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Abstract. This paper is an exposition of several results regarding site perco-

lation on the triangular lattice. We begin by proving the critical probability
of the lattice to be pc = 1

2
through the work of Kesten. Then we follow the

work of Smirnov to demonstrate conformal invariance of crossing probabili-

ties in critical percolation. Lastly, we follow the work of Lawler, Schramm and
Werner to use this to compute the one arm exponent of critical site percolation.
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1. Introduction and Basic Background

The study of percolation begins with the following idea. Given a lattice, in-
dependently declare each vertex of the lattice to be open with probability p, or
closed with probability 1 − p. Note that one may instead choose to declare edges
open or closed. This is referred to as bond percolation. In this paper we restrict
ourselves to site percolation, where the vertices are declared open or closed as de-
scribed above. For more information on bond percolation which contains plenty of
beautiful results, the reader is encouraged to consult Grimmett’s Percolation [4].

Once we have our percolation configuration, we wish to know more about the
configuration of open clusters. An open cluster is a connected subset containing
only open vertices. More specifically, we wish to know at what values of p does
there exist an infinite open cluster beginning from an arbitrary point we declared the
origin (this may be referred to as ‘having percolation at 0’). We define the critical
probability to be pc = sup{p|Pp[An infinite open cluster contains 0]}. In his work,
Kesten [6] showed the critical probability of site percolation on the triangular lattice
to be 1

2 , the proof of which we review below. Before we may do this, we have to
first define the triangular lattice.
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Figure 1. A sample percolation configuration taken from [12].

Definition 1.1. The triangular lattice (T) has vertices on the points (Re(α +

βe
iπ
3 ), Im(α+ βe

iπ
3 )) for α, β ∈ Z. We call a vertex v = (vα, vβ) in addition to the

usual x, y coordinates. Edges are lines connecting points of distance 1 away from
each other.

Theorem 1.2. For site percolation on the triangular lattice pc =
1
2

After the critical probability has been found, a natural question to ask is what
the percolation configuration looks like at the critical probability. A specific line of
inquiry which has yielded a rich theory is describing the scaling limit of percolation
interfaces. Given a simply connected subset of the plane (one where any loop can
be contracted to a point such that the loop is always entirely in the domain), we
define the exploration path as follows

Definition 1.3. Given a simply connected domain Ω and two points a, b on ∂Ω,
the exploration path denoted γe.p. of a percolation configuration is the unique
path separating all closed clusters connected to the arc ab from the open clusters
connected to the arc ba.

We may also formulate such a path algorithmically. Allowing the arc ab to be
entirely closed, and the arc ba to be entirely open, repeat the following process.
Starting from the triangle with a as a vertex, choose the edge opposite a. Now,
always move to an edge with an open vertex on its left, and a closed vertex on its
right. This precisely yields the exploration path.

The next thing we wish to show is a property known as conformal invariance.

Definition 1.4. Given any two simply connected domains V,U with boundary
points v1, v2 and u1, u2. Denote their lattice approximations by Vδ and Uδ. Then
consider an exploration path γe.p. from v1 to v2. Under any conformal mapping
(bijective and holomorphic) ψ : V → U for which either ψ(vi) = ψ(ui) then the
distribution of γe.p. is identical to the distribution of ψ(γe.p.).

We prove conformal invariance of the exploration path as well as Cardy’s For-
mula (see ??). We follow the work of Smirnov and provide the proof below [9].
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Figure 2. An exploration path pictured by Hugo Duminil-Copin
and Vincent Beffara [1]

Lastly, conformal invariance is a sufficient condition to prove the convergence of
the exploration path (as well as other interfaces we do not mention) to a random
curve known as SLE6. More information on the subject can be found here [2].
This opens up a wealth of new information about critical percolation, of notable
mention being the study of critical exponents. The most elementary such exponent
is the one arm exponent, or the probability that the open cluster from the origin
intersects the disc of radius n. It was shown by Lawler, Schramm, and Werner [7]

that the probability decays like n−
5
48 . We shall review (some of) the techniques

used to derive such an exponent below.

2. There is no Percolation at p = 1
2

In this section, we prove the following fairly simple but necessary result for
showing the critical probability is 1

2 .

Theorem 2.1. P 1
2
[There exists an infinite open path from the origin] = 0

Here, we very closely follow [11]. The approach below is simply an adaptation
of this method to the triangular lattice, as some steps utilized will not be useful
for site percolation. In order to produce any meaningful results, it is helpful to
reformulate the percolation configuration as follows.

Definition 2.2. Given a lattice, a percolation configuration is an assignment
to all vertices v of iid random variables p(v) uniformly distributed from [0, 1]. Then
given our probability p, we declare v open iff p ≥ p(v).

Since the p(v)’s are each distributed uniformly the probability that v is open is
simply p. Note that we denote the probability of an event X on such a configu-
ration with probability p by Pp[X]. Now, we also get the additional property of
‘monotonicity’ in p for certain events. As an example, suppose X was the event
‘path W consists of entirely open vertices’. Suppose we have two probabilities p, p′.
If p′ > p, then p > p(v) implies p′ > p(v) so we can only open vertices by increas-
ing our value of p. Thus we conclude Pp[X] ≤ Pp′ [X]. This type of event is an
increasing event, which we define using the notes of Steif [11].
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Definition 2.3. Letting V be the set of vertices of the triangular lattice. Then
define a partial order ⪯ on {0, 1}V , where x ⪯ y iff entrywise it always holds that
yi = 0 implies xi = 0. A function f on this space to the real numbers is increasing
if x ⪯ y implies that f(x) ≤ f(y). An event is increasing if its indicator function is
increasing.

Increasing events are an extremely powerful tool because they lend themselves
quite well to certain inequalities. An essential such inequality is the FKG inequal-
ity.

Proposition 2.4. FKG Inequality: Given two increasing events A,B, we have
Pp(A ∩B) ≥ Pp(A)Pp(B). Equivalently E[IAIB ] ≥ E[IA]E[EB ].

For a proof see [11] or [6]. Intuitively, increasing events will happen if ‘many’
vertices are open. If one such event has already happened, this suggests lots of
vertices are already open so it is more likely that the other event will happen. This
suggests increasing events are in a sense ‘positively correlated’. Notice the same
concept holds for decreasing events, but such a result will not be used here.

Corollary 2.5. For increasing events A1, . . . An P [
⋂n

i=1Ai] ≥
∏n

i=1 P [Ai].

Proof. Using induction and the fact that intersections of increasing events remain
increasing, this is immediate. □

Definition 2.6. Allow Ln,m to denote the event of an open crossing from the left
boundary to the right boundary of [0, n] × [0,m] that travels strictly within the
rectangle. Similarly let L∗

n,m denote the closed analogue.

Remark 2.7. Notice that by the inherent symmetries of the lattice, the probability
of an open crossing of an arbitrary n × m rectangle with a vertex in it’s bottom
left corner and a side parallel to the x-axis is identical to the probability of Ln,m,
so we sometimes use Ln,m as shorthand.

