
NASH-MOSER ITERATION

ANNIE WEI

Abstract. In this paper, we explain the connection between two theorems.

The first proves existence of Ck isometric embeddings of Riemannian manifolds

into RN . The second finds stable solutions of reversible mechanical systems.
These theorems are proved using a common technique based on Newton’s

method.
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1. Introduction

In 1956, Nash proved that a Riemannian manifold with Ck metric (k > 2) can
be realized as a Ck submanifold of RN for large enough N . The idea behind his
proof was to define an ODE with smoothing and ”feedback”.

This idea has been discretized into an iterative technique and is used to prove
the Nash-Moser inverse function theorem, which is used nowadays to solve differ-
ential equations where inverting the linearization loses derivatives. Nash-Moser
iteration is also used in KAM theory, which studies when solutions of reversible
(non-dissipative) mechanical systems maintain predictable trajectories under small
perturbations of the system.

In Section 2 we give the proof of the Nash-Moser inverse function theorem. The
proof of the embedding theorem is discussed in Section 3. In Section 4 we apply
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Nash-Moser iteration to a model problem for the KAM theorem. Proofs in Section
4 demonstrate ideas used in Section 5, where we introduce the KAM theorem.

2. Inverse Function Theorems

Let X,Y be Banach spaces and U ⊆ X be open. A map F : U → Y is differen-
tiable at x ∈ U if there is a linear map T : X → Y such that

F (x+ h)− F (x) = T (h) + o(∥h∥)

for all h in some neighborhood of 0. Then DF = T is the Fréchet derivative of F
at x.

On Ck(Rn), for r ≤ k let

∥u∥r = max
|α|≤r

sup
x∈Rn

|Dαu(x)|.

The Nash-Moser inverse function theorem was formulated by Schwartz in [10].
Its application to solving PDEs was studied by Moser [4] [5]. We mostly follow the
presentation in [3]. The theorem states

Theorem 2.1. Let B1(0) ⊂ Ck(Rn) and T : B1(0) → Ck−m(Rn) for 0 ≤ m ≤ k.
Suppose

(1) T has two continuous Fréchet derivatives bounded by M ≥ 1
(2) There exists L : B1(0) → L(Cℓ(RN ), Cℓ−m(RN )) for every ℓ > 0 such that

(a) ∥L(u)h∥k−m ≤M∥h∥k for any u ∈ B1(0), h ∈ Ck

(b) DT (u) ◦ L(u)h = h for any u ∈ B1(0), h ∈ Ck+m

(c) ∥L(u)T (u)∥k+9m ≤M(1 + ∥u∥k+10m) for any u ∈ Ck+10m.

Let P = 61. If

∥T (0)∥k+9m ≤ 2−P−1M−5P−2,

then 0 ∈ T (B1(0)) .

For each u ∈ B1(0) the map L(u) is a linear operator which loses m derivatives
and inverts DT (u) on Ck+m ⊂ Ck. Condition (2)(b) replaces the invertibility
condition on DT required by the classical inverse function theorem. The constant
P = 61 ensures T (0) is small enough for a Newton-type iteration to converge (we
will point out where it is used in the proof). The iterative technique used to prove
Theorem 2.1 is modeled on the following.

Proposition 2.2. Let X be a Banach space and let B1(0) ⊂ X. Suppose T :
B1(0) → X such that

(1) T has two continuous Fréchet derivatives on B1(0) bounded by M > 2
(2) There exists L : B1(0) → L(X,X) such that

(a) ∥L(u)h∥ ≤M∥h∥ for any h ∈ X,u ∈ B1(0)
(b) DT (u) ◦ L(u)h = h for any h ∈ X,u ∈ B1(0).

If ∥T (0)∥ < M−5, then 0 ∈ T (B1(0)).

Applying Proposition 2.2 to F = T −T (0)− h̃ where |h̃| < M−5 gives h ∈ B1(0)

such that T (h) = T (0) + h̃. Then a neighborhood of T (0) has a pre-image under
T . The proof uses Newton method, which we first describe.
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Proposition 2.3. (Newton’s method) Let f ∈ C2(R). We look for a root of f . Let
x0 ∈ R and inductively define xn by linearizing f at xn, to get f(xn)+f

′(xn)(x−xn),
and taking the root

xn+1 = xn − f(xn)

f ′(xn)
.

If f(a) = 0 and f ′(a) ̸= 0 there exists δ > 0 such that if x0 ∈ Bδ(a) then
limn→∞ xn = a, with |xn+1 − a| = O(|xn − a|2).

The last statement is shown using the second order Taylor expansion of f . In
the following, inductive quantities are defined as in Newton’s method with T in
place of f , and L inverting DT .

Proof. (of Proposition 2.2)
Let λ = 3

2 and β = 8
3 log(M). Let u0 = 0, and

(2.4) un+1 = un − L(un)T (un).

Suppose for n ≥ 0
(P1) un ∈ B1(0)
(P2) ∥un+1 − un∥ ≤ e−βλn

.
Then un → u ∈ B1(0) and by (P1) and condition (2)(b),

T (un) = DT (un)un −DT (un)(un − L(un)T (un)) = DT (un)(un − un+1)

which by (P2) means T (u) = 0.
For n = 0, (P1) is immediate, and

∥u1 − u0∥ = ∥L(0)T (0)∥ ≤M∥T (0)∥ ≤M−4 ≤ e−β

which is (P2).
Suppose (P1) and (P2) hold for k ≤ n. Since (λ− 1)k ≤ λk,

∥un+1∥ ≤
n∑

k=0

∥uk+1 − uk∥ ≤
n∑

k=0

e−βλk

≤ e−β +

∞∑
k=1

e−β(λ−1)k ≤ e−β +
e−β(λ−1)

1− e−β(λ−1)
< 1.

For (P2), note the Lagrange remainder term

T (u+ h) = T (u) +DT (u)h+

∫ 1

0

(1− t)D2T (u+ th)(h, h)dt

and ∥
∫ 1

0
(1− t)D2T (u+ th)(h, h)dt∥ ≤M∥h∥2. Set

u = un, h = un+1 − un = −L(un)T (un).
Recall un+1, un ∈ B1(0). Then

∥T (un+1)∥ ≤ ∥T (un)−DT (un)L(un)T (un)∥+M∥un+1 − un∥2

=M∥un+1 − un∥2

by condition (2)(b). Thus

∥un+2 − un+1∥ = ∥L(un+1)T (un+1)∥ ≤M∥T (un+1)∥

≤M2∥un+1 − un∥2 ≤M2e−2βλn

≤ e−βλn+1

by choice of β and λ. □
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We cannot directly use Newton iteration to prove Theorem 2.1. To see this,
suppose we define

un+1 = un − L(un)T (un)

where u0 ∈ Ck and L as in Theorem 2.1. Then un+1 has m less derivatives than un
and iteration is defined only for finite steps. An idea of Nash is to apply smoothing
to un during Newton iteration. As n → ∞ the amount of smoothing is rapidly
decreased to ensure iteration converges to a correct solution.

