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Abstract. Liouville Quantum Gravity (LQG) surface is a natural, canonical

model of describing a random two-dimensional Riemannian manifold. LQG
surface is defined using the Gaussian Free Field (GFF), a multi-dimensional-

time analog of Brownian motion. The GFF has the Markov property and
its circle average is a Brownian motion. γ−LQG surface is constructed using

the GFF, and the coefficient γ determines the strength of the singular points,

on which the Liouville area measure is supported. This paper introduces the
GFF, the construction of LQG surfaces, and their properties.
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1. Introduction

Liouville quantum gravity (LQG) is a class of canonical two-dimensional random
surfaces. LQG surfaces can be seen as ”random Riemannian manifolds,” though
their singular points prevent them from being smooth, and the description is not
exactly accurate. However, LQG surfaces are equipped with a measure, a metric,
and a conformal structure, similar to those of a Riemann manifold.

LQG surfaces were first introduced in the physics literature in the 1980s, and have
important applications in stat. LQG can be defined on various orientable surfaces
such as disks, spheres, and torii. LQG is also proved to be the limit of several
random planar maps under their corresponding embedding. [DDG21] introduces
recent developments on the convergence of random planar maps to LQG.
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2. Gaussian Free Field

2.1. Definition. LQG is defined using the Gaussian Free Field (GFF), a centered
Gaussian process defined in the following way. Consider the spaceHs(D) of smooth,
real-valued functions on Rd that are supported on a compact subset of a domain
D ⊂ Rd. The Dirichlet inner product on this space is defined by

(f1, f2)∇ =

∫
D

(∇f1 · ∇f2)dx

where ∇ denotes the gradient and · denotes the dot product. Let H(D) be the
Hilbert space completion of Hs(D) with the the Dirichlet inner product. H(D) is
in fact the Sobolev space of index 1 with distribution functions and their gradients
in L2(D).

Roughly speaking, GFF is a standard Gaussian variable h on H(D). A standard
Gaussian random variable v is defined on a finite-dimensional vector space.

Definition 2.1. (Standard Gaussian variable) v is a standard Gaussian variable
on V = Rd if it is one of the following [Jan97]:

a) v : (V,F , µV ) → (R,B(R)) has law µV , where

µV := e−
⟨v,v⟩

2 Z−1dν

is the probability measure on V . dν is the Lebesgue measure and Z is a
normalizing constant.

b) v has the same law as
∑d

j=1 αjvj where v1, · · · , vd are a deterministic or-
thonormal basis for V and the αj are i.i.d. Gaussian random variables with
mean zero and variance one.

c) The characteristic function of v is given by

(2.2) E(ei(z,v)) = e−
||z||2

2

for any z ∈ Rd.
d) For each fixed w ∈ V , the inner product ⟨v, w⟩ is a zero mean Gaussian

random variable with variance ⟨w,w⟩.
The GFF is defined as an analog of a standard Gaussian variable on a infinite-

dimensional Hilbert space completion H(D) mentioned earlier. We use the second
definition of a standard Gaussian variable as the analog, extending the orthonormal
basis to infinite dimensions. Note that the definition below is under the assumption
of zero boundary conditions.

Definition 2.3. (Gaussian Free Field) Let {fj}j∈N be an orthonormal basis of
H(D). The GFF h is defined by

h :=
∑
j∈N

αjfj

where αj are i.i.d. Gaussian random variables with mean zero and variance one.
This is an analogue of the discrete GFF on a finite graph.

In terms of the Green’s Function, the GFF can also be defined as the centered
Gaussian process h with covariances [DDG21]:

(2.4) Cov(h(z), h(w)) = G(z, w) := log
max{|z|, 1}max{|w|, 1}

|z − w|
for z, w ∈ C.
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Since G(z, w) → ∞ as z → w, h does not converge pointwise. However, the
GFF is well-defined as a random distribution on H(D). Fix an orthonormal basis
{fj}j∈N, for any f ∈ H(D), the Dirichlet inner product (h, f)∇ =

∫
D
(∇h · ∇f)dz

is a random variable that can be almost surely expressed as the limit of the partial

sums. Let f =
∑

j∈N βjfj , we have (h, f)∇ = lim
k→∞

∑k
j=1 αjβj . Moreover, the L2

inner product is well-defined as a random variable. For ϕ ∈ H(D), the L2 inner
product

(2.5) ⟨h, ϕ⟩ =
∫
C
h(z)ϕ(z)d2z

is well-defined as a random variable. For f, g ∈ H(D), the random variables (h, f)∇
and (h, g)∇ have covariance

(2.6) Cov((h, f)∇, (h, g)∇) = (f, g)∇

which makesH(D) a Sobolev space. The definition of GFF h, though not a function
in a rigorous sense since it is not defined pointwise, can instead be viewed as a
distribution on H(D). We can formulate an alternative definition for the GFF
using its property of preserving the inner product [She03]:

Proposition 2.7. A Gaussian Free Field is any Gaussian Hilbert space of random
variables denoted by (h, f)∇ for each f ∈ H(D) that inherits the same inner product
structure of H(D), i.e.,

E[(h, a)∇(h, b)∇] = E(a, b)∇

In other words, for any f ∈ H(D), (h, f)∇ is linear in f and each (h, f)∇ is a
centered Gaussian variable with variance (f, f)∇.

