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Abstract. In this paper, we introduce the topic of transportation theory, fo-

cusing on the Monge-Kantorovich problem and its dual. The main result of the

paper is a proof of the duality of the solutions to these two problems. Further-
more, we provide additional economic context to applications of this duality,

and introduce a type of economic problem in which Monge-Kantorovich duality

plays an unexpected, yet central role.
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. Main Paper

1. Introduction

Optimal transport is the study of how best to allocate different resources among
different consumers of these resources. “Best” as a goal is vague, but generally
taken to be the maximization of some kind of social welfare function. This is
an important economics problem; the matching between producers and consumers
which occurs every day is what allows for a market economy to efficiently allocate
goods among all those that desire them.

As a field, optimal transport is relatively young. Gaspard Monge, an 18th-
century French mathematician, first formulated the Monge problem, a forerunner
of modern transportation problems which will be addressed in detail later. But
roughly speaking, the Monge problem is to match producers to consumers one-to-
one, such that the total cost of transportation between producers and consumers is
minimized. Monge wrote at some length about this problem, but lacking modern
mathematical tools, such as linear programming, he was unable to solve the prob-
lem.

Linear programming problems are maximization/minimization problems of spe-
cific form, and are the forerunners of more general optimal transport problems
studied today. Essentially, every linear programming problem can be reduced to
the problem of finding an n-dimensional vector v maximizing some objective func-
tion

cTv

(for c an n-dimensional vector of coefficients) subject to constraints of the form

Av ≤ b

for k × n matrix A and k-dimensional b. Once difficult and computationally in-
tractable, the invention of the simplex method in 1947 by mathematician George
Dantzig brought efficient solutions to this problem, and is still used today.

Also possibly of interest is the related dual problem: first conjectured by von
Neumann when applying linear programming to zero-sum games, the dual problem
for the above linear programming problem is the problem of finding k-dimensional
w minimizing the function

bTw

given constraints
ATw ≥ c.
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Such a dual problem exists for every linear programming problem, and the solutions
of the one coincide with the solutions of the other in a neat way which has cool
economic implications. Duality for linear programs was established in 1948, and
dual problems have been active subjects of research in the late 20th and early 21st
centuries.

Thus, optimal transport in the discrete case was fairly well-studied during the
later half of the 20th century, but conclusive study of the problem in its full gen-
erality did not occur until the late 1980s and onwards. The modern statement of
the Monge-Kantorovich problem, which is the main subject of this paper, arises
from this time period. Results from the Monge-Kantorovich problem and its dual
solutions have had important effects on economics, physics, biology, and other fields
as well.

1.1. Assumptions about the Reader. The results contained in this paper are
intrinsically related to measure theory, and so the author will assume that the reader
has at least some familiarity with the terminology of measure theory. But if one
mentally substitutes the notions of “density” for measure, “everywhere that we care
about” for “almost everywhere”, and doesn’t look too carefully at the underlying
details, one can get by with a vague intuitional understanding.

Besides this, the reader should get accustomed to the idea of an analytic approach
to probability, with probabilities defined by measures. Additional theorems are
stated as needed in the text, with citations to complete proofs contained in the
appendix. Otherwise, the rest of this paper should be comprehensible after a year
of undergraduate analysis experience.

2. The Monge-Kantorovich Problem

First, we present Monge’s original formulation of the problem, with updated
terminology.

2.1. The Monge Problem. Let µ denote a probability measure on a space X,
and let ν similarly denote a probability measure on X. Let c : X × X → R be a
cost function. We denote a transfer map π : X → X such that π is one-to-one
and for a set S ⊂ X, we have that µ(S) = ν(π(S)). Let Π(µ, ν) denote the set of
all transfer maps from µ to ν. Then our objective is to minimize

min
π∈Π(µ,ν)

∫
X×X

c(x, π(x))dµ.

2.1.1. Commentary on the Monge Problem. Monge was originally concerned with
the problem of moving earth from heaps into holes. If we use µ, a measure, to
represent the distribution of earth in above-ground heaps over the space X, and
ν, another measure, to represent the distribution of vacancies underground in X,
and we assume that there is exactly enough earth to flatten every heap and fill
every hole, then we can normalize both µ and ν and use the terminology of proba-
bility measures. Our transfer map π then declares how every infinitesimal vertical
cross-section of dirt is to be transferred from place to place, and c represents the
cost involved with moving earth from place to place. Certain locations may be
convenient to transfer earth to, or may be further away, or any combination of such
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factors.

Nevertheless, while the physical interpretation of such a plan can be seen, actu-
ally finding such a plan remains a difficult problem to this day. The cases where
c(x, y) = |x − y| and c(x, y) = (x − y)2 are fairly well studied and can be solved,
but more exotic cost functions are less tractable.

Furthermore, the Monge problem may be ill-posed for certain distributions µ, ν.
For example, for X = R, µ = δ0, ν = 1

2δ1 + 1
2δ2 (where δk is the Dirac delta

function centered at k), there are no admissible transport maps at all, because we
cannot split the mass located at 0 to send it to 1 or 2, as such a map would not
be one-to-one. Leonid Kantorovich would later recognize that relaxing this one-to-
one condition would make the problem significantly more tractable and allow for a
linear programming approach to be used. We now present the modern formulation
of the Monge-Kantorovich problem.

2.2. Monge-Kantorovich. Let µ denote a probability measure on a space X,
and let ν denote a probability measure on a space Y . Let c : X × Y → R be
a cost function. We say that π : X × Y → R is a transference plan if it is a
probability measure on X × Y , and for arbitrary sets S ⊂ X,T ⊂ Y , we have
that π(S × Y ) = µ(S) and π(X × T ) = ν(T ). We let Π(µ, ν) denote the set of all
admissible transference plans. Then the problem is to minimize:

min
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ.

2.2.1. Commentary on Monge-Kantorovich. The central idea of the relaxation is
the probability distribution, which changed from Monge’s idea of a one-to-one func-
tion which described something like a matching, into a probability distribution over
the combined spaces. This allows for us to perform tricks like shifting half the mass
of a point (x0, y0) to a different point (x0, y1), and shifting the same amount of mass
from (x1, y1) to (x1, y0), thus preserving the amount of mass at points x0, x1, y0, y1
while materially changing the distribution. This ease of transfer is what makes this
problem both more soluble and more general than Monge’s original formulation.

If you close your eyes and squint, the Monge-Kantorovich problem as presented
above looks a bit like a linear programming problem, with the constraint being that
π(X × Y ) = 1. Indeed, if π assigns positive measure only to discrete points, this
is in fact a linear programming problem. Thus, a natural question is to ask about
the dual problem and its interpretation. Here it is:

2.3. The Dual Problem. Let ψ : X → R and ϕ : Y → R be integrable functions
such that for almost every (x, y) ∈ X × Y (outside a set of measure zero), ψ(x) +
ϕ(y) ≤ c(x, y). The dual problem is then the maximization:

max
ψ,ϕ

∫
X

ψ(x)dµ+

∫
Y

ϕ(y)dν.

2.3.1. Commentary on the Dual Problem. As this is a dual problem, the two solu-
tions in fact should coincide:

(2.1) inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ = sup
ψ,ϕ

(∫
X

ψ(x)dµ+

∫
Y

ϕ(y)dν

)
.
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This is known as Monge-Kantorovich duality, and demonstrating that this holds is
the main content of this paper. Furthermore, we will include some examples of how
it can be applied to solve certain problems outside of transportation theory.

Here is an economic interpretation of this statement: Suppose that X represents
a space of bakeries (with bakeries positioned according to their characteristics, such
as clientele and location), and Y represents a space of cafes serving baked goods.
Bakeries produce bread according to the probability distribution µ (so for a finite
number of bakeries, this is a probability distribution on point masses), and cafes
demand bread according to the probability distribution ν. Acting on their own, the
bakeries and cafes must incur some cost c(x, y) to transport a unit of bread from
bakery x to cafe y, and their problem is to find the distribution π such that the

total cost of transporting bread,

∫
X×Y

c(x, y)dπ, is minimized.

