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Abstract. In this paper, we provide an introduction of the de Rham Coho-

mology to readers with a background in algebraic topology. We first investigate

the notion of differential forms and singular homology. We then introduce de
Rham cohomology and present a proof of de Rham’s theorem. Finally, we

cover a few applications of the de Rham theorem.
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1. Introduction

We will introduce the de Rham Cohomology with two motivating examples from
vector calculus. Let us consider the following vector field on R2.

F (x, y) = ⟨2y2 + y, 4xy + x⟩

F has two important properties. The first property is that F is the result of the
gradient operation applied to some scalar function, f (in this case, f = 2xy2+xy).
A physicist would call any vector field that adheres to this property a ”conservative”
field, as a system with a conservative force field always conserves energy. This is
a result of the path-independence of all line integrals of F , which follows from the
fundamental theorem of line integrals.

The second property is that the curl of F is 0 (i.e. ∇ × F = 0). An engineer
might call this field ”irrotational,” as, if F described the motion of some fluid in
the euclidean plane, this property would indicate that elements of the fluid do not
undergo rotation.

We will now examine the relationship between conservative and irrotational
fields. We first notice that all conservative fields are irrotational–a result that
one may obtain by computing the curl of the gradient of an arbitrary function, h,
by hand. However, we cannot say that all irrotational fields are conservative. Let
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Figure 1. A graph of the vector field associated with F on R2.
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Figure 2. A graph of the vector field associated with G on R2 ∼ {0, 0}.

us consider the following vector field on R2 ∼ {0, 0}.

G(x, y) = ⟨ −y

x2 + y2
,

x

x2 + y2
⟩

We notice that this field is irrotational, as ∇×G = 0. Now, taking some point p
in Figure 2, we see that any integral over a counter-clockwise path from p to some
point directly across the origin, q, works in the direction of the arrows in the figure
and yields a positive result. On the other hand, a clockwise path to the same point
works against the arrows of the vector field and yields a negative result. Since G is
not path-independent, we conclude that G is not conservative.

We shall investigate, for the entirety of this paper, how topology determines
the extent to which irrotational fields on a certain manifold are conservative or
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non-conservative. It might surprise the reader, for example, that all irrotational
vector fields on R2, like F , are conservative, but many irrotational vector fields on
R2 ∼ {0, 0}, like G, are nonconservative.

Our first steps will be to generalize to differential forms and exterior derivatives.
For instance, a function can be considered an object called a 0-form, which we will
define shortly. Likewise, one can associate something called a 1-form with a vector
field. We can also generalize conservative fields to exact forms and irrotational
fields to closed forms. And, finally, the exterior derivative, which we will also soon
introduce, can be thought of as a generalization of the gradient and curl.

Now, generalizing our mission statement, our goal will be to probe how topology
impacts the ”exact-ness” of closed forms on manifolds. We will do this by introduc-
ing the de Rham cohomology, which, simply defined, is the space of closed forms on
a smooth manifold quotiented by its exact forms. Then, after covering the de Rham
Cohomology, we will prove the de Rham theorem, which demonstrates a natural
isomorphism between de Rham cohomology and singular cohomology groups.

2. The Exterior Derivative

We will first take a moment to briefly explain what a differential form is, following
the definition provided in Chapter 6 of [1]. We begin by defining a k-tensor.

Definition 2.1. A k-tensor, f : Sk → R, is a multilinear function that takes k-
tuples of vectors in a vector space, S, to real numbers. By multilinear, we mean
that f is linear with respect to each of its input vectors, s1, . . . , sk.

Definition 2.2. We call any k-tensor, f , an alternating k-tensor if the following
property holds for all i:

f(s1, . . . , si, si+1, . . . , sk) = −f(s1, . . . , si+1, si, . . . , sk)

Definition 2.3. Given a manifold, M ⊂ Rn, we define a differential k-form on
M to be a function that assigns an alternating k-tensor, fp : Tp(M) → R, to each
point p ∈ M . Here, Tp(M) represents the tangent space of M at p.

It follows from the above definition that a 0-form is a function, as 0-forms do
not rely on any vector input and therefore simply assign a scalar to each point on
a manifold. We will now focus our attention on the exterior derivative.

