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Abstract. As a fundamental work in the field of random geometry, Sheffield

[40] introduced the theory on conformal welding of Liouville quantum gravity
surfaces, establishing the first rigorous connection between two canonical ran-

dom fractal objects: SLE and LQG. This paper aims to be a self-contained

notes on [40], covering discussions from discrete models and necessary prelim-
inaries to general results about conformal welding of LQG surfaces in [7].
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1. Introduction

In the past few decades, Liouville quantum gravity (LQG) and Schramm-Loewner
Evolution (SLE) have played vital roles in physics and mathematics. Liouville
quantum gravity, first introduced by Polyakov in 1981 [34] in the context of bosonic
string theory, is a canonical model of a two-dimensional random surface. Schramm-
Loewner evolution, first introduced by Schramm in 1999 [36], is a canonical two-
dimensional random curve that does not cross itself. Both LQG and SLE enjoy a
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conformal structure, and have deep relationships with physics. In this article, we
will review some fundamental theorems about conformal welding of LQG surfaces
due to [40], which establishes the first rigorous connection between LQG and SLE.
In particular, it justifies that the “right” relationships between γ (parameter of
LQG) and κ (parameter of SLE) is κ ∈ {γ2, 16/γ2}.

Roughly speaking, an LQG surface with parameter γ (which we simply write
as γ-LQG in the remaining part of this paper) is a random two-dimensional Rie-
mannian manifold parameterized by a domain D ⊆ C whose Riemannian metric
tensor is eγh(dx2 + dy2). Here dx2 + dy2 is the Euclidean metric tensor, and h is
some variant of the Gaussian free field (GFF), which can be heuristically thought
of as an infinite Gaussian vector parameterized by D, with covariance given by the
Green’s function on D. Note that the above definition does not make literal sense
since h is a distribution, and certain regularization techniques are required for a
rigorous definition. Under the formal definition, an LQG surface would become an
equivalence class of measure space endowed with a conformal structure, where two
surfaces are in the same equivalence class if they differ by a conformal mapping.
Note that certain LQG surfaces can also be equipped with a metric space structure
or be identified with a mating of two continuum random trees, but these processes
would be hard and involved and would not be the focal point of this article. Still, it’s
worth mentioning that (generalized versions) of the theorems in [40] are important
contributors to [7], which justifies that some specific LQG surfaces are equivalent
to the peanosphere, a mating of two continuum random trees.

SLEκ is a one-parameter family of random fractal curves, and is uniquely char-
acterized by its two fundamental properties, conformal invariance and domain
Markov property. Heuristically speaking, the parameter κ characterizes the “speed”
of the curve, and as κ grows larger, the curve becomes “windier” (the author learned
this word from [42]) and the range of curve tends to be “denser”. Note that the the-
ory on conformal welding of LQG surfaces provides another perspective of certain
SLE’s, that is, the interface obtained from “gluing” two independent LQG surfaces.

The results in [40] can be interpreted in the following four aspects, where we
always fix γ ∈ (0, 2) and κ = γ2. For simplicity, we assume that all the LQG
surfaces in the following four aspects are parameterized by the upper half plane H.

(1) Stationarity property of SLE-decorated LQG (Theorem 4.1).

Suppose we start with a specific type of γ-LQG surface, decorated with an inde-
pendent SLEκ curve η0 parameterized by half-plane capacity (a natural paramer-
ization of SLE). The theorem says that, after we have explored the surface along
η0([0, t]), that is, some initial segment of the curve, the remaining surface deco-
rated with the undiscovered curve has the same law (modulo a conformal mapping
g̃t : H \ η0([0, t]) 7→ H) as the original one. In other words, the curve-decorated
surface has a stationarity property.

(2) Zipping up one LQG surface along the SLE curve (Theorem 4.16 and
Theorem 4.17); see Figure 3 for some visualization.

In aspect (1), the conformal mapping g̃−1
t : H 7→ H \ η0([0, t]) can almost surely

be continuously extended to a homeomorphism on the martin boundary. Under
this extended homeomorphism, boundary arcs of H are matched together, and the
identified arc is η0([0, t]). Therefore, as t changes, the dynamic exploration process
can be intepreted as “zipping up” one γ-LQG surface along the SLEκ curve, or
in other words, welding the boundary arcs of one γ-LQG surface together into an
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SLEκ curve. Both Theorem 4.16 and Theorem 4.17 give a stationary dynamic
zipping process of SLEκ-decorated γ-LQG; see Figure 3 for some visualization.
However, the underlying γ-LQG surfaces and the time parameterizations of the
zipping process are not the same. In particular, one time paramerization is the
natural parameterization of SLEκ curve, that is, the capacity parameterization,
and the other is the so called “quantum length parameterization” (which will be
explained in aspect (3)). In light of this, the two stationary zippers in Theorem 4.16
and Theorem 4.17 will be respectively called the capacity zipper and the quantum
zipper.

(3) A natural random length measure of SLE (Theorem 4.25).

A γ-LQG surface with metric tensor eγh(dx2 + dy2) and parameterized by H
can be endowed with a canonical quantum boundary length measure that can be
heuristically denoted by eγh/2dλ, where dλ is the Euclidean measure on the real
line. During the zipping procedure in aspect (2), boundary segments of H are
welded together into an SLEκ curve. Theorem 4.25 and its corollary, Corollary 4.26,
say that, almost surely, any two segments that are identified together have the
same quantum boundary length. Therefore, the quantum boundary length measure
eγh/2dλ gives rise to a random length measure of the SLEκ curve, and the “quantum
length parameterization” in aspect (2) is actually obtained by measuring the units
of quantum length being zipped.

(4) Conformal welding of two LQG surfaces (Theorem 4.29); see Figure 6
for some visualization.

We can also conformally weld two γ-LQG surfaces together, which may be viewed
as an infinite version of the zipping process in aspect (2). Theorem 4.29 says that, if
we glue together two specific independent γ-LQG surfaces (W1,W2) along boundary
segments in a quantum-boundary-length-preserving way and conformally map the
glued surface into H, then we will get a new γ-LQG surface W parameterized by
H, and the interface ζ will be an SLEκ independent with W. The independence
between W and ζ means that the geometric structure of the combined surface
yields no information of the conformal structure of the interface, which may be
quite surprising at first glance. Another translation of the theorem is to slice W
by ζ, and then get an independent pair of (W1,W2). It is worth mentioning that
(W1,W2) and (W, ζ) determine each other.

Although all the above contents, including the four aspects of our main theory,
are presented in a continuum manner, LQG and SLE are intimately related with
certain discrete models. We will give a brief explanation here; see Section 2 and
Appendix A for details.

A planar map is a graph embedded in the sphere C ∪ {∞}, viewed modulo ori-
entation preserving homeomorphisms from the sphere to itself. Roughly speaking,
LQG surfaces can be seen as continuum random surfaces weighted by the partition
functions of statistical physics models in two-dimensional conformal field theory,
and hence should be the scaling limits of random planar maps weighted by par-
tition functions of discrete statistical physics models. In addition, because of its
conformal invariance property, SLE also arises as a natural candidate of the scaling
limit for interfaces of critical statistical physics model. Therefore, as a collection of
the above two viewpoints, conformal welding of LQG surfaces can be interpreted as
a scaling limit of the discrete results with respect to random planar maps decorated
by interfaces of critical statistical physics models. This point of view also provides
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motivations and intuitions for our main theorems from the discrete side. In partic-
ular, it makes necessary the constructions of “scale-invariant” LQG surfaces that
serve as natural candidates for the scaling limits. Moreover, the relation κ = γ2

is also in line with the following coincidence: the critical statistical physics model
that generates the interfaces on random planar maps is exactly the model that us
used to reweight the planar maps.

We also mention here that there are generalizations and many related works of
[40]. An example is the seminal paper [7] (see [9] for a survey on main results and
applications of [7]). Indeed, [7] proves some generalized versions of the theorems in
[40]. These generalized theorems play central roles in the mating-of-trees theorem,
which lays foundations for the first rigorous convergence results for random planar
maps to LQG surfaces. We note here that part of these results can be seen as
the same results of [40], except that they are weighted on a different measure. In
addition, [40] is also closely related with imaginary geometry introduced in the
striking series of paper [27, 28, 29, 30].

This paper is organized as follows. Section 2 gives some motivations and intu-
itions of our main theorems from the discrete side. Section 3 gives the definitions
and some basic propertied of GFF, LQG and SLE, and also introduces a scale-
invariant LQG surface, the quantum wedge. Section 4 provides the statements,
proofs and ideas of the main results, following the order of the four aspects above.
Section 5 reviews some results of [7], which are generalizations of the main theo-
rems in this paper. Appendix A is about the relationships between the continuum
models with the discrete models, and can be seen as a complement of Section 2.

2. Motivations and intuitions from the discrete side

This section is devoted to giving some motivations and intuitions for some of our
main theorems in Section 4. For more relationships between the continuum models
and discrete models, see Appendix A.

We will study the discrete analog of the conformal welding theorem (Theo-
rem 4.29), that is, gluing two random planar maps decorated by some critical
statistical physics model; see Figure 1 for an illustration. We will specify the set-
ting under the case κ = 3/8 and γ =

√
3/8. We remark here that SLE3/8 is believed

to be the scaling limit of self-avoiding walk; see [20], while
√

8/3-LQG is believed to
be (and proved in certain cases, see [14, 9]) the scaling limit of random planar maps
decorated by a critical Bernoulli site percolation configuration. Note that in the
latter case, if we fix the number of vertices of the planar map, then the conditional
law of the underlying map is uniform. For more about scaling limit results with
regard to self avoiding walks on random planar maps, see [5, 12].

Fix an integer n. Let D be a sampl of uniform triangulation with simple bound-
ary, a marked point a on the outer face and exactly n edges, except that each
edge on the outer face is counted as half an edge (since after gluing two boundary
half edges will be identified with one interior edge). Denote by ℓ the boundary
length of D. By the bijection in [4] we know that ℓ is of order

√
n. We further fix

ℓ ∈ {[
√
n], [

√
n] + 1, [

√
n] + 2} such that n + ℓ is a multiple of 3, and by Euler’s

formula the number of vertices in D is then fixed to be (n+ ℓ)/3 + 1.
We can embedD into a two-dimensional manifold by endowing each triangle with

the metric of an equilateral triangle with side length one. The manifold can further
be endowed with counting measure on vertices of D normalized by the number of
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Figure 1. An illustration of gluing triangulations. Left: two
independent uniform triangulations (D1, a1) and (D2, a2) with n
edges and boundary length ℓ, which will be glued together along
the boundary. Right: a uniform triangulation (D, a) with 2n
edges, boundary length 2(ℓ− r) and decorated with a self-avoiding
walk started from a, obtained after gluing.

vertices. We then choose a conformal map ϕ that maps the above manifold to the
upper half plane H, under the requirement that ϕ(a) = 0 and the scaling be fixed so
that the area (under the pushforward measure) of unit (half) disk is a fixed integer
k < n. We can now consider the limit distribution (in the sense of weak topology)
of uniform distribution on (D, a) as k, n approach infinity in such a way that n/k

tends to infinity, and this limit should be a scale-invariant
√

8/3-LQG surface.
Now consider two independent uniform triangulations (D1, a1) and (D2, a2) with

n edges and boundary length ℓ. We uniformly choose r from {1, 2, . . . , ℓ − 1}
and glue these two triangulations together along a boundary segment of length
r, under the additional requirement that a1 and a2 is identified. Then we get a
new triangulation D with 2n edges, a simple boundary with length 2(ℓ − r), one
marked point a = a1 = a2 on the outer face, and one interface η obtained by
identifying two boundary arcs; see Figure 1. In addition, conditioned on (D, a),
the conditional distribution of η should be that of a self-avoiding walk conditioned
to connect a with another boundary point and have no more intersections with
the outer face. We then consider the scaling limit of (D, a, η) (in the same sense
as in the last paragraph), which (if exists) should again be a scale-invariant LQG
surface decorated by a continuous non-crossing curve. Note that there is no reason
to believe that the parameter of the new LQG surface is

√
8/3 since the marginal

distribution of D is not uniform. That being said, due to a universality conjecture
(see Appendix A for detail), the limit curve should still be an SLE8/3 independent
with the LQG surface. Furthermore, the two parts sliced from the limit surface
by the limit curve should be the scaling limit of (D1, a1) and (D2, a2), that is, two

independent scale-invariant
√
8/3-LQG surfaces.

The flavor of the quantum zipper theorem (Theorem 4.17) is like the following.
Since r is uniform in {1, 2, . . . , ℓ − 1}, for any (random) integer m, the law of r
and r+m are approximately the same as long as m/

√
n is (with high probability)

small. Therefore, in the welding procedure of last paragraph, if we zip up (or zip
down when m < 0) m more steps (if possible), then the resulting surface-interface
pair should approximately maintain the same law. We expect a similar property to
hold in the continuum case as in Theorem 4.17.
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3. GFF, LQG and SLE overview

In this section we introduce the necessary background for our main theorems,
including GFF, LQG and SLE. We will give the precise definitions and some impor-
tant properties related with these random objects. We may provide some heuristic
ideas or key observations, but detailed proof of the properties would not be given.
See [39], [2] and [3] for more detailed discussions.

3.1. Gaussian Free Field.

3.1.1. Zero-boundary GFF. We say a domain D ⊆ C is regular if Brownian motion
starting from any x ∈ ∂D a.s. hits Dc instantaneously. In this subsection, we
always assume that D is a proper regular domain of C. Roughly speaking, we want
to define the zero-boundary GFF on D as an infinite Gaussian vector (h(z))z∈D,
with its covariance structure given by

(3.1) E[h(z)h(w)] = GD
0 (z, w),

where GD
0 (x, y) is the Green’s function on D with zero boundary conditions. How-

ever, since GD
0 (z, w) has a log-singularity on the diagonal, the zero-boundary GFF

can only be understood as a random generalized function on D.
For generalized functions (which can be equivalently seen as measures) ρ1, ρ2,

we set

Γ0(ρ1, ρ2) :=
1

2π

∫∫
D2

GD
0 (z, w)ρ1(z)ρ2(w) d

2z d2w.

Denote by M0(D) the set of generalized functions ρ such that Γ0(ρ, ρ) is finite.
Indeed, one can prove that M0(D) is the Sobolev space H−1

0 (D) (the definition
of it would be explained later). In light of (3.1), it is then natural to have the
following definition (which is also a theorem) of zero-boundary GFF, that is, a
Gaussian process indexed by M0(D) with covariance sturcture given by Γ0.

Definition 3.2 (Zero boundary GFF). There exists a unique stochastic process
(h, ρ)ρ∈M0(D), which we call zero-boundary Gaussian free field or Dirichlet-
boundary Gaussian free field, such that for every ρ1, . . . , ρn ∈ M0(D), the
random vector ((h, ρ1), . . . , (h, ρn)) is a centered Gaussian vector with covariance
structure given by

(3.3) E[(h, ρ1)(h, ρ2)] = Γ0(ρ1, ρ2) =
1

2π

∫∫
D2

GD
0 (z, w)ρ1(z)ρ2(w) d

2z d2w.

We can show existence by Komolgorov’s extension theorem and uniqueness by
the fact that a stochastic process is uniquely characterized by its finite-dimensional
marginals.

Note that Definition 3.2 does not give much information about zero-boundary
GFF; it just claim that such a stochastic process exists and is unique. We then try
to seek a explicit and more doable form of (an instance of) zero-boundary GFF.

Let Sobolev space H1
0(D) be the Hilbert space completion of the set of smooth,

compactly supported functions onD with respect to theDirichlet inner product,

(3.4) (φ,ψ)∇ =
1

2π

∫
D

∇φ(z) · ∇ψ(z) d2z.

The Sobolev space H−1
0 (D) is both the image of H1

0(D) under Laplacian and the
dual space (or space of continuous linear functionals) on H1

0(D). For any ρ1, ρ2 ∈
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D0(D), we can find φ1, φ2 ∈ H1
0(D) such that −∆φi = 2πρi for i = 1, 2. Then by

Gauss-Green formula, or essentially integration by parts, we have

1

2π

∫∫
D2

GD
0 (z, w)ρ1(z)ρ2(w) d

2z d2w = (φ1, φ2)∇.

Therefore, if we set for i = 1, 2

(h, φi)∇ := (h, ρi),

then (3.3) becomes

(3.5) E[(h, φ1)∇(h, φ2)∇] = (φ1, φ2)∇,

which strongly suggests the following proposition.