Proposition 2.8. Russo-Seymour-Welsh Theorem (RSW): P 1
2
[Lkn,n] ≥ ck >

0, where ck depends only on k.

For a proof of this theorem, see [11] section 7.2. When coupled with FKG, RSW
estimates are extremely powerful. We use them as follows.

Definition 2.9. Given vertex v, a Parallelogram Set P(v, l) is the set of vertices
{v : |vα|, |vβ | ≤ l}.

Definition 2.10. An annulus about point v of length l, A(v, l), is the set P(v, 3l)\
P(v, l). For convenience, an annulus centered about the origin will be denoted A(l).

Definition 2.11. A traversing open circuit of an annulus is a loop of open vertices
separating the inner boundary of the annulus from its outer boundary.

One immediately can tell this is useful, because if such an open circuit were to
occur, we can apply symmetry to show the probability of a closed circuit is the
same. If such a closed circuit were to occur, then we see that no open path can
leave the annulus.

Lemma 2.12. For any annulus, there exists a constant c such that for any v, l
P 1

2
[there exists a closed circuit traversing A(v,l)] ≥ c.
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Figure 3. Using RSW to construct a traversing of an annulus

Proof. Note that we may cover each ‘side’ of the annulus A(v, l) by a 6l ×
√
3l
2

rectangle, and a crossing of all four of these rectangles implies a circuit traversing
the annulus (see Figure 3). Note that P 1

2
[L

6l,
√

3l
2

] ≥ c12, and by the 2π
3 rotational

symmetry of the lattice we also observe that the probability of an open crossing
of each of these rectangles is identical. Now by virtue of the fact that these open
crossings are increasing events, by Proposition 2.4 we see
P 1

2
[there exists a open circuit traversing A(v,l)] ≥ c412 = c. As p = 1

2 , we have

symmetry implying that this inequality also applies to closed circuits. □

Remark 2.13. It is important to note that a similar upper bound may be derived,
which we will denote q. One may do this by putting a rectangle over a side of the
annulus, but we do not rigorously prove this statement. Moreover, this can be done
for effectively any aspect ratio (the one from Definition 2.10 has an aspect ratio of
3), as well as other kinds of annuli. Most notably, this result will be used later for
the hexagonal annulus. However, all such proofs are effectively the same.

Theorem 2.14. P 1
2
[There exists an infinite open path from the origin] = 0

Proof. Consider the annuli Ak = A(3kl). Should any one such annulus contain a
traversing closed circuit (denote the event in which Ak has such a circuit as Ck),
we do not have an infinite open path from the origin. Additionally we see that
these annuli are all disjoint, and thus events occurring within different annuli are
independent. Since we have P 1

2
[Ck] ≥ c, the sum

∑∞
k=1 P 1

2
[Ck] diverges and thus by

the second Borel-Cantelli lemma we have that infinitely many such closed crossings
occur, rendering percolation impossible. □

3. Crossing Probabilities for p ≥ 1
2

We begin this section with the essential topological tool about loops:

Proposition 3.1. Consider a simple closed loop. Given four arcs A1, A2, A3, A4

appearing in counterclockwise order on the loops domain, there is an open (resp.
closed) crossing from A1 to A3 if there is no closed (resp. open) crossing from A2

to A4.
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The proof of this statement is rather difficult and doesn’t necessarily provide any
stronger intuition behind this already intuitive statement. Thus we do not include
it here, however curious readers are encouraged to check out the proof in [6].

From here we see that Um,n and Lm,n are in fact not complements, as the vertical
edges of a rectangle contain no edge of T, and as such we briefly define two new
events.

Definition 3.2. Allow Rm,n (resp. R∗
m,n) and Dm,n (resp. D∗

m,n) to denote open
(resp. closed) crossings from the left edge to the right edge or from the bottom edge
to the top edge respectively of the parallelogram [0,m]× [0, n] in α, β coordinates.
By our previous proposition we have that these are complementary events.

Remark 3.3. Similarly to Proposition 2.8, we have that shifting our parallelogram
by integer values in the α or β direction does not change these probabilities by
symmetry of the lattice.

Now we want to show that these events become very unlikely for large parallel-
ograms. The critical tool for this is Russo’s formula, which goes as follows.

Definition 3.4. A vertex v is pivotal for an event A if changing the state of v
changes whether or not the entire percolation configuration ω is contained in A.
The event where v is pivotal for A is denoted Pivv(A).

Definition 3.5. The influence of a vertex is Pp(Pivv(A)), and this is denoted by
Ipv (A).

Proposition 3.6. Russo’s Formula: Suppose we have an increasing event A
and a finite vertex set V . Given a percolation configuration, allow the set of pivotal
vertices to be denoted by U . Then d

dpPp(A) =
∑

v∈V I
p
v (A) = E[#U ].

The idea here is that as this event is increasing, it is clear only opening vertices
can increase the probability of this event. Therefore if many vertices can be in-
fluential, then slightly increasing p can significantly increase the probability that
some such vertices are open, which in turn greatly increases the likelihood that A
is realized. For a proof, see [8]. Should we show the expected number of pivotal
edges is infinite, we may use this to bound crossing probabilities as follows.

Proposition 3.7. For p > 1
2 , Pp[R

∗
2n,6n] → 0 as n→ ∞.

Lemma 3.8. Allow p(t) = 1−t
2 + tp. Then Ep(t)[#U |R∗

2n,6n] → ∞ uniformly over
t, then Proposition 3.7 holds.

Proof. By the chain rule and Russo’s formula, we have that d
dtPp(t)[R

∗
2n,6n] = ( 12 −

p)Ep(t)[#U ], or equivalently 1
Pp(t)[(R

∗
2n,6n)]

d
dtPp(t)[R

∗
2n,6n] = ( 12−p)Ep(t)[#U |R∗

2n,6n].

This is a fairly simple differential equation, which we integrate from t = 0 to

t = 1 to get ln(Pp[(R
∗
2n,6n)])− ln(P 1

2
[(R∗

2n,6n)]) = (12 −p)
∫ 1

0
E[#U |R∗

2n,6n]dt. Thus

we see Pp[(R
∗
2n,6n)] ≤ P 1

2
[(R∗

2n,6n)]e
−

∫ 1
0
Ep(t)[#U |R∗

2n,6n]dt. From here the lemma is

done. □

Remark 3.9. In order to continue the proof of Proposition 3.7, we need to define
the notion of a ‘lowest closed crossing’. To briefly justify why such a crossing can
be chosen, fix our parallelogram P . Then for a closed crossing r, denote all the
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vertices below and including the crossing within P by the set J−(r). If C is the set
of all closed crossings of P , then ∩c∈CJ

−(c) clearly has the lowest closed crossing
as its upper boundary. Furthermore, a lowest closed crossing has what is referred
to as a ‘strong Markov property’. This means that it is independent of anything
depending only on vertices above it.

Lemma 3.10. Ep(t)[#U |R∗
2n,6n] → ∞ uniformly over t as n→ ∞.

