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Abstract. In this paper, we survey the dimensionality reduction algorithms

Principal Component Analysis (PCA), Laplacian Eigenmaps (LE), and Isomap.

We propose an improved Laplacian Eigenmaps algorithm along with a gradient-
descent based PCA algorithm. Finally, we examine the novel Fenchel Game

framework – a framework from which we may derive classical first-order meth-

ods such as gradient descent – and prove a bound for gradient descent with
averaging. This paper is meant to serve as a reference for the theoretical un-

derpinning of such popular dimensionality reduction techniques, as well as an
attempt to clarify and build upon Wang-Abernathy-Levy’s paper.
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1. PCA

We first examine a commonly used linear method to reduce the dimension of a
data matrix. This method, Principal Component Analysis (PCA), is most helpful
for data with linearly related, highly correlated features. This discussion will lead
to a comparison of a novel gradient descent-based PCA solution algorithm with the
baseline approach outlined in Theorem 1.6.

Definition 1.1. A projection on a vector space V is a linear operator P : V → V
such that P 2 = P . A projection on a Hilbert space V is an orthogonal projection
if ⟨Px, y⟩ = ⟨x, Py⟩.
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Definition 1.2. The “Frobenius norm”, denoted by ||.||F is a matrix norm defined
over Rm×n as

||M||F :=

√√√√ m∑
i=1

n∑
j=1

M2
ij

Definition 1.3. For a sample S = (x1, ..., xm) and feature mapping Φ : X →
Rn, we define the data matrix (Φ(x1), ...,Φ(xm)) =: X ∈ Rn×m. We deem X a
“centered data matrix” if

∑m
i=1 Φ(xi) = 0. Let Pk denote the set of n-dimensional

rank-k orthogonal projection matrices. PCA (Principal Component Analysis) is
defined by the orthogonal projection matrix

(1.4) P∗ := argminP∈Pk
||PX−X||2F

Moreover, the sample covariance matrix corresponding to X is given by 1
mXXT

since
1

m
(XXT )ij =

1

m

m∑
ℓ=1

XiℓX
T
ℓj =

1

m

m∑
ℓ=1

Φ(xℓ)iΦ(xℓ)j

= E[Φ(x)iΦ(x)j ] = E[Φ(x)iΦ(x)j ]− E[Φ(x)i]E[Φ(x)j ] = Cov(Φ(x)i,Φ(x)j)

where the right hand term is the covariance between i-th and j-th coordinates of
the feature output based on m samples.

Definition 1.5. The “top singular vector” of a matrix M is the vector x which
maximizes the Rayleigh quotient

r(x,M) =
xTMx

xTx

Theorem 1.6. Let P∗ ∈ Pk be the PCA solution for a centered data matrix X =
(Φ(x1), ...,Φ(xm)) ∈ Rn×m. Then, P∗ = UkU

T
k , where Uk ∈ Rn×k is the matrix

formed by the top k singular vectors of C := 1
mXXT . Moreover, the associated

k-dimensional representation of X is given by Y = UT
kX.

Proof. See Appendix A.1 □

Remark 1.7. The top singular vectors of C are the directions of maximal vari-
ance in the data, and the ui are the variances, so that PCA may be understood
as projection onto the subspace of maximal variance. We wish to compare a gradi-
ent descent-based algorithm for solving P∗ from Definition 1.3 to the eigenvector
approach outlined by Theorem 1.5, hence Theorem 1.7.

Theorem 1.8. The following holds for the PCA gradient:

∂

∂Uk
||UkU

T
kX−X||2F = 2(XXTUUTU+UUTXXTU− 2XXTU)

Proof. See Appendix A.2 □
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Remark 1.9. While

argminP∈Rn×n ||PX−X||2F
minimizes a convex function, the assumption P = UkU

T
k leads to a non-convex

minimization

argminUk∈Rn×k ||UkU
T
kX−X||2F

Further, after finding Umin using gradient descent, we must find the closest orthog-
onal matrix U := ABT for a Singular Value Decomposition Umin = AΣBT . We
now compare a gradient-descent based solution to Equation 1.4 with the baseline
eigenvector approach outlined by Theorem 1.6.