Proposition 3.6 (Zero-GFF as a random Fourier series). Let Xn, n ≥ 1 be i.i.d
standard one-dimensional Gaussian random variables and {en}n≥1 be an orthonor-
mal basis of H1

0(D). Set for N ≥ 1

h(N) :=

N∑
n=1

Xnen.

Then for any ρ ∈ H−1
0 (D), (h(N), ρ) converges almost surely and in L2(P). Denote

the limit by (h, ρ) (where we abuse (·, ·) for L2 inner product). Then (h, ρ) is a
centered one-dimensional Gaussian random variable with variance Γ0(ρ, ρ). We
can thus construct and view (an instance of) zero-boundary GFF as a formal sum

(3.7) h := lim
N→∞

h(N) =

∞∑
n=1

Xnen.

Proposition 3.6 can be proved by martingale convergence theorem. Note that
for any ρ ∈ H−1

0 ,the law of (h, ρ) does not depend on the choice of the orthonormal
basis {en}n≥1.

Remark 3.8. Indeed, for any ε > 0, one can show that the random Fourier series
(3.7) converges almost surely in the Sobolev space H−ε

0 (D). Moreover, one can
show that the law of the limit does not depend on the choice the orthonormal basis
{en}n≥1. We can then try to define the zero-boundary GFF as this limit, which
has the following benefits compared with Definition 3.2:

(1) one obtain an explicit form of zero-boundary GFF;
(2) one can make use of properties of Sobolev spaces, including separability, de-

composition property and certain amount of regularity of its elements.

However, it is worth noting this new definition requires more regularity in ρ. In
particular, by law of large numbers, the random series (3.7) almost surely does not
converge in H1

0, so we cannot treat all ρ ∈ H−1
0 at the same time. That being

said, Definition 3.2 and the definition above are still consistent on the intersection
of their domains (which can be taken as Hϵ

0 for any ϵ > 0), and we can also take
advantage of (3.7) (at least as a formal sum) when using Definition 3.2 as our
definition. The only caveat is that, if we want to treat zero-boundary GFF as an
element in a Sobolev space with negative order but also consider its L2 product
with functions in H−1

0 at the same time, then some justification is needed. Such
nontrivial justification will be manageable in every case we encounter, and in this
article we will omit their proofs. From now on, the readers can forget about the
subtlety and exploit the merits of two definitions above at the same time.
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Remark 3.9. We choose the term “zero-boundary GFF” because of the choice of
Green’s function with zero boundary conditions in Definition 3.2 and because one
can choose the orthonormal basis {en}n≥1 as eigenfunctions of the −∆ on D, with
zero or Dirichlet boundary conditions.

We than provide some main properties of zero-boundary GFF. One important
property is the conformal invariance.

Proposition 3.10 (Conformal invariance). The law of zero-boundary GFF is con-
formally invariant, meaning that if h is the zero-boundary GFF on D and ϕ : D′ →
D is a conformal map, then h ◦ ϕ is the zero-boundary GFF on D′.

Proof. Proposition 3.10 follows directly from the conformal invariance of Green’s
function with zero boundary condition or Dirichlet inner product. □

Another important property about zero-boundary GFF is related with circle
averages. In the remaining part of this paper, we always write B(z, r) as the disk of
radius r around z. Let ρz,r be the uniform measure on ∂B(z, r). Then ρz,r ∈ H−1

0

(here we also see ρz,r as a generalized function). Therefore, one can also define for
r < dist(z, ∂D)

h(r)(z) := (h, ρz,r).

We then have the following proposition.

Proposition 3.11 (Circle averages). Fix z ∈ D. Let 0 < r0 < dist(z, ∂D) and
t0 = − log r0. For t ≥ t0, set

Bt := h(e
−t)(z).

Then (Bt)t≥t0 has the law of Brownian motion started from Bt0 .

Proof. Proposition 3.11 follows from computing the covariance structure by (3.3).
The key intuition here is that the speed of Brownian motion should match the order
of log-singularity at the diagonal of “covariance matrix” of h, which is one in this
case due to property of Green’s function with zero boundary conditions. □

It is shown in [8] that there exists a modification of h such that h(r)(z) is a.s.
jointly Hölder continuous of order 1

2 -, which is the same order as that of a standard
Brownian motion. In the remaining part of this paper, we always assume that h
has been replaced by such a modification, making the Bt in Proposition 3.11 truly
a Brownian motion.

The last important property is the decomposition of zero-boundary GFF. We
explain the rough idea here, and will omit the technical proof. In view of (3.7), if we
decompose the Sobolev space H1

0(D) as the direct sum of two orthogonal subspaces
H1 and H2, then in Proposition 3.6 we can choose an orthonormal basis of H1

0(D)
as the the disjoint union of an orthonormal basis of H1 and an orthonormal basis
of H2. By doing this, we can view h as sum of two independent formal sums, which
are “projections” of h onto H1 and H2.

Proposition 3.12 (Markov Property). Suppose h is a zero-boundary GFF on D.
Fix U ⊆ D open. Then we can write h = hsupp+hharm, where hsupp is zero outside
U and a zero-boundary GFF in U , hharm is harmonic in U , and hsupp and hharm
are independent.
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Proof. Proposition 3.12 follows from the decomposition

H1
0(D) = H1

0(U)⊕Harm(U),

where H1
0(U) is Sobolev space on U (whose definition is similar to that of H1

0(D)),
and Harm(U) consists of those generalized functions in H1

0(D) that are harmonic
on U . □

3.1.2. Free-boundary GFF and whole-plane GFF. Free-boundary GFF and whole-
plane GFF share many similarities with zero-boundary GFF. However, they are
both defined modulo constants, while zero-boundary GFF is not. For simplicity,
we only state results about free-boundary GFF case since it is our focus in the
main theorems, but one can also adapt them to the whole-plane GFF case. In this
subsection, we still assume that D is a proper regular domain of C. Note that the
whole-plane GFF case actually corresponds to D = C

Roughly speaking, the free boundary GFF on D is an infinite Gaussian vector
(h(z))z∈D, with its covariance structure given by

(3.13) E[h(z)h(w)] = GD(z, w),

where GD(z, w) a (choice of) Green function with Neumann boundary conditions
on D (or in the whole-plane GFF case, −2π log |z − w| + C with C an arbitrary
constant). However, since GD is defined only modulo constants, we can a priori only
define free-boundary GFF (or whole-plane GFF) as random generealized funtions
modulo constants. To be precise, let

(3.14) Γ(ρ1, ρ2) :=
1

2π

∫∫
D2

GD(z, w)ρ1(z)ρ2(w) d
2z d2w.

Denote by M̄(D) the set of generalized functions ρ̄ such that Γ(ρ̄, ρ̄) is finite and∫
D
ρ̄(z) d2z = 0. Also define

M(D) := {ρ = ρ̄+ φ : ρ̄ ∈ M̄(D) and φ is smooth, compactly supported in D}.
A priori, we can only define a free-boundary GFF as a Gaussian process indexed
by M̄(D). To solve this problem, we need to fix ρ0 ∈ M(D) \ M̄(D), declare
(h, ρ0) = 0, and then use linearity to give definitions for other ρ ∈ M.

Definition 3.15 (Free-boundary GFF). There exists a unique stochastic process
(h, ρ̄)ρ̄∈M̄(D), which we call free-boundary Gaussian free field or Neumann-

boundary Gaussian free field, such that for every ρ̄1, . . . , ρ̄n ∈ M0(D), the
random vector ((h, ρ̄1), . . . , (h, ρ̄n)) is a centered Gaussian vector with covariance
structure given by

(3.16) E[(h, ρ̄1)(h, ρ̄2)] = Γ(ρ̄1, ρ̄2) =
1

2π

∫∫
D2

GD(z, w)ρ̄1(z)ρ̄2(w) d
2z d2w.

Suppose we declare (h, ρ0) = 0 for some ρ0 ∈ M(D) \ M̄(D), then we can define

(h, ρ) = (h, ρ−
∫
D
ρ(z) d2z∫

D
ρ0(z) d2z

ρ0)

for each ρ ∈ M(D).

With the help of Gauss-Green formula, we can also get the counterpart of Def-
inition 3.2. We say two smooth functions are equivalent modulo constants if
their difference is a constant function. Let Sobolev space H̄1(D) be the Hilbert
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space completion of the set of smooth (not necessarily compactly supported, com-
pared with H1

0(D) in Section 3.1.1) functions on D with respect to the Dirichlet
inner product (3.4), defined modulo constants. Note that we define H̄1(D) modulo
constants to make (·, ·)∇ really be an inner product. In one word, (an instance of)
free-boundary GFF is a random Fourier series as in (3.7), except that {en}n≥1 is
now an orthonormal basis of H̄1(D).

Proposition 3.17 (Free-boundary GFF as a random Fourier series). Let Xn, n ≥ 1
be i.i.d standard one-dimensional Gaussian random variables and {en}n≥1 be an
orthonormal basis of H̄1(D). Then (an instance of) free-boundary GFF can be
expressed as

(3.18) h =

∞∑
n=1

Xnen,

where we see (3.18) as a formal sum in a similar way as Proposition 3.6.

Remark 3.19. Similar to the zero-boundary GFF case, the formal sum (3.7) does
converge almost surely in the Sobolev space H̄−ε(D) for any ε > 0, so we may think
of free-boundary GFF as an element in H̄−ε. Similar to Remark 3.9, this point of
view will bring both benefits and concerns, and in this paper we will also forget
about the necessary but subtle justification.

Remark 3.20. In defining H̄(D), we can equally start with smooth funcions on D
with Neumann-boundary conditions, and end up with the same space after taking
the closure with respect to (·, ·)∇. In particular, the orthonormal basis {en}n≥1 can
be chosen as the eigenfunctions of Laplacian with Neumann boundary conditions.

In parallel with Proposition 3.10, Proposition 3.11 and Proposition 3.12, we
can get properties of free-boundary GFF (and whole-plane GFF) with regard to
conformal invariance, circle averages and domain Markov property. Note that we
need to deal with different boundary conditions when giving the Markov property,
and usually we make hsupp still a zero-boundary GFF on U and include all the
boundary conditions on hharm, which is defined modulo constants. We can also
handle the boundary conditions via a “taking the even part” trick, which will be
discussed in the next subsection.

We choose to offer two other fundamental properties here. Note that in all these
cases the free-boundary GFF are viewed molulo constants, and one should proceed
with extra caution when the constant is fixed; see Remark 3.23.

One important property of free-boundary GFF is the semicircle average property.
Suppose h is a free-boundary GFF on D whose boundary has a linear segment L.
Let z ∈ L. Suppose for r ≤ r0 we have D ∩ ∂B(z, r) ⊆ L. For r ≤ r0, let ρz,r be
the uniform measure on the semicircle D ∩ ∂B(z, r). We can then define for r ≤ r0

h(r)(z) := (h, ρz,r − ρz,r0).

Similar to Section 3.1.1, we always assume that h has been replaced by a nice
modification such that h(r)(z) is continuous in z and r. We then have the following
proposition.

Proposition 3.21. Fix L ⊆ D and z ∈ L. Set t0 = − log r0. For t ≥ t0, set

Bt := h(e
−t)(z).

Then (Bt−t0)t≥t0 is
√
2 times of a standard Brownian motion.
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Proof. Proposition 3.21 follows from computing the covariance function by (3.16).
Note that different with Proposition 3.11, the Green’s function with Neumann
boundary conditions now has a log-singularity of order 2 at (z, z), which explains

the choice of the parameter
√
2 (Here we also note that the Green’s function with

zero boundary conditions does not have this property). □

The following proposition (which can also be generalized to the whole-plane GFF
case) has a similar flavour as Proposition 3.12.

Proposition 3.22 (Radial decomposition for half plane). Let h be a free-boundary
GFF (viewed modulo constants) on the half plane H. Then we can write h =
hrad + hcirc, where hrad (resp. hcirc) is constant (resp. has average zero) on each
semicircle centered at zero, and hrad and hcirc are independent. Note that hrad is
defined modulo constants, while hcirc has additive constants fixed.

Proof. Proposition 3.22 follows from the decomposition

H̄(H) = H̄R(H)⊕ H̄C(H),

where H̄R(H) (resp. H̄C(H)) are space of functions in H̄ that are constant (resp.
have average zero) on each semicircle centered at zero. □

Remark 3.23. Although it is sometimes helpful to specify the additive constant
of the free-boundary GFF, one should take care with conformal invariance, circle
averages and the ecomposition results. Let h be a free-boundary GFF on D and we
declare (h, ρ0) = 0 for some ρ0 ∈ M(D) \ M̄(D). Then the following holds (Note
that we state (3) and (4) in the setting of Proposition 3.22, and similar results also
hold for other decompositions).

(1) If ϕ is a conformal map, then the additive constant of h ◦ ϕ is also fixed. In
particular, if ϕ is a conformal map from D to itself, then h and h ◦ ϕ (viewed
as true random distributions) may not be equal in law.

(2) For z ∈ D (resp. z ∈ ∂D), the circle averages (resp. semicircle averages)

(h, ρz,e−t) evolves like a standard Brownian motion (
√
2 times a standard Brow-

nian motion) plus a random constant (h, ρz,1), where (h, ρz,1) may not be in-
dependent with the Brownian motion.

(3) In the setting of Proposition 3.22, hrad and hcirc may not be independent. To
be more specific, the additive constant of hrad is also fixed (according to ρ0),
but this constant may be random and may depend on hcirc.

(4) However, if ρ0 is well-chosen, then hrad and hcirc can be truly independent.
For example, we can let ρ0 be radially symmetric, that is, ρ0(z) = ρ(|z|) for
some generalizaed function ρ on R. In this case, the random additive constant
of hrad is independent with hcirc since (hcirc, ρ0) = 0.

3.1.3. Mixed boundary conditions and some technical results. This part could be
skipped on a first reading. Its main purpose is to introduce the notion of GFF with
mixed boundary conditions, to derive relationships with free-boundary GFF, and
to state some related technical results that will be useful in the proofs of our main
theorems.

To be concise, the definition of GFF with mixed boundary conditions is given as
a Fourier series (which is similar to (3.7) and (3.18)), and we omit the couterpart
to Definition 3.2 and Definition 3.15 here.
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Definition 3.24. Suppose D ∈ C is a regular domain and ∂D = ∂Z ∪ ∂F where
∂Z ̸= ∅ and ∂Z ∩∂F = ∅. The GFF on D with zero boundary conditions on ∂Z and
free boundary conditions on ∂F is constructed using a series expansion as in (3.18),
except that the space H1(D) is replaced with the Hilbert space closure with respect
to (·, ·)∇ of the subspace of smooth functions on D which have an L2 gradient and
vanishes on ∂Z .

Note that GFF with mixed boundary conditions is not defined modulo constants.
We now introduce the “taking the odd/even part” trick, which helps us to relate

GFF with different boundary conditions together. Given an instance of whole-plane
GFF h (defined modulo constants), if we define (in the sense of distribution)

(3.25) hO(z) :=
1√
2
(h(z)− h(z̄)), hE(z) :=

1√
2
(h(z) + h(z̄)),

then hO and hE are independent projections of h onto complementary orthogonal
spaces complemetary orthogonal spaces. Recall that the covariance structure of
a zero-boundary GFF on H, an (instance of) free-boundary GFF on H and an
(instance of) whole-plane GFF can be respectively given by (using z̄ to denote the
conjugate of z)

GH
0 (z, w) = − log |z − w|+ log |z − w̄|, (z, w) ∈ H2;

GH(z, w) = − log |z − w| − log |z − w̄|, (z, w) ∈ H2;

GC(z, w) = − log |z − w|, (z, w) ∈ C2.

Therefore, it follows from calculations with respect to Green’s functions that the
restriction of hO (resp. hE) to H has the same law as the zero-boundary GFF
(resp. free-boundary GFF, defined modulo constants) on H. In other words, a
zero-boundary GFF (resp. free-boundary GFF) on H is the odd/even part of a
whole-plane GFF.

Using the similar technique, we can also show that the “even part” of a Dirichlet
GFF on B(0, 1) is a GFF on H ∩ B(0, 1) with zero boundary conditions on H ∩
∂B(0, 1) and free boundary conditions on (−1, 1).

The following proposition is about another decomposition of free-boundary GFF
on H, and is an application of the above facts.