Now, suppose a transportation company offers to take care of the transportation
between bakeries and cafes. They charge a flat fee for pickup at a bakery: ψ(x)
per unit, depending on the bakery x, and another fee for delivery to a cafe: ϕ(y)
per unit, depending on the target cafe y. The company guarantees that their prices
are competitive: ψ(x) + ϕ(y) ≤ c(x, y) for almost every pair (x, y), so it is always
worth the bakery/cafe’s while to use the transportation company’s services.

Then, the duality statement implies that for the transportation company, there
is some pair of pricings ψ, ϕ such that the transportation company earns essentially
as much as the bakeries/cafes were spending on their own. (So essentially all the
slack in the market is taken up by the transportation company.) This is a non-
obvious statement, but it has the benefit of being true. We will proceed by first
proving a weaker statement, and then proving the result in full detail. The proof of
the weak statement is adapted from Alfred Galichon’s Optimal Transport Methods
in Economics [13].

3. Weak Monge-Kantorovich

Take the assumptions as in Section 2.2. Instead of demonstrating equality as in
Equation (2.1):

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ = sup
ψ,ϕ

(∫
X

ψ(x)dµ+

∫
Y

ϕ(y)dν

)
we show a weaker inequality first:

(3.1) inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ ≥ sup
ψ,ϕ

(∫
X

ψ(x)dµ+

∫
Y

ϕ(y)dν

)
.

Informally, this claims that the inequality

ψ(x) + ϕ(y) ≤ c(x, y)

which holds pointwise at every (x, y) can be extended to the integral over the entire
space X × Y .

Proof. As π satisfies π(S × Y ) = µ(S) for subsets S of X, we claim that∫
X

ψ(x)dµ =

∫
X×Y

ψ(x)dπ,
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as the measures assigned are the same. Similarly,∫
Y

ϕ(y)dν =

∫
X×Y

ϕ(y)dπ.

Then, as we know that c(x, y) ≥ ψ(x) + ϕ(y) almost everywhere, we know that the
following inequality holds:∫

X×Y
c(x, y)dπ ≥

∫
X×Y

ψ(x) + ϕ(y)dπ.

Thus, combining these statements, we have that∫
X×Y

c(x, y)dπ ≥
∫
X

ψ(x)dµ+

∫
Y

ϕ(y)dν,

Taking the infimum on the left-hand side and the supremum on the right-hand side,
we attain Equation (3.1), as desired. □

4. Strong Monge-Kantorovich

In its strong form, Monge-Kantorovich duality claims that the two quantities
concerned are equal, namely that

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ = sup
ψ,ϕ

(∫
X

ψ(x)dµ+

∫
Y

ϕ(y)dν

)
,

as in Equation (2.1). While the duality can be applied to any lower semi-continuous
cost functions, we will restrict the cases under consideration to continuous nonneg-
ative cost functions. The proof of the theorem will be laid out in four parts as
follows:

(1) Demonstrating that for discrete measures µ and ν, a coupling which has µ
and ν as marginal probabilities and is minimal in some sense does exist.

(2) Using marginals with discrete measure to extend via a limit to a pairing in
arbitrary measures, creating a coupling which is minimal in the same sense.

(3) Showing the existence of one of the one-sided cost functions ψ, ϕ with some
desirable properties.

(4) Using the other corresponding one-sided cost function to show that duality
does in fact hold.

This approach is adapted from the proof presented by Cedric Villani in his Optimal
Transport: Old and New [14].

Before we begin, a full and precise statement of the Monge-Kantorovich theorem:

Theorem 4.1. Let (X,µ), (V, ν) be Polish probability spaces. Let c : X × Y → R+

be a continuous cost function. Then, the following equality holds:

min
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) = sup
ψ,ϕ

(∫
X

ψ(x)dµ(x) +

∫
Y

ϕ(y)dν(y)

)
over all ψ, ϕ ∈ Cb(X), Cb(Y ) and for all x, y, ψ(x) + ϕ(y) ≤ c(x, y).

(Polish spaces are separable, completely metrizable spaces, but for most pur-
poses, a compact subset of Rn with the Lebesgue measure will suffice. As described
in Section 2.2, Π(µ, ν) is the set of admissible transference plans, namely those with
marginals µ, ν on X,Y . The set Cb(X) is the set of continuous bounded functions
on X, and the same for Cb(Y ).)
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4.1. Part 1: Cyclically monotone transference plan in the discrete case.
Before we begin, we establish some definitions:

4.1.1. Preliminaries.

Definition 4.2. Let X,Y be arbitrary sets and c : X × Y → R a function. A
subset Γ ⊂ X × Y is defined to be c-cyclically monotone if, for any N ∈ N, any
collection of points (x1, y1), · · · , (xN , yN ) ∈ Γ, the following relation holds:

(4.3)

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yi+1)

(with the convention that yN+1 = y1). A transference plan (a coupling between X
and Y , which we model by a joint probability measure on the space X × Y ) is said
to be c-cyclically monotone if it is concentrated (has support on, excepting a set
of measure zero) on a c-cyclically monotone set.

This idea of cyclical monotonicity provides the foundation for comparison be-
tween the cost-minimizing and profit-maximizing cases. Intuitively speaking, if a
transference plan π is not c-cyclically monotone, then as there exists some finite cy-
cle on which π assigns positive mass to every point, we can arrange for a change in
π to a new transference plan π̃ by decreasing the weight of each (xi, yi) and increas-
ing the weight of each (xi, yi+1) by the same amount. The new joint probability
distribution π̃ still has the same marginals µ, ν as the original π, so the infimum
side of the duality is unchanged, but the supremum side of the duality decreases.
So if we want to compare these two, we should make sure that the supremum side
is in no position to change.

Note that cyclic monotonicity does not necessarily imply general optimality,
although an optimal plan must be cyclically monotone (as it would otherwise be
able to be improved). But a cyclically monotone plan at least cannot be easily
improved.

4.1.2. Statement and Proof. Before we attempt to find cyclically monotone trans-
ference plans for general measures, we first solve the problem for the specific case
of measures with a finite number of discrete point masses. From this solution, we
aim to approximate the continuous case with a sequence of discrete cases. But
we should hope that even in the discrete case, we can find a cyclically monotone
transference plan. Thus, we wish to show the following proposition:

Proposition 4.4. Let µ =
1

n

n∑
i=1

δxi
and ν =

1

n

n∑
i=1

δyi , where the cost c(xi, yi) is

finite at every point (xi, yi). Then there exists a c-cyclically monotone transference
plan.

Proof. Consider the space of all transference plans. There are only n× n points in
X × Y which can be assigned positive mass, so we can associate the transference
plan with some n× n matrix A, with each element aij referring to the mass at the
point (xi, yj). (Note that such a matrix still must obey the requirements for the
marginal distribution, so the sum of each column and the sum of each row must
total 1

n .)
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Now, the corresponding Monge-Kantorovich problem is the following:

inf
∑
i,j

aij · c(xi, yj)

where the infimum is over all n × n matrices (with the right column / row sums).

But if we instead look at the space of n×n matrices as Rn2

, each of the row/column
sum constraints defines a hyperplane. The equation

n∑
j=1

a0j =
1

n
,

which constrains the first row to have sum 1
n , defines a hyperplane of degree n− 1.

The further constraint (due to measure) that each entry is nonnegative is equiva-
lent to a restraint along another hyperplane for each of the n dimensions involved.
For example, for n = 3, the constraint above produces a plane which intersects the
points ( 13 , 0, 0), (0,

1
3 , 0), (0, 0,

1
3 ). The non-negativity constraint reduces this plane

to the 2D triangle embedded in R3 with these points as vertices.