Now we introduce some properties of the GFF.

Theorem 2.8. (Conformal Invariance) If ψ : D → D′ is a conformal map, and
h ∈ H(D) is a GFF on D, then h ◦ ψ−1 is a GFF on D′.

Proof. The Dirichlet inner product is conformal invariant:∫
D′

∇(f1 ◦ ψ−1)∇(f2 ◦ ψ−1)dx =

∫
D

(∇f1∇f2)dx

Then, if {fi} is an orthonormal basis of H(D), then {fi ◦ ψ−1} is an orthonormal
basis of H(D′). Then from 2.3, h ◦ ψ−1 =

∑
j ajfj ◦ ψ−1 is then a GFF on D′. □

2.2. Markov Property. The GFF satisfies the (domain) Markov property. This
property states that conditioned on the value of h outside some subset U ⊂ D, the
value of the GFF inside U can be obtained by adding an independent GFF to the
harmonic extension of the functions defined outside of U .

Theorem 2.9. (Markov Property) Fix open U ⊂ D, and let h be a GFF without
zero boundary condition on D. Then h can be written as

h = h0 + φ

where h0 is a zero boundary condition GFF in U and vanishes outside of U, φ is
harmonic in U, and h0 and U are independent.
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Proof. Note that the space of harmonic functions in U is orthogonal to H(D) in
U. Let h0 ∈ HU (D) and φ be a harmonic function in U. Then using integration by
parts, we have

(h0, φ)∇ =

∫
D

∇h0(z)∇φ(z)dx = −
∫
D

∇h0(z)∆φ(z)dx = 0

Hence H⊥
U (D) is the space of harmonic functions in U. We want to show that the

two orthogonal spaces span H(D).
If ∂D is regular, then the Dirichlet problem has a unique solution ϕ, which is a

continuous function which agrees with h on D \ U and is harmonic inside U. We
can then take h0 = h − ϕ and obtain the decomposition. However, when ∂D has
irregular points, the harmonic solution will not be continuous at those points. Hence
we make an approximation. For any x ∈ U, let Uδ := {y ∈ U : dist(y, U c) = δ} be
the closed subset of U whose points are δ distance away from the complement of
U. Let τ = min{t > 0 : Bt ∈ Uδ} be the first time a Brownian motion starting at x
hits Uδ. Then let

φδ = Ex[h(Bτ )]

be the expectation of h at the first hitting point. Then φδ is the Dirichlet problem to
the domain enclosed by Uδ. Then we let hδ = h−φδ, which is compactly supported
on the domain enclosed by Uδ and is smooth. Now we have HU (D) =

⋃
HUδ

. As
δ → 0, we obtain an increasing sequence of functions hδ that converges pointwise
to some function h0 ∈ HU (D). Then φδ converges to some φ, and since the limit of
harmonic functions is a harmonic function, φ is also harmonic in U. Hence we have
found a unique decomposition h = h0 + φ belonging to HU (D) and H⊥

U (D).
□

2.3. Circle Average. Let D be a bounded domain of C. Let 0 < ϵ < dist(z, ∂D).
Let ρϵ(w, z) denote the uniform distribution on the circle of radius ϵ around z.

Definition 2.10. (Circle Average) The circle average hϵ(z) is defined as the fol-
lowing:

hϵ(z) = (h, ρϵ) =

∫
D

h(w)ρϵ(w, z)d
2w

where ρϵ(w, z) is the uniform measure on the circle around z.
The circle average of h at a given point is in fact a Brownian motion [BP21]:

Theorem 2.11. Fix z ∈ D and let 0 < ϵ0 < dist(z, ∂D). For t ≥ t0 = log 1/ϵ0, set
Bt = he−t(z), then (Bt, t ≥ t0) has the law of a Brownian motion started from Bt0 .

Proof. Recall from 2.6 that Cov((h, f)∇, (h, g)∇) = (f, g)∇. By 2.5, the circle av-
erage hϵ = (h, ρϵ) is a Gaussian process with covariance

Cov(hϵ1(z1), hϵ2(z2)) =

∫
D2

G(x, y)ρϵ1(x, z1)ρϵ2(y, z2)dxdy

where ρϵ(w, z) is the uniform measure on the circle around z as defined above.
Then we have

(2.12) V ar(hϵ(z)) = − log ϵ+ logC(z;D)

With ϵ replaced by e−t, we can see that the variance of Bt is equal to t− t0. Since
the hϵ(z) are jointly Gaussian random variables by definition, Bt is a Brownian
motion starting at Bt0 . □
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Proof. • Independent increments follow from the Markov property. Let Bt =
he−t(z). Let 0 < s < t, and let ϵ1 = e−s and ϵ2 = e−t, then 0 < ϵ2 < ϵ1.
Let U = Bϵ1(z), from 2.2, h can be written as h0 + ϕ, where h0 is a GFF
in U and ϕ is harmonic. Then we have

hϵ2(z) =

∫
x∈Bϵ2

(z)

h(x)ρϵ(x, z)d
2x

where
∫
x∈Bϵ2

(z)
dµ = 1. Then we plug in the decomposition:

hϵ2(z) =

∫
x∈Bϵ2

(z)

h0(x)ρϵ(x, z)d
2x+

∫
x∈Bϵ2

(z)

ϕ(x)ρϵ(x, z)d
2x

Since ϕ is harmonic, the circle average of radius ϵ1 is the same as that of
radius ϵ2.

hϵ2(z) = hϵ2(z)
0 + ϕϵ1(z)

For x ∈ ∂U, h(x) = ϕ(x), hence the circle average ϕϵ1(z) = hϵ1(z). There-
fore,

Bt −Bs = hϵ2(z)− hϵ1(z) = hϵ2(z)
0

Since h0 and ϕ are independent, Bt − Bs is independent of Bs = ϕϵ1(z).
Hence Bt has independent increments.

