
TWO MODELS OF HYPERBOLIC GEOMETRY

ZHIREN WANG

Abstract. This paper explores hyperbolic geometry, with a particular focus

on the interaction between two models: the Poincaré’s Unit Disk Model and

Upper-Half Plane Model. The paper first defines the concept of geometry and
discusses Euclid’s five postulates. The departure from Euclidean principles is

then examined through a thorough investigation of these postulates under the

context of hyperbolic geometry. The investigation culminates with the dis-
cussion of the isomorphic Möbius Transformation that maps between the two

models. Through establishing the isomorphic map and analyzing its proper-

ties, this paper explores how isomorphism preserves geometric invariants.
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1. Introduction

The exploration of non-Euclidean geometries has beckoned mathematicians to
scrutinize geometric systems that deviate from the classical Euclidean axioms. Hy-
perbolic geometry is particularly distinguished by its departure from Euclid’s fifth
postulate. This departure gives rise to an intricate and captivating geometry, con-
structed upon distinct axioms and properties that challenge conventional Euclidean
notions.

Central to the understanding of hyperbolic geometry are the geometric models
that provide tangible representations of its abstract concepts. Among these models,
the Unit Disk Model and the Upper-Half Plane Model of the French mathematician
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Henri Poincaré’s (1854-1912) stand prominently. One essential facet of this paper
is the re-calibration of Euclid’s five postulates under the hyperbolic context. Each
postulate undergoes a rigorous reformulation and re-evaluation of validity in the
model of hyperbolic geometry.

The Unit Disk Model, realized through the unit circle within the complex plane,
and the Upper-Half Plane Model through the upper-half of the complex plane, each
captures the essence of hyperbolic geometry from different perspectives. This paper
first discusses the properties of the two models separately. To unite the understand-
ing of the two models, the paper examines the concept of inversion as a foundational
transformation in the Möbius transformation that provides the isomorphic map be-
tween them. The isomorphic map, which this paper will denote as ”S,” serves as
the conduit between these models. The properties of this isomorphism and the
consequential preservation of geometric invariants is analyzed. The paper derives
and presents the preservation of length for smooth curves for the Upper-Half Plane
Model from the Unit Disk Model, underscoring its congruence facilitated by the
isomorphic map.

This paper is structured as follows. The beginning section introduces the def-
inition of the concept of geometry as a pair of underlying set and transformation
group. Specifically, it discusses the definition of Euclidean geometry, as well as
Euclid’s five postulates. The next section explores the foundations of hyperbolic
geometry through the Unit Disk Model and the Upper-Half Plane Model respec-
tively. It establishes rigorous definitions and theorems. It then examines each of
Euclid’s five postulates under this newly established context. The following section
connects the two models by introducing isomorphic mapping. It reviews circle in-
version as an essential Möbius transformation that help constructs the isomorphism
between the models. The isomorphism is unveiled using the Fundamental Theorem
of Möbius Geometry. Finally, the paper discusses the preservation of invariants un-
der isomorphic transformations that unite different models of hyperbolic geometry.

2. Euclidean Geometry

This section discusses two different approaches to define Euclidean geometry.
The first approach defines geometry as a pair of two sets (S,G) consisting of a
nonempty set S and a transformation group G on S. The second approach defines
geometry as an axiomatic system based on primitive terms and postulates. In
constructing the models that follow the two definitions, the interplay between them
will become evident.

2.1. Euclidean Geometry defined by Transformation Groups. Before we
define a geometry, we first define a transformation group.

Definition 2.1. Let S be a nonempty set. A transformation group G is a collection
of transformations T : S → S such that

(a) G contains identity Ids
(b) the transformations in G are invertible, and their inverses are in G
(c) G is closed under composition.



TWO MODELS OF HYPERBOLIC GEOMETRY 3

Based on this definition of transformation group, the following defines a geometry.

Definition 2.2. A geometry is a pair (S,G) consisting of a nonempty set S and a
transformation group G on S.