Proof. We first denote lowest closed horizontal crossing by R. We first note that
any vertex in R which has a vertical open crossing from the upper boundary of the
parallelogram to just above that vertex is pivotal (this can be empty should our
vertex be contained in the upper boundary). If not, this contradicts the fact that
we chose the lowest crossing. We denote such a crossing as an open connection.
Thus it is sufficient to estimate the number of vertices in the lowest closed crossing
R with an open connection, denoted by NR. Now taking the expectation over all
possible crossings r yields

(1) Ep(t)[NR] =
∑
r

Ep(t)[Nr|R = r]Pp(t)[R = r].

Now we define the events Cv for v ∈ r, where Cv is the event that v has an open
connection. As this is a increasing event, we see that

(2) Ep(t)[Nr|R = r] = Ep(t)[Nr] =
∑
v∈r

Pp(t)[Cv] ≥
∑
v∈r

P 1
2
[Cv] = E 1

2
[Nr]

where the first equality holds by the strong Markov property. Now plugging (2)
into (1) gives

(3) Ep(t)[NR] ≥ min
r
E 1

2
[Nr]

∑
r

Pp(t)[R = r].

We then see that by the occurrence of R∗
2n,6n,∑

r

Pp(t)[R = r] = 1

and we may thus simplify (3) to

Ep(t)[NR] ≥ min
r
E 1

2
[Nr].

Thus our proof is complete if we show Nr becomes large in n regardless of our
choice of r.

Now suppose there is an open crossing from r to the upper boundary of the
parallelogram contained to the left of the line vα = n (i.e. a crossing in the left
half of the parallelogram). Again by Proposition 2.8 and rotational symmetry of
the lattice we have P 1

2
[Un,6n] ≥ c6. Thus we may consider a leftmost vertical open

connection from r, denote this crossing as s. Thus E 1
2
[Nr] ≥ mins c6E 1

2
[Nr|s]. We

show regardless of our choice of r and s, we are guaranteed an unbounded number
of pivotal edges.

Allow v to denote the vertex where r and s meet. Then consider the annuli
A(v, 3k). More specifically, consider the component of such an annulus to the
right of s and above r (should the annulus never intersect s, then we say our
annulus section intersects the upper boundary of the parallelogram and ends there.
See Figure 4 for more). Such a section has probability of at least c of having a
closed traversal, as it clearly is more likely than the entire annulus having a closed
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Figure 4. The construction of infinitely many pivotal vertices

traversal. By the strong Markov property this event is also independent of both s
and r. Moreover, each annulus is independent of each other as they are disjoint.
Lastly as s is contained in the left half of the parallelogram, we may include at least
⌊log3(n)⌋ such annuli sections.

Thus the sum of probabilities of the annuli sections having a closed traversal
is at least c⌊log3(n)⌋, where c is from Lemma 2.12. Notice each traversal in fact
corresponds to a distinct pivotal vertex. Since c⌊log3(n)⌋ → ∞ as n → ∞, then
by the second Borel-Cantelli lemma we have infinitely many such traversals and
E 1

2
[Nr|s] → ∞. □

Proposition 3.7 follows from Lemma 3.10 and Lemma 3.8.

Remark 3.11. The identical claim holds for Pp[U
∗
6n,2n], by a 90 degree rotation of

the exact argument.

Corollary 3.12. By the definition of a limit, there exists an N = 2M such that
Pp[R

∗
N,3N ], Pp[U

∗
3N,N ] ≤ 1

4 (50e)
−49.

4. Expected Cluster Size for p > 1
2

Definition 4.1. Allow C(v) to denote the closed cluster containing v on a fixed
percolation configuration.

We may use the previous section’s results to demonstrate the following:

Theorem 4.2. Ep[|C(0)|] <∞.

The proof of this theorem is rather convoluted, but begins with the following
fact. When keeping the configuration variable, the set of possible closed clusters
with n vertices containing a specific vertex grows exponentially.
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Definition 4.3. Denote the set of distinct connected sets of n vertices containing
v by Ωn(v).

Thus if we find a way to relate crossing probabilities with the size of a cluster, we
can use the previous corollary to have the probability of the origin belonging to a
size n cluster existing decay exponentially. This immediately implies the expected
closed cluster size about the origin is finite. We do so by introducing the auxiliary
graph. Effectively, the auxiliary graph declares specific vertices closed should such
a crossing occur in a specific location. This is defined in more detail as follows.

Definition 4.4. The auxiliary graph with parameter n ∈ N has vertices on the

points (Re(nα+nβe
iπ
3 ), Im(nα+nβe

iπ
3 )) for α, β ∈ Z. Vertices will be referred to

identically as on the triangular lattice, except with the following notational change
v → ṽ (this includes 0 → 0̃). Additionally, the n × n parallelogram with ṽ in
its bottom left corner will be referred to as B(ṽ). Note that every B(ṽ) has a
(topologically) open top and right side, but closed bottom and left side. Edges are
lines connecting vertices ṽ, ũ such that |ṽα − ũα|, |ṽβ − ũβ | ≤ 2n. This graph will
be referred to by L(n).

Remark 4.5. For all future uses of L we will assume n = N from Corollary 3.12
and use L as a shorthand.

Now we define a percolation configuration on such a graph in a way that relates
crossings to closed clusters.

Definition 4.6. An auxiliary percolation configuration on L goes as follows. A
vertex ṽ is closed if there is a closed path which starts in its corresponding paral-
lelogram and escapes the 3× 3 grid of parallelograms surrounding it. Formally this
is defined as follows. For a given ṽ, we first define the four parallelograms H0,±1(ṽ)
and H±1,0. H0,±1(ṽ) = ∪3

i=1(ṽα±1, ṽβ−2+i) and H±1,0(ṽ) = ∪3
i=1(ṽα−2+i, ṽβ±1).

Let B′(ṽ) = H0,1(ṽ) ∪H0,−1(ṽ) ∪H1,0(ṽ) ∪H−1,0(ṽ). We say ṽ is closed if there
exists a closed path on T with an end vertex in B(ṽ) and one outside or on the
boundary of B′(ṽ).

Remark 4.7. Should ṽ be closed, by definition we either have a closed vertical
crossing of one of H±1,0(ṽ) or a closed horizontal crossing of one of H0,±1(ṽ).
Notice however the first scenario has the same probability as U∗

3N,N , and the second
scenario has the same probability as R∗

N,3N . Thus by the union bound for any

given ṽ we have Pp[ṽ closed] ≤ 2(Pp[R
∗
N,3N ] + Pp[U

∗
3N,N ]) which helps us relate

cluster sizes on L to crossing probabilities on T. By Corollary 3.12 we may further
strengthen this bound to Pp[ṽ closed] ≤ (50e)−49.

We therefore seek to relate cluster sizes on L and T. In order to do so, we declare
V to be the set of vertices ṽ with |ṽα|, |ṽβ | ≤ 3N , which is a notion of ‘close to the
origin’ on the auxiliary graph.