• I.i.d Gaussian distribution comes from the definition of the GFF. From
above we have Bt − Bs = hϵ2(z)

0, which is the circle average of the zero
boundary condition GFF in U. By definition, we know that hϵ2(z)

0 has
mean 0, and it suffices to prove that V ar(Bt − Bs) = t − s. To see this,
we use the covariance definition definition of the GFF. Recall from 2.6 that
Cov(h(z), h(w)) = G(z, w). Then for any f, g ∈ H(D), we have

Cov((h(z), f(z)), (h(w), g(w))) =

∫
D×D

f(z)g(w)G(z, w)dzdw

Then circle average hϵ = (h, ρϵ) is a Gaussian process with covariance

Cov(hϵ(z1), hϵ(z2)) =

∫
U2

G(x, y)ρϵ(x, z1)ρϵ(y, z2)dxdy

where ρϵ(w, z) is the uniform measure on the circle of radius ϵ around z as
defined above. Then we have

V ar(hϵ) = Cov((h, ρϵ), (h, ρϵ)) =

∫
U

G(x, y)ρ(x)ρ(y)dxdy

Since the Green’s function is harmonic, with respect to y, we have

G(x, z) =

∫
|y|=ϵ

G(x, y)ρϵ(y)dy

Hence

V ar(hϵ) =

∫
U

G(x, z)ρϵ(x)dx

=

∫
Bϵ

− log xρϵ(x)dx = − log ϵ
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Now we have Bt − Bs = hϵ2(z) − hϵ1(z) = hϵ2(z)
0. We already know

that E(Bt − Bs) = E(hϵ2(z)
0) = 0, and V ar(hϵ2(z)) = − log e−t = t and

V ar(hϵ1(z)) = s. Then

V ar(Bt −Bs) = E((Bt −Bs)
2)− (E(Bt −Bs))

2

= E(hϵ1(z)
2 + hϵ2(z)

2 − 2hϵ1(z)hϵ2(z))

= E(hϵ2(z)
2)−E(hϵ1(z)

2)− 2E(h0ϵ2(z))E(hϵ1(z))

Since h0ϵ2 is independent of hϵ1 , we have

V ar(Bt −Bs) = E(hϵ2(z)
2)−E(hϵ1(z)

2)

= V ar(hϵ2(z))− V ar(hϵ1(z)) +E(hϵ2(z)− hϵ1(z)) = t− s

• Continuity follows from the continuity of the GFF h0 ∈ H(U).
□

3. Liouville Quantum Gravity

3.1. Definition. With the definition of the GFF, we are able to construct the LQG
surface with a parameter γ ∈ (0, 2).

Definition 3.1. (Liouville Quantum Gravity) The LQG is defined using isothermal
coordinates. A γ-LQG surface parametrized by C is the random two-dimensional
Riemannian manifold with Riemannian metric tensor [G21]:

(3.2) eγh(z)(d2x+ d2y), for z = x+ iy

where d2x+ d2y denotes the Euclidean metric tensor of C.
Since the GFF is not defined pointwise, the definition above is not rigorous. To

define the LQG in a rigorous way, we approximate h by a collection of {hϵ}ϵ>0 and
send ϵ→ 0. Among the several choices of {hϵ}, we discuss two methods: convolution
with the heat kernel and the circle average.

Definition 3.3. (Convolution with the Heat kernel) h∗ϵ can be defined as the
convolution of h with the heat kernel of C:

gϵ(w, z) =
1

πϵ2
e−|z−w|2/ϵ2

(3.4) h∗ϵ (z) =

∫
C
h(z)gϵ(w, z)d

2w

As ϵ→ 0, gϵ(z, w) approximates the point mass at point z, which means that h∗ϵ
approximates h in the distributional sense when ϵ is small.

Another possible choice for the approximation of h is the average value over a
small circle around a given point z.

hϵ(z) = (h(z), ρϵ(z, x)) =

∫
|x|=ϵ

h(z)ρ(z, x)dx

where ρ(z, x) denotes the uniform measure on the ball of radius ϵ around z, as
defined in 2.10.
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3.2. Liouville Area Measure.