Proposition 3.26. Suppose that h is a free-boundary GFF on H (viewed modulo
constants). Let D+ := H∩B(0, 1). Then h can be decomposed into an independent
sum of hZF and hharm, where hZF is a GFF on D+ with zero boundary conditions
on H ∩ ∂D+ and free boundary conditions on (−1, 1), and hharm is a harmonic
function (viewed modulo constants) on D+ with free boundary conditions on (−1, 1).

Proof. Proposition 3.26 follows directly from taking the even part of the Markov
property with regard to the whole-plane GFF (counterpart of Proposition 3.12).
Note that the even part of a harmonic function has free bonndary conditions on
(−1, 1). □

The following proposition is an application of Proposition 3.26, and will be useful
in Section 3.3 and Section 4. Roughly speaking, it says that for a free-boundary
GFF h on H, its behavior close to the origin is approximately independent with
that far away from the origin. Moreover, if the additive constant of h is fixed so
that (h, ρ0) = 0 for some ρ0 ∈ M(H) \ M̄(H), then different choices of ρ0 will
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produce the same behavior at local neighbourhoods of the origin as long as ρ0 is
bounded away from the origin, which is not surprising given Proposition 3.26.

Proposition 3.27. Let h be a free-boundary GFF on H. Fix ρ0 ∈ M(H) \ M̄(H)
that is compactly supported outside of D+ and declare (h, ρ0) = 0. Let hZF be a
GFF on D+ such that it is independent with h and has zero boundary conditions on
H∩∂D+ and free boundary conditions on (−1, 1). Then the total variation distance
between the law of

(h|H\D+ , h|δD+) and (h|H\D+ , hZF |δD+)

tends to zero as δ → 0.

Proof. Given Proposition 3.26, the proof of Proposition 3.27 actually boils down
to controlling the Radon-Nikodym derivative of (hZF + hharm)|δD+ with respect to
hZF |δD+ (with hharm being the same as in Proposition 3.26); see [2, Corollary 5.37]
for detail. Note that the condition on ρ0 ensures that hharm is independent with
hZF ; see Remark 3.23. □

A corollary of Proposition 3.27 is the zero-one law of free-boundary GFF, which
has the same flavour as the Blumenthal zero-one law for Brownian motion.

Proposition 3.28. Suppose that h is a free boundary GFF on H with arbitrary fixed
additive constant and x ∈ R. For each δ > 0, let Fx,δ be the σ-algebra generated by
the restriction of h to H ∩B(x, δ). Then ∩δ>0Fx,δ is trivial.

Proposition 3.28 is also directly proved in [7, Lemma 7.2].

3.2. Liouville Quantum Gravity. Suppose h is a zero-boudary GFF or free-
boundary or whole-plane GFF (with arbitrary fixed additive constant) on a open
regular set D ⊆ C. Roughly speaking, a γ-LQG surface is the random two-
dimensional Riemannian manifold parameterized by a domain D ⊆ C whose Rie-
mannian metric tensor is eγh(dx2 + dy2), where γ ∈ [0, 2) is a fixed parameter. To
be more specific, we will consider the LQG area measure on D, which should be
intuitively defined by µh(dz) := eγh(z)dz. However, h is very rough, so we have to
somehow mollify h and let the oscillations cancel with each other. In light of Propo-
sition 3.11 and its counterparts, we consider for ε > 0 the following approximation
procedure

(3.29) µε(dz) := eγh
(ε)(z)εγ

2/2dz,

where h(ε)(z) is a jointly continuous version of the circle averages. Note that here

we choose the scaling constant γ2/2 because E[eγh(ε)(z)εγ
2/2] is a constant for every

z ∈ D. The following is both a theorem and a definition of LQG area measure.

Definition 3.30 (LQG area measure). Let D, h, µε be defined as above. It is
almost surely the case that as ε → 0, the measures µε converges weakly in D to
a limiting measure, which we call LQG area measure and denote by µ = µh =
eγh(z)dz. This remains true if we replace h with a non-centered GFF on D, that is,
if we replace h with h+ f where f is a deterministic, non-zero continuous function
on D. Note that if h is a free-boundary GFF or whole-plane GFF and we do not
fix the additive constant of h, then µh is only defined modulo multiple constants.
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[8] shows that the limit measure exists almost surely if ε is restricted to powers
of two, and [43] extends the result to unrestricted case. The proof of existence
of limit measure is somewhat technical, and requires a deep understanding of the
continuity properties of the map z → h(ε)(z).

Heuristically, under µh(dz) (which is intuitively eγh(z)dz), points where h is big
correspond to relatively big portions of the surface, while points where h is small
correspond to relatively small portions of the surface. The first kind of points are
“typical” points under the measure µh, while the second kind of points are points
that geodesics tend to to through.

In this paper, we will focus more on the first kind of points, which are called
thick points of the Gaussian free field h. Suppose U ⊆ D is a bounded domain and
z is a random point sampled according to µh(U) (normalized to be a probability
measure). (Note that E(µh(U)) is finite, making µh(U) almost surely finite.) It
turns out in Proposition 3.31 that conditioned on z, h has an extra log-singularity
of order γ at z, or in other words, z is a γ-thick point (see Remark 3.33). It also
implies that almost surely, µh is supported on γ-thick points.

Proposition 3.31. Let D, h, µh be as in Definition 3.30. When h is a free-
boundary GFF or whole-plane GFF, we arbitrarily fix the constant for h. Let U ⊆ D
be a bounded domain, and z be a point sampled according to µh(U) (normalized to
be a probability measure). Then with probability one we have

(3.32) lim
ε→0

h(ε)(z)

log(1/ε)
= γ,

where h(ε)(z) denotes the circle average of h on D ∩B(z, ε).

Proof. We only explain the intuition here. For a detailed proof, see [15, 8]. Recall
that the covariance structure of h is given by a Green’s function (see (3.1) and
(3.13)). Therefore, by (heuristically) applying the Girsanov’s theorem, tilting h by
eγh(z) should shift the mean of h by γGD

0 (·, z) (or GD(·, z) in the free-boundary
case), which is equal to −γ log | · −z| plus some bounded smooth terms. □

Remark 3.33. We actually know more about the “thick points”, which are atypical
from the point of view of Euclidean geometry but more typical from the view of the
associated quantum geometry. Indeed, call a point z α-thick if the Gaussian free
field h has an extra log-singularity of order α at z. Then the Hausdorff dimension
of the set of α-thick points is 2− α2/2. See [15] for a precise statement and proof.

Now let h be a free-boundary GFF on a regular domain D ̸= C where ∂D has a
linear segment L, with the additive constant of h fixed in an arbitrary way. We still
fix γ ∈ [0, 2). In this case, we want to associate with h an LQG length measure νh,
which is supported on ∂D and should be used to measure the quantum length of
∂D. This LQG boundary measure can be intuitively defined by νh(dz) = eγh(z)/2dz.
Note that here the multiplicative factor in the exponential is γ/2 instead of γ. The
reason for this choice is rather deep and is related with the KPZ formula; see [8]
for detail. One rough explanation is that we want to describe length, which is a
“one-dimensional” object, instead of area, a “two-dimensional” object.

Again, to rigorously define νh, some mollification is needed. In light of Proposi-
tion 3.21, we consider for ε > 0 the following approximation procedure

νε(dz) := eγh
(ε)(z)/2εγ

2/4dz,
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where h(ε)(z) is a jointly continuous version of the semicircle averages. We choose

the scaling constant γ2/2 because E[eγh(ε)(z)/2εγ
2/4] is a constant for every z ∈ D.

The following result, which is proved in [8], is both a theorem and a definition of
LQG boundary measure.

Definition 3.34 (LQG boundary measure). Let D, L, h, νε be defined as above.
It is almost surely the case that as ε → 0 (along the sequence of powers of two),
the measures νε converges weakly in D to a limiting measure, which we call LQG
boundary measure and denote by ν = νh = eγh(z)/2dz. This remains true if we
replace h with a non-centered GFF on D, that is, if we replace h with h+ f where
f is a deterministic, non-zero continous function on D.

For any finite segment E ⊆ L, E(νh(E)) is finite, making νh(L) almost surely
finite. We can then consider the counterpart of Proposition 3.31. Note that Propo-
sition 3.35 implies that νh is supported on “γ-thick points” on the boundary. This
intuition is helpful for understanding our main theorems, Theorem 4.17 and Theo-
rem 4.29.

Proposition 3.35. Let D, L, h, νh be as in Definition 3.34 (with the additive
constant for h fixed in an arbitrary way). Let E ⊆ L be a finite segment, and z be
a point sampled according to νh(E) (normalized to be a probability measure). Then
with probability one we have

(3.36) lim
ε→0

h(ε)(z)

log(1/ε)
= γ,

where h(ε)(z) denotes the semicircle average of h on D ∩ ∂B(z, ε).

Proof. The proof is the same as in Proposition 3.31, except that the exponent of νh
is γ/2 (instead of γ), and the free-boundary Green’s function has a log-singularity
of order 2 at (z, z). □

Remark 3.37. The measures µh and νh are special cases of a more general family
of random measures associated with log-correlated Gaussian fields in dimensions
d ≥ 2, called Gaussian multiplicative chaos.

Now in view of the conformal invariance of GFF (Proposition 3.10 and its coun-
terparts), we can try to parameterize the same LQG surface with different choices
of domain. From now on, we set for γ ∈ (0, 2)

Q :=
γ

2
+

2

γ
.

Let ϕ : D 7→ D̃ be a conformal map. Our regularization then implies a rule for
changing coordinates from D to D̃. Indeed, set

z̃ := ϕ(z) and ε̃ := |ϕ′(z)|ε.

Then under ϕ, a small circle of radius ε centered at z is mapped approximately into
a small circle of radius ε̃ centered at z̃, and we have

eγh
(ε)(z)εγ

2/2dz ≈ eγh
(ε̃)(z) ε̃γ

2/2

|ϕ′(z)|γ2/2

dz̃

|ϕ′(z)|2
.

This strongly suggests the following proposition,, which was first proved in [8].
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Proposition 3.38 (Coordinate change). Let D, h and µh be as in Definition 3.30.

Suppose ϕ is a conformal map from D to D̃. We set

(3.39) ϕ(h) := h ◦ ϕ−1 +Q log |(ϕ−1)′|.
Then µϕ(h) is almost surely the image under ϕ under the measure µh, that is, almost
surely, µϕ(h)(ϕ(A)) = µh(A) holds for all A ⊆ D. A similar result also holds for
D, h and νh in Definition 3.34 if ∂D and ∂(ϕ(D)) are both Jordan domains with

piecewise linear boundaries and ϕ extends to a homeomorphism from D to D̃.

Proposition 3.38 actually suggests a way to define the LQG boundary measure
νh on those D (whose boundaries may not be piecewise linear) such that D is a
simply connected Jordan domain on the Riemann sphere. In this case, one can use
the Riemann mapping theorem to construct a conformal map from the upper half
plane H to D which extends continuously to the boundary, and then define the LQG
boundary measure on D to be the pushforward of the LQG boundary measure on
H. Note that by Proposition 3.38 this definition is consistent with Definition 3.34.

Remark 3.40. Indeed, [43] showed that, if the regularized field h(ε)(z) is defined
via bump function averages instead of circle averages, then the we can still de-
fine µh in the same way as Definition 3.30, and the coordinate change formula in
Proposition 3.38 almost surely hold for all the conformal maps simultaneously.

Given Proposition 3.38, it is then rather natural to define an LQG surface as an
equivalence class.

Definition 3.41 (Quantum surface). A quantum surface is an equivalence class
of pairs (D,h) under the equivalence relation

(3.42) (D,h) ∼ (ϕ(D), ϕ(h)),

where ϕ is a conformal map and ϕ(h) is as in (3.39). An embedding of a quantum
surface is a choice of representative (D,h) from the equivalence class. A transfor-
mation of the kind described in (3.42) is called a coordinate change.

For k ≥ 1, a quantum surface with k marked points is an equivalence class
of elements of the form (D,h, x1, . . . , xk) with xi ∈ D for i = 1, 2, . . . , k, under the
equivalence relation

(3.43) (D,h, x1, . . . , xk) ∼ (ϕ(D), ϕ(h), ϕ(x1), . . . , ϕ(xk)).

A curve-decorated quantum surface is an equivalence class of triples (D,h, η)
under the equivalence relation

(3.44) (D,h, η) ∼ (ϕ(D), ϕ(h), ϕ(η)),

where we see a curve as a continuous map from a subset of R to D. For k ≥ 1, We
similarly define a curve-decorated quantum surface with k marked points
as a combination of (3.43) and (3.44).

3.3. Quantum wedge. Fix γ ∈ (0, 2). Suppose that h is a deterministic distribu-
tion and one somehow defines µh (resp. νh) as eγh(z)dz (resp. eγh(z)/2dz). Then
replacing h for h + C changes µh (resp. νh) by a factor of eγC (resp. eγC/2). In
other words, the surface described by h+C is a “zoomed in” version of the surface
described by h. Heuristically, when C → ∞, one only need to care about the local
property of the original quantum surface. For this reason, it will be nice to have a
quantum surface (where h is now random and µh/νh are now LQG area/boundary
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measure associated with h) that is invariant (modulo embeddings of quantum sur-
faces) in law under this zooming. Such a property may be thought of as a type of
scale invariance of quantum surfaces.

To be more specific, we want a random quantum surface (H, h̃) such that:

(1) For every C > 0, the law of (H, h̃) and (H, h̃+C) is the same (modulo embed-
dings).

(2) The surface (H, h̃) is associated with both an LQG area measure and an LQG
boundary measure, which are both not viewed modulo constants.

Note that (2) rules out h̃ as a zero-boundary GFF or a free-boundary GFF with
arbitrary fixed additive constant. First, although a zero-boundary GFF is scale-
invariant (modulo embeddings) by conformal invariance (Proposition 3.10) and the
coordinate change formula (Proposition 3.38), it is not associated with an LQG
boundary measure. Second, although scale-invariance trivially holds when a free-
boundary GFF is viewed modulo constants, it does not hold when the additive
constant is fixed.

[40] first introduced quantum wedge, which does have this invariance property.
Roughly speaking, a quantum wedge is the limiting surface that one obtains by
“zooming in” to a (non-centered) free-boundary GFF with a certain type of log-
singularity (with the additive constant fixed in an arbitrary way) close to a point
on the boundary; see Proposition 3.53. In particular, in view of Proposition 3.35,
zooming in to a (non-centered) free boundary GFF near a “quantum typical” point
sampled from the LQG boundary measure should yield a quantum wedge; see
Remark 3.54.

In the rest of this subsection, we fix γ ∈ (0, 2) and

Q :=
γ

2
+

2

γ
.

For θ > 0, define

W θ := {z ∈ C : arg(z) ∈ (0, θ)},
where we view W θ as a Riemann surface when θ ≥ 2π. Let hθ be a free-boundary
GFF on W θ with arbitrary fixed constant. We refer to the quantum surface
(W θ, hθ) as an unscaled quantum wedge. Although (W θ, hθ) itself is not scale-
invariant, analyzing it helps us to better understand the construction of scale-
invariant quantum wedges.

To start, set

α := Q

(
1− θ

π

)
.

Applying the coordinate-change formula on the conformal map z 7→ (π/θ) log(z),
we can parameterize (W θ, hθ) by (S, h + (α − Q)ℜ(z)), where S is the infinite
strip R × (0, π) and h is a free-boundary GFF on S (with its additive constant
fixed). Working on the strip S turns out to be convenient since we can decompose
h into a Brownian motion plus a “lateral noise”. To be precise, we can apply the
coordinate-change formula on the radial-lateral decomposition (Proposition 3.22)
and decompose h into

(3.45) h = hrad + hcirc,

where hrad (resp. hcirc) is constant (resp. has average zero) on each vertical
line. Note that both hrad and hcirc have additive constant fixed, but they might
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not be independent; see Remark 3.23. In addition, the circle-average property
(Proposition 3.21, adapted to coordinate-change) says that (hrad(t))t∈R behaves

like
√
2 times a a two-sided standard Brownian motion (plus some random constant

brought by the extra additive constant). So the radial part of h + (a − Q)ℜ(z) is
actually a drifted Brownian motion.

In the above setting, zooming in (S, h+ (a−Q)ℜ(z)), or in other words, adding
constants to h + (a − Q)ℜ(z), can be seen as keeping the lateral part hcirc fixed
and vertically translating the figure of the drifted Brownian motion.