In this way, each of the constraints restricts the total space of matrices to the
intersection of these convex polytopes, ultimately producing a convex polytope.
This polytope is nonempty, as 1

n · I is located within the polytope, where I is the
n × n identity matrix, so the space of permissible matrices is compact. Then, we
are minimizing this linear function over a compact set, so the infimum is attained
by some matrix A. We can then define the transference plan π as

π :=
1

n

∑
i,j

aij · δxi,yj .

This π is c-cyclically monotone: if it weren’t, then there would exist some sub-
sequences {ik} and {jk} such that

k∑
l=1

c(xil , yjl) >

k∑
l=1

c(xil , yjl+1
).

(We have the convention that jk+1 = j1, similarly to above.) Furthermore, at each
point (xil , yjl), the constant ailjl must be strictly positive, as π must assign positive
mass to this point for it to violate c-cyclic monotonicity. Then, letting b = min

l∈[k]
ailjl ,

we have that b > 0 and for each l, ailjl − b ≥ 0.
We can then define a new transference plan π̃ as follows:

π̃ := π − 1

n

k∑
l=1

b · δxil
,yjl

+
1

n

k∑
l=1

b · δxil
,yjl+1

.

By what we just showed above, this is in fact a valid transference plan: the ilth
row is decreased by b

n and increased by b
n , so the row/column sums are still b

n as
before. Each pair (xi, yj) still has positive mass associated with it as well. But by
our original assumption, π minimizes the cost function

C(π) =
∑
i,j

aij · c(xi, yj).
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Plugging π̃ into the cost function, we have

C(π̃) =
∑
i,j

aij · c(xi, yj)−
1

n

k∑
l=1

b · c(xil , yjl) +
1

n

k∑
l=1

b · c(xil , yjl+1
).

But as

(4.5)

k∑
l=1

c(xil , yjl) >

k∑
l=1

c(xil , yjl+1
)

from the assumption that π was not c-cyclically monotone, Equation (4.5) rear-
ranges to

− 1

n

k∑
l=1

b · c(xil , yjl) +
1

n

k∑
l=1

b · c(xil , yjl+1
) < 0

and so
C(π̃) < C(π).

We assumed that π minimized the cost function, so this is a contradiction. Thus,
π must be c-cyclically monotone.

□

4.2. Part 2: Extension to cyclically monotone plan in general case. As the
Monge-Kantorovich problem in its full generality deals with probability measures
µ, ν in a Polish probability space, we would like to use the result from the discrete
case, where we had only point measures, and extend it to more general measures.
To do so, we first introduce some pre-existing results from probability theory, which
we will not immediately provide proofs for. (Proofs or citations to complete proofs
will be included in the appendix.)

4.2.1. Preliminaries.

Definition 4.6. Let (S,Σ) be a space and its σ-algebra, and let {Pn} be a sequence
of bounded positive probability measures on (S,Σ). The sequence {Pn} converges
weakly to a probability measure P if:

lim
n→∞

∫
S

|f |dPn =

∫
S

|f |dP

for all bounded continuous functions f .

Theorem 4.7. (Portmanteau Theorem) A sequence of measures {µn} converges
weakly to µ if and only if

lim sup
n→∞

µn(T ) ≤ µ(T )

for all closed sets T .

Proof in Appendix A.1.

Theorem 4.8. (Law of Large Numbers for Empirical Measures) Let {Xn} be a
sequence of i.i.d. (independent, identically distributed) random variables on the
space X with distribution according to some probability measure µ. Then the sample
probability measure for n points, µn, converges to the true probability measure µ:

µn :=
1

n

n∑
i=1

δxi
→ µ

where the convergence is weak convergence as in Definition 4.6.
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Proof in Appendix A.2.

Definition 4.9. We call a measure m on a space S tight if for any ϵ > 0, there
exists some compact set Kϵ of S such that m(S \Kϵ) < ϵ. A collection of measures
M is tight if for any ϵ > 0, there exists compact Kϵ such that mα(S \Kϵ) < ϵ for
every measure mα in M .

Definition 4.10. A space S is sequentially compact if every sequence in S has
a convergent subsequence which converges to a point in S.

Theorem 4.11. (Prokhorov’s Theorem) Let S be a separable metric space, and let
P(S) be the set of all probability measures defined on S. Then a collectionM ⊂ P(S)
of probability measures is tight if and only if the closure ofM is sequentially compact
in the space P(S) with respect to weak convergence.

Proof in Appendix A.3.

Definition 4.12. Let X,Y be two spaces. If µ is a Borel measure on X, and
T : X → Y is a Borel function, we define the pushforward of µ by T as

(T#µ)(A) := µ(T−1(A))

for all measurable sets A in Y . Note that T#µ is a Borel measure on Y .

Definition 4.13. Let π be a probability distribution with respect to two variables
x ∈ X and y ∈ Y . Its marginal on X is the measure f#π, where f(x, y) = x. We
define the marginal on Y similarly: g#π, where g(x, y) = y.

Definition 4.14. Let µ be a measure on X and ν be a measure on Y . We define
the product measure µ⊗ν as the measure on X×Y such that for any measurable
sets B1, B2 in X,Y respectively,

(µ⊗ ν)(B1 ×B2) = µ(B1) · ν(B2).

In the case where X and Y are the same space and µ and ν are the same measure,
we write µ⊗ µ as µ⊗2, and generally

µ⊗ µ⊗ · · · ⊗ µ︸ ︷︷ ︸
n times

= µ⊗n.

Definition 4.15. We say that measure µ on a space X is concentrated on some
set S ⊂ X if µ(X \ S) = 0.

4.2.2. Lemma (tightness of transference). Now, before we begin the proof, we in-
troduce a technical lemma specific to this problem.

Lemma 4.16. Let X,Y be Polish spaces, M ⊂ P(X), N ⊂ P(Y ), (where P(X) is
the set of probability measures on X as before) and let M,N be tight. Let Π(M,N)
be the set of all transfer plans π such that the marginals of π with respect to X,Y
lie in M,N respectively. Then this set Π(M,N) is tight in P(X × Y ).

Proof. Choose any ϵ > 0. Then, asM,N are tight, there exist compact Kϵ, Lϵ such
that for any µ ∈M , µ(X \Kϵ) <

ϵ
2 and for any ν ∈ N , ν(Y \ Lϵ) < ϵ

2 .

Now, take some π ∈ Π(M,N), with marginals on X,Y of µ, ν respectively.
(µ ∈ M,ν ∈ N .) The set (X × Y ) \ (Kϵ × Lϵ) can be decomposed into two (not
necessarily disjoint) sets (X \Kϵ)× Y and X × (Y \ Lϵ), so

π(X × Y ) \ (Kϵ × Lϵ) ≤ π((X \Kϵ)× Y ) + π(X × (Y \ Lϵ)).
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Considering π((X \Kϵ)× Y ), let f(x, y) = x as in Definition 4.13. Then as

(X \Kϵ) = f−1((X \Kϵ)× Y )

we have that

π(f−1(X \Kϵ)) = f#π(X \Kϵ)

= µ(X \Kϵ)

≤ ϵ

2
.

Similarly, we have that π(X × (Y \Lϵ)) ≤ ϵ
2 as well, so π((X ×Y ) \ (Kϵ×Lϵ)) ≤ ϵ.

The Cartesian product of compact sets Kϵ × Lϵ is compact as well, so we have
found a compact set satisfying the requirements for tightness, and so π is tight.
This proof works independent of which π is chosen, with the same Kϵ, Lϵ, so the
entire set Π(M,N) is tight, as desired. □

This lemma will be combined with Prokhorov’s Theorem (Theorem 4.11) to
demonstrate convergence of a sequence of probability measures to a single proba-
bility measure later on. With this lemma in hand, we can move forward with the
proof of this section.