Definition 3.5. (LQG Area Measure) The γ−LQG area measure is defined as the
following:

(3.6) µh = lim
ϵ→0

ϵγ
2/2eγhϵ(z)d2z

The leading normalizing factor ϵγ
2/2 comes from the fact that E(eγhϵ(z)) ≃

−ϵγ2/2. This approximation goes according to the following. For a Gaussian ran-

dom variable N with mean a and variance b, we have E(eN ) = ea+
b
2 . Since hϵ is

defined with mean 0 on the whole plane, we have

E(eγhϵ(z)) = e
1
2V ar(γhϵ(z))

By 2.12, we have

(3.7) V ar(hϵ(z)) = Gϵ(z, z) = logC(z;D)− log ϵ

where C(z;D) is a constant depending on z and D. Then we have the following:

E(eγhϵ(z)) = exp[
γ2

2
(− log ϵ+ logC(z;D))] =

(
C(z;D)

ϵ

)γ2/2

Hence, µh normalized with the leading ϵγ
2/2. We can also compute the expectation

of µϵ(S), where S ⊂ D:

(3.8) E(µϵ(S)) =

∫
S

C(z;D)
γ2

2 dz

Now we want to show that the limit in 3.6 exists and the area measure is well-
defined. The proof is given in [BP21]. First, we want to show convergence of the
sequence of measures for a fixed bounded Borel subset S ⊂ D.

Let

hϵ(z) = γhϵ(z)−
1

2
V ar(γhϵ(z))

Note that

E(ehϵ(z)) = E(eγhϵ(z))(
ϵ

C(z;D)
)γ

2/2 = 1

and

(3.9) E(µϵ(z)) = E(ehϵ(z)) · C(z;D)
γ2

2

Let S be fixed and let Iϵ = µϵ(S) =
∫
S
eγhϵ(z)ϵ

γ2

2 dz. We want to show Iϵ
converges. First, we show that along the sequence of ϵ = 2−k, Iϵ is Cauchy.

Proposition 3.10. If γ ∈ [0,
√
2) and ϵ > 0, δ = ϵ

2 , then

E((Iϵ − Iδ)
2) ≤ Cϵ2−γ2

Proof. We consider two Brownian motions hϵ(x) and hϵ(y) and their normalized
versions. By 3.9, we have

E((Iϵ − Iδ)
2) =

∫
S2

E
(
(ehϵ(x) − ehδ(x))(ehϵ(y) − ehδ(y))(C(x;D)C(y;D))

γ2

2 dxdy

)
=

∫
S2

E
(
(ehϵ(x)+hδ(x))(1− ehϵ(x)−hδ(x))(1− ehϵ(y)−hδ(y))(C(x;D)C(y;D))

γ2

2 dxdy

)
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For |x − y| ≥ 2ϵ, by the Markov property, hϵ(x) − hδ(x) and hϵ(y) − hδ(y) are
independent. We can write

h = h̃+ ψ

where ψ is harmonic in the disjoint union of two balls B(x, ϵ) ∪ B(y, ϵ). Note that

the first term in the product inside the integral, ehϵ(x)+hδ(x), depends on ψ. But the

second term, ehϵ(x)−hδ(x), a Brownian motion independent of ψ, only depends on

h̃ restricted to B(x, ϵ). The third term ehϵ(y)−hδ(y) only depends on h̃ restricted to
B(y, ϵ). In fact, the three terms in the product inside the integral are independent
and we can write the expectation of them separately. For a fixed point x, by the

Martingale property of Brownian motion, E(ehδ(x)|hϵ(x)) = ehϵ(x), and therefore,

E[ehϵ(x)−hδ(x)|hϵ] = 1

Then the second and third terms ehϵ(x) − ehδ(x) and ehϵ(y) − ehδ(y) both have
expectation 1, the above integral is valued 0 when |x− y| ≥ 2ϵ.

In the case where |x− y| ≤ 2ϵ, we have

E((ehϵ(x) − ehδ(x))2) = E(e2hϵ(x) + e2hδ(y) − 2ehϵ(x)+hδ(x))

Using the martingale property again, we have

= E(e2hδ(x) − e2hϵ(x)) ≤ E(e2hδ(x)) = CE(e2hϵ(x))

by Cauchy-Schwarz, we have
E((Iϵ − Iδ)

2) ≤∫
|x−y|≤2ϵ

√
E((ehϵ(x) − ehδ(x))2)E((ehϵ(y) − ehδ(y))2)C(x;D)γ

2/2C(y;D)γ
2/2dxdy

≤
∫
|x−y|≤2ϵ

√
E(e2hϵ(x))E(e2hϵ(y))C(x;D)γ

2/2C(y;D)γ
2/2dxdy

≤
∫
|x−y|≤2ϵ

Cϵγ
2

e
1
2 (2γ

2) log( 1
ϵ )dxdy

≤ Cϵ2+γ2−2γ2

= Cϵ2−γ2

Since γ2 < 2, the above goes to 0 as ϵ→ 0. □

In fact, the convergence of Iϵ is almost surely strictly positive. Since

E(lim
ϵ→0

Iϵ) = lim
ϵ→0

E(Iϵ) > 0

we know that P(lim
ϵ→0

Iϵ > 0) > 0. By definition of the GFF, {fi}i∈N is an orthonor-

mal basis of H(D), and hϵ(x) is a function of the seuqnece of coefficients, which
are independent standard Gaussian variables. Along the sequence of ϵ = 2−k,
lim
ϵ→0

Iϵ > 0 is a tail event of the σ−algebra generated by the sequence of coefficients.

By Kolmogorov’s 0− 1 law, since it the probability of the event is positive,

P(lim
ϵ→0

Iϵ > 0) = 1

Hence the limit is almost surely strictly positive.