2. Experiment: PCA

Define the t-similarity score to be the following: Given a dataset X ∈ Rn×m of
m points in Rn, and a point x ∈ X, let nt(x) be the t closest points y ∈ X to x
under ℓ2-distance. Let f : Rn → Rk be the dimensionality reduction map from full
dimension n to low-dimension k. Define the t-similarity score for x ∈ X to be ℓt(x)
given by

ℓt,f (x) := |nt(x) ∩ nt(f(x))|
Let the t-similarity score of a dimensionality reduction technique f to be

scoret(f) :=
1

m
·
∑
x∈X

ℓt,f (x)

The experiment is as follows:

• Take m = 2000 points from MNIST (n = 784 pixels)
• Compute fk

random, f
k
pca, and fk

gradient−pca given by random projection of Rn

into Rk, baseline PCA implementation, and gradient-based PCA imple-
mentation.
• Plot the three curves: where the x-axis is the dimension k ranging (in
logarithmic steps from k = 2 to k = 784, and the y-axis is given by
scoret(f

k
random) (blue), scoret(f

k
pca) (red), and scoret(f

k
gradient−pca) (green) us-

ing t = 10. Note that the code for this experiment is available in the
associated repository.

Figure 1. Comparison of similarity scores among the various
PCA techniques as a function of dimension size
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Figure 2. Values of the points in Figure 1, where the dimension
size input is logarithmically spaced

Remark 2.1. As visualized above, the similarity scores (with respect to the data
matrix X) of both the gradient-based PCA method and baseline implementation
remained within 0.02 of one another up to a 40 dimensional representation, while
the random projection’s similarity score remained on average within 0.25 from the
baseline PCA implementation.

Non-linear Methods

Rather than linearly transforming our data matrix X (through matrix multipli-
cation), we may be interested in optimizing our representation with respect to a
specific distance or weight matrix, or in preserving local structural information.

3. Laplacian Eigenmaps

Definition 3.1. The laplacian eigenmaps algorithm aims to find a k-dimensional
representation of the data matrix X which best preserves the weighted neighbor-
hood relations specified by a matrix W:

Algorithm 1 Laplacian Eigenmaps

Require: points x ∈ Rn

Require: scaling parameter σ
Require: t-nearest neighbors function Nt(x)

Define: W ∈ Rm×m as Wij :=

0 xi /∈ Nt(xj),xj /∈ Nt(xi)

e
−||xi−xj ||

2
2

σ2 otherwise

Define: D ∈ Rm×m as Dij =

{∑m
s=1 Wis j = i

0 j ̸= i

Evaluate: Y ∈ Rk×m as Y = argminY′

{∑
i,j Wij ||y′

i − y′
j ||22
}

Intuitively, the above minimization penalizes k-dimensional representations of
neighbors that differ largely under the ℓ2 norm.



DIMENSIONALITY REDUCTION AND THE FENCHEL GAME 5

Proposition 3.2. The solution to the laplacian eigenmaps minimization is UT
L,k,

where L = D −W is the “graph Laplacian” and UT
L,k are the bottom k singular

vectors of L (excluding 0 if the underlying neighborhood graph has connections).

Proof. See Appendix B.1 □

Remark 3.3. Note that when the data is not uniformly distributed, cluster size
remains the same. We may instead want to better learn the local manifold structure
by increasing the number of neighbors measured for denser areas and reducing this
number in sparser areas. We explore this idea in our novel proposed algorithm in
Definition 3.5, which uses the notion of “average distance” defined by W. Jiang et
al.’s laplacian eigenmaps algorithm defined below.

Definition 3.4. (W. Jiang et al.) Fix a sample size t ∈ N and t-nearest neighbors
function Nt(xi), where the {xi}mi=1 ∈ Rn comprise the data matrix X ∈ Rn×m.
Define the average distance matrix A ∈ Rm as

Ai =

√∑t
j=1 ||xi − xj ||22

t

where the xj ∈ Nt(xi). Then, define the distance matrix D ∈ Rm×m as

Dij =

{ ||xi−xj ||2√
AiAj

, if xi ∈ Nt(xj) or xj ∈ Nt(xi)

0, else

Finally, the “Averaged Laplacian Eigenmaps” weight matrix is defined as WALE ∈
Rm×m as

WALE
ij = e−

D2
ij
t

Note that the solution to the Laplacian Eigenmaps minimization problem given by
Proposition 3.1 still holds in this case.