Definition 2.4. We define the exterior derivative, df : S → R, of some 0-form, f ,
to be the directional derivative of f in the direction of S.

Example 2.5. One can write a k-form, η, uniquely as the sum of k-forms:∑
J

fJdxJ

where fJ is a function and dxJ = dxj1 ∧ . . .∧ dxjk for each J . Here, ∧ denotes the
wedge product and each dxji is the exterior derivative of the projection function,
xji . See Chapter 6 of [1] for a proof.

Definition 2.6. We now define the exterior derivative of a differential k-form, η,
as

dη =
∑

1≤j1<...<jk≤n

dgj1,...,jk ∧ dxj1 ∧ . . . ∧ dxjk
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where η is written in the form of the above example:

η =
∑

1≤j1<...<jk≤n

gj1,...,jk ∧ dxj1 ∧ . . . ∧ dxjk

We will now define closed and exact forms.

Definition 2.7. We call a differential k-form, η, closed if dη = 0.

Definition 2.8. We call a differential k-form, θ, exact if θ = dω for some (k − 1)-
form ω.

Given an open subset, F , of Rn, there exists an isomorphism between the gra-
dient of scalar fields in F and the exterior derivative of 0-forms in F . Similarly,
there are isomorphisms between the curl of vector fields in F and the exterior de-
rivative of 1-forms in F . This connection between exterior differentiation and the
gradient and curl operators, proven in Theorem 31.2 of [1], shows us that closed
and exact forms are the counterparts to irrotational and conservative vector fields,
respectively. In the next part of this section, we will focus on showing that all exact
forms are closed.

Lemma 2.9. If g is a 0-form, d(dg) = 0.

Proof. Applying our definition of the exterior derivative, we have,

d(dg) = d

(∑
i

∂g

∂xi
dxi

)

=
∑
j

∑
i

∂

∂xj

(
∂g

∂xi

)
dxj ∧ dxi

We eliminate all parts of the sum in which j = i and utilize the alternating
property of the wedge product to yield the following.

d(dg) =
∑
j<i

(
∂

∂xj

(
∂g

∂xi

)
− ∂

∂xi

(
∂g

∂xj

))
dxj ∧ dxi

The partial derivatives portion of the expression evaluates to zero for each j, i pair.
We conclude that d(dg) = 0.

□

Lemma 2.10. Given some k-form, θ, and l-form, ω,

d(θ ∧ ω) = d(θ) ∧ ω + (−1)kθ ∧ dω
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Proof. We will show this with some computation. Let θ = gdxJ and ω = fdxI .
Utilizing our definition of the exterior derivative, we have,

d(θ ∧ ω) = d(g · fdxJ ∧ dxI)

= d(g · f) ∧ dxJ ∧ dxI

=

(∑
m

(
∂(g · f)
∂xm

)
dxm

)
∧ dxJ ∧ dxI

= ((dg) ∧ f + g ∧ (df)) ∧ dxJ ∧ dxI

= (dg ∧ dxJ) ∧ (f ∧ dxI) + (−1)k(g ∧ dxJ) ∧ (df ∧ dxI)

= dθ ∧ ω + (−1)kθ ∧ dω

□

Theorem 2.11. Every exact k-form is closed.

Proof. Let θ be an exact (k + 1)-form. Then θ = dω for some k-form ω =∑
1≤i≤(nk)

g ∧ dxJi
. Thus,

d(θ) = d(dω)

= d

(
d

(∑
i

g ∧ dxJi

))
=
∑
i

d(dg ∧ dxJi)

Using Lemmas 2.9 and 2.10, we get the following.

d(θ) =
∑
i

d(dg) ∧ dxJi − dg ∧ d(dxJi)

=
∑
i

d(dg)0− dg ∧ d(1) ∧ dxJi

= 0

□

We need to prove one final property of the exterior derivative to use in Section
4.