Define a family of smoothing operators

S(t) : R+ → {operators from Ck−m → Ck+10m}
such that for k −m ≤ r ≤ ρ ≤ k + 10m,

(2.5) ∥S(t)u∥ρ ≤Mtρ−r∥u∥r, u ∈ Cr

(2.6) ∥(I − S(t))u∥r ≤Mtr−ρ∥u∥ρ, u ∈ Cρ.

We send t→ ∞ during the iteration process. An example of such an operator will
be constructed in the next section.

The proof of Theorem 2.1 closely follows Proposition 2.2, with extra steps involv-
ing the smoothing operator. We provide the proof as it demonstrates Nash-Moser
iteration.

Proof. (of Theorem 2.1) Let λ = 3
2 , µ = 9

4 , and β = 8
m log(2M5). Recall m is the

number of derivatives which L loses. Define

Sn = S(eβλ
n

)

un+1 = un − SnL(un)T (un)

where u0 = 0. Note {un} are defined as in Newton iteration except quantities are
smoothed. As n→ ∞, the amount of smoothing decreases to zero.

Similar to proposition 2.1, the result follows if
(P1) un ∈ B1(0)
(P2) ∥un − un−1∥k ≤ e−µmβλn

(P3) 1 + ∥un∥k+10m ≤ eµmβλn

for all n ≥ 1.
Condition (P3) is new. As n → ∞, (P3) bounds the increase of ”non-smooth”

behavior of un.
Beginning induction at n = 1, (P1) follows by the choice of β and property (2.5).

Letting r = k −m and ρ = k in (2.5) gives

∥u1∥k = ∥S0L(0)T (0)∥k ≤M(eβ)m∥L(0)T (0)∥k−m

≤M2emβ∥T (0)∥k+9m ≤ exp(mβ − P log(2M5)) < exp(−µmβλ),
since

mβ − P log(2M5) = 8 log(2M5)− 61 log(2M5) ≤ −27 log(2M5) = −µmβλ.
Note we used the exponential decrease of smoothing. This gives (P2). Below, the
constant P = 61 is used similarly to cancel terms with λ, µ, β.

Letting r = k−m and ρ = k+10m in (2.5), and using hypotheses (2)(a), (3)(a),
and the bound on ∥T (0)∥k+9m gives

1 + ∥u1∥k+10m = 1 + ∥S0L(0)T (0)∥k+10m ≤ 1 +M2e11mβ∥T (0)∥k
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≤ 1 +M2e11mβ∥T (0)∥k+9m ≤ 2−PM−5P e11mβ = eµmβλ

which is (P3).
Assume (P1)− (P3) for k ≤ n. We proceed as in Proposition 2.1.
Using λj ≥ (λ − 1)j and µmβ(λ − 1) = 9 log(2M5) ≥ log 2 will give (P1) for

un+1. For (P2), the smoothing operator does not allow cancelling in the Lagrange
remainder term:

∥T (un)∥k ≤ ∥T (un−1)−DT (un−1)Sn−1L(un−1)T (un−1)∥k +M∥un − un−1∥2k

≤M

[
∥(I − Sn−1)L(un−1)T (un−1)∥k + e−2µmβλn

]
.

Then
∥un+1 − un∥k = ∥SnL(un)T (un)∥k

≤M2emβλn

∥T (un)∥k

≤M3emβλn

[
∥(I − Sn−1)L(un−1)T (un−1)∥k + e−2µmβλn

]
.

Using r = k and ρ = k + 9m in (2.6), 2(c), and (P3) for k ≤ n in order gives

∥un+1 − un∥k ≤M3(M2 + 1)e−
21
4 mβλn−1

≤ e−µmβλn+1

since M3(M2 + 1) ≤ 2M5 and 21
4 log(2M5) ≥ µλ2.

For (P3), using (2.5) with ρ = k + 10m, r = k + 9m, condition (2)(c), and (P3)
for k ≤ n in order,

1+∥un+1∥k+10m ≤ 1+

n∑
j=0

∥SjL(uj)T (uj)∥k+10m ≤ 1+

n∑
j=0

Memβλj

∥L(uj)T (uj)∥k+9m

≤ 1 +M2
n∑

j=0

emβλj

(1 + ∥uj∥k+10m) ≤ 1 +M2
n∑

j=0

em(1+µ)βλj

.

Computations using the above, which can be found in [3], then show

(1 + ∥un+1∥k+10m)e−µmβλn+1

≤ 1.

This gives (P3). □

The statements of Proposition 2.2 and Theorem 2.1 have similar structure; hy-
potheses and the conclusions are of the same type. Theorem 2.1 is significantly
stronger than Proposition 2.2 as weaker conditions are required on the operator L.
Theorem 2.1 can also be stated using a general decreasing family of Banach spaces.
In applications, such as to solving systems of differential equations, we usually work
with spaces Ck.

3. The Isometric Embedding Theorem

In this section we describe Nash’s proof of the isometric embedding theorem for
compact Riemannian manifolds. Solving the linearization of a natural ODE to this
problem loses space derivatives. Here the inverse of the linearization is like ”L”
in Theorem 2.1 where m = 2. The embedding is instead found as the limit of a
perturbation process. Nash prevents ”loss of derivative” during perturbation by
continually smoothing the embedding and metric.

We present Nash’s original proof as it contains interesting ideas, though nowa-
days the embedding can be found using the Nash-Moser inverse function theorem
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[11], Appendix II. Key ideas and proof steps will be described, and details are in
[2] ch.3 and [8].

Let (Σ, g) be a compact n-manifold. On Σ fix a smooth atlas {Uℓ}.
Suppose f : Σ → Rm and h = hijdxi ⊗ dxj is a (0, 2) tensor on Σ. (At each

point, a (p, q) tensor is a (p+ q)−linear function on p dual vectors and q vectors.)
Let ∥ · ∥ denote the Frobenius norm when applied to a matrix, and

∥Df∥0,Uℓ
:= sup

p∈Uℓ

∥Df(p)∥, ∥Df∥0 := sup
ℓ

∥Df∥0,Uℓ

∥h∥0,Uℓ
:= sup

p∈Uℓ

sup
ij

∥hij(p)∥, ∥h∥0 := sup
ℓ

∥h∥0,Uℓ
.