In the case where γ >
√
2, the convergence is not immediate. In fact, we use

to the fact that points sampled according to the area measure is no more than
γ−thick (3.14). The proof of convergence for γ ∈ [

√
2, 2) given in [DS11] uses the
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fact that the contribution of the rare points that are strictly larger than γ−thick is
exponentially small with respect to ϵ. Therefore, we can remove these points and
consider only the good event Gϵ(x) = {hϵ(x) ≤ α log 1

ϵ } for some α > γ.
Now we are ready to proof that the Liousville area measure µh in 3.6 is well-

defined as a random measure.

Theorem 3.11. For γ ∈ [0, 2), µϵ converges weakly a.s. to a random measure µh,
along the subsequence ϵ = 2−k.

Proof. Since µϵ(D) converges a.s., the measure µϵ is a.s. tight in the space of Borel
measure on D, with weak convergence along the sequence ϵ = 2−k as shown in 3.10.
Let µ̃ be any weak limit of the the sequence {µϵ}.

Let A be the collection of subsets of the form A = [x1, y1) × [x2, y2) where
xi, yi ∈ Q and A ⊂ D. From 3.10, µϵ(A) converges to some limit µ(A) for any
A ∈ A. Since A is a countable collection of boxes, the limit exists simultaneously
for all A ∈ A. Denote the limit by µ(A). We want to show that µ̃(A) = µ(A) for
all A ∈ A.

For A = [x1, y1)× [x2, y2), we have

(3.12) µ(A) = sup
x′
i,y

′
i∈Q

{µ([x′1, y′1]× [x′2, y
′
2])}

where x′i > xi and y
′
i < yi. Since the smaller boxes are contained in A, the left-hand

side is larger than or equal to the right-hand side. From 3.8, we have

E(µ(A)) =
∫
A

C(z,D)γ
2/2dz

Find a sequence of boxes approaching A, denoted by {Ai}, then

E(µ(Ai)) =

∫
A

1z∈Ai
C(z,D)γ

2/2dz

By the monotone convergence theorem,

E(µ(A)) = E( lim
i→∞

µ(Ai))

Hence we have equality. For x′i > xi, y
′
i < yi, by the Portmanteau lemma, we have

µ̃(A) ≥ µ̃([x′1, y
′
1]× [x′2, y

′
2]) ≥ lim sup

ϵ→0
µϵ([x

′
1, y

′
1]× [x′2, y

′
2])} = µ([x′1, y

′
1]× [x′2, y

′
2])

By 3.12, taking the supremum over the boxes, we have

µ̃(A) ≥ µ(A)

Likewise, using the identity

µ(A) = inf
x′′
i ,y

′′
i ∈Q

{µ([x′′1 , y′′1 ]× [x′′2 , y
′′
2 ])}

where x′′i < xi and y
′′
i > yi, we have

µ̃(A) ≤ µ(A)

Hence µ̃(A) = µ(A) for any A ∈ A and the Liouville measure µh is well-defined. □
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3.3. Thick Points. For a fixed z ∈ D, eγhϵ(z)ϵγ
2/2 converges to 0 a.s. Therefore,

there are some atypical points that support the measure µh. One can sample a point
z randomly according to the normalized LQG measure, and one natural question
is what h looks like near this point z. To understand the distribution of the GFF,
we can look at thick points, i.e. points that have atypical values.

Definition 3.13. (Thick Points) Let h be a GFF in D and let α > 0. A point
z ∈ D is α−thick if

lim
ϵ→0

inf
hϵ(z)

log 1/ϵ
= α

Note that z ∈ D is typically not thick. since he−t(z) is a Brownian motion with
variance 1, hϵ is a Brownian motion at scale log 1/ϵ. Therefore, the typical value of

hϵ(z) is of order
√

log 1/ϵ, a result of a standard Brownian motion. This implies

lim
ϵ→0

hϵ(z)
log 1/ϵ ≃ 1√

log 1/ϵ
→ 0 a.s., so thick points are in fact atypical. However, when

sampled according to the γ−LQG area measure, z ∈ D behaves otherwise.

Theorem 3.14. Let D be a bounded domain. Let z be a point sample according to
the LQG area measure µh, normalized to be a probability distribution. Then, z is
a.s. a γ−thick point, i.e.,

lim
ϵ→0

hϵ(z)

log(1/ϵ)
= γ

Proof. Let P(dh) denote the distribution of h according to the law of the GFF. Let
Qϵ denote the joint law of (h, z), where z is sampled according to the approximating
LQG measure µϵ:

Qϵ =
1

Z
ϵγ

2/2eγhϵ(z)dzP(dh)

We want to show that the z sampled this way is almost surely a γ−thick point. We
show this by considering both the marginal and conditional distribution of h and
z.

The marginal distribution of h over the domain D is:

Qϵ(dh) =
1

Z
E(µϵ(D))Pdh =

1

Z

∫
D

C(z;D)γ
2/2dzP(dh)

Since µ(h) is normalized to be a probability measure, we can deduce the normalizing

constant Z =
∫
D
C(z;D)γ

2/2dz, where C(z;D) is given in 3.7.
The marginal distribution of z is:

Qϵ(dz) =
1

Z
E(ϵγ

2/2eγhϵ(z))dz =
1

Z
C(z;D)γ

2/2dz

Note that Qϵ(dz) is not dependent on ϵ and is absolutely continuous with respect
to the Lebesgue measure.