By this definition, the set S is the underlying set of the geometry, and the set
G is the transformation group of the geometry. We now have the tools to define
Euclidean geometry. The underlying set S of Euclidean geometry is the complex
plane C. The transformation group G is s set E of transformations of the form

(2.3) Tz = eiθz + b, (θ ∈ R, b ∈ C)

We may check that E satisfies the definition of transformation group.
(a) When θ = 0, b = 0, T is the identity transformation.
(b) If transformation Tz = eiθz + b, then T is invertible, and the inverse of T
denoted as T−1z = ei(−θ)z + (−e−iθb) is in E.
(c) Let T1 and T2 be two transformations. If T1z = eiθ1z + b1, T2z = eiθ2z + b2,
then

(T1 ◦ T2)z = ei(θ1+θ2)z + (b2e
iθ1 + b1).

This concludes that E is a transformation group. [1]

Euclidean geometry is modeled by the pair (C, E), where C is the complex plane,
and E is the transformation group on C.

2.2. Euclidean Geometry defined by Euclid’s 5 Postulates. Euclid defined
geometry as an axiomatic system in the Elements [3]. This section discusses his
five postulates.

Postulate 2.1. It is possible to draw one and only one straight line from any point
to another point.

Postulate 2.2. From each end of a finite straight line, it is possible to produce it
continuously in a straight line by an amount greater than any assigned length.

Postulate 2.3. It is possible to describe one and only one circle with any center
and radius.

Postulate 2.4. All right angles are equal to one another.

Postulate 2.5. If a straight line falling on two straight lines make the interior
angles on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than the two right angles.

The fifth postulate can be rephrased as the following. Through a point not on a
line, there is a unique line parallel to the given line. Unlike the first four postulates,
the fifth cannot be proven within the system of Euclidean geometry without intro-
ducing a different postulate. The attempt to prove the fifth postulate started with
Poseidonios (c. 135-c. 51 B.C.) and was followed by mathematicians throughout
history, including Wallis, Lambert, and Gauss [2]. However, none of them suc-
ceeded in deducing it without replacing it with another postulate. It was finally
revealed that the fifth postulate is independent of other Euclid’s axioms when N.I.
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Lobachevskii (1826) created a consistent geometry where all of Euclid’s postulates
hold except the fifth [2]. This is the initial construction of hyperbolic geometry

3. Hyperbolic Geometry

Proof of the consistency of a geometry as an axiomatic system is attained by
the existence of a model. The model gives meaning to the primitive definitions
and turn the axioms into true statements. This section discusses two models of
hyperbolic geometry from Poincaré-the Unit Disk Model and the Upper-Half Plane
Model. Specifically, it investigates how the two models satisfy Euclid’s first four
postulates but not the fifth.

3.1. Poincaré’s Unit Disk Model. We have previously defined geometry as a
pair consisting of an underlying set and a transformation group acting on the set.
In this case, let D be the unit disk in the complex plane. Let H be a set of
transformations on D of the form

(3.1) Tz = eiθ
z − z0
1− z0z

.

By this definition, the Unit Disk Model can be denoted as (D, H). It models
hyperbolic geometry with a group of transformations H consisting of all Möbius
transformations mapping the unit disk D onto itself. The set D is called the hy-
perbolic plane, and the group H is called the hyperbolic group.

We now provide primitive definitions for the model.

Definition 3.2. A hyperbolic straight line is a Euclidean circle or Euclidean
straight line in D that intersects the unit circle at a right angle.

Definition 3.3. In the hyperbolic plane, the length of a smooth curve γ with
parametrization z(t) = x(t) + iy(t), where a ≤ t ≤ b, is given by

(3.4) l(γ) = 2

∫ b

a

|z′(t)|
1− |z(t)|2

,

where z′(t) = x′(t) + iy′(t). [1]

Definition 3.5. Hyperbolic angle is the same as Euclidean angle.

Definition 3.6. A hyperbolic circle is a portion of a Euclidean circle or straight
line inside the unit disk that is entirely contained in D.

In any model of a geometry, an invariant is a property that remains unchanged
after any transformation of its object from its transformation group. It is defined
as the following.

Definition 3.7. Let (S,G) be a geometry. Let D be a set whose elements are
subsets of S.
• The set D is called an invariant in the geometry (S,G) if for any B ∈ D and
T ∈ G, then T (B) ∈ D.
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• A function f defined on D is called an invariant in the geometry (S,G) if for any
B ∈ D and T ∈ G, then f(T (B)) = f(B).

To gain a better understanding of this concept, we look at an example in Euclidean
geometry.