Definition 3.5. We now extend Algorithm 1 by including variable nearest neigh-
bors for each point. In particular, rather than a fixed t-nearest neighbors we fix a
“maximum” radius tmax and define the variable radius t(xi) as

Aavg =
1

m

m∑
i=1

Ai

t(xi) = min
(⌊

tmax
Aavg

Ai

⌋
, tmax

)
Hence, the radius is shortened in sparser areas and extended in denser areas, where
we use the Ai values defined in Definition 3.4. We define this “Variable Radius
Laplacian Eigenmaps” (VLE) by redefining our weight matrix as

(3.6) WVLE
ij :=

e
−||xi−xj ||

2
2

σ2 xj ∈ Nt(xi)(xi) or xi ∈ Nt(xj)(xj)

0 otherwise

Note that the “or” condition is essential to preserve the symmetry of W . We may
then solve the minimization problem by way of Proposition 3.2.
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4. Experiment: Laplacian Eigenmaps

Remark 4.1. We now compare the the standard laplacian eigenmaps with both
the “Averaged Laplacian Eigenmaps” (ALE) algorithm given by W. Jiang et al.
and the “Variable Radius Laplacian Eigenmaps” algorithm we propose. We vi-
sually analyze the dimension reduction of a colored swiss roll (2d manifold) and
an oversampled colored swiss roll. The following figures are available and can be
recreated in the associated Python repository.

The figures below are labeled as follows:
- LE: Graph after applying baseline laplacian eigenmaps
- VLE: Graph after applying our proposed variable radius laplacian eigenmaps
- ALE: Graph after applying the algorithm given by W. Jiang et al.

Figure 3. Original swiss roll with color gradient

Figure 4. LE Figure 5. VLE
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Figure 6. ALE

Remark 4.2. As depicted above, the three algorithms appear to unravel the roll
correctly given uniformly sampled data. We now attempt to reduce the dimension
of an oversampled swiss roll with the same algorithms.

Figure 7. Oversampled swiss roll with color gradient

Figure 8. LE Figure 9. VLE
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Figure 10. ALE

Remark 4.3. We find that our proposed algorithm (VLE) appears to adapt to the
oversampling, as does the density-scaled algorithm (ALE) of W. Jiang et al., while
the standard LE displays the oversampling. Note that the following hyperparam-
eters were chosen (and can be adjusted): t = 10 neighbors for LE, tmax = 18 for
VLE, and t = 20 for ALE.

5. Isomap

Definition 5.1. Isomap extracts the low-dimensional data that best preserves pair-
wise distances between inputs based on their geodesic distances along a manifold.
The algorithm is specified as follows:

Algorithm 2 Isomap

Require: Points xi ∈ Rn

Evaluate: Nt(xi) ∀xi

Construct: Undirected neighborhood graph G
Evaluate: Approximate ∆ij as shortest distance in G
Evaluate: KIso := − 1

2 (Im −
1
m11T )∆(Im − 1

m11T ) := − 1
2H∆H

Evaluate: Y ∈ Rk×m, Y := argminY′∈Rk×m

∑
i,j(||y′

i − y′
j ||2 −∆ij)

2 as Y =

(ΣIso, k)
1
2UT

Iso,k (see Proposition 5.1)

Remark 5.2. Note that 1 ∈ Rn is the all-ones vector, ∆ is the squared distance
matrix of the xi, and Nt(xi) are calculated based on the ℓ2 norm difference in this
case (the ℓ2 norm also determines edge length in G). Additionally, the calculation

(5.3) KIso = −1

2
H∆H ≈ X∗TX∗

(where X∗ is mean-centered X) is helpful when geodesic distances ∆ij can be ap-

proximated andX∗TX∗ is expensive to calculate directly. The Isomap minimization
method is proven in Proposition 5.1, and Lemma 5.2 shows that (∗) is an equality
when measuring distances with the Euclidean ℓ2 norm.
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Proposition 5.4. The optimal k-dimensional representation Y ∈ Rk×m due to the
Isomap algorithm is given by

Y = (ΣIso, k)
1
2UT

Iso,k

where ΣIso, k is the diagonal matrix of the top k singular values of KIso and UIso, k

are the corresponding singular vectors.