Let

∥Dkf∥0 = sup
|α|=k

∥∂αf∥0,

where ∂αf is defined with respect to coordinates on each Uℓ, and let ∥f∥k be the
Ck norm of f .

If z : Σ → RN an embedding, let z♯e denote the pullback of the Euclidean metric
under z. In coordinates,

(3.1) (z♯e)ij =
∂z

∂xi
· ∂z
∂xj

.

Then z is isometric if z♯e = g.
We say z is free if for every Uℓ with local coordinates x and p ∈ Uℓ, the vectors

∂z

∂xi
(p),

∂2z

∂xjxk
(p)

are linearly independent for i, j, k = 1, ...N and k ≤ j . The independence of these
vectors is preserved under coordinate change.

In [8], Nash proves

Theorem 3.2. Let (Σ, g) be a compact n−manifold with Ck metric g. Then there

exists a Ck isometric embedding z : Σ → RN where N ≥ 3n2+11n
2 .

The proof proceeds as follows. If z0 is the initial embedding, we find a family of
embeddings z(t) such that z(0) = z0 and limt→∞ z(t) := z∞ realizes the metric g.
The embeddings z(t) induce a path of metrics g(t) on Σ defined by

z(t)♯e = g(t).

Nash ensures limt→∞ g(t) = g.
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3.1. Initial Setup and Loss of Derivative. Given a rate of metric change ˙gij ,
1 ≤ i ≤ j ≤ n , we find żα, α = 1, ..., N which induce the metric change. The ˙gij will
specify directions to ”flow” and decrease metric error. Let ˙ denote differentiation
with respect to time. By (3.1) we are finding żα which satisfies

(3.3) ˙gij =
∑
α

[
∂zα
∂xi

∂żα
∂xj

+
∂żα
∂xi

∂zα
∂xj

]
.

We add constraints ∑
α

∂zα
∂xi

żα = 0 for all i,∑
α

(żα)
2 is minimized subject to the above

i.e. we require the perturbation to be normal to the embedding and to have minimal
norm. By the first constraint,∑

α

∂2zα
∂xixj

żα +
∂zα
∂xi

∂żα
∂xj

= 0,

which allows us to write the system as

˙gij = −2
∑
α

∂2zα
∂xixj

żα

0 =
∑
α

∂zα
∂xi

żα for all i.

(3.4)

The first constraint thus converts (3.3) to a linear system of equations. Assuming z

is free (which happens if N ≥ n(n+3)
2 ), the unique solution to (3.4) can be written:

żα =
∑
i≤j

˙gijFaij(Dz,D
2z).

Lemma 3.5. Fαij depends analytically on Dz,D2z and is coordinate independent.

A proof is in ([2], Lemma 3.5.1). Thus we can denote the solution above by

(3.6) ż = L(Dz,D2z)ġ,

where L is a linear operator which loses two space derivatives.

Let g0 = z#0 e. Suppose

hij = (g − g0)ij

is the initial metric error, and h(t) is a path of metrics such that h(0) = 0 and

limt→∞ h(t) = h. Letting ˙hij = ˙gij in (3.6) formally gives an ODE whose solution
z(t) solves

(3.7)
∂z(t)

∂xi
· ∂z(t)
∂xj

=
∂z0
∂xi

· ∂z0
∂xj

+ hij(t).

However we cannot solve (3.6) using standard approximation techniques such as
in Proposition 2.2, which doesn’t use smoothing, as ż depends on Dz and D2z.
A proof using the Nash-Moser Inverse Function Theorem to solve (3.6) is in [11],
Appendix II. We will describe Nash’s original proof which constructs and solves a
new ODE. Similar to the proof of Theorem 2.1, a smoothing operator will sustain
an approximation process.
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Note the path of metrics will not be pre-determined. We will solve for the path
of the metric and perturbation of the embedding simultaneously. The idea is ensure
the ˙gij always point toward decreasing error. Smoothed quantities are substituted
into (3.6) which give perturbations that approximately induce ˙gij . The ˙gij must
account for accumulated error. This is the feedback.

3.2. Smoothing Operator. A family of smoothing operators satisfying (2.5) and
(2.6) is constructed for functions on Rn using standard techniques in analysis. We
then describe how to smooth functions and tensors on manifolds, and embeddings.
Since the smoothness of a function is linked with the decay of its Fourier transform,
we can smooth out a function by multiplying its Fourier transform with a cut-off
function. Let ψ(x) ∈ C∞(R) such that ψ(x) = 1 for x ≤ 1, is decreasing for
x ∈ [1, 2], and is 0 for x ≥ 2. Define

Ŝtf(ξ) = f̂(ξ) · ψ( |ξ|
t
).

As t → ∞, the amount of smoothing decreases. Note Σ is compact, thus we will

only have to consider supp(f) compact. If K̂t = ψ( |ξ|t ) then

Stf = Kt ∗ f.

Note

Kt(x) =

∫
ψ(

|ξ|
t
)eiξxdξ = tn

∫
ψ(|ξ|)eiξtxdξ = tnK1(tx).

For β < α with |β| = b, |α| = a, we have

∂α(Kt ∗ f) = (∂βKt) ∗ (∂α−βf)

= tn+b∂βK1(tx) ∗ ∂α−βf = tb
∫
∂βK1(x)∂

α−βf(y − x

t
)dx

(3.8) ≤ Cbt
b∥f∥a−b.

We will also need bounds on ∂α(K̇t ∗ f) in terms of derivatives of f . Note

̂̇Kt(|ξ|) =
˙̂
Kt(|ξ|) = ψ̇(

|ξ|
t
) = −|ξ|

t2
ψ′(

|ξ|
t
).

Let L = K̇t at t = 1. Then

K̇t(|ξ|) = −
∫

|ξ|
t2
ψ′(

|ξ|
t
)eiξxdξ = −tn−1

∫
yψ′(|y|)eitξydy = tn−1L(tξ).

Similar to above we obtain

∂α(K̇t ∗ f) ≤ Dbt
b−1∥f∥a−b.