Proposition 4.8.

max
ṽ∈V

|C(ṽ)| ≥ |C(0)| − 16N2

49N2

The idea here goes as follows. Should the cluster at the origin be large, then
there exists points very far from the origin which have a path back to the origin.
This equates to a large path in L which returns relatively close to the origin, which
is more rigorously stated in the following manner.
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ṽ

H0,−1(ṽ)

Figure 5. The auxiliary graph with parameter N = 3. Note ṽ is
closed as there is a closed path starting in B(ṽ) and leaving B′(ṽ).
Furthermore, observe the vertical crossing of H0,−1(ṽ)

Lemma 4.9. If we have w0 ∈ C(0) such that for some x ≥ 2 either xN ≤ w0
α ≤

(x+1)N or xN ≤ w0
β ≤ (x+1)N then there is a closed path on L ending on some

vertex ṽ ∈ V .

Proof. First allow B(ṽ0) to denote the unique parallelogram containing w0. As w
is in C∗(0), then there is a closed path connecting w0 to 0 which shall be called r.
Moreover, r is a closed path escaping B′(ṽ0) by the condition on w0 (and thus ṽ0

is closed). This implies there is a closed vertex on r ∩ ∂B′(ṽ0) in T. Denote this
vertex as w1 in parallelogram B(ṽ1). As w1 ∈ B′(ṽ0), we see that ṽ0 is adjacent to
ṽ1. We may now repeat this process on w1 and iterate until we reach some wb with
|wb

α|, |wb
β | ≤ N , which provides a path on L starting at ṽ leading to some vertex ṽb

such that v ∈ V . □

These paths are large enough to be considered a reasonably large cluster and
supply an adequate bound on the minimum guaranteed cluster size. This is because
any vertex outside of the 4N × 4N parallelogram about the origin, should it be in
C(0), is guaranteed to have a path leading close to the origin. Thus there are at
least |C(0)| − 16N2 such vertices. There are at most 49 auxiliary vertices ṽ such

that |ṽα|, |ṽβ | ≤ 3N . Thus for at least one ṽ′ there are |C(0)|−16N2

49 such vertices on

T which correspond specifically to ṽ′. As there are N2 vertices per B(ṽ), we can

see that |C(ṽ′)| ≥ |C(0)|−16N2

49N2 , proving Proposition 4.8.
This immediately gives us the following corollary which relates closed cluster

sizes on T and L.
Corollary 4.10. |C(0)| = n implies for some vertex ṽ such that |ṽα|, |ṽβ | ≤ 3N

that |C(ṽ)| ≥ n−16N2

49N2 ≥ n
49N2 − 1 = An− 1, where A = 1

49N2 .

Using the observation that an infinite cluster on one graph implies an infinite
cluster on another, we know that |C(ṽ)| is finite. The reason for this is that an
infinite closed cluster from the origin is a decreasing event. We have shown that at
p = 1

2 this cannot happen, but here p > 1
2 . Thus we only consider the set of finite

clusters. Thus by the union bound we see that

Pp[|C(0)| ≥ n] ≤
∑
ṽ∈V

Pp[|C(ṽ)| ≥ An− 1].
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Now notice that if |C(ṽ)| = m ≥ An− 1 then the cluster takes the form of some
cluster in Ωm(ṽ). Thus we see that we may further strengthen this bound to

Pp[|C(0)| ≥ n] ≤
∞∑

m=An−1

∑
ṽ∈V

|Ωm(ṽ)| sup
ω∈∪ṽ∈V Ωm(ṽ)

Pp[ω is closed].

By symmetry of T, we see for any ṽ, |Ωm(ṽ)| = |Ωm(0̃)|. The next step is to
estimate this quantity.

Proposition 4.11. |Ωm(0̃)| ≤ (7e)m.

Proof. In order to prove this, we need to consider subsets of Ωm(0̃). We de-
note these by Ωm,l(0̃), the set of clusters of m vertices containing 0̃ which have

l boundary vertices. The probability of C(0̃) being a specific ω ∈ Ωm,l is p
l(1 −

p)m. It follows immediately that Pp[|C(0̃)| < ∞] = Pp[C(0̃) ∈ ∪∞
m=1Ωm] =∑∞

m=1

∑∞
l=1 |Ωm,l(0̃)|pl(1 − p)m ≤ 1. Thus we conclude for any fixed m we see

that
∑∞

l=1 |Ωm,l(0̃)|pl(1 − p)m ≤ 1. Additionally, as the maximum degree of any
vertex is 24, we see that any cluster with m vertices has as most 24m bound-
ary vertices. Thus

∑∞
l=1 |Ωm,l(0̃)|pl(1 − p)m =

∑24m
l=1 |Ωm,l(0̃)|pl(1 − p)m ≥ (1 −

p)mp24m
∑24m

l=1 |Ωm,l(0̃)|. This implies that
∑∞

l=1 |Ωm,l| ≤ p−24m(1− p)−m for any

p. Allowing p = 24
25 , we see that

∑24m
l=1 |Ωm,l(0̃)| ≤ (25)m(1 + 1

24 )
24m ≤ (25e)m. □

Plugging this estimate means that no more terms in the second sum depend on
ṽ. As there are 49 such ṽ, we see that

Pp[|C(0)| ≥ n] ≤ 49

∞∑
m=An−1

(25e)m sup
ω∈∪ṽ∈V Ωm(ṽ)

Pp[ω is closed].

Thus we have a final step of bounding Pp[ω is closed]. The idea is that if B′(ṽ)

and B′(l̃) (we just include the upper and right hand sides of these parallelograms

here) are disjoint then ṽ and l̃ are independent, which yields the following lemma

Lemma 4.12. Given a cluster of m vertices on L, we may choose an independent
set of vertices of size at least tm = ⌈m

49⌉.

Proof. More concretely, if for ṽ and l̃ either |ṽα − l̃α| ≤ 3N or |ṽβ − l̃β | ≤ 3N then

we have an intersection of B′(ṽ) and B′(l̃). Thus some l̃ in C(ṽ) can have at most
48 other vertices which are not independent from it. Thus if we have a cluster of
m vertices, we may choose an independent set of vertices of size at least ⌈m

49⌉. □

Thus we obtain the bound

sup
ω∈∪ṽ∈V Ωm(ṽ)

Pp[ω is closed] ≤ Pp[l̃
1, l̃2 . . . l̃tm all closed] =

tm∏
i=1

Pp[l̃
i closed]

and by Remark 4.7 we may further manipulate this bound to get the simple form∏tm
i=1 Pp[l̃

i closed] ≤ (50e)−49tm ≤ (50e)−m.

We are now ready to prove Theorem 4.2:
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Proof. By Proposition 4.11 and Lemma 4.12 we may conclude that Pp[|C(0)| ≥
n] ≤ c0e

−c1n, where c0, c1 > 0 depend only on p. Thus we have

E[|C(0)|] =
∞∑
k=0

Pp[|C(0)| ≥ n] ≤ c0

∞∑
k=0

(e−c1)k =
c0

1− e−c1
<∞.