Remark 5.5. Note that the top k eigenvectors of KIso give the optimal coordi-
nates of the points in a lower k-dimensional space that preserve pairwise geodesic
distances specified by ∆. We then scale the matrix according to the corresponding
eigenvalues with

√
ΣIso, k. Hence, ∆ in this case behaves as a covariance matrix for

the space whose dimensions are defined by the data points (i.e. m×m in this case),
and non-linearity is introduced through calculations of the interpoint distances in
∆.

Definition 5.6. In Lemmas 5.7-6.0 we prove the correctness of double centering
(i.e that − 1

2H∆H = X∗TX∗) using Euclidean distance. Hence, we define X as
in Theorem 1.5, and define X∗ to have x∗

i := xi − x as its i-th column. Let
K := XTX and let D denote the Euclidean distance matrix with Dij = ||xi − xj ||
so that D = ∆ in this case.

Lemma 5.7. For K and D as defined in Definition 5.6, we have Kij = 1
2 (Kii +

Kjj +D2
ij)

Proof. See Appendix C.1 □

Lemma 5.8. For K and X∗ as defined in Definition 5.6, we show that K∗ :=
X∗TX∗ satisfies

K∗ = K− 1

m
K11T − 1

m
11TK+

1

m2
11TK11T

Proof. See Appendix C.2 □

Lemma 5.9. For K∗ defined in Lemma 5.8 and D defined in Definition 5.6 we
have

K∗
ij = −

1

2

(
D2

ij −
1

m

m∑
t=1

(D2
it +D2

tj) +
1

m2

m∑
t=1

m∑
ℓ=1

D2
tℓ

)
Proof. See Appendix C.3 □

Theorem 5.10. For X∗,D from Definition 5.6 we confirm the correctness of the
Isomap algorithm for Euclidean distance, namely that 1

mX∗TX∗ = − 1
2HDH for

H = Im − 1
m11T .
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Proof. We have

(∆(Im −
1

m
11T ))ℓj = ∆ℓj −

1

m

m∑
t=1

∆ℓt

hence we may solve for (H∆H)ij as

((Im −
1

m
11T )∆(Im −

1

m
11T ))ij = ∆ij −

1

m

m∑
t=1

∆it −
1

m

m∑
ℓ=1

(∆ℓj −
1

m

m∑
t=1

∆ℓt)

so from Lemma 5.9

= −2K∗
ij ⇒ K∗ = −1

2
H∆H

□

6. Fenchel Game No-Regret Dynamics (FGNRD)

We now seek to understand such algorithms in the context of the Fenchel Game
No-Regret Dynamics framework (FGNRD) introduced by Wang-Abernethy-Levy.

Definition 6.1. For a function f : K → R ∪ ∞ where K ⊂ Rd, we define its
conjugate f∗ : Rd → R ∪∞ as

f∗(y) := sup
x∈D
{⟨y, x⟩ − f(x)}

Proposition 6.2. Conjugate functions of convex functions are convex.

Proof. For f : K → R convex where K ⊂ Rd, we find that

f∗(λx+ (1− λ)y) = sup
x′∈K
{⟨x′, λx+ (1− λ)y⟩ − f(x′)}

= sup
x′∈K
{⟨x′, λx+ (1− λ)y⟩ − f(x′)}

= sup
x′∈K
{⟨x′, λx⟩+ ⟨x′, y⟩ − λ⟨x′, y⟩ − f(x′)}

= sup
x′∈K
{λ⟨x, x′⟩ − λf(x′) + ⟨y, x′⟩ − f(x′)− λ⟨y, x′⟩+ λf(x′)}

= sup
x′∈K
{λ(⟨x, x′⟩ − f(x′)) + (1− λ)(⟨y, x′⟩ − f(x′))}

≤ λ sup
x′∈K
{⟨x, x′⟩ − f(x′)}+ (1− λ) sup

x′′∈K
{⟨y, x′′⟩ − f(x′′)}

= λf∗(x) + (1− λ)f∗(y)

□

Definition 6.3. The subdifferential ∂f(x) is the set of all subgradients of f at x,
i.e.