Theorem 2.12. Let ϕ : A → W be a smooth map where A and W are open subsets
of Rm and Rn, respectively. Take ϕ∗ to be the corresponding pullback of differential
forms (see section 32 of [1], for reference). Take ω to be some k-form on W . Then

ϕ∗(dω) = d(ϕ∗ω)

Proof. We will prove this for ω as a zero form. Commutivity of the pullback for
differential forms of greater order follows from this, the linearity of the dual trans-
formation (see Theorem 26.5 of [1] for further explication), and the definition of
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the exterior derivative.

d(ϕ∗ω) = d(ω ◦ ϕ)

=

m∑
i=1

∂(ω ◦ ϕ)
∂xi

dxi

After applying the chain rule and some simplification, we get the following.

d(ϕ∗ω) =

m∑
i=1

n∑
j=1

(
∂f

∂ϕj
◦ ϕ
)

∂ϕj

∂xi
dxi

=

n∑
j=1

(
∂f

∂ϕj
◦ ϕ
)
dϕj

= ϕ∗(dω)

□

We omit proof of the uniqueness of the exterior derivative and a few other prop-
erties in this paper. The reader is encouraged to review proofs of such properties
in [1] or [2].

3. Singular Homology and Cohomology

We cover important concepts of Algebraic Topology in this section before intro-
ducing the de Rham Cohomology. We follow a similar approach to [3].

Definition 3.1. We define the standard k-simplex, ∆k, as follows.

{∆k = {x0, . . . , xk} ∈ Rk+1 :
∑
i

xi = 1 and xi ≥ 0 for all i}

Definition 3.2. We define a singular k-simplex as a smooth map, σ : ∆k → M .
For our purposes, this is simply a map from the standard k-simplex, ∆k, to a
smooth manifold M .

Definition 3.3. We let Ck(M) denote the free abelian group with basis comprised
by the set of singular k-simplices in M .

Definition 3.4. Singular k-chains are elements of Ck(M). We write k-chains as
formal linear combinations of k-simplices.

Definition 3.5. Here, we will define integration over chains for later use. Let c be
some k-chain such that c ∈ Ck(M) for a smooth manifold, M . Using the definition
of k-chains, we write c =

∑
i=1 aiσi, where each σi is a k-simplex. Furthermore, let

ω be a smooth differential k-form on M . We define the integral of ω over c as∫
c

ω =
∑
i

ai

∫
σi

ω =
∑
i

ai

∫
∆k

σ∗
i ω

Definition 3.6. The boundary operator, ∂, takes Ck(M) to Ck−1(M). We define
∂ on a k-simplex, σ, as follows.

∂(σ) =
∑
i

(−1)iσi

In the above, σi is the restriction of σ to the simplex with its ith vertex removed.
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Theorem 3.7. ∂ ◦ ∂ = 0

Proof. A proof of this fact is relatively straightforward. Using the definition of the
boundary operator, we see that

(∂ ◦ ∂)(σ) = ∂(
∑
i

(−1)iσi)

=
∑
j<i

(−1)j(−1)iσj,i +
∑
j>i

(−1)j−1(−1)iσi,j

where σi,j is σ restricted to the simplex with the ith and jth vertices removed.
Switching i and j in the second sum, we yield

(∂ ◦ ∂)(σ) =
∑
j<i

(−1)j(−1)iσj,i −
∑
j<i

(−1)i(−1)jσj,i

= 0

□

Definition 3.8. We define the singular homology group, Hk(M), by

Hk(M) =
Ker(∂k)

Im(∂k+1)

where Ker(∂k) and Im(∂k+1) denote the kernel of ∂ : Ck(M) → Ck−1(M) and
image of ∂ : Ck+1(M) → Ck(M), respectively.

It is often helpful to visualize homology groups and their boundary operators
with a chain complex. A chain complex is an algebraic structure that represents
a series of abelian groups connected by homomorphisms. We will include a few
diagrams of these and related complexes, called cochain complexes, in this paper.

· · · Ck+1(M) Ck(M) Ck−1(M) · · ·∂ ∂ ∂ ∂

Figure 3. A chain complex of singular k-simplex free abelian
groups, Ck(M), and the boundary operator, ∂, on M .