□

5. The Critical Probability is 1
2

This section is fairly simple as it follows quite quickly from Theorem 4.2. This
is done rigorously as follows.

Lemma 5.1. Pp[U
∗
2k+1,2k ] ≤ 2kPp[|C(0)| ≥ 2k].

Proof. Denote the bottom boundary of the parallelogram of the event U∗
2k+1,2k by

δ∗, and the top boundary by δ∗. If U∗
2k+1,2k occurs then some v ∈ δ∗ is contained

in a closed path to δ∗. Thus by the union bound

Pp[U
∗
2k+1,2k ] ≤

∑
v∈δ∗

Pp[v has a closed path to δ∗]

However this means that v is in a closed cluster of size at least 2k. Thus

Pp[U
∗
2k+1,2k ] ≤

∑
v∈δ∗

Pp[|C(v)| ≥ 2k].

By symmetry, Pp[|C(v)| ≥ 2k] is in fact identical over any v ∈ δ∗. Thus Pp[U
∗
2k+1,2k ] ≤

|δ∗|Pp[|C(0)| ≥ 2k] = 2k+1Pp[|C(0)| ≥ 2k] as desired. □

Lemma 5.2. All but finitely many events of the form R2k+1,2k occur almost surely.

Proof. By Proposition 3.1, (R2k+1,2k)
c is U∗

2k+1,2k . By our previous lemma, we have

that

∞∑
k=0

Pp[U
∗
2k+1,2k ] ≤

∞∑
k=0

2k+1Pp[|C(0)| ≥ 2k] ≤
∞∑
k=0

4

2k∑
m=2k−1−1

Pp[|C(0)| ≥ m]

= 4

∞∑
m=0

Pp[|C(0)| ≥ m] = Ep[|C(0)|] <∞.

Thus by the Borel-Cantelli lemma we are done with this lemma. □

Remark 5.3. A rotation of this argument similarly proves all but finitely many
events of the form U2k,2k+1 occur almost surely.

Proposition 5.4. pc =
1
2 .

Proof. It follows immediately from Lemma 5.2 and Remark 5.3 that we can con-
struct an infinite cluster C with probability 1. This immediately gives by symmetry
that Pp[|C(0)| = ∞] > 0 for p > 1

2 so pc ≥ 1
2 . Thus by Theorem 2.14 we have

shown pc =
1
2 . □
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6. Conformal Invariance

In this section, we follow the work of Smirnov [9] (very closely, but hopefully
with more exposition) to prove conformal invariance of γe.p. and Cardy’s formula.
We first state the original form, which is quite nasty so we do not dive into any
more detail then merely the statement.

Consider a simply connected domain Ω with four boundary points A,B,C,D.

Then discretize Ω by a factor of δ using a triangular lattice where v = (α+βe
iπ
3 ) =

(vα, vβ) for α, β ∈ δZ. Note that here we have simply mapped the embedding from
R2 to C, but the embedding is otherwise identical. Edges connect vertices distance
δ apart (this is the mesh size). We say the probability of an open crossing from
arc AB to arc CD is Cδ(Ω, A,B,C,D). As δ → 0, we have Cδ(Ω, A,B,C,D) →
C(Ω, A,B,C,D).

Theorem 6.1. Cardy’s Formula, Carleson Form: Take an equilateral tri-
angle T with vertices A,B,C in counterclockwise order. Choose D ∈ BC. Then

C(T,A,B,C,D) = diam(CD)
diam(AB) .

This provides a rather beautiful simplification of Cardy’s formula, but its true
use lies in the following proposition.

Theorem 6.2. Given a conformal map ψ,
C(Ω, A,B,C,D) = C(ψ(Ω), ψ(A), ψ(B), ψ(C), ψ(D)).

In words, these crossing probabilities are conformally invariant. Note therefore
we see that given conformal invariance of crossing probabilities in the scaling limit
and Carleson’s form, we acquire Cardy’s formula by conformally mapping T to Ω.
Note the Riemann Mapping Theorem ensures this is well defined, so the approach
is to prove the above and receive Cardy’s formula for free. We thus provide some
brief setup for how to approach such a question.

Definition 6.3. For a unit vector η, and function f

∂f

∂η
(x) = lim

h∈R,h→0

f(x+ ηh)− f(x)

h
.

Definition 6.4. We allow τ = e
2πi
3 . Consider a simply connected domain Ω with

a smooth boundary. Denote three points on the boundary of Ω in counterclock-
wise order by a(1), a(τ), a(τ2). We denote arcs along the boundary between two
such points by their concatenation, i.e. a(1)a(τ). We define ν to be the counter-
clockwise unit tangent to ∂Ω. Then for z ∈ Ω we have a triple of harmonic func-
tions hα(z), α ∈ {1, τ, τ2} which satisfy the following differential equation along the
boundary: 

hα = 1, for z = a(α)

hα = 0 for z ∈ a(τα)a(τ2α)
∂

∂(τν)hα = 0 for z ∈ a(α)a(τα)
∂

∂(−τ2ν)hα = 0 for z ∈ a(τ2α)a(α)

Note that for reasons we overlook here, we may actually declare these hα’s to
be unique. The solution to such a differential equation is actually consistent under
conformal mappings, and takes Carleson’s familiar form when mapped to an equi-
lateral triangle. The goal therefore is to discretize crossing probabilities, and show
that their limit satisfy this differential equation.
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Definition 6.5. Allow QΩ,δ
α (z) to be the event that on Ω there is a closed simple

(no loops) crossing from a(α)a(τα) to a(τ2α)a(α) which separates z from the arc
a(τα)a(τ2α). We refer to such a path as a separating path. Let Hα be the
probability of such an event. This is the function we want to show converges to hα.

Again this proof relies on the idea of a derivative of a discrete structure. As
we do not vary p, but instead δ, we want a derivative based on size and direction.
The way we capture such a derivative is through the parameter η, which is a vector
pointing from the center of a triangle on our lattice approximation to the center of
an adjacent (connected by an edge) triangle. We define the event Pα(z, η) to be the
probability that a translate from point z by η is pivotal for Qα(z). In other words,
we have Pα(z, η) = P [Qα(z + η) \Qα(z)]. This is sufficient to yield our derivative.

Definition 6.6. ∂
∂ηHα(z) = Hα(z + η)−Hα(z) = Pα(z, η)− Pα(z + η,−η).

Note that the second inequality holds quite quickly through DeMorgan’s laws
and the principle of inclusion-exclusion.

Similarly to Russo’s formula, the derivative is the probability that we gain a
point which is separated by translating z by η minus the probability that we lose a
point which is separated by translating z by η. This formula can then be ‘rotated’
to create certain useful symmetries. Such a strategy is the entire mechanism behind
the entire proof. The first and perhaps most ‘trivial’ example goes as follows.

Lemma 6.7. Pα(z, η) = Pτα(z, τη).