Lemma 3.8. Euclidean angle is an invariant in Euclidean geometry.

Proof. We want to show that for any transformation of the form Tz = eiθz+b, (θ ∈
R, b ∈ C), if x, y are elements of C, then

< Tx, Ty >

∥Tx∥ · ∥Ty∥
=

< x, y >

∥x∥ · ∥y∥
.

The angle between Tx and Ty after transformation is the same as the angle
between the two lines formed by Tx and T (0), and Ty and T (0). We know that
T (0) = b. This gives us the following equality:

< Tx− T (0), T y − T (0) >∥∥Tx− T (0)
∥∥ ·

∥∥Ty − T (0)
∥∥ =

< eiθx, eiθy >∥∥eiθx∥∥ ·
∥∥eiθy∥∥ .

Since eiθ is an orthogonal transformation, we have that

< eiθx, eiθy >∥∥eiθx∥∥ ·
∥∥eiθy∥∥ =

< x, y >

∥x∥ · ∥y∥
.

This concludes the proof. □

Sanity check. As is stated in the section of Euclidean Geometry, the transformation
group E of a Euclidean geometry includes compositions of rotation and translation,
that is, rigid motions. To see why rigid motions preserve Euclidean angles, we can
use the cosine formula, cos(x, y) = <x, y>

∥x∥·∥y∥ . Since rigid motions preserve <x, y>
∥x∥·∥y∥ ,

cos(x, y) is preserved.

Having proven that Euclidean angle is an invariant in Euclidean geometry, we may
now check whether hyperbolic angle and hyperbolic length are invariants in hyper-
bolic geometry.

Theorem 3.9. Hyperbolic angle is an invariant in hyperbolic geometry.

Proof. By Lemma 3.8, Euclidean angle is an invariant in Euclidean geometry. Since
hyperbolic angles are defined the same way as Euclidean angles are, hyperbolic angle
is an invariant in hyperbolic geometry. □

Theorem 3.10. Hyperbolic straight line is an invariant in hyperbolic geometry.

Proof. By Theorem 3.9, hyperbolic angles are preserved during transformations.
Thus, angles between a hyperbolic straight line and the unit circle are preserved
during transformations. By Definition 3.2, a hyperbolic straight line intersects the
unit circle at a right angle. This quality is preserved after transformations. Hence,
hyperbolic straight line is also an invariant. □

Now, we check that hyperbolic length is also an invariant.
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Theorem 3.11. Let T be a transformation of hyperbolic group, and γ be a smooth
curve. Then

l(T (γ)) = l(γ).

Proof. Let w = Tz = eiθ z−z0
1−z0z

, where |z0| < 1, θ ∈ R, and γ = z(t). Then

T (γ) = T (z(t)) = eiθ
z(t)− z0
1− z0z(t)

.

And

w′(t) = eiθ
1− |z0|2

(1− z0z(t))2
z′(t).

This yields the equality
|w′(t)|

1− |w(t)|2
=

|z′(t)|
1− |z(t)|2

.

Hence, we have that

l(T (γ)) = 2

∫ b

a

|w′(t)|
1− |w(t)|2

= 2

∫ b

a

|z′(t)|
1− |z(t)|2

= l(γ)

This concludes the proof. □

3.1.1. Why Unit Disk Model Models Hyperbolic Geometry. Having established the
basic definitions for the Unit Disk Model, we now proceed to checking whether
this model of hyperbolic geometry is consistent with the first four postulates in
Euclidean geometry. Before we begin with the validity of the first postulate, we
define cross ratio and symmetric points.

Definition 3.12. The cross ratio is the following functions of four extended com-
plex variables:

(z0, z1, z2, z3) =
z0 − z2
z0 − z3

· z1 − z3
z1 − z2

.

Definition 3.13. Let C be a cline (a circle or a straight line) passing through
3 distinct points z1, z2, and z3. Two points z and z∗ are called symmetric with
respect to C, if

(z∗, z1, z2, z3) = (z, z1, z2, z3).

Remark 3.14. Symmetry is an invariant in hyperbolic geometry. If z and z∗ are
symmetric with respect to C, then Tz and Tz∗ are symmetric with respect to T (C).
We can denote it as T (z∗) = (Tz)∗.