Next, we consider the conditional distribution of h given z, also called the rooted
random measure in [DS11]:

Qϵ(dh|z) =
1

Z(z)
ϵγ

2/2eγhϵ(z)P(dh)

Recall from 2.10 that hϵ(z) = (h, ρϵ) is the L
2 inner product of h and ρϵ. Qϵ(dh|z)

is then P(dh) re-weighted by a exponential linear functional over h. To see how this
affects the distribution, we need the following lemma:
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Lemma 3.15. (Girsanov Theorem.) Let X = (X1, · · · , Xn) be a Gaussian vector
under the law P, with mean 0 and covariance matrix V . Let α ∈ Rn and define a
new probability measure by the Radon-Nikodym derivative

dQ
dP

=
e⟨α,X⟩

E(e⟨α,X⟩)

Then under the new measure Q, X is still a Gaussian vector, with covariance matrix
V and mean V α.

The theorem is saying that if we tilt the measure by linear functional, then the
process remains Gaussian with the same variance, but the mean is shifted by the
amount of the covariance of the function we used to tilt the measure. Various proofs
can be given to the theorem, and here we use the Laplace transform.

Proof. When the Gaussian vector is scaled by α, the variance of e⟨α,X⟩ is scaled by

eα
2/2 while the mean remains 0, so the expectation

E(e⟨α,X⟩) = e
1
2 ⟨α,V α⟩

Now suppose λ ∈ Rn, then we have

Q(e⟨λ,X⟩) =
E(e⟨α,X⟩e⟨λ,X⟩)

E(e⟨α,X⟩)

=
E(e⟨λ+α,X⟩)

e
1
2 ⟨α,V α⟩

=
e

1
2 ⟨λ+α,V (λ+α)⟩

e
1
2 ⟨α,V α⟩

= e
1
2 ⟨λ,V λ⟩+⟨λ,V α⟩

where ⟨λ, V λ⟩ is the Gaussian term and ⟨λ, αV ⟩ is the drift term, which means that
under the new measure Q, X has variance V and mean V α. □

Since Qϵ(dh|z) = 1
Z(z)ϵ

γ2/2eγhϵ(z)P(dh) is P(dh) re-weighted by an exponential

(h, γρϵ) and normalized, from Girsanov theorem above, h under Qϵ(dh|z) has the
same variance with a drift in the mean given by:

Cov(h(w), γhϵ(z)) = γ log
1

|w − z|
+ C

by 3.7. Now define Q(dz, dh) by µh(dz)P(dh), where µh is defined as the a.s. limit.
Therefore, as ϵ→ 0, under the measure measure Q,

lim
ϵ→0

hϵ(z)

log 1/ϵ
= γ

almost surely. This concludes the proof that z is a.s. a γ−thick point. □

The circle average introduces a logarithmic singularity of strength γ at the point
z. This implies that γ actually defines how ”rough” the LQG surface is. In fact,
different values of γ correspond to several random planar maps. Results on the
convergence of random planar maps to LQG can be found in [GMS20].

The result in [HMP10] shows that γ−thick points under µh has Hausdorff dimension

2− γ2

2 almost surely.

Theorem 3.16. ∀ 0 ≤ a ≤ 2, let

T (a;D) = {z ∈ D : lim
r→0

hr(z)

log 1/r
=

√
2a}
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where hr(z) denotes the circle average of the GFF at point z of radius r. Then
almost surely,

dimHT (a;D) = 2− a

The theorem is proved by estimating the upper and lower bounds of the dimen-
sion of the set. For the upper bound limit, we will need the following lemma, the
proof of which in [HMP10] uses the Kolmogorov–Chensov theorem.

Lemma 3.17. Suppose D is bounded with smooth boundary. For every 0 < γ < 1
2

and ϵ, ξ > 0, there exists a constant M dependent on γ, ϵ, ξ such that the circle
averages

|hr(z)− hs(w)| ≤M(log
1

r
)ξ
(|z − w|+ |r − s|)γ

rγ+ϵ

for all z, w ∈ D and r, s ∈ (0, 1] with r/s ∈ [ 12 , 2].

Proof. (The upper bound in 3.16) Let ϵ > 0 be arbitrary. Let ξ ∈ (0, 1) and

γ ∈ (0, 12 ). be fixed. Let {rn} = n−ϵ−1

, t ∈ [log 1
rn
, log 1

rn+1
]. By lemma 3.17, there

exists M(γ, ξ, γϵ) such that

|he−t(z)−hrn(z)| ≤Mϵ−ξ(log n)ξ
(rn+1 − rn)

γ

rγ+γϵ
n+1

= O((log n)ξn
γ̃
ϵ −(

ϵ+ 1

ϵ
)γ) = O((log n)ξ)

Next, let {znj} be a set of discrete points spaced by r1+ϵ
n within D. If z ∈

hrn(znj), then by lemma 3.17 again,

|hrn(z)− hrn(znj)| ≤M ′(
log n

ϵ
)ξ
|rn|γ

rγ+ϵ
n

= O((log n)ξ)

Let δ(n) = C(log n)ξ−1. Let In =
{
j : |hrn(znj)| ≥

√
2(
√
a− δ(n)) log 1

rn

}
denote

the indexes of points znj such that the the Gaussian variable is larger than the
above value.