Now, for every c ∈ R, the horizontal translation z 7→ z + c is a conformal
bijection from S to itself. Therefore, since quantum surfaces are defined modulo
embeddings (see Definition 3.41), two samples of drifted Brownian motion are also
in the same equivalence class if their figures can be horizontally translated into each
other. The problem is that, even if a drifted Brownian motion is defined modulo
horizontal translations, its law still changes after vertical translations. To settle
this, we replace the drifted Brownian motion with a closely related process.

Definition 3.46. Fix α ∈ (−∞, Q). Let h̃circ be the same as hcirc defined above
(note that hcirc does not depend on the way of fixing the additive constant for h).
We futher define

(3.47) h̃rad :=

{
B2s + (α−Q)s ifℜ(z) = s and s ≥ 0,

W2s + (α−Q)s ifℜ(z) = s and s < 0,

where Bt is a standard Brownian motion and Wt is another independent Brownian
motion conditioned so that W2t − (α−Q)t > 0 for all t > 0. Then an α-quantum

wedge is the quantum surface (S, h̃,−∞,∞) such that h̃ = h̃rad + h̃circ.

Remark 3.48. Note that in (3.47) we are actually conditioning on an zero probabil-
ity event. This can actually be made rigorous. Suppose Bt is a standard Brownian
motion and a > 0. Then (Bt + at)t≥0 conditioned to stay positive on R+ can be
defined by the weak limit as ε → 0 of the conditional law of (Bt + at)t≥0 condi-
tioned to stay above −ε. An equivalent definition begins with a standard Brownian
motion (Wt)t≥0, letting τ be the last time that Wt + at hits zero (this time is a.s.
finite due to the positive drift), and then taking (Bt)t≥0 := (Wt+τ )t≥0.

Remark 3.49. There is actually another definition of α-quantum wedge which
uses the Bessel process. Under this view, one can also define α-quantum wedge for
α ∈ [Q,Q+ γ/2). The quantum wedge in the α < Q case is called thick quantum
wedge and in the α ≥ Q case called thin quantum wedge; see Section 5.1 for details.

From Definition 3.46 we see that the law of α-quantum wedge is scale-invariant.

Proposition 3.50. For any C ∈ R, (S, h̃, 0,∞) and (S, h̃+C, 0,∞) have the same
law as quantum surfaces.

Proof. Given Definition 3.46, the proof actually boils down to analyzing the radial
part h̃rad. We only mention the key observation here and omit the technical details.

Observation: Suppose a < 0 and (Bt + at)0≤t≤τ is a drifted Brownian motion
started from c > 0 and stopped at the first time it hits zero. Then the reversal
process (Bτ−t+a(τ − t))0≤t≤τ evolves as a Brownian motion with drift −a, started
from zero, conditioned on staying positive for t > 0, and stopped at the last time
it hits c. □
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For convenience of future reference, we now apply the coordinate-change formula
to the conformal map z 7→ −e−z and shift the setting from (S,−∞,∞) to (H, 0,∞),
where H is the upper half plane. Note that in Definition 3.46, (3.47) actually
specifies the embedding of quantum wedge. We call this particular embedding the
circle average embedding. In the upper half plane case, if we use h(r)(z) to
denote the semicircle average of a distribution h on ∂B(z, r) ∩ H, then the circle
average embedding of h requires

sup{r > 0 : h(r)(0) +Q log r} = 0.

Fix α ∈ (−∞, Q). Let h be a free-boundary GFF on H, with the additive
constant fixed so that its average on H ∩ ∂B(0, 1) is zero. The circle average
embedding has the benefit that when restricted to H∩B(0, 1), an α-quantum wedge
(under the unit circle embedding) and h − α log | · | has the same law. Combining
this fact with the scale-invariance of quantum wedge, we see that an α-quantum
wedge h̃ has a well-defined LQG area measure µh̃ and LQG boundary measure
νh̃ as in Definition 3.30 and Definition 3.34, which are both not defiend modulo
constants and both satisfy the coordinate-change formula as in Proposition 3.38.

Proposition 3.50 says that h̃ is scale-invariant. We actually have a stronger result,
that is, if we zoom in (H, h−α log | · |) close to the origin, then the limit surface will
again be an α-quantum wedge. Moreover, the way of fixing the additive constant
for h is in fact unimportant, which is not surprising given Proposition 3.27. In
addition, if we replace h (with arbitrary fixed additive constant) with h+ φ where
φ is a deterministic smooth function on a neighbourhood of the origin, then the
limit result still holds. Roughly speaking, this is because the deterministic function
is approximately constant around the origin. In one word, the additive constant of
h and the extra function φ are minor parts, and the only thing that matters after
zooming in is the order of log-singularity at the origin.

Before stating this result, we shall specify the topology of convergence on the
set of quantum surfaces first. In the rest of this paper, we will always consider the
following topology.

Definition 3.51. We say that a sequence of doubly marked quantum surfaces
(H, hn, 0,∞) converges to the doubly marked surface (H, h, 0,∞) if the distribu-
tion which describes the circle average embedding of (H, hn, 0,∞) converges to the
distribution which describes the circle average embedding of (H, h, 0,∞).

Remark 3.52. Note that there are different ways to induce a topology on the set
of quantum surfaces, which does not make a big difference; see [40].

We now give the precise statement with regard to an α-quantum as a natural
limit surface under zooming in (which implies Proposition 3.50). In the following
proposition, when ρ0 is the uniform measure on H∩B(0, 1) and φ ≡ 0, the proof is
almost the same as in Proposition 3.50, while the complete proof for general cases
is subtle and will not be provided here.

Proposition 3.53. Let α ∈ (−∞, Q) and h be a free boundary GFF on H. Fix
ρ0 ∈ M(D) \ M̄(D) where ρ0 is compactly support away from the origin and de-
clare (h, ρ0) = 0. Let φ be a deterministic smooth function on a neighbourhood
of the origin. Let h̄ := h − α log | · | + φ. Then as C → ∞, the quantum sur-

faces (H, h̄+C, 0,∞) converge to the α-quantum wedge (H, h̃, 0,∞) in the sense of
Definition 3.51.
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Remark 3.54. Let h be as in Proposition 3.53 and νh be the LQG boundary
measure associated with h. In light of Proposition 3.35 and Proposition 3.53, if
z is a quantum typical point of νh, then zooming in near z should yield a γ-
quantum wedge. This viewpoint will be useful in understanding Theorem 4.17 and
Theorem 4.29.

3.4. Schramm-Loewner Evolution.

3.4.1. Ordinary SLEκ. SLEκ is a one parameter family of random fractal curves
introduced by Schramm [36] as a family of potential scaling limits for interfaces in
critical statistical physics models. SLEκ satisfies two properties that make them
appropriate for such limits: conformal invariance and domain Markov property. In
fact, these two properties also characterise SLEκ as a one parameter family.

Let us begin with some definitions with regard to the Loewner’s theorem.

Definition 3.55 ((Forward) Loewner evolutions in H). Suppose (ξt)t≥0 is a con-
tinuous real value function. For each z ∈ H define (gt(z))0≤t≤ζ(z) to be the maximal
solution to the (forward) Loewner equation

(3.56)
∂gt(z)

∂t
=

2

gt(z)− ξt
, g0(z) = z,

which exists by classical ODE theory. For t ≥ 0 define

Kt := {z ∈ H : ζ(z) ≤ t}.

We call (Kt)t≥0 the (forward) Loewner chain with driving function ξt. We
call (gt)t≥0 the (forward) Loewner flow. For every z ∈ H and 0 ≤ t ≤ ζ(z)
define

g̃t(z) := gt(z)− ξt.

We call (g̃t)0≤t≤ζt the centered (forward) Loewner flow.

Define for each t ≥ 0

Ht := H \Kt.

Then Ht is the image of H under the conformal map g−1
t . For each t ≥ 0, Kt is

bounded and Ht is a simply connected domain. We call sets like (Kt)t≥0 compact
H-hulls. Here in Definition 3.55 the time parameter t is parameterized by half-
plane capacity, meaning that for each t ≥ 0,

lim
t→∞

z(gt(z)− z) = 2t.

A continuous path η(t), t ≥ 0 in H is said to generate an increasing family of
compact H-hulls (Kt)t≥0 if H \Kt is the unbounded component of H \ η([0, t]) for
all t ≥ 0. The following is both the definition of chordal SLEκ on (H, 0,∞). and
a very hard theorem, which was proved in [35] for case κ ̸= 8 and in [21] for case
κ = 8.

Definition 3.57 (Chordal SLEκ on (H, 0,∞)). For κ > 0, SLEκ on (H, 0,∞) is
the random Loewner chain driven by ξt =

√
κBt, where Bt is a standard Brownian

motion. An SLEκ-path on (H, 0,∞) is the random curve (η(t))t≥0 given by

η(t) := g−1
t (ξt),

which is continuous and generates SLEκ almost surely.
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In some cases it will be more convenient to refer to the centered SLEκ, which is
obtained by translating the random hull Kt in Definition 3.55 by ξt for each t ≥ 0,
or in other words, substituting the maps (gt)t≥0 with (g̃t)t≥0.

Remark 3.58. In many cases, people use the term SLEκ to denote the SLEκ-path.
In this paper, the main theorems only care about SLEκ for κ ∈ (0, 4), in which case
SLEκ and SLEκ-path actually means the same thing, that is, a simple continuous
curve in H. Indeed, there are three phases for an SLEκ-path η.

(1) For κ ∈ (0.4], η almost surely does not touch itself or the real line. In addition,
H \ η is almost surely a Hölder domain.

(2) For κ ∈ (4, 8), η almost surely hits (but not crosses) itself and the real line but
does not hit a specific point, thus creating “holes” in H

(3) For κ > 8, η is almost surely space-filling.

Note that here we just explain the rough idea and omit the precise statement; see
[3] for detail. We also remark here that the result in (1) will be useful in the proof
of Theorem 4.29.

Two basic properties of SLEκ on (H, 0,∞) is scale invariance and domain Markov
property, which is guaranteed by the scale invariance and domain Markov property
of Brownian motion. In fact, these two properties also determine that the driving
function must be a Brownian motion of some diffusivity κ ∈ [0,∞).

Proposition 3.59 (Scale invariance and domain Markov property). Fix κ > 0.
Suppose a curve η(t)t≥0 is an SLEκ-path on (H, 0,∞). Then the following holds.

(1) (Scale invariance). (η(at))t≥0 has the same distribution as a1/2(η(t))t≥0.
(2) (Domain Markov property). For each stopping time τ for the driving func-

tion
√
κBt, the conditional law of the image of (η(t + τ))t≥0 under g̃τ given

(η(at))t∈[0,τ ] has the same law as (η(t))t≥0.

Scale invariance actually allows us to use conformal mapping to define SLEκ

(both as a curve and the hulls) on (D, a, b) for any simply connected domain D
and two marked points a, b on the boundary. In this case, we gets conformal
invariance and the domain Markov property still holds. We omit the precise
definitions here.

Remark 3.60. When a ∈ ∂D and b ∈ D, we may similarly define radial SLEκ

using radial Loewner chains.

The standard Loewner evolutions in Definition 3.55 should really be refered to as
forward Loewner evolutions, because they also have counterparts: reverse Loewner
evolutions. As we can see in Definition 3.55, the forward Loewner evolutions can
be encoded via an increasing family of compact H-hulls, where in each infinitesimal
increment of time, an infinitesimal new piece of hull is added “at the top”. In the
reverse Loewner evolutions, however, we get the new hull by adding the infinitesimal
new piece “at the root”, and the whole previous hull is “pushed into” the interior of
H by a conformal map. In particular, now the family of hulls may not be increasing.

Definition 3.61 (Reverse Loewner evolutions in H). Suppose (ξt)t≥0 is a contin-
uous real value function. For each z ∈ H define (ft(z))t≥0 to be the solution to the
reverse Loewner equation

(3.62)
∂ft(z)

∂t
=

−2

ft(z)− ξt
, f0(z) = z − ξt,
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which exists by classical ODE theory. In this case, for all t ≥ 0, ft is a conformal
map from H to some domain Ht. For t ≥ 0 define

Kt := H \Ht.

We call (Kt)t≥0 the reverse Loewner chain with driving function ξt. We call
(ft)t≥0 the reverse Loewner flow. For every z ∈ H and t ≥ 0 define

f̃t(z) := ft(z)− ξt.

We call (f̃t)t≥0 the centered reverse Loewner flow.

Compare (3.56) with (3.62), we can find that sign of the dt term has changed
from positive to negative, explaining why we use the term “reverse”.

We now give the definition of reverse SLEκ. Note that here we cannot construct
a reverse SLEκ-path as in the forward case since the curve that generates the hull
always grows “from the root”.

Definition 3.63 (Reverse SLEκ). For κ > 0, reverse SLEκ is the random reverse
Loewner chain driven by ξt =

√
κBt, where Bt is a standard Brownian motion. We

also define the centered reverse SLEκ, which is obtained by translating the random
hull Kt in Definition 3.61 by ξt for each t ≥ 0, or in other words, substituting the
maps (ft)t≥0 with (f̃t)t≥0.

In parallel with Proposition 3.59, we can still obtain scale invariance of (centered)
reverse SLEκ, but the domain Markov property no longer holds because of the
“growing from the root” nature.

One might guess that the reverse Loewner flow is actually a “reversed” forward
Loewner flow. This heuristics is true in some sense, as is shown in the following
(deterministic) proposition.

Proposition 3.64 (Symmetry for centered foward/reverse Loewner flow). Suppose
that (g̃t)t≥0 is the centered forward Loewner flow with driving function (ξt)t≥0. Fix
T > 0 and set for 0 ≤ t ≤ T

(ξ̂(t))t≥0 := ξT − ξT−t.

Let (f̃t)0≤t≤T be the centered reverse Loewner flow with driving function (ξt)0≤t≤T .
Then for every 0 ≤ t ≤ T ,

f̃t = g̃T−t ◦ g̃−1
T .

Proposition 3.64 can be proved by using (3.56) and the conditions to verify
(3.62). We can then use Proposition 3.64 and the reversibility of Brownian motion
to get the symmetry between forward SLEκ and centered reverse SLEκ. Note that
they are both “centered at zero”.

Proposition 3.65 (Symmetry for forward/reverse SLEκ). For any fixed T > 0,
the curve generated by a centered reverse SLEκ run up to time T and the curve
generated by a forward SLEκ run up to time T are equal in law.

Note that in Proposition 3.64 and Proposition 3.65 the result only holds for a
fixed T > 0 but not for a dynamic T . We emphasize again that this is because the
growing natures of the foward/reverse Loewner chain are very different.
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3.4.2. SLEκ(ρ). SLEκ(ρ) was first introduced in [19, 38] as a variant of ordinary
SLEκ process, where ρ = (ρ(1), . . . , ρ(n)) is a vector in Rn. An SLEκ(ρ) keeps track
of some additional force points (or marked points) on the boundary or in the interior
of the domain. These points are pulled toward or pushed away from the origin, and
the value of ρ encodes the direction and intensity of these additional forces. Similar
to SLEκ, SLEκ(ρ) also arises as scaling limits of interfaces in critical statistical
models, but these models may involve more complicated boundary behaviors.

In the following, we will give the definitions of (forward) SLEκ(ρ) and reverse
SLEκ(ρ), and then analyze a specific case that we will encounter in the proofs of
our main theorems. We will not provide rigorous statements or hard and technical
proofs about the uniqueness and existence of the solutions of the SDE’s (3.67) and
(3.71), and the readers can just focus on the form of these SDE’s. For more details
about SLEκ(ρ), see [19, 35].

Definition 3.66 ((Forward) SLEκ(ρ) on (H, 0,∞)). Fix ρ(1), . . . , ρ(n) ∈ R, x1, . . . , xn ∈
H \ {0} and κ > 0. Let ρ = (ρ(1), . . . , ρ(n)). (Forward) SLEκ(ρ) (or similarly
SLEκ(ρ(1), . . . , ρ(n))) with force points x1, . . . , xn is the random Loewner chain
(recall Definition 3.55 and (3.56)) with driving function (ξt)t≥0 satisfying the fol-
lowing SDE’s:

dξt =

n∑
i=1

ℜ(
−ρ(i)

gt(xi)− ξt
)dt+

√
κdBt,

dgt(xi) =
2

gt(xi)− ξt
dt, g0(xi) = xi; i = 1, . . . , n,

(3.67)

where Bt is a standard Brownian motion. Similar to Definition 3.57, we also define
the centered (forward) SLEκ(ρ), which is obtained by substituting the maps (gt)t≥0

with (g̃t)t≥0. In particular, when ρ is the zero vector, we just get the ordinary case.