Thus

∥Da(Stf)∥0 ≲ tb∥f∥a−b

∥Da(Ṡtf)∥0 ≲ tb−1∥f∥a−b.
(3.9)

We now describe how to smooth functions on a manifold. Then embeddings and
tensors are smoothed component-wise. We use the following lemma from [7].
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Lemma 3.10. If z : M → Rm, z(M) = R, is a smooth embedding, there exists a
neighborhood N of R such that for every x ∈ N , there is a unique y(x) ∈ R such
that dist(x, y(x)) = dist(x,R), and x→ y(x) is smooth.

Let z : M → Rm be a smooth embedding, R = z(M), and N a neighborhood
of R as in Lemma 3.10 with y the projection function. Define ϕ on N by

ϕ(x) = ψ(
dist(x, y(x))

ε
)

with ε small so that ϕ(x) = 0 in a neighborhood of ∂N . Let f(y) be a function on
R. Extend f(y) to Rm by f(x) = 0 if x /∈ N , and f(x) = ϕ(x)f(x) if x ∈ N .

Then Stf(y) is defined by
1. f(y) → f(x), extending f from R to Rm

2. f(x) → Kt ∗ f(x) := g(x)
3. g(x) → g(y) = g|R.
Then Stf(y) := g(y). Fix a smooth embedding z. To smooth a tensor, iden-

tify M with z(M) and smooth component-wise. Embeddings are also smoothed
component-wise. We obtain bounds identical to those in (3.9), where f is replaced
by an embedding or a tensor.

3.3. System with Feedback. We assume z0 is an analytic initial embedding that

is free and z♯0e− g is small enough to ensure that z(t) is free for all t. Refer to [8]

section C for the construction of such a z0 (during which the condition N ≥ 3n2+11n
2

is used).
In Nash’s notation, let

T ≤ K [ t | p q
r s ]

denote the set of bounds

∥T∥0 ≤ Ktp

...

∥DrT∥0 ≤ Ktp

∥Dr+1T∥0 ≤ Ktp+1

...

∥DsT∥0 ≤ Ktq.

Here q − p = s− r. If the context is clear we write [ p q
r s ] instead of [ t | p q

r s ], and we
write [ 0r ] in place of [ 0 0

r r ].

The new ODE is defined as follows. Let g be the given metric, H = g− z#0 e the
metric error at t = t0, and ζ(t) = Stz(t). Recall L is the linear operator defined by
(3.6). We solve

z(t0) = z0

ż(t) = L(Dζ(t), D2ζ(t))ḣ(t)

ḣ(t) = u̇(t− t0)StH + u(t− t0)ṠtH + ṠtE(t) + StĖ(t)

(3.11)

where u(t) = ψ(2− t). The expression for ḣ(t) is obtained by differentiating

h(t) := u(t− t0)StH + StE(t)
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where E(t) is accumulated error

E(t) =

∫ t

t0

e(τ)u(t− τ)dτ

e(t) = ḣ(t)− ġ(t),

ġ(t) is given by (3.3) and e(t) is the difference at time t between ġ and the desired
rate of metric change. This error is caused by substituting smoothed quantities in
for exact quantities in L. The system (3.11) can be regarded as an ODE with g(t)
and h(t) as unknowns. Here h(t) is a ”guide” path of metrics which continuously
adjusts for accumulated error, while g(t) is the path we actually traverse. Note

E(t) is defined with lag, so that ḣ(t) is defined by quantities from strictly earlier
times.

Suppose (3.11) has a solution for all t ≥ t0 and limt→∞ z(t), limt→∞ h(t) exist.
The total metric change accomplished would be∫ ∞

t0

ġ =

∫ ∞

t0

ḣ−
∫ ∞

t0

e(t)

= h(∞)− E(∞) = H + E(∞)− E(∞) = H.

which means z(∞) is an isometric embedding.

Beginning with the case g ∈ C3, Nash shows (3.11) has a solution z(t) for all
t ≥ t0 by:

1. Let (†) denote a set of (apriori) bounds on quantities in (3.11).
2. A solution to (3.11) on an interval [t0, t], satisfying (†), satisfies strictly

stronger bounds (†′) given t0 large enough and the initial metric error small enough.
3. Given that (3.8) satisfies (†′) at some t, there exists h > 0 depending only on

(†′) such that a solution exists on [t, t+ h]. The solution satisfies (†).
Iterating (2) and (3) gives a solution to (3.11) for all t ≥ t0. This is an example

of the method of continuity.
The first part of (3) follows from Picard’s theorem: Since Sθ, S

′
θ, ..., Ṡθ, Ṡ

′
θ, ... are

smoothing operators, we can rewrite quantities in terms of z,Dz,E, Ė and time
derivatives. Suppose initial conditions are bounded. On a compact set, initial
conditions will be Lipschitz, thus for a time h we may solve (3.11) using Picard’s
theorem.

The existence of limits limt→∞ z(t), limt→∞ h(t), and their regularity will follow
from (†).

We discuss bounds (†), (†′).
First, (3.11) requires L(ζ ′(t), ζ ′′(t)) to be non-singular for all t ≥ t0, which

happens if

ζ − z0 ≤ ε [ 02 ]
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for small enough ε > 0 (then F (ζ ′, ζ ′′) is close to F (z′0, z
′′
0 ) which is non-singular).

This is given by including

z − z0 ≤ β [ 0 1
3 4 ] ,

in (†) and choosing t0 large enough so that Stz0 − z0 ≤ ε
2 [

0
2 ] for all t ≥ t0.

Given z(t) exists on [t0, t], we have (†) be the following apriori bounds. First,

z0 ≤ α [ 0 1
3 4 ]

is immediate. By construction,

H ≤ δ [ 03 ]

where δ > 0 can be chosen. As above

ζ − z0 ≤ ε [ 02 ]

z − z0 ≤ β [ 0 1
3 4 ]

Sθz0 − z0 ≤ ε

2
[ 02 ] ,

which means

z ≤ ξ [ 0 1
3 4 ] .

The rest of the bounds are

E ≤ λ [ 03 ]

ḣ ≤ µ
[−4 0

0 4

]
ż ≤ γ

[−4 0
0 4

]
e ≤ η

[−5 −2
0 3

]
Stronger bounds (†′) are derived from and have the same form as (†), with smaller
constants in place of α, δ, ε etc. Note that third derivatives are included in bounds.
This controls space derivatives of z(t) to order three, and is used to show the limit
embedding is C3 (see [8]). The Ck case is proven by induction.