We will use the following estimate of Gaussian variables to proceed:
Let Z be a Gaussian random variable, then

P(Z > λ) =

∫ ∞

λ

1√
2π
e−x2/2dx ≤

∫ ∞

λ

1√
2π
e−λx/2dx

=
2√
2π

1

λ
e−λ2/2

As λ→ ∞, we have the estimate

P(Z > λ) = O(

√
2

π
λ−1e−λ2/2)

Using this, we have

P(j ∈ In) = P

 |hrn(znj)|√
log 1

rn

≥ (
√
a− δ(n))

√
2 log

1

rn

 = O(ra−O(1)
n )

Since there are approximately O( 1

r
2(1+ϵ)
n

) points in {znj}, the expectation

E(|In|) ≤ O

(
r
a−O(1)
n

r
2(1+ϵ)
n

)
= O(ra−O(1)−2(1+ϵ)

n )
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Let α = 2− a+ 2+a
1+ϵ ϵ, we have

E(
∑
n≥N

∑
j∈In

hr1+ϵ
n

(znj)
α) ≤

∑
n≥N

r(1+ϵ)α+a−O(1)−2(1+ϵ)
n

=
∑
n≥N

O(r2ϵ−O(1)
n ) =

∑
n≥N

O(n−2+O(1)) < +∞

The above shows that the Hausdorff-α measure of T (a;D) is 0. Therefore,

dimH(T (a;D)) ≤ 2− a+
2 + a

1 + ϵ
ϵ→ 2− a

since ϵ > 0 is arbitrary. Hence, the Hausdorff dimension of T (a;D) is no more than
2− a. □

The proof for the lower bound of the Hausdorff dimension of the thick points
can be found in [HMP10].

Corollary 3.18. The γ−LQG area measure µh is supported on a subset of C with
Hausdorff dimension 2 − γ2/2. In particular, for an unbounded domain D, µh is
mutually singular with respect to the Lebesgue measure.

Proof. From the definition of thick points and the theorem above, we have that the
Hausdorff dimension of the set of γ−thick points is indeed 2− γ2/2. From 3.14 we
have seen that the points sampled according to µh is a.s. a γ−thick point. Denote
the set of γ−thick points by Tγ , then we have µh(T

c
γ ) = 0, which means µh ⊥ ν

where ν denotes the Lebesgue measure.
□

3.4. LQG Metric. In addition to the LQG measure, we also introduce the LQG
metric. On a surface S, the distance between two points z, w is given as the follow-
ing:

(3.19) Dh(z, w) = inf
P :z→w

∫ b

a

eh(P (t))/2|P ′(t)|dt

where the inf is over all continuously differentiable path P. The above is a only
a formal definition, since h is still not defined pointwise. Under the isothermal
coordinates, the distance between two points on the surface is calculated with h
replaced by 2γ

dγ
hϵ, where dγ is the distance exponent, also the Hausdorff dimension

of the metric space (D,Dh).

Definition 3.20. (LQG Metric) The γ−LQG metric is defined as the following:

Dϵ
h(z, w) = inf

P :z→w

∫ b

a

e
γ
dγ

hϵ(P (t))|P ′(t)|dt

The reason to include dγ instead of simplifying it to be 2 is because we want Dϵ
h

to be scaled by C
1
dγ when the γ−LQG area measure is scaled by C.
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3.5. Conformal Coordinate Change. The LQG surface can be parameterized
in different ways. Under conformal coordinate changes, the covariance of the LQG
area measure will change accordingly. Let h be a GFF on D and let ϕ : D̃ → D be
a conformal map. The pullback of h can be defined as a distribution on the new
domain D̃ by the following inner product:

(h ◦ ϕ, ρ̃) = (h, ρ)

where ρ ∈ C∞
0 and ρ̃ = |ϕ′|2ρ ◦ϕ. It was shown in [DS11] that the a new LQG area

measure defined this way is the image of the old one under the conformal map:

Theorem 3.21. Define h̃ on the new domain D̃ by

h̃ = h ◦ ϕ+Q log |ϕ′|, where Q = γ
2 + 2

γ

Then a.s., the LQG measure of h̃ is the image of the LQG measure of h:

µh̃(X) = µh(ϕ(X)), for all Borel set X ⊂ D̃

The theorem implies that a conformal coordinate change produces a covariant
(i.e., the image of the original measure) LQG area measure on the new domain, and
as shown in [GM19], also a conformally covariant LQG metric. Pulling back µh

by ϕ, we have a new measure absolutely continuous with respect to µh̃ on D̃ with

density eγQ log |ϕ′(z)|, where z ∈ D̃. If we set rescale h̃ by adding a factpr Q log |ϕ′|,
the new measure will be adjusted to a.s. equal the γ−LQG measure µh̃.

Proof. We now prove Theorem 3.21. We consider the first N vectors of the or-

thonormal basis of the Hilbert space H(D) {f1, · · · , fN} and let hN =
∑N

1 αjfj be
a GFF projected on the space of the first N orthonormal vectors. Define

(3.22) µN (S) =

∫
S

eγh
N (z)− γ2

2 V ar(hN (z))C(z;D)γ
2/2dz

where C(z;D) is shown in 3.7. The factor −γ2

2 V ar(h
N (z)) on the exponent nor-

malizes the expectation of eγh
N
ϵ (z) as a Gaussian variable, and we are left with the

constant term C(z;D)γ
2/2dz.