Remark 3.68. Definition 3.66 can also be extended to the cases when there are
force points located infinitesimally to the left/right of zero (denoted 0− and 0+).
This is done by taking a limit in Definition 3.66. We will not give the precise
definition here.

Remark 3.69. Similar to Remark 3.58, in the specific setting of the proofs of our
main theorem, SLEκ(ρ) is actually a simple curve in H̄ (which may hit the real line
for some ρ).

In parallel with Proposition 3.59, from (3.67) we can see that the SLEκ(ρ) still
satisfies a form of scale invariance and domain Markov property as long as we keep
track of the force points and adapt the definitions. We can then use conformal
maps to define SLEκ(ρ) on general (D, a, b) as in the ordinary case. We omit the
precise statements here.

We then introduce the reverse SLEκ(ρ).

Definition 3.70 (Reverse SLEκ(ρ)). Fix ρ(1), . . . , ρ(n) ∈ R, x1, . . . , xn ∈ H \ {0}
and κ > 0. Let ρ = (ρ(1), . . . , ρ(n)). Reverse SLEκ(ρ) (or similarly SLEκ(ρ(1), . . . , ρ(n)))
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with force points x1, . . . , xn is the random reverse Loewner chain (recall Defini-
tion 3.61 and (3.62)) with driving function (ξt)t≥0 satisfying the following SDE’s:

dξt =

n∑
i=1

ℜ(
−ρ(i)

ft(xi)− ξt
)dt+

√
κdBt,

dft(xi) =
−2

ft(xi)− ξt
dt, f0(xi) = xi − ξt; i = 1, . . . , n,

(3.71)

where Bt is a standard Brownian motion. Similar to Definition 3.63, we also define
the centered reverse SLEκ(ρ), which is obtained by substituting the maps (ft)t≥0

with (f̃t)t≥0. In particular, when ρ is the zero vector, we just get the ordinary case.

Remark 3.72. In Definition 3.70 there might exist some random time τ such that
f̃τ (xi) = 0 for some i ∈ {1, . . . , n}. We will only consider (3.71) until this time.
How, we can still try to define the solution to (3.71) after τ ; see [7] for details.

Though the force points x1, . . . , xn still move under the forward or reverse
Loewner flow, they will feel some additional attraction or repulsion. Fix i ∈
{1, . . . , n}. In the forward case, the Loewner drift (the dt term in the second line
of (3.67)) is pushing gt(xi) away from the driving function ξt, or in other words,
pushing g̃t(xi) away from the origin. In the reverse case, the Loewner drift (the

dt term in the second line of (3.71)) is pulling f̃t(xi) to the origin. On the other
hand, from the first line in (3.67) and (3.71) we see that ρ(i) always indicates the
intensity of an additional repulsion that pushes the i-th force point away from ξt.

In the main theorems of this paper, we will focus on the special case when there is
only one force point x1 on the real line with weight ρ(1). In this case we will simply
write forward/reverse SLEκ(ρ(1)). For these two specific processes, the existence
and uniqueness results for (3.67) and (3.71) can be found in [7] and [27]. Moreover,
the forward/reverse SLEκ(ρ(1)) both have some relations with the Bessel process.
To be concrete, a Bessel process of dimension δ is the solution of the SDE

(3.73) dZt = dBt +
δ − 1

2

dt

Zt
, Z0 > 0.

Then from (3.67) we can see that g̃t(x1) is a Bessel process of dimension

(3.74) δ = 1 +
2(ρ(1) + 2)

κ
.

Similarly, from (3.71) we can see that f̃t(x1) is a Bessel process of dimension

(3.75) δ = 1 +
2(ρ(1) − 2)

κ
.

Remark 3.76. If δ ≥ 2, then a Bessel process of dimension δ started from zero
will almost surely be strictly positive for all positive times. If δ < 2, then from any
starting point the process will return to zero in finite time almost surely. This is
suggested by the fact that, for any integer n ≥ 2, Zt := ∥Bt∥ is a Bessel process
with dimension n, where Bt is a n-dimensional Brownian motion and ∥ · ∥ is the
Euclidean norm.

In Proposition 3.65 we use reversibility of a standard Brownian motion to get
the symmetry between forward SLEκ and reverse SLEκ. Here we will use a form
of reversibility of Bessel process, which is essentially the reversibility of a drifted
Brownian motion, to obtain a similar result. Indeed, if Zt is a Bessel process of
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dimension δ, then from (3.73) and Itô’s formula we see that the process logZt, when
parameterized by quadratic variation, is a Brownian motion with drift (δ − 2)/2.
The time reversal of this drifted Brownian motion is a Brownian motion with drift
(2 − δ)/2. Combining this fact with (3.74) and (3.75), one may guess that there
exists a symmetry between forward SLEκ(ρ

′
(1)) and reverse SLEκ(ρ(1)) with

ρ(1) + ρ′(1) = κ.

In fact, we have the following proposition.

Proposition 3.77 (Symmetry for forward/reverse SLEκ(ρ(1))). Fix κ > 0. Sup-

pose that (f̃t)t≥0 is the centered reverse flow for a reverse SLEκ(ρ(1)), with a single
force point of weight ρ(1) < κ/2 + 2 located at x1 > 0. Let τ be the first time that

f̃τ (x) = 0. Then H \ f̃τ (H) has the same law as an initial segment of a forward
SLEκ(κ− ρ(1)), with a single force point of weight κ− ρ(1) located at 0+, run until

the last time σ that g̃σ(0
+) = x1.

Proof. Here the condition ρ(1) < κ/2+2 guarantees that the stopping time τ is a.s.
finite; see Remark 3.76. The main idea has already been explained. We just point
out two key observations here. Note that Observation 1 has a similar flavor as the
key observation in Proposition 3.50, but they are not the same.

Observation 1: The time reversal of a Brownian motion with drift a > 0, started
from zero and stopped at its last hitting time of x > 0, has the same law of a
Brownian motion with drift −a, started form x and stopped at its last hitting time
of zero.

Observation 2: The time reversal of a Bessel process of dimension δ ∈ (0, 2),
started from y > 0 and stopped at its first hitting time of zero, has the same law as
a Bessel process of dimension 4− δ, started at zero and stopped at its last hitting
time of y. □

We end this subsection with Proposition 3.78, which heuristically says that a
reverse SLEκ(κ) and a reverse SLEκ(κ,−κ) are roughly the same if they share a
force point and the second force point of the reverse SLEκ(κ,−κ) is far enough.
Note that the choice of interval [1, 2] and the number 10 is rather arbitrary, which
only requires that the number has much longer distance to the origin than the
endpoints of the interval.

Proposition 3.78. Fix κ > 0. Suppose that (f̃t)t≥0 (resp. (f̃ ′t)t≥0) is the centered
reverse flow for a reverse SLEκ(κ) (resp. SLEκ(κ,−κ)) with a single force point at
x1 ∈ [1, 2] (resp. with two force points at x1 and 10). Let τx1

(resp. τ ′x1
) be the first

time that f̃τx1
= 0 (resp. f̃ ′τx1

= 0). Then for every the total variation distance

between (
f̃t(H) ∩B(0, δ)

)
0≤t≤τx1

and
(
f̃ ′t(H) ∩B(0, δ)

)
0≤t≤τ ′

x1

goes to zero as δ → 0, where we use B(0, δ) to denote the disk of radius δ around
the origin.

The proof of Proposition 3.78 is omitted here; see [2] for a detailed proof.
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Figure 2. An illustration of Theorem 4.1, which says that h̄T has
the same law as h̄0 when viewed as random distributions modulo
constants.

4. Conformal welding theorem

We divide this section into four parts, in correspondence with the four aspects
mentioned in Section 1. Section 4.1 describes one of the two couplings between SLE
and GFF stated in [40], which can be interpreted as the stationarity property of
an SLE-decorated LQG surface. Section 4.2 focuses on two ways of zipping up one
LQG surface along an SLE curve, the stationary capacity zipper and the stationary
quantum zipper. Section 4.3 further introduces a natural length measure of SLE,
that is, the quantum length of SLE on an LQG surface. Section 4.4 deals with the
conformal welding of two independent LQG surfaces into an LQG surface decorated
with an independent SLE-curve, or in other words, slicing an SLE-decorated LQG
into two LQG surfaces.

4.1. Stationarity property of SLE-decorated LQG. In this subsection, our
main goal is to prove the following theorem; see Figure 2 for an illustration. Though
first appearing in [40], the idea of this theorem goes back to two previous papers
[37, 6], and the technique of the proof is much similar to that of [37].

Theorem 4.1 (SLE-GFF coupling). Fix κ > 0. Let (g̃t)t≥0 be the centered forward
Loewner flow associated with a chordal SLEκ on (H, 0,∞). Let h be a free-boundary
GFF on H (view modulo constants) independent with (g̃t)t≥0. Write

(4.2) φ(z) :=
2√
κ
log |z| and Q :=

√
κ

2
+

2√
κ
.

Then for any fixed time T > 0, the following two random distributions (viewed
modulo constants) on H agree in law:

(4.3) h̄0 := h+ φ,

(4.4) h̄T := h̄0 ◦ g̃−1
T +Q log |(g̃−1

T )′|.

Under the setting of Theorem 4.1, let η0 be the SLE curve associated with
(g̃t)t≥0 and (Kt)t≥0 be the Loewner chain associated with η0 (which is equivalent to
(η0[0, t])t≥0 when κ ≤ 4). Then g̃T is a conformal mapping from H\KT to H, send-
ing η0(t) to 0 and ∞ to ∞. In addition, (4.4) is essentially the coordinate change
equation (3.39). Therefore, if γ ∈ {

√
κ, 2/

√
κ}, then Theorem 4.1 actually says that

(H, h̄0, 0,∞) (surface without any exploration) and (H \ KT , h̄0|H\KT
, η0(T ),∞)

(surface explored along η0 until time T ) have the same law as quantum surfaces
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with two marked points (recall Definition 3.41). Hence the theorem can be seen as
a stationarity property of SLE-decorated LQG. However, it is worth pointing out
that the statement of Theorem 4.1 is unrelated with LQG or quantum surfaces, and
unlike other main theorems, the result of Theorem 4.1 remains true even if κ ≥ 4.

Remark 4.5. From the derivation above we can see that the “right” relationship
between κ (as the parameter of an SLE curve) and γ (as the parameter of an LQG
surface) is κ ∈ {γ2, 16/γ2}, since under this condition we have

(4.6)

√
κ

2
+

2√
κ
=
γ

2
+

2

γ
,

and (4.4) can thus be translated into the coordiate change in (3.39).

To prove Theorem 4.1, we use the uniqueness of GFF as a Gaussian process
(recall Definition 3.15). The key point of the proof is to construct two (local)
martingales by means of Itô’s calculus. This technique is widely used to study SLE
[1, 35, 22, 23], and similar constructions also appeared in [37]. To construct the first
martingale, one need to select a proper constant Q, while the construction of the
second martingale is kind of a miracle and relies heavily on the boundary condition
(of Green’s function).

Proof of Theorem 4.1. Let the driving function of (g̃t)t≥0 be
√
κBt, where Bt is a

standard Brownian motion independent with h. Let (B̂t)0≤t≤T := (BT−BT−t)0≤t≤T

be the time reversal of Bt. Let (f̃t)0≤t≤T be the centered reverse Loewner flow (run

until time T ) with driving function (B̂t)0≤t≤T . Then (f̃t)0≤t≤T satisfy the SDE

(4.7) df̃t = − 2

f̃t
−

√
κdB̂t, for 0 ≤ t ≤ T.

By Proposition 3.64 we know that f̃T = g̃−1
T . In the rest of this proof, we always

consider the filtrations generated by the Brownian motion B̂t (not Bt!), that is,

Ft := σ(B̂s, 0 ≤ s ≤ t). We then have the following two key observations that can
be derived via Itô’s formula. We omit the calculations here.

Observation 1: The first martingale.
For t ≤ T set

(4.8) M∗
t :=

2√
κ
log f̃t +Q log f̃ ′t .

Then for any fixed t ≥ 0, by Itô’s formula we have

(4.9) dM∗
t =

1

f̃2t

(
2Q− 4√

κ
−
√
κ

)
dt− 2

f̃t
dB̂t.

In particular, by our choice of Q, M∗
t (z) is a continuous local martingale for every

fixed z ∈ H. Moreover, if we letMt := ℜ(M∗
t ), then by (4.9) the quadratic variation

between two continuous local martingales Mt(z) and Mt(w) is given by

(4.10) d⟨M(z),M(w)⟩t = 4ℜ
(

1

f̃t(z)

)
ℜ
(

1

f̃t(w)

)
dt.

Observation 2: The second martingale.
We then set

(4.11) GH(z, w) := − log |z−w| − log |z− w̄| and Gt(z, w) := GH(ft(z), ft(w)),
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where GH(·, ·) is one instance of Green’s function with Neumann boundary condi-
tions on H. Then for every z, w ∈ H we have

(4.12) dGt(z, w) = −4ℜ
(

1

f̃t(z)

)
ℜ
(

1

f̃t(w)

)
dt.

In particular, Mt(z)Mt(w) +Gt(z, w) is a continuous local martingale.
Conclusion of proof.
We now take an arbitrary smooth compactly supported function ρ on H with zero

average. By uniqueness of GFF, it suffices to prove that (h̄T , ρ) is Gaussian with
mean (φ, ρ) and variance Γ(ρ, ρ) (recall Γ(ρ, ρ) =

∫∫
H2 G

H(z, w)ρ(z)ρ(w) d2z d2w in
(3.14)). We have

(4.13) (h̄T , ρ) = (MT , ρ) + (h ◦ f̃T , ρ).

We claim that (Mt, ρ)t≥0 is an (Ft)t≥0-adapted continuous square-integrable mar-
tingale with quadratic variation

(4.14) ⟨M,ρ⟩t =
∫∫

H2

(GH(z, w)−Gt(z, w))ρ(z)ρ(w) d
2z d2w.

If this is true, then by (3.16) and independence between h and (B̂t)t≥0, conditioned

on FT , (h ◦ f̃T ) is a Gaussian random variable with mean zero and covariance∫∫
H2

Gt(z, w)ρ(z)ρ(w) d
2z d2w.

Combined with (4.13) and (4.14), it yields the desired conclusion.
Given (4.10) and (4.12), (4.14) is essentially a Fubini calculation, but it requires

some justification. We sketch the justification here. Indeed, from the centered
reverse Loewner equation (4.7), one can show that ℑ(f̃t)(z) is increasing for any
z ∈ H. Therefore, ℜ(f−1

t ), and thus d⟨M(z)⟩t and dGt, are uniformly bounded in
the support of ρ and for all times t. As a result, for any z in the support of ρ and
any time t, Mt(z) represents the value of a Brownian motion stopped at a random
time that is strictly less than a constant times t, and thus has a law that decays
exponentially, uniformly in z. One can then combine this and the fact that Gt has
uniformly bounded increments to justify the Fubini calculation. □

Remark 4.15. Theorem 4.1 is one of the two couplings between SLE and GFF
stated in [40]. The other coupling, which is closely related to imaginary geometry
but is independent with other main theorem in this paper, will not be given here.
But we emphasize that the flavours of these two results and techniques of their
proofs are essentially the same, and it won’t take us much more effort to prove
these two couplings together than proving only one of them. In particular, in
Theorem 4.1 we consider the free-boundary GFF and take the real part of the
martingale M∗

t , while in the other coupling we consider the zero-boundary GFF
and take the imaginary part of another complex martingale.

4.2. Zipping up one LQG surface along the SLE curve. In the rest of Sec-
tion 4, we fix κ ∈ (0, 4) and γ ∈ (0, 2) such that κ = γ2. This subsection is devoted
to proving the following two theorems; see Figure 3 for an illustration.