If stars denote corresponding constants in (†′), the result is

λ∗ =
1

t0
η

µ∗ = C1(t0 + 1)4δ + C2δ + C3λ
∗ + C4

1

t0
η

γ∗ = P1(ξ)µ
∗

η∗ = C5ξγ
∗

β∗ = P2(ξ)(1 + ξ + γ)(µ∗ + δ + λ∗)

α∗ = α+ β∗

ε∗ =
ε

2
+ C6β

∗.

If δ is chosen small enough and t0 large enough, starred constants (except α∗)
will be smaller than the original constants. The presence of smoothing is key in
allowing (†), (†′) to include bounds on higher order derivatives using (3.9). When
deriving (†′), positive powers of t are cancelled by negative powers of t from lower
derivatives. This paradigm was seen in the proof of Theorem 2.1.
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4. Diffeomorphisms of a Circle

In this section we apply Nash-Moser iteration to a model problem for the KAM
theorem. The presentation is adapted from [12].

Let ϕ lift an analytic diffeomorphism of S1. Assume

ϕ(x) = x+ ρ+ η(x)

where |η| is a small perturbation and

ρ = lim
n→∞

ϕ(n)(x)− x

n

is the rotation number of ϕ. A result is that the rotation number exists, is inde-
pendent of x, and is invariant under conjugation.

Assume ϕ, η are real analytic ([1] does φ ∈ C∞). Our goal is to show there exists
an analytic coordinate change H(x) = y such that

H−1 ◦ ϕ ◦H(x) = x+ ρ.

If we only require H to be a homeomorphism, Denjoy’s theorem gives H for irra-
tional ρ. Additional smoothness of H allows us to obtain more detailed information
on the dynamics of ϕ, for example the distributions of orbits.

We will see that |η| small implies

H(x) = x+ h(x)

where |h| is small. The coordinate change H must satisfy

ϕ ◦H(x) = H(x+ ρ)

or

x+ h(x) + ρ+ η(x+ h(x)) = x+ ρ+ h(x+ ρ),

thus

h(x+ ρ)− h(x) = η(x+ h(x)).

We prove the existence of a solution as the limit of approximate solutions. Lin-
earizing gives

(4.1) h(x+ ρ)− h(x) = η(x).

The first step is to solve (4.1) and show a solution gives H(x) = x + h(x) which
conjugates ϕ to a diffeomorphism that differs from x+ ρ by an error that is second
order in |η|, |h|. We then can iterate the process as in Theorem 2.1. This type of
iteration is used to prove the KAM theorem.

4.1. The Linearization. To solve (4.1), write∑
k

ĥ(k)[e2πikρ − 1]e2πikx =
∑
k

η̂(k)e2πikx.

For simplicity assume η̂(0) = 0. Later we discuss the case η̂(0) ̸= 0. Formally,

(4.2) h(x) =
∑
k ̸=0

η̂(k)

e2πikρ − 1
e2πikx

is a solution to (4.1). If ρ is rational the series is not defined. If ρ is well approx-
imated by rationals, we do not have control over the smallness of denominators
|e2πikρ−1| and the series may diverge. We thus need a diophantine condition on ρ.
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Definition 4.3. If α ∈ R and K > 0, ν ∈ N such that for any m,n ∈ N,

|α− m

n
| > K

nν
,

then α is type (K, ν).

In general ρ will be type (K, ν) for some K > 0, ν ≥ 2.

Lemma 4.4. For ν > 2, almost every α ∈ R is type (Kα, ν) for some Kα > 0.

Proof. Without loss consider α ∈ (0, 1). Let ν > 2. Let

Eq,K = (−K
qν
,
K

qν
) ∪ (

1

q
− K

qν
,
1

q
+
K

qν
) ∪ ... ∪ (

q − 1

q
− K

qν
,
q − 1

q
+
K

qν
).

If α not type (K, ν) then α ∈ Eq,K for infinitely many q. Since
∑

q∈N |Eq,K | =∑
q∈N

2
qν−1 < +∞ we have | lim supEq,K | = 0. Take the union over K ∈ Q and the

result follows. □

The following two Lemmas help prove the convergence of (4.2) if ρ is type (K, ν).

Lemma 4.5. If ρ is type (K, ν), then

|e2πikρ − 1| > 2K|k|−(ν−1)

for k ̸= 0.

Proof. We have |kρ− n| > K|k|−(ν−1) and thus |e2πikρ − 1| > 2K|k|−(ν−1) (bound

chord of unit circle below by len(arc)
π ). □

Define

Sσ = {z ∈ C : |Im z| < σ}
∥f∥σ = supx∈Sσ

|f(x)|
Bσ = {f : f analytic on Sσ, ∥f∥σ <∞}.

Lemma 4.6. Suppose η ∈ Bσ. Then

|η̂(n)| ≤ ∥η∥σe−2π|n|σ

Proof. Note η has period 1. By Cauchy’s theorem the path integral of η over the
rectangle with one side [0, 1] and height σ is zero. For n > 0, this means

|η̂(n)| = |
∫ 1

0

η(x)e−2πinxdx| = e−2πnσ|
∫ 1

0

η(x− iσ)e−2πinxdx| ≤ ∥η∥σe−2πnσ

and similarly for n < 0. □

Now suppose ρ is type (K, ν). For |Im z| < σ − δ,

|h(z)| = |
∑
n ̸=0

η̂(n)

e2πinρ − 1
e2πinz| ≤

∑
n ̸=0

|n|ν−1

2K
∥η∥σe−2πσ|n|e2π(σ−δ)|n|

≤ Cν

K(2πδ)ν
∥η∥σ.

We used ∑
n̸=0

|n|ν−1e−2πδ|n| ≲
∫ ∞

0

xν−1e−2πδxdx =
Γ(ν)

(2πδ)ν
.
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Thus

(4.7) ∥h∥σ−δ ≤ Cν

K(2πδ)ν
∥η∥σ.

The condition |Imz| < σ − δ provides exponential decay to balance terms |n|ν−1

and is necessary for convergence. Thus we can only bound h on a strictly smaller
domain of analyticity than that of ϕ. Note we have freedom in choosing the amount
δ which the domain shrinks. For H to be a valid coordinate change we need H−1

to be analytic. The following is discussed in [12].

Lemma 4.8. If 2πCν∥η∥σ < K(2πδ)ν+1 and δ ∈ (0,min(σ, 1
4π )) then H(z) =

z + h(z) has analytic inverse on H(Sσ−2δ).