Lemma 3.15. Let C1 be a cline with center O1. Let Z1 and Z2 be distinct sym-
metric points with respect to C. Any cline C2 with center O2 that is orthogonal to
C1 and passing through Z1 must also be passing through Z2.

Lemma 3.15 is visualized by Figure 1.
Lemma 3.15 implies that if Z1 coincides with O1, cline C2 will be the diameter

of cline C1. In other words, cline C2 will be a hyperbolic straight line that passes
through 0 and ∞. One can imagine it to be a circle of infinite radius.
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Figure 1.

Now, we can prove Euclid’s first postulate under the Unit Disk Model.

Postulate 3.1. Given two points in D, it is possible to draw one and only one
hyperbolic straight line through the two points.

Proof. Let z1, z2 be 2 distinct points in D. We define

Tz = eiθ
z − z1
1− z1z

.

Then, Tz takes z1 to 0. Choose θ = −arg( z2−z1
1−z1z2

). Then

Tz2 = eiθ
z2 − z1
1− z1z2

= | z2 − z1
1− z1z2

|.

We have that Tz2 lies on the x-axis. By Lemma 3.15, a hyperbolic straight line
passing through 0 must also pass through ∞. Thus, this line that passes through
0 and Tz2 is a diameter of the unit disk. Since Tz2 ∈ R, the diameter must be the
x-axis. This concludes the proof that there exists a unique hyperbolic straight line
passing through z1 and z2, and it is the x-axis. □

Before delving into the second postulate, we first acquaint ourselves with the dis-
tance formula for the Unit Disk Model. We will only introduce the less complicated
formula of the distance between 0 and another point in D.

Corollary 3.16. The distance d(0, z) between 0 and z can be attained through the
formula

d(0, z) = ln(
1 + |z|
1− |z|

).

Proof. We have stated previously that a hyperbolic straight line passing through 0
is a segment of a Euclidean straight line. Thus, we have that d(0, z) = l(γ), where
γ = z(t) = tz, 0 ≤ t ≤ 1. This implies that

d(0, z) = 2

∫ 1

0

|z′(t)
1− |z(t)|2

dt = 2

∫ |z|

0

dγ

1− γ2
, γ = t|z|,

= ln(
1 + |z|
1− |z|

).

□
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Additionally, we need to prove an essential lemma in Möbius transformation.

Lemma 3.17. Every hyperbolic straight line can be mapped to the x-axis by a
Möbius transformation.

Proof. Let C be a hyperbolic straight line. Let z0 be a point on C. By Lemma
3.15, the symmetry of z0, z

∗
0 also lies on C. Denote Möbius transformation T as

Tz = eiθ
z − z0
1− z0z

,

where we choose θ in later steps. Then T is a transformation in the hyperbolic
group H that takes z0 to 0 and takes z∗0 = 1

z0
to ∞.

Hence, T (C) is a cline that passes through 0 and ∞, and is orthogonal to ∂D.
This implies that T (C) is a diameter of the unit circle. Then, we can choose θ so
that the diameter corresponds to the x-axis. □

Now, we have acquired enough tools to prove the second postulate.

Postulate 3.2. From each end of a hyperbolic straight line in D, it is possible to
produce it continuously by infinite length.

Proof. By Lemma 3.17, every hyperbolic straight line can be mapped to the x-
axis through Möbius transformation. Consequently, it is sufficient to exclusively
consider the distance between the center of D and the other point after Möbius
transformation. Let d(0, r) denote the distance. By Corollary 3.16, we have that

d(0, r) = ln
1 + r

1− r

From this formula, we may see that as r approaches 1, d(0, r) approaches ∞. This
means that for any N > 0, there exists r′ < 1, such that

d(0, r′) > d(0, r) +N.

Hence, every hyperbolic straight line is extendable continuously to infinity. □

Postulate 3.3. A circle can be described with any center and hyperbolic radius.

Proof. By Lemma 3.17, it is sufficient for us to consider the case when the center
of the circle coincides with the center of D. Let the radius of the circle be denoted
as R. For any R greater than 0, there exists 0 < r < 1, such that

R = ln
1 + r

1− r
.

This shows that for any given R, there exists a hyperbolic circle of radius R. □

Postulate 3.4. All right angles are congruent.