Theorem 4.16 (Capacity Zipper). There exists a two-sided stationary process
((h̄t, ηt))t∈R such that:
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(1) (Marginal law). h̄0 is the same as in (4.3) (a free-boundary GFF (viewed
modulo constants) plus the function 2γ−1 log |z|), and η0 is a chordal SLEκ

curve on (H, 0,∞) independent with h̄0;
(2) (Zipping). Let (g̃t)t≥0 be the centered forward Loewner flow associated with

η0 (recall Definition 3.55). Then for any t > 0, (h̄−t, η−t) = (g̃t(h̄0), g̃t(η0))
(recall (3.39) for notation). Note that by stationarity, this defines the law of
process for all time.

To state Theorem 4.17, the quantum zipper theorem, we need to recall some
definitions and properties in Section 3. Recall that for an α-quantum wedge h̃ on
H with parameter α < Q, one can associate it with an LQG boundary measure
νh̃ as in Definition 3.34 that satisfies the coordinate-change formula as in Proposi-
tion 3.38. Moreover, thanks to coordinate change and Riemann mapping theorem,
we can actually define νh̃ for those D (whose boundary may not be piecewise lin-
ear) such that D is a simply connected Jordan domain on the Riemann sphere. In
Theorem 4.17, we will take D as H\Kt for any t ≥ 0 where (Kt)t≥0 is the Loewner
chain generated by an SLEκ for some fixed κ < 4. Here we will use the fact that
SLEκ is a Hölder continuous curve; see Remark 3.58. Note that νh̃ is defined on
the martin boundary of H \Kt, so a priori we do not know that under νh̃, the left
hand side of the curve has the same LQG boundary length as the right hand side
of the curve.

Theorem 4.17 (Quantum zipper). There exists a two-sided process (H, h̃t, 0,∞, ζt)t∈R
that is stationary as a process of curve-decorated quantum surface with two marked
points (recall Definition 3.41) such that:

(1) (Marginal law). (H, h̃0, 0,∞) is a (γ − 2/γ)-quantum wedge in the circle
average embedding (recall Definition 3.46), and η0 is a chordal SLEκ curve on

(H, 0,∞) independent with h̃0;

(2) (Zipping). Let νh̃0
be the LQG boundary measure associated with h̃0. For any

t > 0, define σ(t) to be the first time that the LQG boundary measure length
(under νh̃0

) of the right hand side of ζ0([0, σ(t)]) reaches t, that is,

σ(t) := inf{s ≥ 0 : νh̃0
(RHS of ζ0([0, s]) ≥ t}.

Let (g̃t)t≥0 be the centered forward Loewner flow associated with ζ0. Then for

any t > 0, (h̃−t, ζ−t) = (g̃σ(t)(h̃0), g̃σ(t)(ζ0)). Note that by stationarity, this
defines the law of process for all time.

Similar to Section 4.1, Theorem 4.16 can also be interpreted into a result about
a two-sided stationary process of curve-decorated quantum surface (viewed modulo
additive constants). In this case, Theorem 4.16 and Theorem 4.17 have the same
flavour: moving forward in time corresponds to “zipping up”, welding the positive
and negative real line together, while moving backward in time corresponds to
“zipping down”, cutting the upper half plane open along the SLE curve; see also
Figure 3. However, unlike Theorem 4.16, which is stated without introducing LQG
surfaces, Theorem 4.17 essentially uses quantum wedge as well as the equivalence
class of quantum surfaces modulo embeddings.

We also make some remarks on the parameters in Theorem 4.17. There are three
parameters that matter: the parameter κ for the SLE curve, the parameter γ for
the LQG surface, and the parameter α for the quantum wedge. Note that α can
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Figure 3. An illustration of the two zippers in Theorem 4.16 and
Theorem 4.17. Here the negative and positive real line are two
“strands” of the zippers. Under welding or “zipping up”, semicir-
cular dots on R will be “zipped together” into circular dots at the
origin, while under cutting or “zipping down”, circular dots will
be pulled apart into semicircular dots at the origin.

also be interpreted as the order of the log-singularity at the origin. It turns out
that we must have

α = − 2√
κ
+ γ.

Roughly speaking, the term −2/
√
κ comes from Theorem 4.16, while the term γ

comes from the order of log-singularity of a quantum typical point. To be more
specific, intuitively, νh̄0

should be supported on {ζ0(σ(t))}t≥0. Therefore, by Propo-

sition 3.35, h̄0 should have log-singularity of order γ on {ζ0(σ(t))}t≥0. So for every

t > 0, h̃−t = g̃σ(t)(h̃0) should have another log-singularity of order γ at the origin.

The only place that κ = γ2 is needed here is to guarantee that (4.6) holds, which
ensures that (4.4) is equivalent to coordinate changes of γ-LQG surfaces.

Proof of Theorem 4.16. Let (h̄0, η0) be as in Section 4.1. Suppose (g̃t)t≥0 is the
centered reverse Loewner flow associated with η0. For any t > 0, let (h̄−t, η−t) :=
(g̃t(h̄0), g̃t(η0)). Let T be a positive number. By Proposition 3.59, Theorem 4.1
and the independence between h̄0 and η0, the laws of the one-sided processes
((h̄t−T , ηt−T ))t∈(−∞,T ] are consistent as T increases to ∞, and the result follows
from Kolmogorov’s extension theorem. □

For future reference, we state as a proposition a property of the stationary process
(h̄t, ηt)t∈R, which is a corollary of Theorem 4.16 and Proposition 3.64.

Proposition 4.18. Let ((h̄t, ηt))t≥0 be the nonnegative part of the stationary two-
sided process in Theorem 4.16. Then there exists a family of conformal maps
(f̃t)t≥0 : H 7→ H \ ηt([0, t]) such that h̄t|f̃t(H) = f̃t(h̄0) and ηt([t,∞]) = f̃t(η0).

In addition, the marginal law of (f̃t)t≥0 is that of a centered reverse Loewner flow
associated with a reverse SLEκ, parameterized by capacity. Note that for any t > 0,
since h̄t is independent with ηt, (f̃s)0≤s≤t are independent with h̄t.

We shall emphasize that (f̃t)t≥0 are not independent with h̄0. Indeed, they are
determined by h̄0; see Remark 4.33.

Theorem 4.17 is a much harder result. To prove Theorem 4.17, it suffices to prove
the following lemma, which can be viewed as the counterpart of Theorem 4.1.

Lemma 4.19. Let (H, h̃, 0,∞) be a (γ− 2/γ)-quantum wedge in the circle average

embedding, and νh̃ be the LQG boundary measure associated with h̃. Let ζ be a
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chordal SLEκ curve on (H, 0,∞) independent with h̃, and (g̃t)t≥0 be the centered
forward Loewner flow assoiated with ζ. For any T > 0, denote by σ(T ) the smallest
time such that the νh̃ boundary length of the right hand side of ζ([0, σ(T )]) reaches

T . Then for any T > 0, (g̃σ(T )(h̃), g̃σ(T )(ζ)) has the same law as (h̃, ζ) (modulo
embeddings).

Proof of Theorem 4.17 given Lemma 4.19. The proof follows in exactly the same
way as in the proof of Theorem 4.17 given Theorem 4.1. □

Using the notations in Proposition 4.18, we now briefly explain the proof of
Lemma 4.19, which consists of three steps; see also Figure 4. The first step is
“reweighting”: we consider a “quantum typical point” X sampled from the LQG
boundary measure νh̄0

, and then compute the conditional law of ((h̄t, ηt))t≥0 given
X. Since considering the conditioned law of h is equivalent to tilting h, we can use
Girsanov’s theorem on the Gaussian field h as well as the driving Brownian motion
of (f̃t)t≥0. Let τX be the first time that f̃τX (X) = 0. Combining Girsanov’s
theorem with the same techniques as in the proof of Theorem 4.16, it turns out
that for t ∈ [0, τX ], the conditional law of h̄t has an extra γ-singularity at the

point f̃t(X) (which is reasonable given Proposition 3.35), and (ηt[0, t])0≤t≤τX has
the law of a reverse SLEκ(κ,−κ) process (recall Definition 3.70) where X is one of
the force points. In particular, h̄τX has a (γ− 2/γ)-singularity at the origin and an
initial segment of ητX behaves like a forward SLEκ curve due to the symmetry for
forward/reverse SLE (recall Proposition 3.65 and Proposition 3.77). However, for
t ∈ [0, τX ], h̄t and ηt are not independent after this reweighting.

The second step is “zooming”: one zooms in (h̄τX , ητX ) at zero, or in other words,
adds a constant C to the field h̄τX and let C tend to ∞. The key point here is that
through zooming in one can ignore the secondary terms, thus creating a (γ− 2/γ)-
quantum wedge decorated with an independent SLEκ curve (both measured under
the reweighted measure). Then in the third step we construct a coupling to prove
stationarity. The key observation is that, the point XC that has quantum distance
1 to X under the zoomed-in measure νh̄τX

+C has almost the same law as X when

C is very large.

Proof of Lemma 4.19. Let (h̄t, ηt)t≥0 and (f̃t)t≥0 be as in Proposition 4.18, where
we fix the constant for h̄0 (which further fixes the constants for (h̄t)t≥0 due to their
construction) so that its unit upper semicircle average around 10 is zero. Note that
the way of fixing the constant is rather arbitrary as long as the measure is supported
a good distance away from the origin (recall Proposition 3.27 and Proposition 3.53).
We now elaborate the three steps mentioned above. We denote the law of (h̄t, ηt)t≥0

as P and set P := P×Leb[1, 2] where Leb[1, 2] is the Lebesgue measure on [1, 2].

For every x ∈ R, let τx be the first time that f̃t(x) = 0. For x ∈ R and r > 0,
write ρx,r for the uniform measure on the upper semicircle of radius r around x
and ρ̄x,r := ρx,r − ρ10,1.

Step 1: Reweighting.
We consider the law Q on the process (h̄t, ηt)t≥0 plus a point Z ∈ [1, 2] such that

• the marginal law of (h̄t, ηt)t≥0 is given by νh̄0
([1, 2])dP (normalized to be a prob-

ability measure);
• conditioned on (h̄t, ηt)t≥0, X is chosen uniformly from νh̄0

on [1, 2].

Our goal is to show that the following holds:
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Figure 4. An illustration of the proof of Lemma 4.19. Pictures
in the same row are in the same zipping process, while pictures in
the same column can be transferred into each other via zooming.
In addition, XC has almost the same law as X as C → ∞, and the
quantum boundary distances of [XC , X], which are marked with
red, remain the same in each row due to coordinate-change formula.
Lemma 4.19 follows from the fact that the diagram consisting of
the four pictures on the right is commutative. Top left: From
Proposition 3.35 we know that h̄0 should have a log-singularity of
order γ at quantum typical points XC and X, and (ηt[0, t])t≥0 be-
comes a reverse SLEκ(κ,−κ). Top middle and top right: When
X or XC is absorbed to the origin, the order of log-singularity at
the origin becomes γ − 2/γ, and the initial segment of the reverse
SLEκ(κ,−κ) behaves like a forward SLEκ. Bottom middle and
bottom right: A (γ−2/γ)-quantum wedge decorated with an in-
dependent forward SLEκ, obtained after zooming in the top middle
or top right picture.

(a) Conditioned on X, for every t ∈ [0, τX ], the law of ηt[0, t] is that of a reverse
SLEκ(κ,−κ) with force points X, 10, run up to time t;

(b) Conditioned on X, for every t ∈ [0, τX ] we can write

h̄t
d
= h+

2

γ
log | · |+ γ

2
GH(·, f̃t(X))− γ

2

∫
H
GH(·, f̃t(z))ρ10,1(z)d2z,

where h has the law of a free-boundary GFF that is independent of (f̃s)0≤s≤t,
and the way of fixing the additive constant for h is determined by that of h̄t.

To prove (a) and (b), we first prove similar results where h̄0 is substituted by its

circle averages h̄
(ε)
0 , and then take ε→ 0. For every ε > 0, define

h̄
(ε)
0 (dx) := (h̄0, ρ̄x,ε) and ν

h̄
(ε)
0
(x) := eγh̄

(ε)
0 (x)εγ

2/4dx.

For every ε > 0 ,define the probability measure Qε in the same way as Q, except

that we change h̄0 and νh̄0
into h̄

(ε)
0 and ν

h̄
(ε)
0
. Then the Radon-Nikodym measure

of Qε with respect to P is eγh̄
(ε)
0 (X)/2 times some normalizing constant.

Using the same notations as in the proof of Theorem 4.16, we define (Ft)t≥0 :=

(σ{B̂s, 0 ≤ s ≤ t})t≥0, where (B̂t)t≥0 is the driving function of (f̃t)t≥0. Note
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that from Proposition 4.18, Ft is independent with h̄t but is not independent with
h̄0. For t ≤ τX−ε, we define M∗

t , G
H, Gt as in (4.8), (4.11), and also define

Mt := ℜ(M∗
t ). Then similar to (4.13), we have the decomposition

(4.20) h̄
(ε)
0 (X) = (h̄0, ρ̄X,ε) = (Mt, ρ̄X,ε) + (h̄t −

2

γ
log | · |, ρ̄X,ε).

Since P is a product measure, under P(· | X), the first term of the right hand
side of (4.20) is still an (Ft)t≥0-adapted continuous square-integrable martingale
with quadratic variation ⟨M, ρ̄X,ε⟩t, and the second term is still a Gaussian random
variable independent with Ft with mean zero and variance

−⟨M, ρ̄X,ε⟩t + some constant

(
which is

∫∫
H2

GH(z, w)ρ(z)ρ(w) d2z d2w

)
.

Combine this with (4.20) and we get that for t ≤ τX−ε, the Radon-Nikodym deriv-
ative of Qε(· | X)|Ft

with respect to P |Ft
is exactly the exponential martingale

exp

(
γ

2
(Mt, ρ̄X,ε)−

γ2

8
⟨M, ρ̄X,ε⟩t

)
.

Moreover, by Schwartz reflection and the mean value theorem we have (Mt, ρ̄X,ε) =
MX −M10 for t ≤ τX−ε. Then by Girsanov’s theorem we get that under Qε(· | X),

B̂t− γ
2 ⟨B̂,MX −M10⟩t is a standard Brownian motion for t ≤ τX−ε. It then follows

from (4.9) that under Qε(· | X), dB̂t has a drift term of γℜ(f̃t(10)−1− f̃t(X)−1)dt.
Combining this with with Definition 3.70 and (3.71), we find that (a) holds under
Qε until time τX−ε. By taking ε→ 0 we find that (a) holds for Q.

Note that by Proposition 4.18 we have

(4.21) h̄
(ε)
0 (X) = (h̄0, ρ̄X,ε) = (h̄t|f̃t(H), ρ̄x,ε ◦ f̃

−1
t ).

By Proposition 4.18 we know that h̄t is independent with (f̃s)0≤s≤t, and is
distributed like a free boundary GFF plus a deterministic function γ log | · |/2.
Applying Cameron-Martin theorem on the Gaussian process h̄t and using change
of variable formula, for 0 ≤ t ≤ τX , under measure Qε(· | X, (f̃s)0≤s≤t),

(4.22) h̄t
d
= h+

2

γ
log | · |+ γ

2

∫
H
GH(·, f̃t(z))ρ̄X,ε(z)d

2z.

Since Green’s function is harmonic, for any 0 ≤ t ≤ τX−ε and any w ∈ f̃t(H \
B(w, ε)) (here we use B(w, ε) to denote the circle with radius ε around w),∫

H
GH(w, f̃t(z))ρX,ε(z)d

2z = GH(w, f̃t(X)).

Combining this with (4.22), we find that (b) holds under Qε until time τX−ε. By
taking ε→ 0 we find that (b) holds for Q.

Step 2: Zooming.
Taking t = τX in (b) we get that under Q(· | X),

(4.23) h̄τX
d
= h−

(
γ − 2

γ

)
log | · |+ some smooth terms,

where h is a free-boundary GFF on H (with additive constant fixed) that is in-

dependent of (f̃t)0≤t≤τX , and the extra log-singularity of order γ comes from the
Green’s function. To use Proposition 3.53, we need to analyze the additive constant
of h̄τX and also the last term on the right of (4.23). We claim that f̃τX (B(10, 1)) is
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supported away from the origin. This is because by the reverse Loewner equation
(3.71), under Q(· | X), for w ∈ B(10, 1) and X ∈ (1, 2),

∂
(
ℜ(f̃t(w)− f̃t(z)

)
∂t

=
2

f̃t(z)
−ℜ

(
2

f̃t(w)

)
=

2

f̃t(z)
−

2ℜ
(
f̃t(w)

)
∣∣∣f̃t(w)∣∣∣2 ,

which is positive as long as ℜ(f̃t(w)) > f̃t(X) > 0. Since this inequality is true at

time zero, we get that ℜ(f̃t(w))− f̃t(X) is increasing for all t ≤ τX , and the claim
thus follows.