4.2.3. Statement and Proof. We wish to show the following proposition:

Proposition 4.17. For continuous cost function c, there exists a cyclically mono-
tone transference plan π with marginals on X and Y of µ, ν respectively.

Proof. Consider two sequences of i.i.d. random variables {xn} and {yn} with dis-
tributions according to probability distributions µ, ν on X,Y respectively. Define
the sample probability measure µn for the first n elements of {xn} by

µn :=
1

n

n∑
i=1

δxi

as in Theorem 4.8 above, and νn for {yn} similarly. Then, by Theorem 4.8, we know
that µn converges to µ weakly, and νn converges to ν weakly as well. Then, as the
sequence {µn} converges to the probability measure µ, it is sequentially compact,
as every subsequence must also converge to µ. Then, by Prokhorov’s Theorem
(Theorem 4.11), the sequence {µn} is tight, and similarly {νn} is tight as well.

For each n, let πn be the cyclically monotone transference plan between µn and
νn, which we showed to exist in Section 4.1. By Lemma 4.16, the sequence {πn}
is tight as well, so by Prokhorov again (Theorem 4.11) this sequence {πn} must be
sequentially compact, and thus has a subsequence converging to some π. If we let
the subsequence be {κn}, we have that∫

X×Y
hdκn →

∫
X×Y

hdπ

for every bounded continuous h(x, y). If we plug in some function f(x) depending
only on x, we have that ∫

X×Y
fdκn =

∫
X

fdµn,
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so

lim
n→∞

∫
X×Y

fdκn = lim
n→∞

∫
X

fdµn =

∫
X

fdµ.

So as this holds for any f(x), and similarly for any g(y), π has marginals on X,Y
of µ, ν respectively, as desired.

We now show that π defined as above is cyclically monotone:

Let C(N) be the set of N -cycles in (X × Y )N such that for a point p =
((x1, y1), (x2, y2), · · · , (xN , yN )) in C(N), we have that

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yi+1)

as in Equation (4.3) (with the same convention yN+1 = y1). We know that every κn
is cyclically monotone, so for any point q = ((x1, y1), (x2, y2), · · · , (xN , yN )) not in
C(N), κn cannot assign positive mass to each point (x1, y1), (x2, y2), · · · , (xN , yN ),
or else κn is not cyclically monotone. Thus, for every κn, we can say that the mass
of κ⊗Nn is concentrated on C(N).

As the cost function c is continuous, C(N) is closed, as every convergent sequence
of cyclically monotone N -cycles must converge to a cyclically monotone N -cycle.
But then by the Portmanteau Theorem (Theorem 4.7), we must have that

lim sup
n→∞

µn(C(N)) ≤ µ(C(N)),

and so as µn(CN ) = 1 for all µn, µ(C(N)) = 1 as well. Thus µ is concentrated only
on C(N) for each N , and so µ must be cyclically monotone. □

4.3. Part 3: Existence of lower-dimension dual. Similar to before, we must
introduce some technical definitions in order to properly define the desired state-
ment in this part.

4.3.1. Preliminaries.

Definition 4.18. Let X,Y be spaces, and c : X × Y → R. A function ψ : X → R
is c-concave if there exists some ϕ : Y → R such that for all x,

ψ(x) = inf
y∈Y

(c(x, y)− ϕ(y)).

This definition is somewhat abstract, so here’s the intuition: In the case where
X,Y = R, c(x, y) is a function from R2 to R. (You can visualize this as an irregular
surface of varying height over some area, like [0, 1]× [0, 1].) The function ψ defines
a surface with a height which varies only with respect to x, and not to y. On a
line parallel to the y-axis, ϕ has the same value at every point. (Think of this
as a piece of corrugated cardboard, with the corrugations all running in the same
direction.) If ψ is c-concave, then after overlaying some ϕ(y) with corrugations in
the orthogonal direction (parallel to the x-axis), the resulting surface (ψ + ϕ) is
tangent to that defined by c at some point (x, y) for every x.

Equipped with this definition of c-concavity, we now examine a related concept:
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Definition 4.19. The c-conjugate of ψ, written ψc(y), is defined:

ψc(y) := inf
x∈X

(c(x, y)− ψ(x)).

(This is also known as the Legendre-Fenchel transform, among other names.)
Note that ψc is precisely that ϕ for which we can show that ψ is c-concave.

Definition 4.20. The c-subdifferential of ψ, denoted ∂cψ, is the set of points
(x, y) ∈ X × Y satisfying

ψc(y) + ψ(x) = c(x, y).

The c-conjugate satisfies some nice properties, like how for ψ c-convex, (ψc)c = ψ.
Just as ψ is a function on X, ψc is intended to be its counterpart on Y , as a function
that “fills gaps” where ψ provides opportunities between itself and c.

These points (x, y) where gaps can be completely filled are grouped into the
c-subdifferential, where ψ(x) + ϕ(y) = c(x, y) holds. Note that at points (x, y) in
∂cψ, the infimum in the definition of ψc is actually achieved by the x-coordinate of
(x, y).

Definition 4.21. The support of a measure or a function m is the smallest closed
set such that the set of all points outside the support where m is nonzero has measure
zero.

4.3.2. Statement. Now, we present the main statement that we wish to show in this
part:

Proposition 4.22. For c continuous, π c-cyclically monotone, there exists a c-
convex ψ such that Support(π) ⊂ ∂cψ.

In the previous part, we showed the existence of a cyclically monotone π. Now,
based on this π, we find a ψ such that ψ ”fits tightly” under c in the way of
c-convexity. Furthermore, we want all the points where the optimal matching π
assigns positive mass to be contained in the c-subdifferential of ψ: so at every point
that we care about (has positive mass in the optimal matching) the sum of ψ(x)
and ψc(y) is equal to c(x, y). Now we see signs of our ultimate goal: ψ,ψc are the
functions in the dual problem, and having them be close to/equal to c on π would
be really nice, as then equality of the integrals in Equation (2.1) would follow.

Proof. Let Γ = Support(π). Pick any (x0, y0) ∈ Γ. Now, we define ψ:

(4.23)

ψ(x) := inf
m∈N

inf((c(x1, y0)−c(x0, y0))+(c(x2, y1)−c(x1, y1))+· · ·+(c(x, ym)−c(xm, ym)) :

(x1, y1), · · · , (xm, ym) ∈ Γ).

Informally, ψ(x) represents the maximum possible difference that can be created
by taking a finite cycle of cost differences, and replacing the quantity c(x0, ym) with
c(x, ym) instead.

For the length-2 cycle (x1, y1) = (x0, y0), the difference is zero, so we know that
ψ(x0) ≤ 0. But as each point in any cycle must be in Γ, and we showed in the
previous part (Section 4.2) that Γ is cyclically monotone, all such cycles must satisfy

m∑
i=0

c(xi+1, yi)− c(xi, yi) ≥ 0.
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Thus, ψ(x0) = 0.

Now, we consider the consequences of allowing ym to be a choice variable as well.
We can rewrite ψ(x) as

(4.24)

ψ(x) = inf
y∈Y

inf
m∈N

inf((c(x1, y0)−c(x0, y0))+(c(x2, y1)−c(x1, y1))+· · ·+(c(x, ym)−c(xm, y)) :

(x1, y1), · · · , (xm, y) ∈ Γ).

(Note the change from the definition of ψ in Equation (4.23) above: we have
(xm, y) ∈ Γ here instead of (xm, ym) ∈ Γ.)

This is getting unwieldy. Let’s take the expression in the last two infima of
Equation (4.24) and rewrite it as a function ζ(y) of y:

ζ(y) := inf
m∈N

inf((c(x1, y0)−c(x0, y0))+(c(x2, y1)−c(x1, y1))+· · ·+(c(x, ym)−c(xm, ym)) :

(x1, y1), · · · , (xm, y) ∈ Γ).