Proof. By Theorem 3.9, angle is an invariant in hyperbolic geometry. This is equiv-
alent to saying that hyperbolic transformations are conformal. Therefore, the truth
of the fourth postulate in Euclidean geometry extends to its truth in hyperbolic
geometry. □
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Before we proceed to the fifth postulate, we need to define parallel lines in the Unit
Disk Model.

Definition 3.18. Two hyperbolic lines are called parallel if they do not intersect
in the interior of D but share one point on the boundary of D.

The following figure helps visualize parallel lines in the Unit Disk Model. In
Figure 2, the cline with center O2 is orthogonal to the cline with center O1. The
hyperbolic straight line BD has two parallel lines, O1B and O1D.

Figure 2.

Next, we show that Euclid’s fifth postulate is inconsistent in hyperbolic geometry.

Postulate 3.5. Through a given point not on a given line interior to D, there exists
a unique line that is parallel to to the given line.

Proof. By Lemma 3.17, for any hyperbolic straight line C, there exists a transfor-
mation T in H such that T (C) is the x-axis. This implies that if z ∈ D is a point
not on C, then it must be true that Tz is a point not on the x-axis.

By Euclidean geometry, there exists a circle C1 such that C1 is a hyperbolic
straight line passing through Tz and 1. C1 has no other intersection with the
x-axis. This means that C1 is a hyperbolic straight line passing through Tz and
parallel to the x-axis. Thus, T−1(C1) is a hyperbolic straight line passing through
z and parallel to C.

By the same construction, there exists a hyperbolic straight line C−1 passing
through Tz and -1. C−1 is parallel to T (C). Thus, T−1(C−1) is another hyperbolic
straight line passing through z and parallel to C.

Since T−1(C−1) ̸= T−1(C1), we have constructed 2 hyperbolic straight lines
passing through z and parallel to C.

This concludes the proof. □
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3.2. Poincaré’s Upper-Half Plane Model. We now briefly introduce the second
model of Poincaré, the Upper-Half Plane Model. It models hyperbolic geometry
with the underlying set U and the group of transformations H. The set U is a
subset of the complex plane C, where

U = z : Im(z) > 0.

The group of transformation H on U is denoted as

w = Tz =
az + b

cz + d
, a, b, c, d ∈ R, ad− bc > 0.

Figure 3. Straight lines in upper-half plane

By this definition, the Upper-Half Plane Model (U,H) models hyperbolic geometry.
Next, we define the basic terms for hyperbolic geometry in the Upper-Half Plane
Model.

Definition 3.19. A hyperbolic straight line is a Euclidean circular arc perpendic-
ular to the x-axis or a vertical Euclidean straight line perpendicular to the x-axis.

Definition 3.20. In the upper-half plane, the length of a smooth curve γ with
parametrization z(t) = x(t) + iy(t) is given by

(3.21) l(γ) =

∫ b

a

|z′(t)|
y(t)

dt,

where z′(t) = x′(t) + iy′(t).[1]

Definition 3.22. Hyperbolic angle is the same as Euclidean angle.

Definition 3.23. A hyperbolic circle is a portion of a Euclidean circle or straight
line inside the unit disk that is entirely contained in D.
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4. Mapping Between Two Models

4.1. Inversion. Before we dive into the mapping between the two models, we
introduce inversion as a specific form of transformation. We first define inversion
of a point.

Definition 4.1. Given a circle C with center O and radius r. Let P be a point
other than O. P ′ is called the inversion of P if it satisfies the following conditions:
1) |OP | · |OP ′| = r2.
2) P ′ lies on the same side of O as P does.

Figure 4 depicts Q as the inversion of the point P with respect to the circle with
center O. In particular, |OP | · |OQ| = |OD|2.

Figure 4.

Notice that when P coincides with the center of the circle O, Q will be sent to
infinitely far away from P by this definition. Because of this exception, we include
the point at infinity as the inversion of the center of the circle. Meanwhile, the
inversion of the point at infinity is the center of the circle.

Here are some basic properties of inversion. Inversion is a transformation that
maps:
a) A straight line containing center O into itself,
b) A straight line not containing center O into a circle through O,
c) A circle through center O onto a straight line not containing O,
d) A circle not through center O onto a circle not through O.