Proof. In the opposite direction of η should lie one of the vertices of the triangle
which has z as its center. Starting with this vertex in a counterclockwise order
label the vertices of this triangle X,Y, Z. If Qα(z + η) \Qα(z) occurs then there is
a closed path s containing Y and Z from the arc a(α)a(τα) to the arc a(τ2α)a(α).
Now we may take the half of Ω with s and a(τα)a(τ2α) in its boundary. We denote
X as A1, the portion of s in the ‘Y direction’ and a(τ2α)a(α) as A2, a(τα)a(τ

2α)
as A3, and the portion of s in the ‘Z direction’ and a(α)a(τα) as A4. By the
occurrence of Qα(z + η) \Qα(z), we actually know that there is no closed crossing
from A2 to A4. Thus by Proposition 3.1 we conclude there is an open crossing from
X to a(τα)a(τ2α). Therefore we have shown that the event Qα(z + η) \ Qα(z) is
equivalent to the event that these three crossings exist and are disjoint. We may
declare all paths disjoint as we may erase all loops in the crossing from a(α)a(τα)
to a(τ2α)a(α). We illustrate this in Figure 6.

Using the identical logic from Remark 3.9 we may choose a counterclockwise-
most open crossing rX from X to a(τα)a(τ2α) and a clockwise-most closed crossing
rY from Y to a(τ2α)a(α). Now any closed crossing from z and a(α)a(τα) must
be completely contained in the region between rY and rX containing Z. Notice
however that the crossing from z to a(α)a(τα) is equally likely to be open as it is
closed by virtue of the fact that pc = 1

2 , so we may freely switch open and closed
sites in the region between rX and rY (not inclusive) while preserving probability.
Assuming we now have two open paths and one closed one, since pc = 1

2 we may
again preserve probability while swapping open and closed sites in all of Ω. This
results in the event Qτα(z + τη) \Qτα(z). □

Lemma 6.8. The functions Hδ
α(z) are uniformly Hölder on Ω if Ω is an equilateral

triangle. Equivalently, |Hδ
α(z) −Hδ

α(z
′)| ≤ C|z − z′|ϵ for C only dependent on the

domain Ω.
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rY

rX

Y

X = A1

Z

a(τα)

a(α)

a(τ2α)

A4

A2

A3

Figure 6. We equate blue with closed and orange with open.
Assuming rX and rY are the clockwise-most and counterclockwise-
most such crossings, then we may freely swap the color of the third
curve

Proof. We first remark Hα(z) − Hα(z
′) = P [Qα(z) \ Qα(z

′)] − P [Qα(z
′) \ Qα(z)]

and thus it suffices to estimate the first term on the right hand side and then apply
the triangle inequality. We may identically bound the second term.

Next we note that given small enough r, every point in Ω is guaranteed to
be a distance at least r from at least one boundary arc. This means the sets
{z ∈ Ω | dist(z, a(α)a(τα))} for α ∈ {1, τ, τ2} cover our triangle. Thus it suffices
to prove this bound for points sufficiently far from a specific boundary arc.

Notice Qα(z) \ Qα(z
′) can only occur if there is a closed path from a(α)a(τα)

to a(τ2α)a(α) separating z from z′, i.e. intersecting the interval [zz′]. Thus by
the identical reasoning of Lemma 6.7 we must have an open crossing from [zz′] to
a(τα)a(τ2α). We may assume this interval is at least some reasonable distance R
away from the arc a(β)a(τβ). Then we may separate the interval with concentric
annuli with size on the initial order of r = |z − z′| and growing to order R. Given
some fixed aspect ratio t, this results in logt(R/r) disjoint annuli. However, as we
have shown the existence of either an open or closed path from [zz′] to the boundary
arc a(β)a(τβ), this implies all such annuli have either an open or closed crossing
(This is not a traversing! In fact it is the complement) through them depending
on our choice of β. Additionally, by RSW the probability of all such crossings
of annuli is at most some fixed q. Thus the probability of this event occurring
is at most qlogt(R/r). Note this bound is actually identical on the other term as
there was no special distinction between z and z′, so by the triangle inequality we
have |P [Qα(z) \ Qα(z

′)] − P [Qα(z
′) \ Qα(z)]| ≤ 2qlogt(R/r) = 2r| logt(q)|+logt(R) as

desired. □

Corollary 6.9. Pα(z) = O(δϵ) for some ϵ > 0.

Proof. Choose z′ to be z + η and we have proven our lemma as ||η|| = O(δ). □
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Definition 6.10. Take some equilateral triangle ∆ with side length l, the bottom
edge parallel to the x-axis, and with vertices x(1), x(τ), x(τ2) where x(1) is on top.
The Discrete Contour Integral is defined by∫

∆

Hα(z)dz = δ
∑

z∈x(τ)x(τ2)

Hα(z) + δτ
∑

z∈x(τ2)x(1)

Hα(z) + δτ2
∑

z∈x(1)x(τ)

Hα(z).

Lemma 6.11.
∫
∆
Hα(z)dz =

∫
∆

1
τHτα(z)dz +O(lδϵ).

Proof. Color the lattice triangles in a chessboard fashion such that the triangles
containing the vertices of ∆ are colored black. This can be seen in Figure 7. Allow
B to denote triangles with vertices colored black, and W to denote triangles with

vertices colored white. Allow η to be δe
iπ
6√
3

and η′ = δe
iπ
2√
3
.

We see η is actually a vector from the center of a black triangle to the center of
an adjacent white triangle, and η′ is a vector from the center of a white triangle to
the center of an adjacent black triangle.

The idea in vague terms then is that the sums in the black and white regions
rotate and cancel appropriately to arrive at the desired lemma.

We first consider the sums over black triangles which ‘point to a white triangle’
in Ω, i.e. ones not on the arc x(τ2α)x(α), as follows: For β ∈ {1, τ, τ2} we have∑

z∈B\x(τ2α)x(α)

Hβ(z + η)−Hβ(z) =
∑

z∈B\x(τ2α)x(α)

Pβ(z, η)− Pβ(z + η,−η).

Applying the ‘rotation’ from Lemma 6.7, this becomes∑
z∈B\x(τ2α)x(α)

Pτβ(z, τη)− Pτβ(z + η,−τη)(1)

=
∑

z∈B\x(α)x(τα)

Pτβ(z, τη)− Pτβ(z + τη,−τη) +O(lδϵ−1)(2)

=
∑

z∈B\x(α)x(τα)

Hτβ(z + τη)−Hτβ(z) +O(lδϵ−1)(3)

where (2) is justified as follows. Clearly the place where the (1) and (2) differ is in
the second term. If some z is not on the boundary, then z + η is a white triangle.
As white triangles cannot be on the boundary, then we see that there z + η − τη
is in fact a different black triangle inside of Ω. In other words, we have shown a
correspondence between Pτβ(z + η,−τη) and Pτβ((z + η − τη) + τη,−τη). Thus
these two second terms can differ at most by the order of terms on the boundary
arcs. There is an order of l

δ vertices along the boundary arcs, and each term differs
by at most an order of δϵ by Corollary 6.9. We may similarly get the equality∑

z∈W
Hβ(z + η′)−Hβ(z) =

∑
z∈W

Hτβ(z + τη′)−Hτβ(z) +O(lδϵ−1).(4)

We now wish to consider the following term:∑
z∈B\x(τ2α)x(α)

Hβ(z + η)−Hβ(z) +
∑
z∈W

Hβ(z + η′)−Hβ(z).(5)

For any z ∈ B \ x(τ2α)x(α), we have z + η ∈ W. Thus we may simplify (5) to
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(6)
∑

z∈B\x(τ2α)x(α)

−Hβ(z) +
∑
z∈W

Hβ(z + η′).