Cochain complexes, on the other hand, can be thought of as dual to chain com-
plexes. A cochain, Ck, is defined by Hom(Ck, G) where Ck is the corresponding
chain group and G is an arbitrary abelian group. A coboundary map is a map-
ping between adjacent cochains. Cohomology is simply the homology of a cochain
complex.

Definition 3.9. The k-th singular cohomology group, Hk(M), is given by

Hk(M) =
Ker(∂k)

Im(∂k−1)

where Ker(∂k) and Im(∂k−1) denote the kernel of ∂∗ : Ck(M) → Ck+1(M) and
image of ∂∗ : Ck−1(M) → Ck(M), respectively. Here, we define Ck(M) as
Hom(Ck,R). In this way, ∂∗ is the corresponding dual homomorphism of the
boundary operator of the singular chain complex.
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· · · Ck−1(M) Ck(M) Ck+1(M) · · ·∂∗ ∂∗ ∂∗ ∂∗

Figure 4. A cochain complex with abelian groups, Ck(M), and
the dual function, ∂∗, on M .

4. The De Rham Cohomology and Chain Maps

Definition 4.1. We define the k-th de Rham group, Hk
DR(M), as

Hk
DR(M) =

Ker(dk)

Im(dk−1)

where Ker(dk) and Im(dk−1) denote the kernel of d : Ωk(M) → Ωk+1(M) and
image of d : Ωk−1(M) → Ωk(M), respectively. Here, we define Ωk(M) as the space
of k-forms on M and d as the exterior derivative. We have already shown that
d ◦ d = 0 (Theorem 2.11).

· · · Ωk−1(M) Ωk(M) Ωk+1(M) · · ·d d d d

Figure 5. The corresponding cochain complex for the sequence
of differential form spaces, {Ω0(M),Ω1(M),Ω2(M), . . .}.

We will now introduce chain maps, which are sets of morphisms between chain
complexes. Let us consider the following chain map.

· · · Ωk−1(M) Ωk(M) Ωk+1(M) · · ·

· · · Ωk−1(W ) Ωk(W ) Ωk+1(W ) · · ·

d d

p∗
k−1

d

p∗
k

d

p∗
k+1

d d d d

Figure 6. A chain map of the set of morphisms, {p∗i : Ωi(M) → Ωi(W )}i.

By definition, chain maps commute. We have already shown that the pullback
associated with a smooth function, p : M → W , commutes with the exterior
derivative. It follows that the above chain map is valid. This chain map induces
morphisms, {g∗i : Hi

DR(M) → Hi
DR(W )}, between the de Rham cohomologies of

M and W .
It should be noted that commutivity of the boundary operator gives rise to chain

maps between k-simplices on M and W . Such a chain map induces mappings be-
tween the singular homology groups. Likewise, mappings are induced between sin-
gular cohomologies, which results from the commutivity of the dual of the boundary
operator.
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5. Stokes’ and Additional Theorems

In this section, we will follow an approach similar to that provided in [4]. We
begin with Stokes’ theorem. The theorem plays a key role in our proof of de
Rham’s theorem. Specifically, it prompts a map between the singular and de Rham
cohomologies. For our purposes, we will present a version of Stokes’ theorem applied
to k-chains.

Theorem 5.1 (Stokes). Let M be a smooth manifold containing a k-chain, c. Let
α be a smooth (k − 1)-form defined on M . Then,∫

∂c

α =

∫
c

dα

Proof. We omit the proof of this theorem. Readers unfamiliar with Stokes’ are
encouraged to review a proof of the theorem in the seventh chapter of [1]. □

We define a set of homomorphisms between Ωk(M) and Ck(M) by α →
∫
α.

With Stokes’ Theorem, we see that these homomorphisms commute with the bound-
ary operator and exterior derivative. Thus, we have the following chain map.

· · · Ωk−1(M) Ωk(M) Ωk+1(M) · · ·

· · · Ck−1(M) Ck(M) Ck+1(M) · · ·

d d

hk−1

d

hk

d

hk+1

∂∗ ∂∗ ∂∗ ∂∗

Figure 7. A chain map of the set of homomorphisms, {hi :
Ωi(M) → Ci(M)}i.

This chain map therefore induces a set of homomorphisms between the de Rham
cohomologies and singular cohomologies.