E(µN (S)) =

∫
S

eγ
2/2V ar(hN (z))−γ2/2V ar(hN (z))C(z;D)γ

2/2dz =

∫
S

C(z;D)γ
2/2dz

This is equal to the expectation of µh(S), as shown in 3.8. In fact, µN (S) is
a martingale with respect to the filtration FN generate by {Xj}N1 . By Doob’s
martingale convergence theorem, we know that the limit of µN exists. we want to
show that the limit actually converges to µh.

Lemma 3.23. Let µN be defined as above. For a measurable S ⊂ D, almost surely,

lim
N→∞

µN (S) = µh(S)

Proof. Recall that the LQG measure is defined using the limit of the circle average
hϵ. Now suppose hϵ = h′ϵ + hNϵ . By orthogonality, hNϵ and h′ϵ are independent.
Then we have

ϵγ
2/2eγhϵ(z) = ϵγ

2/2eγh
N
ϵ (z)eγh

′
ϵ(z)
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Introducing the circle average of h will not change the martingale property of µN ,
hence the conditional expectation of µϵ(S) given FN is equal to the value of µN

ϵ (S):

E(µϵ(S)|FN ) = µN
ϵ (S) :=

∫
S

eγh
N
ϵ (z)− γ2

2 V ar(hN
ϵ (z))C(z;D)γ

2/2dz

The second half of the equation is a definition of µN
ϵ using the circle average hNϵ .

Taking ϵ→ 0, we know that µN
ϵ converges to µN , hence

µN (S) = lim
ϵ→0

E(µϵ(S)|FN )

By Fatou’s lemma, we have

lim
ϵ→0

E(µϵ(S)|FN ) ≥ E(lim
ϵ→0

µϵ(S)|FN )

Therefore
µN (S) ≥ E(lim

ϵ→0
µϵ(S)|FN ) = E(µh(S)|FN )

When taking N → ∞, from Doob’s martingale convergence theorem again, we have
the following convergence:

(3.24) lim
N→∞

µN (S) ≥ µh(S)

This is direction of the inequalities that we will use to derive the equality. The
other one comes again from Fatou’s Lemma:

(3.25) E( lim
N→∞

µN (S)) ≤ lim
N→∞

E(µN (S)) = lim
N→∞

∫
S

C(z;D)γ
2/2dz

From 3.8, we have

E(µh(S)) =

∫
S

C(z;D)γ
2/2dz

which is equal to the right-hand side of 3.25. Hence

(3.26) E( lim
N→∞

µN (S)) ≤ E(µh(S))

From 3.24 and 3.26 we know that E(µh(S)) = E( lim
N→∞

µN (S)). By the martingale

property,
µh(S) = lim

N→∞
µN (S)

which shows that µN indeed converges to µh. □

Since {f1, · · · , fN} is an orthonormal basis of HN (D), fn ◦ ϕ will still give an

orthonormal basis. Therefore, h̃ truncated can be written as h̃N = hN◦ϕ+Q log |ϕ′|.
With the lemma above, it suffices to show the conformal property for µN and µ̃N .
When applying the conformal map, we scale the small circle ϵ roughly by a factor
of 1

|ϕ′| . Therefore the constant C(z;D) dependent on z and D will also change by

this factor. Hence C(z′; D̃) = C(z;D)|ϕ′|. Applying the conformal map to µN and
by change of variable, we have

µN (ϕ(D̃)) =∫
ϕ−1(D)

exp

(
γhN (ϕ(z)) + γQ log |ϕ′| − γ2

2
V ar(hN (ϕ(z)))

)
(C(z;D))γ

2/2

|ϕ′|2
dz′

=

∫
D̃

exp

(
γhN (ϕ(z′))− γ2

2
V ar(hN (ϕ(z′)))

)
|ϕ′|γ

2+2C(z
′; D̃)γ

2/2

|ϕ′|2+ γ2

2

dz′
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=

∫
D̃

exp

(
γhN ◦ ϕ(z′)− γ2

2
V ar(hN ◦ ϕ)

)
C(z′; D̃)

γ2

2 dz′

=

∫
D̃

dµ̃N (z′) = µ̃N (D̃)

which shows the conformal covariant property for µN . From the lemma above, we
know that the measure dµ′

N → dµh′ and µN (D) → µh. Hence

µ̃h(D̃) = µh(ϕ(D̃))

which concludes the proof for 3.21. □

Using the above theorem, an equivalence relation determined by a conformal
map can be defined. Denote the set of pairs of open domains and distributions by
DH = {(D,h) : D ⊂ C is an open set, h is a distribution on D}. An equivalence
relation on DH can be defined as the following:

Definition 3.27. (D,h) ∼γ (D̃, h̃) if there exists a conformal map ϕ : D̃ → D st.

h̃ = h ◦ ϕ+Q|ϕ′|, where Q = γ
2 + 2

γ .

(D,h) and (D̃, h̃) represent the same LQG surface under different parametriza-
tions. An embedding of the LQG surface is a choice of representation (D,h) from
the equivalence class in DH/ ∼γ .
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