Next we see that z+η′ can be any black triangle not on the boundary arc x(τα)x(τ2α),
thus (6) is equal to

(7)
∑

z∈x(τ2α)x(α)

Hβ(z)−
∑

z∈x(τα)x(τ2α)

Hβ(z).

However, by (3) and (4) we also see that∑
z∈B\x(τ2α)x(α)

Hβ(z + η)−Hβ(z) +
∑
z∈W

Hβ(z + η′)−Hβ(z)(8)

=
∑

z∈B\x(α)x(τα)

Hτβ(z + τη)−Hτβ(z) +
∑
z∈W

Hτβ(z + τη′)−Hτβ(z) +O(lδϵ−1).

Then by repeating the exact same telescoping process that gave us (7), we find
that ∑

z∈x(τ2α)x(α)

Hβ(z)−
∑

z∈x(τα)x(τ2α)

Hβ(z)(9)

=
∑

z∈x(α)x(τα)

Hβ(z)−
∑

z∈x(τ2α)x(α)

Hβ(z) +O(lδϵ−1).

Taking appropriate linear combinations of (8) and (9) yields the following three
equalities:

−δ
2
(

∑
z∈x(τ2)x(1)

Hβ(z)−
∑

z∈x(τ)x(τ2)

Hβ(z))(10)

= −δ
2
(

∑
z∈x(1)x(τ)

Hβ(z)−
∑

z∈x(τ2)x(1)

Hβ(z)) +O(lδϵ)

−i
√
3δ

2
(

∑
z∈x(1)x(τ)

Hβ(z)−
∑

z∈x(τ2)x(1)

Hβ(z))(11)

= −i
√
3δ

2
(

∑
z∈x(τ)x(τ2)

Hβ(z)−
∑

z∈x(1)x(τ)

Hβ(z)) +O(lδϵ)

δ

2
(

∑
z∈x(τ)x(τ2)

Hβ(z)−
∑

z∈x(1)x(τ)

Hβ(z))(12)

=
δ

2
(

∑
z∈x(τ2)x(1)

Hβ(z)−
∑

z∈x(τ)x(τ2)

Hβ(z)) +O(lδϵ).

Adding together (10), (11), and (12) immediately yields the lemma. □
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Figure 7. An illustration of the telescoping process used in
Lemma 6.11, where the blue lines correspond to η′ and the purple
lines correspond to η. Notice the telescoping process occurs along
a path.

Now we want to show that these Hα’s converge uniformly to a function which
satisfies the differential equation from Definition 6.4, and then invoke uniqueness
of the solution. In order to do so, we first note that each Hα is a probability, so
they are uniformly bounded by 1. Next, Lemma 6.8 immediately implies uniform
equicontinuity. Thus by Arzela-Ascoli, we may choose a sequence {δj} → 0 such

that {Hδj
α } converges uniformly to some function fα.

Lemma 6.12. f1(z) + fτ (z) + fτ2(z) = 1.

Proof. By the previous lemma and uniform convergence, we can clearly see that∫
∆
fβ(z)dz =

∫
∆

1
τ fβ(z)dz.

Therefore we see that
∫
∆
fβ(z) − τ2fτβ(z)dz =

∫
∆
τfτβ(z) − fτ2β(z)dz. Rear-

ranging gives
∫
∆
fβ(z) + fτβ(z) + fτ2β(z)dz = 0, implying the function inside this

integral is holomorphic by Morera’s theorem. As each fβ is the limiting funtion of

Hδi
β ’s, which are real valued functions, fβ must also be real valued. Thus we see

that f1 + fτ + fτ2 is some constant (this quite quickly comes from the Cauchy-
Riemann equations). We thus evaluate the value of this function by evaluating the
value of it at x(1). Note clearly that fτ and fτ2 are 0 as each Hτ , Hτ2 is identically
0 on the arcs x(τ2)x(1) and x(1)x(τ) respectively. Note that there are an order of
| logt( l

δ )| disjoint annuli with aspect ratio t separating x(1) from x(τ)x(τ2). There
is at least some positive probability c that there is a closed traversing of any given

annulus. Thus there is probability at least on the order of 1− (1− c)| logt(
R
δ )| that

at least one such traversing exists. As δ → 0 this is a lower bound approaching 1,
so f1(x(1)) = 1. Thus our lemma is proven. □

Lemma 6.13. fα = hα.

Proof. By essentially the same proof as in the previous lemma, we see that G = f1+
τfτ +τ

2fτ2 is holomorphic. Thus we may use the following analogue of the Cauchy-

Riemann equations: for any unit vector η we have ∂G
∂η = ∂(G/τ)

∂(τη) and as a consequence
∂Re[G]

∂η = ∂Re[(G/τ)]
∂(τη) . Note that by Lemma 6.12 Re[G] = f1 − 1

2 (f2 + f3) = 3f1−1
2 ,

and similarly Re[(G/τ)] = 3f2−1
2 . Thus we see that ∂f1

∂η = ∂fτ
∂(τη) =

∂fτ2

∂(τ2η) , were

the second equality is found by observing that G/τ must also be holomorphic and
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repeating this process. Thus we see that on the arc x(α)x(τα) we have ∂fα
∂(τν) =

∂fτ2α

∂ν = 0 and on x(τ2α)x(α) that ∂fα
∂(−τ2ν) =

∂fτα

∂(−ν) = 0 by the boundary conditions

mentioned in Lemma 6.12. Thus we see that each fα is a solution to the differential
equation from Definition 6.4, which is unique. Thus our lemma is proven. □

As a corollary we get Theorem 6.1. Furthermore, Cardy’s formula is sufficient
to show not only conformal invariance of γe.p., but actually shows convergence to a
random curve known as SLE6, which unlocks a significant amount of information
about percolation on the triangular lattice. This is because γe.p. actually follows
Cardy’s formula (and satisfies a specific locality property). For a complete proof of
such a phenomenon, one is encouraged to see either [2] or [12].

7. The One Arm Exponent

The one arm exponent is the probability that the open cluster at the origin
reaches some radius n (such an event will be denoted by 0 ↔ Λn. This gets
overshadowed by a broader class of events which we use later). Although nontrivial
bounds can be found, convergence to SLE6 gives a log asymptotic equality of
P [0 ↔ Λn] = n−

5
48+o(1), which we somewhat prove. However, as this requires by

far the most advanced techniques covered in this paper, we neglect some major
portions of the paper and take the results for granted. Instead, the goal here is
taking SLE6 as a blackbox and to demonstrate a flavor of what it can do.