This mapping is essential to understanding the isomorphism between the Unit
Disk Model and the Upper-Half Plane Model.

4.2. Isomorphism. This section discusses the isomorphism between the Unit Disk
Model and the Upper-Half Plane Model. To find the isomorphic map between the
two models, we first introduce the fundamental theorem of Möbius geometry.

Theorem 4.2. There is a unique Möbius transformation that takes any 3 distinct
extended complex numbers, z1, z2, and z3 to any other 3 distinct extended complex
numbers w1, w2, and w3.

To prove this theorem, we introduce the definition of fixed points of Möbius trans-
formations.
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Definition 4.3. A fixed point of a transformation T is a point z such that Tz = z.

Lemma 4.4. A Möbius transformation with 3 or more fixed points must be the
identity transformation.

Proof. Let T be a Möbius transformation of the form Tz = az+b
cz+d , (ad − bc ̸= 0).

Then, Tz = z indicates that

(4.5) cz2 + (d− a)z − b = 0.

If c ̸= 0, then equation (4.5) has 1 or 2 roots. This implies that transformation T
has 1 or 2 fixed points in C.

If c = 0 and a ̸= d, then equation (4.5) has 1 solution, namely z = b
d−a . In this

case, T has 2 fixed points, namely b
d−a and ∞.

If c = 0 and a = d ̸= 0, then Tz = z+ b
d . If b = 0, then T has infinitely many fixed

points. If b ̸= 0, then T has a unique fixed point at infinity.

Therefore, the only case when T has more than 2 fixed points is when a = d ̸= 0
and b = c = 0. In this case, T is the identity transformation. □

We may now proceed to the proof of Theorem 4.2.

Proof. For any 3 distinct points z1, z2, and z3, there exists a Möbius transformation
T , such that

(4.6) Tz1 = 1, T z2 = 0, T z3 = ∞.

The Möbius transformation that satisfies this condition is denoted of the form

Tz =
z − z2
z − z3

· z1 − z3
z1 − z2

.

For any 3 distinct points z1, z2, and z3 and 3 distinct points w1, w2, and w3, there
exists a Möbius transformation U , such that

Uz1 = w1, Uz2 = w2, Uz3 = w3.

By equation (4.6), we know that there must exist transformations T and S, such
that

Tz1 = 1, T z2 = 0, T z3 = ∞,

and
Sw1 = 1, Sw2 = 0, Sw3 = ∞.

Then, the Möbius transformation U of the form U = S−1 ◦T satisfies the following:

Uz1 = S−1 ◦ Tz1 = S−11 = w1

Uz2 = S−1 ◦ Tz2 = S−10 = w2

Uz3 = S−1 ◦ Tz3 = S−1∞ = w3
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This shows that U is the required transformation.

Finally, we want to prove the uniqueness of U . To achieve that, we need to show
that if U1 and U2 are Möbius transformations such that

Ui(zj) = wj , j = 1, 2, 3, i = 1, 2,

then U1 = U2.

To show this, consider the Möbius transformation U−1
2 ◦ U1. This transformation

satisfies
U−1
2 ◦ U1 = U−1

2 (wi) = zi, i = 1, 2, 3.

This implies that z1, z2, z3 are fixed points of the transformation U−1
2 ◦ U1. By

Lemma 4.4, since U−1
2 ◦ U1 has at least 3 fixed points, it must be the identity

transformation. This implies that U1 = U2. □

With the Fundamental Theorem of Möbius Geometry, we can now establish the
isomorphism between the Unit Disk Model and the Upper-Half Plane Model of
hyperbolic geometry.

Consider the transformation

(4.7) w = Sz = i
1 + z

1− z
.

Then S maps 3 distinct points on the Unit Disk D to other 3 distinct points on the
Upper-Half Plane H, namely

S(−1) = 0, S(0) = i, S(1) = ∞.

Figure 5 depicts the transformation S that maps the 3 points on the Unit Disk to
the other 3 points on the Upper-Half Plane.

Figure 5. Map between Unit Disk D and Upper-Half Plane H
[1]

By Theorem 4.2, S is the unique transformation that maps the Unit Disk D to
the Upper-Half Plane U. On the other hand, the inverse of S maps U to D:

(4.8) S−1w =
iw + 1

iw − 1
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Thus, we have found the isomorphism between the two models of hyperbolic geom-
etry.