Definition 5.2. We define the de Rham homomorphism as the map between de
Rham and singular cohomologies. We denote this set of induced homomorphisms
by Dk(M) : Hk

DR(M) → Hk(M). We omit proof that the de Rham homomorphism
is well defined (see, for instance, [4]). We will now prove two key theorems regarding
the homomorphism.

Theorem 5.3. Let M and N be smooth manifolds. Let f : M → N be a smooth
mapping. Let p∗ denote the two pullbacks (for the de Rham and singular cohomolo-
gies). Then the following diagram commutes.

Hk
DR(N) Hk

DR(M)

Hk(N) Hk(M)

p∗

Dk(N) Dk(M)

p∗

Proof. We can show this from the definition of a k-simplex. Let α be a k-form and
σ a smooth k-simplex. We have,∫

σ

p∗ω =

∫
∆k

σ∗p∗ω =

∫
∆k

(p ◦ σ)∗ω =

∫
p◦σ

ω

□
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Theorem 5.4. Let U and V be open subsets of the smooth manifold M such that
U∪V = M . We use β and γ to denote the connecting homomorphisms (see Chapter
3 of [3] for a definition) of the de Rham and singular cohomologies, respectively.
Then the following diagram commutes.

Hk−1
DR (U ∩ V ) Hk

DR(M)

Hk−1(U ∩ V ) Hk(M)

β

Dk−1(U∩V ) Dk(M)

γ

Proof. Let [α] ∈ Hk−1
DR (U∩V ) and [c] ∈ Hk(M). Furthermore, we choose δU and δV

in Hk
DR(U) and Hk

DR(V ), respectively, so that they satisfy the following property.
We must have that α = (δU − δV )|U∩V and β([α]) = dδU on U while β([α]) = dδV
on V .

Also, we specify the choice of chain c to satisfy a few properties. Let cU ∈ Ck(U)
and cV ∈ Ck(V ) be smooth. We choose c such that c = cU + cV is smooth and,
letting ∂i be the induced map of the boundary map from Ck(M) to Ck(U ∩ V ),
∂i([c]) = [∂cU ] = −[∂cV ].

We want to show that Dk(β[α]) = γ(Dk([α])):

Dk([α])(∂
i([c])) =

∫
∂cU

α−
∫
∂cV

α =

∫
∂cU

δU +

∫
∂cV

δV

Furthermore,

Dk(β([α]))([c]) =

∫
cU

dδU +

∫
cV

dδV

The desired result follows immediately from Stokes’. □

6. De Rham’s Theorem

We will prove De Rham’s theorem following a method presented in [5]. We begin
by proving a few supporting lemmas.

Definition 6.1. A smooth manifold M is de Rham if Dk(M) is an isomorphism
for each k ≥ 0.

Lemma 6.2. Let U be a convex subset of Rn. U is de Rham.

Proof. We use the result that the de Rham and singular cohomologies are topo-
logical invariants. We will omit proof of this fact (see chapter 17 of [6]). Due to
topological invariance, U must have the same de Rham and singular cohomology
groups as a point, {p}. We now must compute the cohomologies for {p}.

We begin with the de Rham cohomologies. When k = 0, Hk
DR({p}) ∼= R, as we are

looking only at functions from {p} to {R}. Furthermore, when k > 0, Hk
DR({p}) is

trivial, as {p} has dimension 0.

Now we compute the singular cohomologies. That H0({p}) ∼= Z and Hk({p}) ∼= 0
for k > 0 is a straightforward calculation of singular homology (which we omit
here). It follows trivially that H0({p}) ∼= R and Hk({p}) ∼= 0 (for k > 0), as
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Hi({p}) is naturally isomorphic with Hom(Hi({p}),R).

All that is left to show is that the de Rham homomorphism is not trivial for k = 0.
We know that H0

DR(U) is the space of constant functions. The constant function
g = 1 is therefore in H0

DR(U), and we see that Dk([g])([s]) = (g ◦ s)(0) = 1. □

Lemma 6.3. Let M be a smooth manifold and S a basis of M . There is an open
cover {Di} of M which is countable so that Di is the finite union of elements of
the basis for each i, and, if Di ∩Dj = ∅, then i ̸= j ± 1.