Solving the linearization (4.1) is analogous to applying the operator L in Theo-
rem 2.1. Instead of derivatives lost, domain of analyticity (on which solutions are
bounded) is lost. In both cases, the linear operator involved is degenerate, and ex-
tra steps are needed to carry out Newton iteration. Theorem 2.1 uses a smoothing
operator. Here, we control the loss of domain at each step, so that in total, the
domain shrinks less than a specified amount. We will see that choosing the amount
to shrink at each step is delicate; the less we shrink the domain, the worse the
bound on the solution of (4.1). A balance will be found.

4.2. Iteration to a Solution. We are proving

Theorem 4.9. (Arnold’s theorem [12], Theorem 2.1) Let ρ, the rotation number
of ϕ, be type (K, ν) and σ > 0. Then there exists ε(K, ν, σ) > 0 such that if
ϕ(x) = x+ ρ+ η(x) with ∥η∥σ < ε(K, ν, σ), then there exists an analytic change of
coordinates H(x) = y such that H−1 ◦ ϕ ◦H(x) = x+ ρ.

We will prove Hk defined in the following way gives H = limk→∞H0◦H1◦· · ·Hk

as the desired coordinate change. Define

ϕ0(x) = ϕ(x) = x+ ρ+ η0(x)

H0(x) = x+ h0(x) where h0(x+ ρ)− h0(x) = η0(x)− η̂0(0),

...

ϕk(x) = H−1
k−1 ◦ ϕk−1 ◦Hk−1 = x+ ρ+ ηk(x)

Hk(x) = x+ hk(x) where hk(x+ ρ)− hk(x) = ηk(x)− η̂k(0)

for k ≥ 0. Here ϕk is a diffeomorphism conjugated from ϕk−1 by Hk−1, a coordinate
change solving (4.1) with ηk−1 − η̂k−1(0) in place of η. We will show (in section
4.2.1) that subtracting the zeroth Fourier mode of the right hand side does not
affect the convergence of ϕk to a pure rotation. The key is the existence of a point
on S1 which ϕk rotates exactly by ρ. Note all ϕk are conjugate thus have the same
rotation number.

The plan now is to specify how much domain is lost at each step. Note in (4.7):
- if δ increases, more domain is lost but H is closer to id
- if δ decreases, less domain is lost but H is farther from id
In order for coordinate changes H0 ◦ H1 ◦ · · · ◦ Hn to converge, we must have

Hn → id. For the limit to be analytic we must ensure the domains of analyticity
of hk do not shrink to zero. A balance for choosing δ > 0 at each step is given in
the following.
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Theorem 4.10. Let
δn =

σ

36(1 + n2)
, n ≥ 0

σ0 = σ, σn+1 = σn − 6δn, n ≥ 0

ε0 = ∥η∥σ, εn = ε
( 3
2 )

n

0 , n ≥ 0.

We can assume σ,K < 1. If

ε0 < (
K

16πCν
(
σ

36
)ν+1)8,

then ηn+1 ∈ Bσn+1
and

∥ηn+1∥σn+1
≤ εn+1,

∥hn∥σn−δn ≤ Cνεn
K(2πδn)ν

.

Write H−1
n (x) = x− hn(x) + gn(x), then

∥gn∥σ−4δn ≤ 2πCνε
2
n

K2(2πδn)2ν+1
.

For Theorem 4.10 to hold we will need |ηk+1| being second order in |ηk| i.e. fast
convergence of ηk → 0. We first show Theorem 4.10 implies Arnold’s theorem.

Proof. (of Theorem 4.9) By Theorem 4.10, limn→∞ ϕn(x) = x+ ρ. Let

Hn(x) = H0 ◦H1 ◦ · · · ◦Hn(x) = xn

where
x0 = x+ hn(x), xk = xk−1 + hn−k(xk−1).

First we show limn→∞ Hn exists on Sσ∗ where σ∗ > 0. Since |Hk(x)−x| = |hk(x)|,
the composition Hn moves x ∈ Sσn

by hn(x) +
∑n

k=1 hn−k(xk−1). Then using
inductive bounds in Theorem 4.10,

|Hn(x)− x| ≤
∑
k≥0

|hk(x)| ≤
∑
k≥0

Cνεk
K(2πδk)ν

= A <∞

since εn decays exponentially and δn like 1
n2 . We also have

|H′
n| ≤

n∏
k=1

|1 + h′k| ≤
n∏

k=1

(1 +
2πCνεk

K(2πδk)ν+1
) ≤ 1 +

4

δn
A.

since cross terms are very small.
Then

Hn+1 −Hn = Hn ◦Hn+1 −Hn

= Hn(x+ hn+1(x))−Hn(x) =

∫ 1

0

H′
n(x+ thn+1(x))hn+1(x)dx

≤ (1 +
4A

δn+1
)

Cνεn+1

K(2πδn+1)ν
.

Thus since
∑

n≥0 |Hn+1 −Hn| <∞ on Sσ∗ , the Hn are uniformly Cauchy. Since

σ∗ = lim
n→∞

σn = σ − 6
∑
n≥0

δn = σ − 6
∑
n≥0

σ

36(1 + n2)

≥ σ − 1

6
(
π2

6
) ≥ σ

2
,
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we have limn→∞ Hn = H where H is analytic on Sσ∗ . Write

H(z) = z + h̃(z).

By above ∥h̃∥σ∗ < A. Let δ∗ = σ∗

16 . We bound ∥h̃′∥σ∗−δ∗ to use the inverse

function theorem. Using definition of εn, δn we find A < (δ∗)2. Since ∥h̃∥σ∗ < A

by the Cauchy integral formula ∥h̃′∥σ∗−δ∗ ≤ A
δ∗ < δ∗. Then H has inverse on

H(Sσ∗−δ∗) ⊇ Sσ∗−2δ∗ . Thus H is an analytic coordinate change on Sσ∗−2δ∗ such
that

H−1 ◦ ϕ ◦H(x) = x+ ρ.

□

We now prove Theorem 4.10 using (4.7) and the following two propositions.

Proposition 4.11. If η, δ as in Lemma 4.8, then H−1(z) = z − h(z) + g(z) where

∥g∥σ−4δ ≤ 2πC2
ν

K2(2πδ)2ν+1
∥η∥2σ.

Proof. Let g(z) = H−1(z)− z + h(z). We use g(z + h(z)) = h(z + h(z))− h(z) to
write

g(z + h(z)) =

∫ 1

0

dh

dt
(z + th(z))h(z)dt.