To better understand the isomorphic map S, we analyze it through breaking
down its individual steps. It is a Möbius transformation that combines translation,
inversion, and dilation.

The first step entails translation. The term 1+z in the numerator translates
points in the unit disk by adding 1 to each point. This translation moves the center
of the unit disk to the point -1 in the complex plane, which is the center of inver-
sion.

The second step entails inversion. The term 1-z in the denominator introduces
inversion about the unit circle. Inversion in the Unit Disk Model is equivalent
to reflection with respect to the boundary of D. This step reflects the translated
points across the unit circle according to the properties we have established about
inversion in the previous section.

The third step entails dilation and rotation. The multiplication by i rotates the
points obtained from inversion by 90 degrees counterclockwise and at the same time
scales the points.

Remark 4.9. Both (D,H) and (U,H) are models of the same abstract geometry,
namely hyperbolic geometry.

4.3. Why Isomorphism Preserves Invariant. In the final section, we look at
why the isomorphic map S is able to preserve the property of invariant between the
Unit Disk Model to the Upper-Half Plane Model. More specifically, we will look at
the invariant length for both models.

By Definition 3.3, we know that the length of a smooth curve γ in the Unit Disk
Model is defined as

(4.10) l(γ) = 2

∫ b

a

|z′(t)|
1− |z(t)|2

,

where z′(t) = x′(t) + iy′(t).

By Definition 3.20, we know that the length of a smooth curve γ in the Upper-
Half Plane Model is

(4.11) l(γ) =

∫ b

a

|z′(t)|
y(t)

dt,

where z′(t) = x′(t) + iy′(t).

In the remaining part of this paper, we derive equation (4.11) from equation
(4.10) with isomorphism S. Then, we explain why isomorphism necessarily pre-
serves invariant.
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Proof of Equation (4.11) by (4.10)

Proof. Let γ : z(t) = x(t) + iy(t), (a ≤ t ≤ b) be a smooth curve in the upper-half
plane. Then,

γ̂ : ẑ(t) = S−1(z(t)) =
iz(t) + 1

iz(t)− 1
.

We have that γ̂ is a smooth curve in the unit disk.

This implies that

|ẑ′(t)| = |(iz(t)− 1)iz′(t)− (iz(t) + 1)iz′(t)|
|iz(t)− 1|2

=
2|z′|

|iz − 1|2
.

Thus, we have

l(γ) = 2

∫ b

a

|ẑ′|
1− |ẑ|2

dt = 2

∫ b

a

2|z′|
|iz − 1|2 − |iz + 1|2

dt

=

∫ b

a

4|z′|
(1 + y)2 + x2 − (1− y)2 − x2

dt

=

∫ b

a

|z′|
y

dt.

□

We have shown that the length formula of the Upper-Half Plane Model can be
derived from the Unit Disk Model using the isomorphic map. This explores its
significance in how isomorphism maintains the property of invariant.

Theorem 3.11 shows that length is an invariant in the Unit Disk Model. This
can be denoted as l(T (γ)) = l(γ), for any smooth curve γ in the unit disk and any
transformation T in the hyperbolic group. We also know that the length of curve γ
in the unit disk can be translated to a different length of curve γ′ in the upper-half
plane by the isomorphic map S. The parametrization z′(t) of γ′ can be expressed
with respect to the parametrization z(t) of γ as the following relationship:

z′(t) = S(z(t)), a ≤ t ≤ b.

Therefore, we have that T (γ) = T (z(t)) = T (S−1z′(t)) = (T ◦ S−1)(z′(t)).

Let transformation U denote the composition of transformations T and S−1:
U = T ◦ S−1. Transformation T is in the transformation group H denoted by
equation (3.1), while transformation S−1 is the isomorphic map from the upper-
half plane to the unit disk: S−1 = iw+1

iw−1 . The resulting composition U can be
denoted of the form

Uz =
az + b

cz + d
, a, b, c, d ∈ R, ad− bc > 0.

This implies that U is an element of the transformation group H on the upper-half
plane U.
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By Theorem 3.11, since l(T (γ)) = l(γ), then

l(U(γ′)) = l(γ′).

This concludes that isomorphism preserves length as invariant in different models
of geometry.
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