We begin with a few definitions:

Definition 7.1. Let H(n) denote the set of all points which have a minimum
path length to the origin of exactly n. Note that this will be a regular hexagon
centered at the origin. Let H(n,m) be set of all points between H(n) and H(m),
not including H(n). Let T (n,m) be the event that there is an open traversing of
H(n,m).

Definition 7.2. Let C(r1, r2) denote an open crossing from H(r1 + 1) to H(r2),
unless r1 = 0. In which case this is the same event as Λr2 .

Then using the properties of SLE6, it is possible to show the following theorem,
which will be left unproven. For proofs, see [7] and [12]. These papers are the guide
for this entire section.

Proposition 7.3. P [C(n,Rn)] converges as n → ∞ to some function f(R) which

satisfies for large R and positive constants c1, c2 s.t. c1R
− 5

48 ≤ f(R) ≤ c2R
− 5

48 .

What we will show is that for any ϵ > 0, n−
5
48−ϵ ≤ P (C[0, n]) ≤ n−

5
48+ϵ as n

becomes large. The critical idea is to create concentric annuli with a common aspect
ratio t. As these annuli become large enough, they roughly follow the behavior of
the model in the scaling limit, and therefore the probability of crossing these annuli
converges to a crossing probability of f(t). (In fact, [7] states Proposition 7.3 for
C(r, 1) in the scaling limit for small r. This however is equivalent to the formulation
shown above, which is from [12]). Thus we combine this notion of convergence with
Proposition 7.3 which comes from SLE6 and we are done. We begin with the upper
bound.

Lemma 7.4.

lim sup
n→∞

log(P [C(0, n)])
log(n)

≤ − 5

48
.



20 JAKE WELLINGTON

R
2

ρ

Figure 8. The chain construction used in Lemma 7.5

Proof. We begin by fixing an ϵ > 0. Set R to be enough that (c2)
2
ϵ ≤ R, and R > 1.

Now by Proposition 7.3, we know that {P [C(Rk, Rk+1)]} converges to f(R), so we

may choose ρ such that for all k ≥ ρ, P [C(Rk, Rk+1)] ≤ R
ϵ
2 f(R) ≤ c2R

− 5
48+

ϵ
2 ≤

R− 5
48+ϵ.
Now we wish to consider very large n such that Rρ+1 ≤ n. Allow ϑ to be the

largest integer such that Rϑ ≤ n. Then we see that P [C(0, n)] ≤ P [C(0, Rϑ)].
The next key step is to observe that if r1 < r2 < r3, then C(r1, r2) implies

C(r1, r2)∩C(r2, r3) (moreover, the second and third event are independent). Thus we

see P [C(0, Rϑ)] ≤ P [C(0, Rρ)]
∏ϑ−1

i=ρ P [C(Ri, Ri+1)] ≤ P [C(0, Rρ)](R− 5
48+ϵ)ϑ−ρ ≤

C(0,Rρ)

(R− 5
48

+ϵ)ρ
n−

5
48+ϵ. Now we may take C(0,Rρ)

(R− 5
48

+ϵ)ρ
to be fixed due to its lack of depen-

dence on n. Now take n→ ∞ and we have

lim sup
n→∞

log(P [C(0, n)])
log(n)

≤ − 5

48
+ ϵ.

Taking ϵ→ 0 we are done. □

Now we prove the upper bound. Here we do not have easy access to the indepen-
dence used in the previous lemma. Thus we resort to connecting different smaller
crossings with annuli, and conveniently lower bounding these probabilities using
Proposition 2.8. Such constants then disappear in the limit.

Lemma 7.5.

lim inf
n→∞

log(P [C(0, n)])
log(n)

≥ − 5

48
.
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Proof. Fix ϵ > 0. Allow 0 < c ≤ P (T (n, 2n)) for any n (this can be done using
Proposition 2.8). We choose R > 2 such that R− ϵ

3 ≤ c1, R
− ϵ

3 ≤ c. Now choose ρ

such that for any k ≥ ρ, P [C((R2 )
k, 2(R2 )

k+1)] ≥ R− ϵ
3 f(R) ≥ R− 5

48−
2ϵ
3 . Now we let ϑ

denote the smallest integer such that Rϑ ≥ n. Then we see P [C(0, n)] ≥ P [C(0, Rϑ)].
Now, similarly to the last proof, we must split C(0, Rϑ) into several different

events (which have already been hinted at.) We do so as follows

C(0, 2Rρ) ∩
k=ϑ−1⋂
k=ρ

C((R
2
)k, 2(

R

2
)k+1) ∩ T ((

R

2
)k, 2(

R

2
)k) ⊂ C(0, Rϑ).

Notice that the crossings corresponding to both C((R2 )
k, 2(R2 )

k+1) and C((R2 )
k−1, 2(R2 )

k)

must intersect the traversing corresponding to T ((R2 )
k, 2(R2 )

k) (see Figure 8). Thus
this chain continues in an almost inductive fashion. Moreover, all such sub-events
involved are increasing. Thus applying Proposition 2.4, we get

P [C(0, Rϑ)] ≥ P [C(0, 2Rρ)]

ϑ−1∏
k=ρ

P [C((R
2
)k, 2(

R

2
)k+1]P [T ((

R

2
)k, 2(

R

2
)k)]

≥ P [C(0, 2Rρ)](cR− 5
48−

2ϵ
3 )ϑ−ρ ≥ P [C(0, 2Rρ)]

(R− 5
48−ϵ)ρ

n−
5
48−ϵ.

Again, consider P [C(0,2Rρ)]

(R− 5
48

−ϵ)ρ
fixed and take n→ ∞. This yields

lim inf
n→∞

log(P [C(0, n)])
log(n)

≥ − 5

48
− ϵ.

Taking ϵ→ 0, we are done. □

The previous two lemmas show that P [0 ↔ Λn] = n−
5
48+o(1).
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[7] G. Lawler, O. Schramm, W. Werner. One-arm exponent for critical 2D percolation. 2001.
https://arxiv.org/abs/math/0108211

[8] L. Russo. On the Critical Percolation Probabilities. 1981.
[9] S. Smirnov. Critical Percolation in the Plane. 2009. https://arxiv.org/abs/0909.4499
[10] S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling

limits. 2001.



22 JAKE WELLINGTON

[11] J. Steif. A Mini Course on Percolation Theory. 2009.

[12] W. Werner. Lectures on Two-Dimensional Critical Percolation. 2008.

https://arxiv.org/abs/0710.0856


	1. Introduction and Basic Background
	2. There is no Percolation at p = 12
	3. Crossing Probabilities for p 12
	4. Expected Cluster Size for p > 12
	5. The Critical Probability is 12
	6. Conformal Invariance
	7. The One Arm Exponent
	Acknowledgments
	References