Then we can write ψ(x) as the much more concise

ψ(x) = inf
y∈Y

(c(x, y)− ζ(y)).

But then notice that this is precisely the definition of c-concavity in Definition 4.18,
so ψ is in fact c-concave.
This last manipulation isn’t just sleight of hand: ψ was especially constructed to
be able to be manipulated into this form. (The term c(x, ym) in eq. (4.23) lets ym
float, and we get to choose the (xm, ym) minimizing.)

Now, pick any (x̃, ỹ) ∈ Γ. If we fixed the (xm, ym) in the original definition of ψ
as (x̃, ỹ), we would have:

ψ(x) ≤ inf
m∈N

inf((c(x1, y0)−c(x0, y0))+(c(x2, y1)−c(x1, y1))+· · ·+(c(x̃, ym−1)−c(xm−1, ym−1))+(c(x, ỹ)−c(x̃, ỹ)) :

(x1, y1), · · · , (xm−1, ym−1) ∈ Γ).

(We’ve essentially restricted the set of possible cycles to those which have (x̃, ỹ) as
their last point before repeating again at (x0, y0).) Let’s now consider what ψ(x̃)
is:

ψ(x̃) = inf
m∈N

inf((c(x1, y0)−c(x0, y0))+(c(x2, y1)−c(x1, y1))+· · ·+(c(x̃, ym)−c(xm, ym))) :

(x1, y1), · · · , (xm, ym) ∈ Γ).

We’re taking the infimum over all m ∈ N, so we can reindex:

ψ(x̃) = inf
m∈N

inf((c(x1, y0)−c(x0, y0))+(c(x2, y1)−c(x1, y1))+· · ·+(c(x̃, ym−1)−c(xm−1, ym−1))) :

(x1, y1), · · · , (xm−1, ym−1) ∈ Γ).

But then if we’re taking the infimum over n points in Equation (4.23), we can
take the supremum over n−1 points and then another point, so the above expression
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for ψ(x) can be rewritten:

ψ(x) = inf
(x̃,ỹ)∈Γ

inf
m∈N

inf((c(x1, y0)−c(x0, y0))+(c(x2, y1)−c(x1, y1))+· · ·+(c(x, ỹ)−c(x̃, ỹ))) :

(x1, y1), · · · , (xm−1, ym−1) ∈ Γ)

And this we can condense:

ψ(x) = inf
(x̃,ỹ)∈Γ

ψ(x̃) + c(x, ỹ)− c(x̃, ỹ)

So for any (x̃, ỹ) ∈ Γ, we have that

ψ(x) ≤ ψ(x̃) + c(x, ỹ)− c(x̃, ỹ).

Rearranging to

−ψ(x) + c(x, ỹ) ≥ −ψ(x̃) + c(x̃, ỹ)

we can take the infimum of the left-hand side over x to yield

inf
x∈X

(−ψ(x) + c(x, ỹ)) ≥ −ψ(x̃) + c(x̃, ỹ).

But recall now from the definition of the c-conjugate in Definition 4.19 that the left-
hand side is actually ψc(y). Thus, this finally rearranges to ψc(ỹ)+ψ(x̃) ≥ c(x̃, ỹ).
From the definition of the c-conjugate,

ψc(ỹ) ≤ −ψ(x̃) + c(x̃, ỹ),

so combining these two statements, we have that equality must in fact hold, and
so ψc(ỹ) + ψ(x̃) = c(x̃, ỹ) for all points (x̃, ỹ) in Γ. Thus, we have shown that

Γ ⊂ ∂cψ,

as desired. □

As the reader may suspect, this ψ so defined is in fact the ψ from the duality
statement of the Monge-Kantorovich problem above. Additionally, ψc is ϕ. Demon-
strating that this is true is the objective of the next section.

4.4. Part 4: Existence of Duality. In the last part, we introduced ψ, and then
proceeded to show that it satisfied the desirable property

Γ ⊂ ∂cψ,

as well as being c-concave. Here, we deal with several other issues, such as showing
that ψ and ψc are measurable and integrable, so that we can take the integral and
be confident that it doesn’t blow up in an unexpected way.

4.4.1. Preliminaries. There is another property of c-convexity which makes it quite
valuable for our purposes.

Theorem 4.25. If function ψ is c-concave, then (ψc)c = ψ. (ψc is the c-transform
of ψ, as in Definition 4.19.)

Proof in Appendix A.4.

Definition 4.26. A function f : X → R is lower semi-continuous at x0 ∈ X
if for every real y < f(x0), there exists a neighborhood U of x0 such that f(x) > y
for all x ∈ U .



16 COLIN YAO

Recall from the epsilon-delta definition of functions that every continuous func-
tion is lower semi-continuous as well. (Indeed, a function is both lower and upper
semi-continuous if and only if it is continuous. See notes in Appendix A.5.)

The following result follows from the definition of lower semi-continuity.

Theorem 4.27. Let A = {fα} be a collection of lower semi-continuous functions.
Define function g by

g(x) = sup
α∈A

fα(x).

Then the function g is lower semi-continuous.

Proof in Appendix A.6.

Theorem 4.28. (Baire’s Theorem on semi-continuous functions) Every lower
semi-continuous function can be expressed as the pointwise limit of a sequence of
continuous functions.

Proof in Appendix A.7.

Finally, two general results in measure theory:

Theorem 4.29. If function f is bounded and measurable over a set of finite mea-
sure S, it is integrable over S.

Proof in Appendix A.8.

Theorem 4.30. Let {fn} be a pointwise sequence of measurable functions, con-
verging to a function g. Then g is measurable.

Proof in Appendix A.9.

4.4.2. Statement. Finally, we show the crucial statement:

Proposition 4.31. Let c be continuous and bounded. Then duality holds:

inf
π∈Π(µ,ν)

∫
X×Y

cdπ = sup
ψ,ϕ

(∫
Y

ϕdν +

∫
X

ψdµ

)
where the supremum is over continuous, bounded functions ψ, ϕ satisfying ϕ(y) +
ψ(x) ≤ c(x, y) for all x, y.

Note the slightly stronger assumption compared to previous parts that c is
bounded as well.

One last result on probability measures before we begin:

Theorem 4.32. Let π be a probability measure on X × Y with marginals µ, ν on
X,Y respectively. Then for f(x) integrable on X,∫

X

f(x)dµ =

∫
X×Y

f(x)dπ.

There is a slight abuse of notation here; f : X → R should be extended to some
f̃ : X × Y → R where f̃(x, y) = f(x), and similarly for functions on Y , and this
should be the function integrated with respect to π, but this adds a lot of nota-
tional overhead for little gain in clarity. Nevertheless, we can decompose π into
integration with respect to µ, then ν, and as ν(Y ) = 1, the two sides are in fact
equal.
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Onto the proof.

Proof. From Section 4.2, there exists a c-cyclically monotone transference plan π
with marginals µ and ν on X,Y respectively, and from Section 4.3, there exists a
ψ : X → R such that Γ = Support(π) ⊂ ∂cψ. Now, define ϕ:

ϕ(y) := ψc.

We now wish to show that ψ and ϕ are measurable.

Recall the definition of ψ in Equation (4.23):

ψ(x) = sup
m∈N

sup((c(x1, y0)−c(x0, y0))+(c(x2, y1)−c(x1, y1))+· · ·+(c(x, ym)−c(xm, ym)) :

(x1, y1), · · · , (xm, ym) ∈ Γ).