∂f(x) = {fx : f(z) ≥ ⟨fx, z − x⟩+ f(x), ∀z ∈ K}

Theorem 6.4. For a closed convex function f : Rd → R, the following are equiva-
lent:

I. y ∈ ∂f(x)

II. x ∈ ∂f∗(y)

III. ⟨x, y⟩ = f(x) + f∗(y)
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Proof. We first show I ⇒ II. Suppose y ∈ ∂f(x). Then, for any z ∈ K we have

f(z)− f(x) ≥ ⟨y, z − x⟩ ⇒ ⟨y, x⟩ − f(x) ≥ ⟨y, z⟩ − f(z)

so that
⟨y, x⟩ − f(x) ≥ f∗(y)

Then,
⟨z, x⟩ − f(x) ≤ f∗(z)⇒ ⟨y, x⟩ − f(x) ≤ f∗(z)− ⟨x, z − y⟩

⇒ f∗(y) ≤ f∗(z)− ⟨x, z − y⟩ ⇒ x ∈ ∂f∗(y)

To show II ⇒ III, we find that, for any z ∈ K
⟨x, y⟩ − f∗(y) ≥ ⟨x, z⟩ − f∗(z)

hence
⟨x, y⟩ − f∗(y) ≥ f∗∗(x) = sup

y′∈K
⟨x, y′⟩ − sup

x′∈K
(⟨y′, x′⟩ − f(x′))

so since f is closed, supx′∈K(⟨y′, x′⟩ − f(x′)) is attained by some x′ as

≥ ⟨x,∇f(x)⟩ − ⟨∇f(x), x′⟩+ f(x′) = f(x′)− ⟨∇f(x), x′ − x⟩ ≥ f(x)

⇒ f∗(y) ≤ ⟨x, y⟩ − f(x)⇒ f∗(y) = ⟨x, y⟩ − f(x)

Finally, III ⇒ I as

⟨x, y⟩ ≥ f(x) + f∗(y)⇒ ⟨x, y⟩ − f(x) ≥ ⟨y, z⟩ − f(z), ∀z ∈ K
⇒ f(z)− f(x)− ⟨y, z − x⟩ ≥ 0, ∀z ∈ K

so that all three statements are equivalent. □

Definition 6.5. We define our two-input “payoff” function g : Rd × Rd → R as

g(x, y) := ⟨x, y⟩ − f∗(y)

We will understand this function as a zero-sum game in which, if player 1 selects
action x and player 2 selects action y, g(x, y) is the “cost” for player 1 and the
“gain” for player 2.

Definition 6.6. Given a zero-sum game with a payoff function g(x, y) which is
convex in x and concave in y, we define

V ∗ := inf
x∈X

sup
y∈Y

g(x, y)

We further define an “ϵ-equilibrium” of g(., .) as a pair x̂, ŷ for which

V ∗ − ϵ ≤ inf
x∈X

g(x, ŷ) ≤ V ∗ ≤ sup
y∈Y

g(x̂, y) ≤ V ∗ + ϵ

where X and Y are convex decision spaces of the x-player and y-player respectively.

Definition 6.7. To solve for infx∈D f(x), we define g : X × Y → R as

g(x, y) := ⟨x, y⟩ − f∗(y) = ⟨x, y⟩ − sup
x′∈K
{⟨x′, y⟩ − f(x′)}

and attempt to find an ϵ-equilibrium for g(x, y).
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Proposition 6.8. An equilibrium for the Fenchel Game function solves the mini-
mization problem infx∈D f(x).

Proof. For an ϵ-equilibrium x̂, ŷ of g defined as above, we have

inf
x∈K

f(x) = − sup
x∈K
{−f(x)} = − sup

x′∈K
{⟨x′, y⟩ − ⟨x′, y⟩ − f(x′)} =: h(y)

so that

inf
x∈K

{
⟨x, ŷ⟩ − sup

x′∈K
{⟨x′, ŷ⟩ − f(x′)}

}
≤ h(ŷ) ≤ sup

y∈Y

{
⟨x̂, y⟩ − sup

x′∈K
{⟨x′, y⟩ − f(x′)}

}
hence

(∗) |V ∗ − h(y)| ≤ 2ϵ

where

V ∗ = inf
x∈K

sup
y∈Y

{
⟨x, y⟩ − sup

x′∈K
{⟨x′, y⟩ − f(x′)}

}
and as ϵ→ 0 we have

V ∗ = sup
y∈Y

{
⟨x̂, y⟩ − sup

x′∈K
{⟨x′, y⟩ − f(x′)}

}
= sup

y∈Y
{⟨x̂, y⟩ − f∗(y)} = f(x̂)