In (4.7) and Lemma 4.8 we have bounds on ∥h∥σ−δ, ∥h′∥σ−2δ. Now z ∈ Sσ−3δ

implies z + th(z) ∈ Sσ−2δ, thus restrict z + h(z) ∈ Sσ−4δ. Then ∥g∥σ−4δ ≤
∥h∥σ−δ∥h′∥σ−2δ gives the result. □

Proposition 4.12. Let η, δ as in Lemma 4.8, and ϕ̃(x) = H−1◦ϕ◦H(x) = x+ρ+η̃.
Then

∥η̃∥σ−6δ ≤ 16πC2
ν

K2(2πδ)2ν+1
∥η∥2σ.

The proof of Proposition 4.12 proceeds by using Proposition 4.11 to expand

ϕ̃(x) = H−1 ◦ ϕ ◦H(x)

= x+ h(x) + ρ+ η(x+ h(x))− h(x+ h(x) + ρ+ η(x+ h(x)))

+g(x+ h(x) + ρ+ η(x+ h(x)))

= x+ ρ+

[
h(x)− h(x+ ρ) + η(x)

]
+

[
η(x+ h(x))− η(x)

]
+

[
h(x+ ρ)− h(x+ h(x) + ρ+ η(x+ h(x)))

]
+g(x+ h(x) + η(x+ h(x))).

(4.13)

The right hand side excluding x + ρ is η̃(x). Each bracketed term is bounded
separately using Cauchy’s estimate and previously derived bounds.

Proof. (of Theorem 4.10)
For n = 0, by (4.7) and ε0 = ∥η0∥σ, we have ∥h0∥σ−δ0 ≤ Cνε0

K(2πδ0)ν
. Similarly

Proposition 4.11 gives bound on ∥g0∥σ−4δ0 . Now σ1 = σ − 6δ0 and η0, δ0 satisfies
hypotheses of Lemma 4.8, thus by Proposition 4.12

∥η1∥σ1 ≤ 16πC2
ν

K2(2πδ0)2ν+1
ε20
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and
16πC2

ν

K2(2πδ0)2ν+1 ε
1
2
0 < 1 by choice of ε0.

Assume the Theorem holds for k ≤ n − 1. Note δn < δn−1 and ∥ηn∥σn ≤ εn.
Then (4.7) implies the bound on ∥hn∥σn−δn and Proposition 4.11 the bound on
∥gn∥σn−4δn . Then since σn+1 = σn − 6δn, Proposition 4.12 and the definition of εn
implies

∥ηn+1∥σn+1
≤ 16πC2

ν

K2(2πδn)2ν+1
ε2n ≤ ε

( 3
2 )

n+1

0

□

4.2.1. The Zeroth Fourier Coefficient. Consider the case η̂(0) ̸= 0. Then h as
defined above solves

h(x+ ρ)− h(x) = η(x)− η̂(0).

Proposition 4.11 still holds and the coordinate changes Hn will converge as before.
We show that Proposition 4.12 still holds using the following

Lemma 4.14. If ϕ(x) = x + ρ + η(x) where ρ is the rotation number of ϕ then
there is some x0 such that η(x0) = 0.

Proof. If η ̸= 0 on S1 then since η is continuous, minS1 |η| > ε > 0. For η > 0 this
would mean ρ > ρ+ ε. The same argument applies for η < 0. □

Then in 4.13 we have |η̂(0)| equal to the last three terms evaluated at x0. Since
these terms are O(∥η∥2σ), Proposition 4.12 holds and thus ϕn still converges to a
pure rotation.

5. The KAM theorem

The goal now is to state the KAM theorem and present a reformulation which
can be proven with Nash-Moser iteration. We focus on setting up the iteration
process. The proof that iteration works is similar to proving Theorem 4.10 and is
in [6] ch.5. We adopt (and simplify) the approach of [6] and consider systems

ẋ = f(x, y)

ẏ = g(x, y)
(5.1)

such that

f(−x, y) = f(x, y)

g(−x, y) = −g(x, y).
Here x, y ∈ Rn and f, g are real analytic with period 2π in xk for k = 1, ..., n. Such
systems are reversible systems. A Hamiltonian system

ṗk =
∂H

∂qk

q̇k = − ∂H

∂pk
is an example of such a system.

Definition 5.2. The system (5.1) is in normal form if

f(x, y) = F (y)

g(x, y) = 0.
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A system in normal form has solutions

(5.3) x(t) = F (c)t+ b (mod 2π), y(t) = c.

These are lines of constant slope on n−tori in R2n.

Definition 5.4. Suppose for y = c there exists z ∈ Zn such that

F (c) · z = 0.

Then the components of F (c) are rationally dependent and {xk ∈ [0, 2π), y = c} is
called a resonant torus.

Definition 5.5. A trajectory (5.3) is quasi-periodic if components of F (c) are
rationally independent.

A system (5.1) in normal form has periodic solutions on resonant tori, and quasi-
periodic solutions on non-resonant tori. Quasi-periodic trajectories are dense on
tori. We will see that many non-resonant tori survive small perturbations.

We work with coordinate changes that preserve the reversibility of (5.1). Let G
denote the set of coordinate changes

x = u(ξ, η), y = v(ξ, η)

with (u, v) ≈ (ξ, η) and

u(−ξ, η) = u(ξ, η)

v(−ξ, η) = −v(ξ, η).
Then (x, y) → (ξ, η) is close to the identity. We require

u(ξ, η)− ξ, v(ξ, η)

be analytic and have period 2π in ξ to preserve properties of f, g.

5.1. Statement of the Theorem. Exposition is, beginning now, parallel to Sec-
tion 4.1. We state the KAM theorem and describe how it is proved. Note KAM
stands for Kolmogorov, Arnold, and Moser, whose work founded the theory.

Consider a perturbed reversible system

ẋ = f(x, y, µ)

ẏ = g(x, y, µ)
(5.6)

such that the system at µ = 0 is in normal form. For all µ ≥ 0 we require

f(−x, y, µ) = f(x, y, µ)

g(−x, y, µ) = −g(x, y, µ).
(5.7)

The KAM theorem tells us when a solution to (5.6) at µ > 0 is a perturbation of a
quasi-periodic solution at µ = 0. We require a diophantine condition analogous to
Definition 4.3. Its necessity will arise when inverting a linearized system, as before.

Definition 5.8. If ω ∈ Rn and γ > 0, τ ∈ N such that for any j = (j1, ..., jn) ∈ Zn,
we have

|
n∑

k=1

jkωk| ≥ γ|j|−τ ,

then ω is type (γ, τ).