For a fixed m and a fixed sequence of points (x1, y1), · · · , (xm, ym), the function

(c(x1, y0)− c(x0, y0)) + (c(x2, y1)− c(x1, y1)) + · · ·+ (c(x, ym)− c(xm, ym))

is the sum of some continuous functions, so it is continuous. If we now define a
sequence of functions ψm by

ψm(x) := sup((c(x1, y0)−c(x0, y0))+(c(x2, y1)−c(x1, y1))+· · ·+(c(x, ym)−c(xm, ym)) :

(x1, y1), · · · , (xm, ym) ∈ Γ)

as each ψm is the supremum over some continuous (and lower semi-continuous)
functions, by Theorem 4.27 it must be lower semi-continuous as well. Finally, as

ψ(x) = sup
m∈N

ψm,

ψ must be lower semi-continuous by the same theorem. By Baire’s theorem (Theo-
rem 4.28), ψ can be expressed as the pointwise limit of continuous functions, which
are measurable, and so by Theorem 4.30, ψ is also measurable.

Now, we examine the measurability of ϕ. We know that

ϕ(y) = inf
x∈X

(−ψ(x) + c(x, y)),

and furthermore, note that for fixed x, −ψ(x) + c(x, y) is a continuous function.
Then by the same reasoning as above, ϕ(y) is a lower semi-continuous function and
thus measurable as well.

We examine one more condition necessary for integrability: boundedness. Define

∥c∥ := sup
x,y

c(x, y).

We know that ∥c∥ <∞ as c is bounded. Then, we choose some (x0, y0) ∈ ∂cψ such
that −∞ < ψ(x0) <∞. (The ψ so constructed in Section 4.3 does satisfy ψ(x0) = 0
for some x0, so this is possible.) Then −∞ < ϕ(y0) <∞, as (x0, y0) ∈ ∂cψ and for
points in ∂cψ, we have that ψ(x) + ϕ(y) = c(x, y).
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Then, for any x ∈ X, as ψ = ϕc, we know that

ψ(x) = inf
y∈Y

(−ϕ(y) + c(x, y))

≤ −ϕ(y0) + c(x, y0)

≤ −ϕ(y0) + ∥c∥

and so ψ is bounded above.
Similarly,

ϕ(y) = inf
x∈X

(−ψ(x) + c(x, y))

≤ −ψ(x0) + c(x0, y)

≤ −ψ(x0) + ∥c∥

and so ϕ is bounded above.

Now, we use the fact that ψ is c−concave. We know from its definition that
ψc = ϕ, and from Theorem 4.25, we have that ϕc = ψ. Then, we can bound both
ψ and ϕ from the other direction:

For all (x, y), c(x, y) > −∞, and ψ(x) <∞. Thus

c(x, y)− ψ(x) > −∞,

and taking the infimum over the left-hand side, we have that

ϕ(y) = inf
y∈Y

(c(x, y)− ψ(x)) > −∞.

A similar argument applies to show that ψ(x) > −∞ as well. Thus we have
shown that both ψ and ϕ are bounded and measurable, and so from Theorem 4.29
they are integrable.

Finally, as π has marginals µ, ν on X,Y respectively, we apply Theorem 4.32 to∫
X

ψ(x)dµ and

∫
Y

ϕ(y)dν to get that

∫
Y

ϕ(y)dν −
∫
X

ψ(x)dµ =

∫
X×Y

ϕ(y)− ψ(x)dπ.

Recall that Γ, the support of π, satisfies Γ ⊂ ∂cψ, and so at every (x, y) ∈ Γ, we
have that

ϕ(y)− ψ(x) = c(x, y).

Thus ∫
X×Y

ϕ(y)− ψ(x)dπ =

∫
X×Y

c(x, y)dπ.

Looking back at the statement for weak Monge-Kantorovich as in Equation (3.1),
as we have found ψ, ϕ such that equality holds, the infimum of the left-hand side
must be equal to the supremum of the right-hand side, and so the duality condition
holds. And this is what we wanted to show. □



MONGE-KANTOROVICH AND TRANSPORTATION THEORY 19

4.5. Conclusion. The main idea of this proof was to produce a π c-cyclically
monotone, then to carefully pick a ψ such that ψ and its conjugate ϕ satisfy

ψ(x) + ϕ(y) = c(x, y)

almost everywhere on π. To produce π, we built up the general case from a sequence
of discrete cases, and ψ was carefully constructed as to be conveniently c-concave.
We can extend this methodology slightly farther to c lower semi-continuous in-
stead of c continuous: Baire’s theorem on lower semi-continuous functions (Theo-
rem 4.28) suggests that the solutions for continuous cost functions approximating a
lower semi-continuous cost function should approach a solution for the lower semi-
continuous cost function as well.

The major implications of this theorem are discussed in Section 2.3.1 above.
The economically-minded reader will have noticed that if one inverts all the signs,
this problem of minimizing combined costs and maximizing separated prices can
actually be seen as a statement on how prices set by a cooperating pair depend on
their own costs. Similar manipulations allow this to model how workers and firms
are matched, and similar examples abound.
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5. Applications to Principal-Agent Problems

5.1. Overview. The principal-agent problem consists of two actors, the principal
and agent. The agent has the ability to perform actions not directly observable
by the principal, but whose results are observable. Based on what the principal
can observe, the principal attempts to design a mechanism that will motivate the
agent to behave in a desired fashion. This relates to the subset of game theory
called mechanism design, and we will demonstrate its connection with the topic of
optimal transport in an unusual way.

5.2. Incentive Design: Toy Example. To begin with, let’s examine an ex-
tremely simplified problem in which the power of mechanism design becomes ap-
parent. The following example is adapted from Dixit and Nalebuff’s excellent book
Thinking Strategically [4].

5.2.1. Problem Statement. You (the principal) are in charge of a drug manufacture,
seeking to bring a new anti-cancer drug to market. Being an established manufac-
turer, you have the facilities and such necessary for testing, and need only to hire the
employees needed to properly test the drug and evaluate its benefits and drawbacks.

The success or failure of your drug hinges on the FDA’s decision to approve it for
human use. If it is a success, you estimate that it will bring your company a lifetime
profit of $400,000 dollars; if it fails, your company receives nothing. The FDA’s
decision, in turn, hinges on the effort that your lab technicians put in. Your lab
technicians can choose to put in high-quality effort: spending late nights in the lab,
designing inventive studies, and presenting their findings in neat, well-documented
presentations. Or they can put in only a routine effort: eight-hour workdays, one-
hour lunch breaks, and all their data scribbled onto a heap of loose-leaf paper.

Obviously, routine effort is easier for the technicians than high-quality effort. For
$100,000, you can hire technicians to put out routine effort, but to motivate them
to put out high-quality effort, you would need to pay them $140,000. High-quality
effort gives your product an 80% chance of success, routine effort only gives your
product a 60% chance of success. What is the best course of action?

At this point, high-school mathematics solves this problem. We calculate the
expected profit to you (the manufacturer) for routine and high-quality effort:

E(profit | high-quality) = 80% · 400− 140 = 180.

E(profit | routine) = 60% · 400− 100 = 140.

From this cost-benefit analysis, we see that it is optimal for you to pay higher
wages and get lab techs to put forth high-quality effort. But there’s a catch: as a
pointy-haired middle-manager, you can’t evaluate the quality of the lab techs’ work.
The one-hour lunch breaks might just be productive meetings scheduled between
major tests, and the scribbles on notebook paper might be just what the regulators
at the FDA are looking for. So if you can’t tell the difference between high-quality
and routine effort, what stops your workers from demanding high-quality salary
and putting forth routine-quality work?
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5.2.2. Solution Mechanism. The solution to this problem hinges on the one thing
you can observe: the success or failure of your product. If you paid your lab techs
significantly more if the product succeeds, and less if it fails, they, too, will be
motivated to put forth more effort to increase the probability that the product
succeeds. But what is the least you can pay to your employees to make this hap-
pen? After all, every dollar they don’t receive is another dollar of pure profit to you.