Now for every C > 0, let ϕC(h̄τX + C) be the circle average embedding of
h̄τX + C. By Proposition 3.53, as C → ∞, ϕC(h̄τX + C) converges (in the sense of

Definition 3.51) to a (γ − 2/γ)-quantum wedge h̃.
It also follows by Lemma 4.19 that under Q(· | X), B(0, δ)∩ ητX can be coupled

with the intersection of B(0, δ) and a reverse SLEκ(κ) with a single force point
at X and run up to the first time X is absorbed to the origin, so that they are
equal with arbitrary high probability as δ → 0. By Proposition 3.77, the latter can
further be coupled with the intersection of B(0, δ) and a chordal forward SLEκ so
that they are equal with arbitrary high probability as δ → 0. Therefore as C → ∞,
under Q(· | X), ϕC(ητX ) converges in law to an SLEκ curve ζ on (H, 0,∞). The

independence of h̃ and ζ follows from the conditional independence between h and
ητX since the former is independent of FτX while the latter is measurable with
respect to FτX .

Step 3: Coupling.
Note that for any X, under Q(· | X), the pair (h̃, ζ) constructed in Step 2 has

the law of a (γ − 2/γ) quantum wedge decorated by an independent SLEκ curve.

Therefore, (h̃, ζ) still has this law without any conditioning under the reweighted

measure Q. Let σ(T ) be as in Lemma 4.19. Now given a sample ((h̃t, ηt)0≤t≤τX , X)

from Q and C > 0, let XC ∈ [0, X] be such that νh̄0
([XC , X]) = Te−Cγ/2. If this

is not possible, then we set XC = 0. Note that XC exists with arbitrary high
probability as C → ∞. In addition, if XC exists, then νh̄0+C([XC , X]) = T .

Since the total variation distance between XC and X goes to zero as C → ∞
due to the fact that νh̄0

([1, 2]) is finite a.s., the total variation distance (modulo

embeddings and measured under Q) between the law of (h̄τXC
+ C, ητXC

) and the

law of (h̃, ζ) tends to zero as C → ∞. By Proposition 3.38, if XC exists, zipping
down (h̄τX +C, ητX ) along ητX for LQG boundary length T (in a similar sense as in
the statement of Lemma 4.19) yields (h̄τXC

+C, ητXC
). The conclusion then follows

from taking C to infinity. □

Remark 4.24. Fix γ ∈ [0.2). Using the same technique as the last proof, one can
show that a γ-quantum wedge on H can be obtained by zooming in at a quantum
typical point of a free-boundary GFF (where the LQG boundary length has pa-
rameter γ), and that its law is stationary with respect to shifting the origin by a
given amount of quantum length. Note that the latter result is a generalization of
the translation invariance of H, which is simply the γ = 0 case.

4.3. A natural random length measure of SLE. In this subsection, we will
prove the following theorem; see Figure 5 for an illustration.
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Figure 5. An illustration of Theorem 4.25, which says that the
line segments [z−t , 0] and [0, z+t ] have the same quanmtum bound-
ary length under νh̃−t

. Note that by Corollary 4.26, the result still

holds if h̃0 is replaced with some general non-centered GFF.

Theorem 4.25 (Quantum length of SLE). Fix γ ∈ (0, 2) and κ = γ2. Let

(H, h̃t, 0,∞, ζt)t∈R, νh̃0
, (g̃t)t≥0, and (σ(t))t≥0 be as in Theorem 4.17. For ev-

ery t ∈ R, let νh̃t
be the LQG boundary measure (on R) associated with h̃t. For

every t > 0 and z ∈ ζ0([0, σ(t)]), let z
−
t < z+t (they are both in R) be the two images

of z under g̃σ(t). Then for every t > 0, almost surely,

νh̃−t
([z−t , 0]) = νh̃−t

([0, z+t ])

holds for all z ∈ ζ0([0, σ(t)]).

In one word, Theorem 4.25 says that, under the LQG boundary measure νh̃0
,

the right hand side of ζ0 has the same quantum boundary length as the left hand
side of ζ0. Note that then we can unambiguously regard the LQG boundary length
measure as a natural (random) length measure of SLE.

Before proving Theorem 4.25, let us state a corollary of it.

Corollary 4.26. The result of Theorem 4.25 still holds if we replace h̃0 with h+φ
and (h̃t)t≥0 as (g̃t(h+φ))t≥0, where h is a free boundary GFF on H (with arbitrary
fixed additive constant) and φ is a smooth function on H.

Proof. First, since multiplying the quantum boundary length by a random constant
does not affect the result, we see that the additive constant of h can be arbitrary.
Now if φ = −(γ − 2/γ) log | · | and the additive constant for h is fixed so that its
unit semicircle average is zero, then the restriction of h to H∩B(0, 1) has the same

law as that of h̃0 (under the circle average embedding). Therefore the statement is
true, at least when restricted to H ∩B(0, 1). Scale-invariance of h (viewed modulo
constants) implies that the result also holds when the field is restricted to any large
disk. Finally, for any compact subset D of H, adding another smooth function φ to
h affects the law of the restriction of h + φ to D in an absolutely continuous way.
So for general h and φ, the left and right quantum boundary length of ζ0 on D a.s.
agree. The conclusion then follows from expanding D to H. □

Given Theorem 4.17, we can use ergodic theorem to prove that the ratio of
the left quantum boundary length of ζ0[(0, σ(t)] to t (the right quantum boundary
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length of ζ0[(0, σ(t)]) is a (random) constant independent of t. We then use an zero-
one law argument to prove that this constant is deterministic, which then must be
one by symmetry.

Proof of Theorem 4.25. Denote by L(t) the left quantum boundary length of ζ0([0, σ(t)]),
that is, νh̃−t

([ζ0(σ(t))
−
t , 0]). It suffices to show that L(t) ≡ t.

By stationarity of the quantum zipper (see Theorem 4.17), we know that (L(t))t≥0

has stationary increments. Then by ergodic theorem we have

(4.27)
L(n)

n
→ Y a.s. as n→ ∞ in Z,

where Y is a random variable that is allowed to be infinity. (Note that in the
ergodic theorem, we can use a truncation argument and the monotone convergence
theorem to weaken the requirement that L(1) is L1-integrable to the condition that
L(1) is almost surely positive, which is the case here.) Then by the scale-invariance
of quantum wedge and SLE (see Proposition 3.50 and Proposition 3.59), for every
C > 0 and t > 0,

L(Ct)

Ct

d
=
L(t)

t
.

Combine this with (4.27) we see that almost surely,

(4.28)
L(t)

t
= Y, ∀t ∈ Q.

Let Gδ denote the σ-algebra generated by the restriction of h̃0 and ζ0 to H∩B(0, δ).
Then by (4.28), Y is ∩δ>0Gδ-measurable.

Let h be a free boundary GFF with the additive constant fixed so that its
average on the unit semicircle is zero. Then by Definition 3.46, when restricted to
H∩B(0, 1), h̃0 (under the circle average embedding) has the same law as h− (γ −
2/γ) log | · |. So by Proposition 3.28 and the Blumenthal zero-one law we see that
Y is deterministic, and then must be one by left-right symmetry. □

4.4. Conformal welding of two LQG surfaces. We will try to prove the fol-
lowing theorem in this subsection; see Figure 6 for an illustration.

Theorem 4.29 (Conformal welding). Fix γ ∈ (0, 2) and κ = γ2. Let (H, h̃, 0,∞) be
a (γ−2/γ)-quantum wedge in the circle average embedding, and ζ be an independent
SLEκ on (H, 0,∞). Let DL and DR be the left and right components of H \ ζ. Let

h̃D
L

and h̃D
R

be the restrictions of h̃ to DL and DR. Then the following holds.

(1) (DL, hD
L

, 0,∞) and (DR, hD
R

, 0,∞) are two independent γ-quantum wedges.

(2) (h̃, ζ) is almost surely determined by the two quantum surfaces (DL, hD
L

, 0,∞)

and (DR, hD
R

, 0,∞).

Remark 4.30. In fact, since ζ is independent of h̃ and is scale-invariant in law,
the choice of embedding for the quantum wedge h̃ does not matter as long as it is
independent with ζ. The same thing also hold for Theorem 4.17 and Theorem 4.25.

Let us first consider the proof of (1); see also Figure 7. We appeal to the
proof of Theorem 4.17 and consider the one-sided stationary process ((h̄t, ηt))t≥0

in Proposition 4.18 as well as a quantum typical point X, under the measure Q.
Let XL be the point on the negative real line such that νh̄0

[(XL, 0)] = νh̄0
[(0, X)].
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Figure 6. An illustration of Theorem 4.29. Left: two inde-
pendent γ-quantum wedges (under some arbitrary embedding),
which will be glued together along boundary arcs in a quantum-
boundary-length-preserving way. Right: A (γ − 2/γ) quantum
wedge (under the circle average embedding) decorated with an in-
dependent SLEκ on (H, 0,∞), obtained after welding.

By Theorem 4.25 we know that X and XL will be welded into one point, and
the right or the left quantum surface is obtained from zooming in near X or XL

respectively. Note that both X and XL are quantum typical points, so by Proposi-
tion 3.35, h̄0 should have a log-singularity of order γ at X (here the log-singularity
at the origin should not be counted). Then heuristically, after zooming in under
Q(· | X) (see Step 2 of the proof in Lemma 4.19), as the whole surface becomes
a (γ − 2/γ)-quantum wedge, the left and right quantum surface also become a γ-
quantum wedges (modulo embeddings). In our proof, we will use Proposition 3.53
to prove that the right quantum surface is a γ-quantum wedge, and then use left-
right symmetry of SLE-docorated quantum wedge to quickly show that the left
quantum surface is also a γ-quantum wedge.

Now to prove (1) we only need to show that the restrictions of h̄0 to tiny neigh-
bourhoods of X and XL are approximately independent under Q(· | X), which
should not be surprising in light of a similar result in Proposition 3.27. However,
the proof is somewhat technical.

Proof of Theorem 4.29(1). Consider the one-sided stationary process ((h̄t, ηt))t≥0,

the quantum typical point X, the measure Q and the conformal maps (f̃t)t≥0 as in
the proof of Lemma 4.19. LetDL andDR be the left and right components of H\η0,
and XL be the point on the negative real line such that νh̄0

[(XL, 0)] = νh̄0
[(0, X)].

Then we know that under Q(· | X), (DR, hD
R

, 0,∞) (resp. (DL, hD
L

, 0,∞)) is
the limit surface (in the sense of Definition 3.51) of (DR, h̄0|DR

+ C,X,∞) (resp.
(DL, h̄0|DL

+ C,XL,∞)) as C → ∞.

Since f̃0 is the identity map and GH has a log-singularity of order 2 in the
diagonal, by Step 1 (a) we know that under Q(· | X),

(4.31) h̄0
d
= h− γ log | · −X|+ some smooth terms,

where h is a free-boundary GFF on H with the additive constant fixed so that
the its average on H ∩ ∂B(10, 1) is zero, and the smooth terms are bounded in
a neighbourhood of X. Let 0 < δ < 1. Note that since X ≥ 1, conditioned on
νh̄0

([X−δ,X]) and the restriction of h̄0 to H\B(X, δ), the behavior of the restriction
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Figure 7. An illustration of proof of Theorem 4.29(1). Pictures
in the same row are in the same zipping process, while pictures in
the same column can be transferred into each other via zooming.
In addition, in the top left picture, from Proposition 3.35 we know
that h̄0 should have a log-singularity of order γ at quantum typical
points XL and X. Therefore, in the bottom left picture the two
quantum surfaces are γ-quantum wedges. Theorem 4.29(1) follows
from the fact that the above figure is commutative and an inde-
pendence argument.

of h̄0 to B(XL, δ) is known. We then consider the influence of this conditioning on
the behavior of h̄0 near X. We split this into two steps.

Step 1: First round of conditioning.
We first condition on the restriction to of h̄0 to H \ B(X, δ). In this case, by

Markov property (see Proposition 3.26) and (4.31) we can write

(4.32) h̄0 = hZF − γ log | · −X|+ some smooth terms,

where hZF is a GFF on H with zero boundary conditions on H∩∂B(X, δ) and free
boundary conditions on (X − δ,X + δ). Note that here the harmonic extension
part is added to the smooth terms, and this part is also bounded due to Schwartz
reflection. From now on, we only need to consider the influence of conditioning on
νh̄0

([X − δ,X]).
Step 2: Second round of conditioning.
After the first round of conditioning, condition on νh̄0

([X − δ,X]) is equivalent

to condition on νhZF ([X − δ,X]). So from now on we only work with hZF .
Consider a smooth function φ that is supported on U ⊆ B(X, δ) with U ∩ R ⊆

(X − δ,X). We also assume that φ is equal to one on some interval of U ∩ R and
φ(z) ∈ [0, 1] for all z ∈ B(X, δ). By the definition of GFF with mixed boundary
conditions (see Definition 3.24) we can write hZF = X1φ + hφ, where X1 is a
standard Gaussian variable and hφ is the projection of hZF onto the complement
of the span of φ, and X1 and hφ are independent. Then the restriction of νhZF to
∂U ∩ R is given by

νhZF = eX1φνhφ
,

where νhφ
is the LQG boundary measure associated with hφ.
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In particular, this implies that once we further condition on hφ, νhZF (∂U ∩R) is
almost surely given by an increasing smooth function of X1, where the smoothness
can be verified by differentiating with respect to X1 and noting that no matter
how many times we differentiate we obtain a compactly supported test function
integrated against νhφ

. This then implies that conditioned on hφ, the quantity νhZF

has a law which is absolutely continuous with respect to the Lebesgue measure and
has a smooth density function. Denote this densify function as ψ.

Pick δ′ < δ such that B(X, δ′) ∩ U = ∅. Let
ℓ := νhZF ([X − δ,X]).

Given the restriction of hZF to H \ B(X, δ′), rerandomizing hZF |H∩B(X,δ′) under

the conditioning of the value of ℓ is equivalent to rerandomizing hZF |H∩B(X,δ′)

without conditioning on ℓ, except that we need to reweight the law by (a quantity
proportional to)

ψ(ℓ− νhZF ([X − δ,X] \ ∂U)),

where the value above is viewed as a function of hZF |H∩B(X,δ′). As δ′ → 0, the

amount by which resampling hZF |H∩B(X,δ′) changes νhZF ([X − δ,X]) is a quantity
that converges to zero in probability. We can then conclude by smoothness of ψ
that the second round of conditioning affects the law of hZF |H∩B(X,δ′) by an amount
that tends to zero (in total variation sense) as δ′ → 0.

Conclusion of proof.
By (4.31) and Proposition 3.53 we know that as C → ∞, (DR, h̄0|DR

+C,X,∞)
converges to a γ-quantum wedge (in the sense of Definition 3.51). Then by the
left-right symmetry of a (γ − 2/γ)-quantum wedge we know that (DL, h̄0|DL

+
C,XL,∞) also converges to a γ-quantum wedge as C → ∞. It then follows from
Proposition 3.53 and the two rounds of conditioning above that, even conditioned
on (DL, h̄0|DL

, XL,∞), (DR, h̄0|DR
+C,X,∞) still converges to a γ-quantum wedge

(Note that here we need to adapt Proposition 3.53 by changing h into hZF , which is
also true due to Proposition 3.27). The independence of the left and right limiting
γ-quantum wedge, and thus the conclusion, then follows. □

We now move to the proof of Theorem 4.1(2), which follows from the conformal
removability of SLEκ for κ ∈ (0, 4). Here we say that a set E ⊆ C is comformally
removable if E satisfies that, for every homeomorphism ϕ : C 7→ C, if ϕ is conformal
on C \ E, then it is actually conformal on C.