By a similar proof as Lemma 4.4, for a.e. ω ∈ Rn is type (γ, τ) for some γ, τ .
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Theorem 5.9. (KAM theorem) Consider (5.6). If for some c we have F (c) type
(γ, τ) and

det(
∂Fk

∂yℓ
) ̸= 0

at y = c, then there exists solutions

x = θ + u(θ, µ)

y = c+ v(θ, µ)

θ̇k = Fk(c)

where u, v are real analytic in θ, have period 2π in θ,

u(−θ, µ) = −u(θ, µ), v(−θ, µ) = v(θ, µ),

and u(θ, 0) = v(θ, 0) = 0.

At µ = 0, we have the quasi-periodic solution

ẋ = F (c), y = c.

As µ varies the solution is only slightly perturbed and remains predictable. The
perturbed solution is a dense flow on a deformed torus, and is ”qualitatively quasi-
periodic”. These are stable solutions of (5.6).

5.2. Reformulation. To prove Theorem 5.9, we reformulate the problem as fol-
lows. Given a solution to (5.6), we find when there exists a coordinate change in
G that transforms the solution to a quasi-periodic trajectory on a torus. Since the
coordinate change is analytic and close to the identity, the solution would be a
small perturbation of a quasi-periodic trajectory.

Theorem 5.10. ([6], Theorem 5.1) Let ω be type (γ, τ). Let 0 < α < 1 and
0 < β < min( α

4n+4τ+1 , 1 − α). Then there exists δ0 = δ0(α, β, γ, τ, n) such that if
we have a reversible system

ẋ = f(x, y), ẏ = g(x, y)

with

f(−x, y) = f(x, y), g(−x, y) = −g(x, y)
such that for some 0 < δ < δ0,

|f − ω − y|+ |g| < δ1+α

for any x, y such that |Imxk| < δβ, |yk| < δ∗, then there exists a coordinate change

x = u(ξ, η), y = v(ξ, η)

in G which transforms the system into

ξ̇ = ϕ(ξ, η), η̇ = ψ(ξ, η)

with

ϕ = w + η +O(η2), ψ = O(η2).

In addition, we can choose u, v to be linear in η and satisfy

|u− ξ|+ |v| < δ

in the region |Imξk| < 1
2δ

β, |ηk| < δ
2 .
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The system under consideration is (5.6) at a fixed µ. For η = 0 we have the
solution ξ(t) = ωt+ ξ(0) which gives

x = u(ωt+ ξ(0), 0), y = v(ωt+ ξ(0), 0)

as a solution to the original system. Since (u, v) ≈ (x, y) this is approximately
ẋ = w, ẏ = 0.

Lemma 5.11. Theorem 5.10 implies the KAM theorem.

Proof. In the KAM theorem, we begin with an unperturbed system ẋ = F (y), ẏ = 0

defined on a complex domain X × Y . By assumption det(∂Fℓ

∂yk
) ̸= 0 for y = c ∈ Y ,

and ω = F (c) is type (γ, τ).
Since DF (c) is non-singular, write

y = c+DF (c)−1z, z ∈ X.

By Taylor’s theorem,

F (c+DF (c)−1z) = F (c) + z + G̃(DF (c)−1z)

= F (c) + z +G(z)

where |G(z)| = O(|z|2). Rewrite the unperturbed system as

ẋ = F (c) + z +G(z)

ż = 0.

For some δ > 0, restricting to |z| < δ gives |G(z)| < 1
2δ

1+α,

{c+DF (c)−1z : |z| < δ} ⊂ Y,

and |y − c| = |DF (c)−1z| < 1
8δ

1+α. Since (5.6) depends analytically on µ there
exists δ′ > 0 such that for µ < δ′,

|f − ω − y| < 1

8
δ1+α, |g| < 1

8
δ1+α.

This system, for µ < δ′, then satisfies the hypotheses of Theorem 5.10, and has
quasi-periodic solutions

x = u(ωt+ ξ(0), 0), y = v(ωt+ ξ(0), 0).

as required in the KAM theorem. □

We conclude this section by deriving the system and its linearization for the
proof of Theorem 5.10.

Suppose x = u(ξ, η), y = v(ξ, η) satisfies the conclusions of Theorem 5.10. Write

f = ω + y + f̃, g = g̃.

Now ξ̇ = ϕ, η̇ = ψ where

ϕ = ω + η + o(η2)

ψ = o(η2).
(5.12)

We also have

ẋ = uξϕ+ uηψ = f(u, v)

ẏ = vξϕ+ vηψ = g(u, v).
(5.13)
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Since (ξ, η) 7→ (u, v) is close to the identity, u − ξ has period 2π in ξ, and u, v are
linear in η, write

u = ξ + u0(ξ) + u1η

v = η + v0(ξ) + v1η
(5.14)

where u0, v0 are periodic in ξ and u1, v1 are matrices. Set η = 0. This is where we
look for a quasi-periodic solution. After substituting (5.12) and (5.14) into (5.13),
and equating coefficients of terms linear in η, an approximate system is

∂u0
∂ξ

· ω − v0 = f̃(ξ, 0)

∂v0
∂ξ

· ω = g̃(ξ, 0)

∂u1
∂ξ

− v1 = −∂u0
∂ξ

+ ∂2f̃(ξ, 0)

∂v1
∂ξ

· ω = −∂v0
∂ξ

+ ∂2g̃(ξ, 0).

(5.15)

Solving (5.15) involves solving

n∑
k=1

ωk
∂v0
∂ξk

= g̃(ξ, 0),

or

n∑
k=1

∑
m

ωkimkv̂0(m)e2πim·ξ =
∑
m

iω ·mv̂0(m)e2πim·ξ =
∑
m̸=0

ĝ(m)e2πim·ξ

since g is odd in ξ. Formally,

v0(ξ) =
∑
m

ĝ(m)

iω ·m
e2πim·ξ.

The condition ω type (γ, τ) ensures convergence of the series as in the 1D case.
Bounds on |(u0, v0)| are derived using Cauchy’s estimate, thus hold only on strictly
smaller domains. We iterate while ensuring the domain of analyticity does not
shrink to zero as in diffeomorphisms of a circle.

5.3. Completing the Picture. In the previous section we showed that many
quasi-periodic solutions to reversible systems are stable under small reversible per-
turbations. In the complement, numerical simulations indicate all but finitely many
resonant tori break into unpredictable behavior [9]. This unpredictable behavior
has only been proven for a measure zero cantor set of resonant tori (the proof is in
[6], ch.3) and is being studied to this day.
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