Let the amount paid to the employee upon success be S, and the same amount
upon failure be F . Then the employee should expect to make at least $100,000
when using routine effort, and at least $140,000 when using high-quality effort:

E(wages | high-quality) = 80% · S + 20% · F ≥ 140, 000

E(wages | routine) = 60% · S + 40% · F ≥ 100, 000.

If we solve for equality in both these inequalities, we get that S = $180, 000,
F = $− 20, 000 - so the employee gets $180, 000 if the product succeeds, and must
pay the company $20, 000 if the product fails. Note that this is equivalent to sell-
ing the employee the rights to half the profit in exchange for $20, 000 and their labor.

Under this incentive scheme, the employee is now properly motivated to output
high-quality labor, and all it costs you is $140, 000 - exactly the same as if you could
actually observe the quality of labor being produced firsthand. In this example,
we can see the power of a properly implemented incentive scheme: even though we
can’t observe employee effort, we can induce them to act as though we could.

5.3. Mathematical Footing. Let’s formalize some of the mathematical intuition
behind this problem.

5.3.1. Problem Statement. Consider the problem of a limited-information monop-
olist selling a selection of goods to a collection of consumers with differentiated
preferences. In other words, the monopolist is the only seller in the market, and
consumers can choose to buy only from the monopolist. Consumers will vary in
that they derive different amounts of benefit from different types of goods. Most
importantly, the monopolist has little or no information about how the consumer
values goods, although they may have some beliefs on the distribution of consumer
preferences over the entire market.

The monopolist seeks to maximize its own profit - it wants to sell cars to con-
sumers which maximize its own profits, and to this end, using their monopoly
position in the market, they can offer a consumer the choice between a single car
and no car at all. Most consumers prefer having a car to not having one, but
sometimes if the price is too high or the car is too unsuited to their needs, they
may choose to reject the car. To address this, the monopolist allows consumers to
communicate their preferences in what kind of car they want, and will adjust which
car they offer accordingly.

Such markets, or at least markets similar to these, do exist in the real world. For
example, the market for cars in an isolated rural area with only one car dealership
follows this pattern - consumers come into the dealership with their own wants and
desires, and the dealership can effectively name the prices for the different types of
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cars that they sell.

5.3.2. Formalization. We model this as a mathematical game in several steps. Let
Ω be the space of types of customers, and let Y be the space of products which the
monopolist sells.
Every customer is an agent who possesses a type θ ∈ Ω, known only to themselves.
This θ encodes all the data about their preferences. These agents then transmit to
the principal a ”claimed preference” θ̃ ∈ Ω, which may or may not be equal to θ.
Agents do want to communicate some information about their preferences to the
principal in order to try to get a better deal, but giving away too much information
could open them up to exploitation.
The monopolist has a variety of products P ⊂ Y to sell to the consumer. Based
on the type θ̃ announced by the customer, the monopolist offers a product T (θ̃) for

sale to the consumer at a price v(T (θ̃)).

Definition 5.1. We label this combination of a matching scheme T and a pricing
scheme v a mechanism.

Finally, the consumer buys the product T (θ̃) at a price v(T (θ̃)). They receive
utility equal to some

h(θ, T (θ̃))− v(T (θ̃)).

The game moves in a predefined order:

(1) The monopolist announces their mechanism, communicating both their
matching and pricing scheme to all customers.

(2) The consumers review their true types θ and communicate to the principal

their declared type θ̃.
(3) The principal communicates to the consumer which product they are al-

lowed to buy, and at what price.
(4) The consumers can choose to buy the product and extract value from it,

lessened by the loss in cash of the price of the product.

Given this setup, some natural questions arise: With respect to a given mecha-
nism, how should a consumer behave to maximize their own utility? What mecha-
nism should the monopolist use to maximize their own profit? Is there a mechanism
which induces consumers to always reveal their true preferences? We address these
questions in order.

5.3.3. Consumer-side optimization. This problem is actually rather straightfor-
wards, as the monopolist is forced to announce their mechanism beforehand. For
every possible product y ∈ Y , the consumer can consider a set My ⊂ Ω such that
for every θ ∈My, t(θ) = y. (This is the set of all declared types which are matched
with good y.) Then the customer just has to find the y maximizing:

max
y∈Y

max
θ∈My

h(θ, y)− v(y).

The customer figures out which type θ will bring the best price for each product,
and how much benefit each product will bring after accounting for this cost. Then,
the customer simply chooses the best product.
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5.3.4. Monopolist Profit Maximization. If we assume that the monopolist has some
cost of production c(y) for good y, and the consumer receives some outside utility
u0(θ) for not buying a car, then we start to wonder how the monopolist should
match consumers and price their products to extract maximum value. Let µ be the
distribution of consumers over the space Ω, and let u(θ) be the maximum utility
achievable by the consumer of type θ by buying a car, such that

u(θ) := max
y∈Y

h(θ, y)− v(y).

For mechanism (T, v) as defined in Definition 5.1, the total profit that the mo-
nopolist makes is (assuming truthful reporting by the consumer, which we will
address later) ∫

Ω

h(θ, T (θ))− v(T (θ))dµ

with the additional conditions that u(θ) ≥ u0(θ). The monopolist’s problem is to
find the mechanism (T, v) that maximizes this quantity.

Unfortunately, this is a difficult problem that is not yet solved. The core problem
is to demonstrate that the constraints on T, v restrict them to a convex space, and
then linear programming techniques may be brought to bear. Additional references
are included in the Appendix.

5.3.5. Incentive Compatibility. While the problem of maximizing monopolist profits
may not be solved, we can better address the problem of inducing all consumers to
reveal their true preferences. We formalize this:

Definition 5.2. Let (T, v) be a mechanism. Then we say that (T, v) is imple-

mentable in dominant strategy or simply implementable, if for all (θ, θ̃) ∈ Ω2:

h(θ, T (θ))− v(T (θ)) ≥ h(θ, T (θ̃))− v(θ̃).

Roughly speaking, a strategy which is implementable in dominant strategy pro-
vides sufficient incentive for every consumer to tell the truth θ about their own
preferences, instead of strategically lying with a θ̃.

Now, we come to the main result of the section: checking if a mechanism is im-
plementable is equivalent to solving an optimal transport problem. We will provide
without proof some theorems of Carlier, and explain their relevance to economic
theory in general. (References to the papers in question are in Appendix B.2.)

Theorem 5.3. Let Ω be a bounded connected subset of Rn, µ some probability on
Ω absolutely continuous and with a positive Radon-Nikodym derivative with respect
to the Lebesgue measure on Rn, and such that µ(∂Ω) = 0.
Let Y be a compact Polish probability space and let ν be a probability measure on
Y .
Let h : Ω× Y → R be a continuous function such that:

• For every ω relatively compact in Ω, there exists a c(ω) > 0 such that for
all (x1, x2) ∈ ω2,

sup
y∈Y

|h(x1, y)− h(x2, y)| ≤ c(ω)|x1 − x2|
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• For all y0 ∈ Y , h(x, y0) is differentiable in Ω (with respect to x) and for all
(x0, y1, y2) ∈ Ω× Y 2,

∂h

∂x
(x0, y1) =

∂h

∂x
(x0, y2) =⇒ y1 = y2.

Then, the Monge problem, the Monge-Kantorovich problem, and the dual problem
all admit a solution, the ψ, ϕ maximizing the dual problem satisfy ψh = ϕ, ϕh = ψ,
and there exists a Borel map s : Ω → Y such that ψ(x) + ϕ(s(x)) = h(x, s(x)) for
all x ∈ Ω, s solves the Monge problem and (id, s) solves the Monge-Kantorovich
problem.

We will not go into details on what this theorem is saying, but note that, given
these stronger conditions on the shape of the problem, this theorem allows us to
solve the Monge problem as well. This function s is a “choice function” related to
the π we were interested in above. However, instead of allowing mass to be split,
as in Kantorovich’s problem, for every point x in Ω, all the mass of x must go to a
single point s(x) in Y .