Proof. We omit this proof here. See Lemma 3.4 of [9]. □

Lemma 6.4. Let M =
⋃q

i=1 Di be a smooth manifold where q ∈ Z and Di is open
for each i. If the de Rham homomorphism is an isomorphism on each Di and each
finite intersection of Di’s, then the de Rham homomorphism on all of M is an
isomorphism.

Proof. We shall show this for q = 2. The full proof follows by induction. We write
the following diagram from the Mayer-Vietoris sequences for de Rham and singular
cohomology.

Hk−1
DR (D1)

⊕
Hk−1

DR (D2) Hk−1
DR (D1 ∩D2) Hk

DR(M)

Hk−1(D1)
⊕

Hk−1(D2) Hk−1(D1 ∩D2) Hk(M)

α β γ

Hk
DR(D1)

⊕
Hk

DR(D2) Hk
DR(D1 ∩D2)

Hk(D1)
⊕

Hk(D2) Hk(D1 ∩D2)

δ ϵ

Theorems 5.3 and 5.4 show commutivity of the diagram. The Five Lemma (see [3]
chapter 2) tells us that the γ is an isomorphism due to our hypothesis that the first,
second, fourth, and fifth vertical homomorphisms are isomorphisms. We conclude
that M is de Rham.

□

Theorem 6.5 (de Rham). If M is a smooth manifold, Dk(M) is an isomorphism
for each k.

Proof. Let us say that M =
⋃

j Mj is the disjoint union of manifolds {Mj}. We
will show that if each Mj is de Rham, M is de Rham. We introduce inclusion
maps ij : Mj → M . The inclusion maps induce isomorphisms between the direct
products of the de Rham cohomology groups of Mj and the singular cohomology
groups of

⋃
j Mj . It follows from Theorem 5.3 that Dk(M) is an isomorphism.

We will now choose an open cover, {Ui}, of M as we did in Lemma 6.3. We know
that M = Uodd ∪ U even where we define Uodd = U2q+1 and U even = U2q for all
natural q. We know that only adjacent Ui’s have nonempty intersections from the
Lemma. Thus, we may write the set of intersections of the open cover, U t, as
U t = ∪(Uq+1 ∩ Uq).
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Using Lemma 6.4, if we show that the de Rham homomorphism is isomorphic on
U even, Uodd, and U t, then M must be de Rham. We can simplify this even further
as all three of these sets are the disjoint union of Uq and Uq ∩ Uq+1.

Using Lemma 6.4 again, we see that we simply need to show the existence of a
basis for M such that Dk is an isomorphism for each element in the basis. This is
because we can write Uq as a finite union and Uq ∩ Uq+1 as a finite intersection of
elements of the basis.

If we assume that M has dimension n, we take the basis of M to be the domain
charts, which are diffeomorphic to open sets contained in Rn.

We need now only show that open subsets of Rn are de Rham. We may take a
basis of balls of an open set O ⊂ Rn. Balls and the intersection of balls are convex
and, by Lemma 6.2, are de Rham. Thus, O is de Rham. □

7. Applications

Returning to the punctured plane, one immediately sees that there exist dif-
ferential forms on R2 ∼ {0, 0} that are closed but not exact. Take, for example,
the 1-forms on R2 ∼ {0, 0}. We know, from the de Rham theorem, that there
exists an isomorphism α : H1

DR(R2 ∼ {0, 0}) → H1(R2 ∼ {0, 0}). Given that
H1(R2 ∼ {0, 0}) ∼= R, we see that H1

DR(R2 ∼ {0, 0}) ∼= R. The de Rham cohomol-
ogy is not trivial, and thus we have proven the existence of non-exact closed forms
in the punctured plane.

Let us consider the n-sphere, Sn. Once again, we may use de Rham’s theorem to
calculate the de Rham cohomology of Sn. Calculation of the singular cohomology
reveals that Hk(Sn) is isomorphic to R for k = 0, n and is trivial for 0 < k < n.
Thus, we see that all closed k-forms are exact on Sn for 0 < k < n.
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