Proof of Theorem 4.29(2). Let ϕL (resp. ϕR) be the unique conformal map from

DL (resp. DR) to H such that the image of
(
H, ϕL(hDL

), ϕL(0), ϕL(∞)
)

(resp.(
H, ϕR(hDR

), ϕR(0), ϕR(∞)
)
) is a γ-quantum wedge in the circle average embed-

ding. Suppose there is another candidate ((H, h̃c, 0,∞), ζc) that also gives rise to

the same two quantum surfaces (viewed modulo embeddings) (DL, hD
L

, 0,∞) and

(DR, hD
R

, 0,∞) when slicing H along ζc. We similarly define ϕLc and ϕRc .
Now by Theorem 4.25, (ϕLc )

−1 ◦ϕL and (ϕRc )
−1 ◦ϕR together extend to a homeo-

morphism ϕ from H itself, and ϕ can be further extended to a homeomorphism from
C to itself via Schwarz reflection. In addition, ϕ is also conformal on C \ (ζ ∪ ζ ′),
where ζ ′ is the reflection of ζ with respect to the real line. It is shown in [35] that
almost surely, C \ (ζ ∪ ζ ′) is a Hölder domain and the simple curve ζ ∪ ζ ′ is the
boundary of this domain (see also Remark 3.58) (using κ < 4). By [16, Corollary
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2] we know that ζ ∪ ζ ′ is a.s. removable, and therefore ϕ is actually a.s. conformal.
Since ϕ maps the origin to itself and maintains the real line, it must be a scaling.
So if we require that (H, h̃c, 0,∞) is in the circle average embedding, then ϕ must
be the identity map, and the conclusion follows. □

Remark 4.33. Using exactly the same technique as in the proof of Theorem 4.29(2),
one can also show that under the setting of Theorem 4.16, h̄0 actually determines
(f̃t)t≥0.

5. General comformal welding therory of LQG surfaces

In this section, we will briefly review some results in the groundbreaking paper
[7]. These results serve as generalizations of the theorems in [40]. Note that another
import part of [7] is the mating-of-trees theory which substantially rely on these
generalizations for its proof. To be self-contained, we do not include the mating-
of-trees theory here; see [9] for a detailed survey.

This section will be divided into two parts. Section 5.1 deals with more scale-
invariant quantum surfaces, and is a generalization of Section 3.3. Section 5.2
consists of generalized SLE/GFF couplings (generalizations of Theorem 4.1) and
generalized conformal weldings between LQG surfaces (generalizations of Theo-
rem 4.29).

5.1. Quantum cones and thin quantum wedges. Recall that in Section 3.3
we introduce the α-quantum wedge for α ∈ (−∞, Q) as a zoomed-in surface of
(W θ, hθ), where W θ is an infinite wedge with opening angle θ and hθ is a free-
boundary GFF (with arbitrary additive constant). Roughly speaking, the quan-
tum cone (with parameter α) is obtained in a same way, except that we replace
W θ by a cone Cθ obtained from identifying the left and right side of W θ according
to Lebesgue measure, and replace hθ by the whole-plane GFF on Cθ. Indeed, for
α ∈ (−∞, Q), an α-quantum cone can be defined by the analog of Definition 3.46,

where the strip S is replaced by a cylinder, the h̃circ part is replaced by the circular
part in the radial-circular decomposition of whole-plane GFF (which is an analog

of Proposition 3.22), and h̃rad remains the same.

We then show that, for α ∈ (−∞, Q), the radial part h̃rad can be encoded via a
Bessel process that starts at zero and has dimension (recall (3.73))

(5.1) δ = 2 +
2(Q− α)

γ
.

Indeed, let Zt be a Bessel process with dimension δ, started at ε > 0. Then since
δ > 2, almost surely, Zt does not hit zero and will fly to infinity as t → ∞. In
addition, by Itô’s formula, reparameterizing −2γ−1 log(Zt) so that it has quadratic
variation 2dt and satisfies inf{t : Zt = 1} = 0 yields B2t + (α−Q)t, where Bt is a
standard Brownian motion that starts from log(ε) and hits 0 for the first time at
time zero. We then get the desired result by sending ε to 0.

The above paragraph actually suggests a way to introduce α-quantum wedge
for α ∈ [Q,Q + γ/2), which corresponds to δ ∈ (1, 2]. In general, we will call a
quantum wedge with parameter α ∈ (−∞, Q) (resp. α ∈ (Q,Q+ γ/2)) as a thick
quantum wedge (resp. thin quantum wedge). Note that although we can
encode a quantum cone via a Bessel process in a similar way, it is unnecessary (at
least in [7]) to define α-quantum cone for α ∈ [Q,Q+ γ/2).
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To be more precise, when δ = 2, we actually have the same story as the paragraph
before last. When δ ∈ (1, 2), Zt has infinitely many excursions from zero. For each
excursion (Zt)a≤t≤b, (2γ

−1 log(Zt))a≤t≤b has a unique reparameterization that has
quadratic variation 2dt and hits its (unique) maximum at time zero. We can then
define a finite area quantum surface by taking its radial part as this reparameterized
process, and define an α-quantum wedge (with α given by (5.1)) by concatenating
the chain of finite area quantum surfaces in the same order as their associating
excursions. Note that by Itô excursion decomposition we see that the excursions
form a Poisson point process on E × (0,∞), where E is the space of excursions
from zero. In other words, a thin quantum wedge is a concatenation of infinite
Poissonian “bubbles” of finite area quantum surfaces. We also remark here that
the law of γ-LQG area of these bubbles coincides with the law of the lengths of the
excursions of Z from zero.

It is worth mentioning that since a Bessel process of dimension δ < 2 conditioned
to be non-negative yields a Bessel process of dimension 4 − δ, the behavior of
the “bubble” near one of its marked points (that is, the point corresponding to
the starting point of the excursion) locally looks like a thick quantum wedge. In
addition, when α = 2Q−γ or equivalently δ = 3−4/γ2, the “bubbles” are actually
called quantum disks.

5.2. Extensions of Theorem 4.1 and Theorem 4.29. For conciseness, we
might not give the precise statement of the theorems; see [7] for details.

We begin with the generalized SLE/GFF coupling, where we only state the result
for chordal SLE. Fix κ > 0 and Q =

√
κ/2+2/

√
κ. Suppose that we have a reverse

SLEκ(ρ) process (recall Section 3.4.2) with force points located at x1, . . . , xk ∈ H of

weights ρ(1), . . . , ρ
(k) ∈ R, associated with its centered reverse Loewner flow (f̃t)t≥0.

We also set

h̄0 := h+
2√
κ
log | · |+ 1

2
√
κ

k∑
i=1

ρ(i)GH(f̃t(xi, f̃t(·)),

where h is a free-boundary GFF on H (viewed modulo constants) and GH is as in
(4.11). Theorem 5.1 of [7] says that, for any time t > 0, we have

h̄0
d
= h̄0 ◦ f̃t +Q log |f̃ ′t |,

where both sides are viewe as distributions modulo constants. Just like the reweight-
ing step in the proof of Theorem 4.17 (see (a)), this theorem can be seen as the
generalization of Theorem 4.1 in that the results are the same, except that we need
to measure them in a tilted measure. In addition, the proof is also almost the same
and we need to cook up two martingales. Besides, although the theorem itself is not
related with LQG surfaces, we can understand it as the Domain Markov property
of certain γ-LQG surfaces where γ ∈ {

√
κ, 2/

√
κ}.

We now move on to the generalized conformal welding theorems. From now on,
we fix γ ∈ (0, 2), κ = γ2 and Q = γ/2+2/γ. We define the weight of an α-quantum
wedge (with α ∈ (−∞, Q+ γ/2)) and an α-quantum cone (with α ∈ (−∞, Q)) as

Wwedge := γ
(γ
2
+Q− α

)
and W cone := 2γ(Q− α).

Here Wwedge and W cone are always positive numbers. Note that the thick (resp.
thin) quantum wedge corresponds to Wwedge ≥ γ2/2 (resp. Wwedge ∈ (0, γ2/2)).
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Let positive numbersW,W1,W2 satisfyW =W1+W2. In one word, Theorem 1.2
of [7] says that, slicing a quantum wedge with weight W (paramerized by H under
arbitrary embedding) by an independent chordal SLEκ(W1−2,W2−2) on (H, 0,∞)
with force points located at 0− and 0+ yields two independent quantum wedges with
weights W1 and W2. When W < γ2, the SLE curve is replaced by a concatenation
of independent SLEκ(W1−2,W2−2) curves on the chain of quantum disks. In other
words, gluing two quantum wedges with weights W1 and W2 along the boundary in
a (γ-LQG) boundary-length-preserving way yields a quantum wedge with weight
W decorated by the interface SLEκ(W1−2,W2−2). Moreover, the curve-decorated
wedge and the two independent wedges with weights W1 and W2 determine each
other. In particular, when W1 = W2 = 2, we get exactly Theorem 4.29. It is also
worth noting that the SLEκ(W1−2,W2−2) on (H, 0,∞) almost surely hits (−∞, 0)
(resp. (0,∞)) if and only if W1 < γ2 (resp. W2 < γ2), which coincides with the
threshold of a thin/thick quantum wedge. When the curve does hit one side of the
real line, it then creates a thin quantum wedge on that side.

Theorem 1.5 of [7] also have a similar flavour, which says that for any W >
0, slicing a quantum cone with weight W (parameterized by C under arbitrary
embedding) by an independent whole-plane SLEκ(W − 2) on (C, 0,∞) yields a
quantum wedge of weight W . In other words, gluing the boundary of a quantum
wedge with weightW to itself in a (γ-LQG) boundary-length-preserving way yields
a quantum cone with the same weight W . Here the whole-plane SLEκ(W ) on
(C, 0,∞) is a SLE-like random continuous curve between 0 and ∞, driven by a
while-plane Loewner evolution and being sacle-invariant in law. In addtion, it
almost surely has self-intersections if and only if W < γ2, also coinciding with the
threhold of quantum wedge. See [30, 7] for detail.

We end up with a final remark. The proof of the last two theorems in [7] is
much analogous to the proof of Theorem 4.29. In particular, it takes the SLE/GFF
coupling as an input, and introduces the “quantum natural time” as the LQG
analog of the natural parameterization for SLEκ(ρ), which is the counterpart of
γ-LQG-boundary-length parameterization as in the quantum zipper theorem (The-
orem 4.17). Similar to Theorem 4.17, [7] proves that the laws of certain types
of quantum wedges are invariant under zipping/unzipping according to quantum
natural time. In addition, this proof also relies on understanding the local behav-
ior of the LQG at a “quantum typical point” (except that the LQG measure has
changed), playing around with the order of log-singularities.
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Appendix A. More relationships with the discrete models

This appendix is devoted to explaining some relationships between SLE, LQG
and the discrete models, and can be seen as a complement of Section 2.

Random planar maps may converge to LQG surfaces in different types of topol-
ogy; see [42] for an overview on the different perspectives. Random planar maps
can be seen as compact metric spaces equipped with graph distances, and may con-
verge to LQG surfaces equipped with their LQG metrics, in the sense of Gromov-
Hausdorff topology. So far, this type of convergence has been established for uni-
form random planar maps, and the scaling limit is called Brownian map (see [24,

26]), which is equivalent to certain LQG surfaces with γ =
√

8/3 (see [31, 32, 33]).
Some random planar maps (including those decorated by uniform spanning trees,
critical percolations, bipolar orientations, Schnyder woods, etc.) can also be en-
coded by random walks via mating-of-trees bijections, and are shown to converge
to certain LQG surfaces (seen as peanospheres) encoded by Brownian motions via
continuum analog of mating-of-trees bijections, in the sense of peanosphere topol-
ogy; see [41, 4, 11, 25, 17]. Random planar maps reweighted by partition functions
of statistical physics models can as well be embedded into the sphere C ∪ {∞},
and one can ask whether the map equipped with normalized counting measure on
vertices converge to certain LQG surfaces equipped with LQG area measures, in
the sense of weak topology; see [14, 13]. Note that no matter what kind of topology
we are considering, the limit object, as a scaling limit, should be scale-invariant,
leading to the natural construction of quantum wedge discussed in Section 3.3 (and
also other LQG surfaces enjoying conformal invariance).

Although the scaling limits are all LQG surfaces, they feature different structures
because of the difference in topology of convergence: Brownian maps are endowed
with metric space structures; LQG surfaces seen as peanospheres are endowed with
tree structures; LQG surfaces seen as measure spaces are endowed with conformal
structures. In addition, the first two convergence results were directly motivated by
discrete models, and their proofs rely heavily on discrete bijections between random
planar maps and simpler objects like trees or random walks. The third perspective,
on the other hand, was motivated more from the continuum side, closely related to
the KPZ formula introduced in the influential paper [18].

Though we believe these different definitions are consistent, or in other words,
they are different aspects of the same universal object, proving this turns out to be
very difficult and complicated, and there are still numerous conjectures with regard
to these equivalence results.

In this article, we choose to focus on the third kind of convergence because
of its closer and more direct connection with conformal structures and SLE. In
this case, there are still various ways of embedding planar maps into the sphere,
including Tutte embedding, Cardy embedding, and circle packing, etc. We save
the precise definitions here, but shall refer to the notion of universality. Indeed,
random planar maps weighted by the partition function of a same statistical physics
model are believed to lie in the same universality class, meaning that the normalized
counting measure shall converge to an LQG area measure with the same parameter
γ, no matter what type of planar maps we consider and what type of embedding
we choose. Examples of universality class include: LQG surface with γ =

√
2

corresponding to random planar maps decorated by a uniform spanning tree; γ =√
8/3 corresponding to (and proved in certain cases, see [14, 10]) random planar



46 YUANZHENG WANG

map decorated by a critical Bernoulli site percolation configuration, etc. Note that
in the latter case, if we fix the number of vertices of the planar map, then the
conditional law of the underlying map is uniform.

Oded Schramm [36] introduced the Schramm-Loewner evolution, which is uniquely
characterized by conformal invariance and domain Markov property, as a potential
candidate of scaling limits of uniform spanning tree (UST) and loop-erased ran-
dom walk (LERW) on two-dimensional square grids of a given domain when the
grids become finer. The scaling limit result has the flavour much similar to the
convergence to two-dimensional simple random walk to two-dimensional Brownian
motion, which is also conformally invariant and Markovian. We note here that an
SLE curve may touch itself but has no self-crossing, but the Brownian motion has
many “trasversal” intersections.

Meanwhile, physicists were also able to make a number of predictions with re-
spect to two-dimensional statistical physics model on lattice. They believe that the
model at criticality has a conformally invariant continuum scaling limit as mesh
of the lattice becomes finer, and SLE is then naturally conjectured to be the scal-
ing limit of certain interfaces of discrete models. Just as the fact that different
random walks with the same covariance structures converge to one same kind of
Brownian motion, SLE are also conjectured to enjoy universality, meaning that
an identical model on different deterministic discrete lattice has one type of SLE
as their common scaling limit. Examples of universality class include: SLE6 as
limit of critical two-dimensional critical Bernoulli percolation (proved in the case
of triangular lattice based on the famous Cardy’s formula, see [44]); SLE8/SLE2 as
limit of UST/LERW (proved independent of lattice, see [21]); SLE8/3 as limit of
self-avoiding walk; see [20].

It is then quite natural to consider the joint scaling limit of both the random
planar maps and the statistical physics model whose partition function is used for
reweighting the map, and to conjecture that this limit should be an conformally-
invariant LQG surface (with its LQG area measure) decorated by an SLE curve. In
addition, since we believe that universality holds on deterministic discrete lattice
models, the scaling limit result should hold in a quenched sense, that is, the con-
ditional law of the statistical physics model given the random planar map should
converge. If this is true, then in the continuum phase, the SLE curve should be
independent with the LQG surface. Through a spectacular program, this joint
convergence is demonstrated in one specific case: under the Cardy embedding, the
uniform random triangulations decorated by critical Bernoulli percolation converges
to a

√
8/3-LQG disk decorated by an independent SLE6; see [14].


	1. Introduction
	2. Motivations and intuitions from the discrete side
	3. GFF, LQG and SLE overview
	3.1. Gaussian Free Field
	3.2. Liouville Quantum Gravity
	3.3. Quantum wedge
	3.4. Schramm-Loewner Evolution

	4. Conformal welding theorem
	4.1. Stationarity property of SLE-decorated LQG
	4.2. Zipping up one LQG surface along the SLE curve
	4.3. A natural random length measure of SLE
	4.4. Conformal welding of two LQG surfaces

	5. General comformal welding therory of LQG surfaces
	5.1. Quantum cones and thin quantum wedges
	5.2. Extensions of thm:SLE-GFF coupling and thm:conformal welding

	6. Acknowlegements
	References
	Appendix A. More relationships with the discrete models