Theorem 5.4. Let s : Ω → RN be a function. (We assume the space of declarable
types is a subset of RN .) Let h : Ω× RN → R. The following are equivalent:

• s is implementable in dominant strategy (as in Definition 5.2).
• There exists some ψ : Ω → R which is h-convex and satisfies ∂hψ ̸= Ø such
that for all θ ∈ Ω,

s(θ) ∈ ∂hψ(θ).

h-convexity is the natural counterpart to h-concavity, using a supremum instead
of an infimum, but it’s not essential. But what we really care about is this idea
that if h admits a ψ with these nice properties, we can come up with an s which is
implementable in dominant strategy. This leads into the next theorem:

Theorem 5.5. Let s0 : Ω → Y be an arbitrary Borel function. Then there exists a
unique Borel map s : Ω → Y such that:

• s is implementable in dominant strategy.
• s0 and s are equimeasurable: For µ, ν distributions on Ω, Y respectively,
s0#µ = s#µ and s0#ν = s#ν.

And s is the solution of the Monge problem:

sup
s∈P (µ,ν)

∫
Ω

h(θ, s(θ))dµ(θ).

This tells us that for any matching s0, we can come up with a matching s which
matches the same populations, as the two functions are equimeasurable. Further-
more, s is implementable in dominant strategy, which is a significant result.

In this way, this problem of figuring out how to market to consumers can reduce
itself down to a question of how to match products to consumers. Then, as this is
a matching problem, we can look at it through the framework of optimal transport
to gain additional insight into how price shifts move consumption from one product
to another.
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(2) lim
n→∞

∫
X

fdµn =

∫
X

fdµ for all bounded continuous functions f .

(3) lim
n→∞

∫
X

fdµn =

∫
X

fdµ for all bounded Lipschitz functions f .

(4) lim sup
n→∞

∫
X

fdµn ≤
∫
X

fdµ for all upper semi-continuous functions f bounded

above.

(5) lim inf
n→∞

∫
X

fdµn ≥
∫
X

fdµ for all lower semi-continuous functions f bounded

below.
(6) lim sup

n→∞
µn(C) ≤ µ(C) for all closed sets C.

(7) lim inf
n→∞

µn(U) ≥ µ(U) for all open sets U .

Billingsley [1] demonstrates that 1, 2, 6, and 7 are equivalent, and is a good place
to start. Note that Lipschitz functions are continuous, so 3 follows from 2. This pdf
[11] (which I believe is from a Washington University STAT 522 class) demonstrates
how 4 and 5 follow from 3, and eventually 6 and 7 follow.

A.2. Law of Large Numbers for Empirical Measures. This theorem is equiv-
alent to the Glivenko-Cantelli Theorem. Durrett provides a proof on p. 79 of [5].

A.3. Prokhorov’s Theorem. Billingsley [1] devotes all of section 5 in his book
to Prokhorov’s theorem, corollaries, and explanation. It’s quite readable.

A.4. Fenchel Transform of c-concave Function. We can prove this from the
definitions.

Proof. First, we show that for any function ψ : X → R, ψccc = ψc. First, note that

(ψc)c(x) = inf
y∈Y

(c(x, y)− ψc(y)).

Expanding out ψc(y), this is

ψcc(x) = inf
y∈Y

(c(x, y)− inf
x̃∈X

(c(x̃, y)− ψ(x̃))).

We can distribute the sign on the inside and pull the inner infimum out to get

ψcc(x) = inf
y∈Y

sup
x̃∈X

(c(x, y)− c(x̃, y) + ψ(x̃)).

Repeating the same process for ψccc, we have that

ψccc(y) = inf
x∈X

sup
ỹ∈Y

inf
x̃∈X

(c(x, y)− c(x, ỹ) + c(x̃, ỹ)− ψ(x̃)).

Considering the case where x̃ = x, this expression simplifies to

ψccc(y) = inf
x∈X

sup
ỹ∈Y

(c(x, y)− ψ(x))

which is equal to ψc(y), and so ψc(y) ≥ ψccc(y). Considering when ỹ = y, a
similar line of reasoning shows that ψccc(y) ≥ ψc(y), so we ultimately have that
ψccc(y) = ψc(y).

Then, if ψ is c-concave, there exists a ϕ such that

ψ(x) = inf
y∈Y

(c(x, y)− ϕ(y)),

so ψ = ϕc. Then ψcc = ϕccc = ϕc, so ψ = ψcc when ψ is c-concave. □
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The Fenchel conjugate is quite interesting. This particular theorem is closely re-
lated to the Fenchel-Moreau Theorem, which provides both sufficient and necessary
conditions for ψcc = ψ.

A.5. Lower and upper semi-continuity. We can show that a function which
is both lower and upper semi-continuous is continuous directly from the epsilon-
important definition of continuity.

Proof. Fix x0, and take an ϵ > 0. Then by lower and upper semi-continuity, there
exist neighborhoods U and V of x0 such that for x ∈ U ∩ V , f(x0) − ϵ < f(x) <
f(x0) + ϵ. U ∩ V is a neighborhood of x0, so there exists an ball of radius δ within
U ∩ V centered at x0 for some δ > 0. As we can find such a δ for every ϵ, f is
continuous.

Suppose f is continuous. Let ϵ = |y − f(x0)|. Then by continuity, there exists
δ > 0 such that for x satisfying |x0 − x| < δ, |f(x0)− f(x)| < ϵ. Thus f(x0)− ϵ <
f(x) < f(x0) + ϵ. For y > f(x0), we have f(x) < y, and for y < f(x0), we have
f(x) > y. Thus we can show that f is both lower and upper semi-continuous. □

A.6. Supremum of lower semi-continuous functions. I will provide an actual
proof, as this is fairly direct.

Proof. For a point x0, fix a y < g(x0). Then, as g is defined as the pointwise
supremum of the collection of lower semi-continuous functions A, there must exist

some fi such that fi(x0) >
f(x0)+y

2 . But as fi is lower semi-continuous, there
must exist some neighborhood U of x0 such that for x ∈ U , fi(x) > y. Finally,
g(x) ≥ fi(x) for all x, so for all x ∈ U , g(x) > y as well, and so g is lower semi-
continuous at x0. The same argument applies to every point. □

A.7. Baire’s Theorem. Baire proved this result in 1905, but his paper is in
French. The only other textbook I could find that covers this theorem is exces-
sively general, so I’ll cite this Math Stack Exchange post [7] instead. The main
idea is that for F (x) lower semi-continuous that we want to show is the pointwise
supremum of continuous functions, we consider the functions

Fn(x) = inf
y∈X

(F (y) + n · d(x, y)),

where d is the distance function, and we show that the Fn are increasing in n,
continuous, and converge to F .

A.8. Integrability of Bounded and Measurable Functions. This is some-
times taken as a definition, using simple functions to approximate measurable func-
tions. Royden and Fitzpatrick prove this as a theorem in [9].

A.9. Convergence of Measurable Functions. This is shown in Rudin’s Real
and Complex Analysis [10], a classical reference.

Appendix B. Further Readings

The material in this paper was taken from a broad variety of sources. Cedric
Villani’s textbooks on optimal transport are a good starting place. His Optimal
Transport: old and new is especially valuable, as it provides complete proofs and
extensive commentary on related readings.
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B.1. Monopolist Profit Maximizing. Figalli, Kim, and McCann ([6]) provide
necessary conditions for h so that h-convex functions are convex. Merigot and
Oudet tackle this problem numerically in [8]. However, much work remains to be
done. The generalized Spence-Mirrlees condition appears to be the main focus of
research.

B.2. Incentive Compatibility Theorems. These results are derived from a se-
ries of papers by Guilliame Carlier. Theorem 5.4 is from [3]. Theorem 5.3 and
Theorem 5.5 are from [2].
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