finally, these not only show that the integrality gap is small(i.e. Corollary
4.9), but also,

Theorem 4.10:
Given the solution to the Linear Program(LP), d, which solves for the minimum
LP-value, λ∗, we can efficiently, in polynomial time, find a cut, (S, S̄), such that

Φ(S) ≤ O(log n)× λ∗

14

In summary, we wanted to solve the sparsest cut problem, which we refor-
mulated using metric spaces as solving

Φ∗ = min
d∈l1

c̄ · δ̄S
D̄ · δ̄S

Which since is NP-hard, we then relaxed to solving

λ∗ := min
d a metric

c̄ · δ̄S
D̄ · δ̄S

Which can be solved using a Linear program(LP).

We finally showed, using results from the field of metric embeddings, that this
relaxation creates an at worst O(log n) gap.

References

[1] Anupam Gupta, Sparsest Cut and l1 Embeddings, CMU Lecture Notes, 2008.

[2] Assaf Naor, Metric Embeddings and Lipschitz Extensions, Princeton Uni-
versity Department of Mathematics Lecture Notes, 2015.

[3] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and
some of its algorithmic applications. Combinatorica, 15(2):215–245, 1995.

[4] Sanjoy Dasgupta and Anupam Gupta, An Elementary Proof of a Theo-
rem of Johnson and Lindenstrauss, DOI 10.1002/rsa.10073, 2002.

15