which follows from Theorem 7.4. □

Corollary 6.9. If (x̂, ŷ) is an ϵ-equilibrium of the Fenchel Game as defined above,
then

|f(x̂)− inf
x∈K

f(x)| ≤ ϵ

Proof. Follows from (∗) above for ϵ′ := ϵ
2 . □

Definition 6.10. “Online convex optimization” works as follows. At each round
t (of T many), the learner selects a point zt ∈ Z and suffers a loss αtℓt(zt) for
this selection, where α is the weight vector and Z ⊂ Rd is a convex decision set of
actions.

Remark 6.11. In general it is assumed that, upon selecting zt during round t, the
learner has observed all loss functions α1ℓ1(.), ..., αt−1ℓt−1(.) up to but not including
time t. An exception to this are the “prescient” learners, whose algorithms, marked
with a “+” superscript, have access to the loss ℓt prior to selecting zt.
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Algorithm 3 Protocol for weighted online convex optimization

Require: convex decision set Z ⊂ Rd

Require: number of rounds T
Require: weights α1, α2, ..., αT > 0
Require: algorithm OAlg
for t = 1, 2, . . . , T do
Return: zt ← OAlg
Receive: αt, ℓt(·)→ OAlg
Evaluate: Loss ← Loss + αtℓt(zt)

end for

Remark 6.12. The “OAlg” referenced above refers to an algorithm performed
within the current algorithm, and “OAlgX” will refer to the algorithm updating
the x coordinate in the Fenchel Game No Regret Dynamics.

Definition 6.13. We define a learner’s “regret” as

α-REGz(z∗) :=

T∑
t=1

αtℓt(zt)−
T∑

t=1

αtℓt(z
∗)

where z∗ ∈ Z is the “comparator” to which the online learner is compared. We

further define “average regret” as that normalized by the time weight AT :
∑T

t=1 αt

and denote it by

α-REG
z
(z∗) :=

α-REGz(z∗)

AT

Finally, “no-regret algorithms” guarantee α-REG
z
(z∗)→ 0 as AT →∞

Remark 6.14. The following batch-style online-learning strategies modify the cen-
tral algorithm Follow The Leader (FTL)

Algorithm 4 Online Learning Strategies

Require: convex set Z, initial point zinit ∈ Z
Require: α1, ..., αT > 0, ℓ1, ..., ℓT : Z → R

FTL[zinit]:
zt ← zinit if t = 1, else

zt ← argminz∈Z

(∑t−1
s=1 αsℓs(z)

)
FTL+:

zt ← argminz∈Z

(∑t
s=1 αsℓs(z)

)
FTRL[R(.), η]:

zt ← argminz∈Z

(∑t
s=1 αsℓs(z) +

1
ηR(z)

)
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Definition 6.15. A first-order oracle for a function f : Rn → R is a primitive that,
given x ∈ Qn, outputs the value f(x) ∈ Q and a vector h(x) ∈ Qn such that, for
any z ∈ Rn,

f(z) ≥ f(x) + ⟨h(x), z − x⟩
so h(x) = ∇f(x) for f differentiable, else it is a subgradient of f at x.

We now examine online mirror descent and its prescient counterpart before re-
covering gradient descent from the Fenchel Game framework.

Definition 6.16. For fixed ϵ > 0 and norm ||.||, a differentiable function f : K → R
where K ⊂ Rd is convex, is considered “ϵ-strongly convex with respect to ||.||” if

f(y)− f(x) ≥ ⟨∇f(x), y − x⟩+ ϵ

2
||y − x||2

Definition 6.17. We define the Bregman divergence Dϕ
z (·) centered at z with

respect to a β-strongly convex distance generating function ϕ(·) as

Dϕ
z (x) := ϕ(x)− ⟨∇ϕ(z), x− z⟩ − ϕ(z)

Algorithm 5 Update-style online learning strategies

Require: convex set Z, initial point z0 ∈ Z
Require: α1, ..., αT > 0, ℓ1, ..., ℓT : Z → R

OMD[ϕ(·), z0, γ]:
zt ← argminz∈Z

(
αt−1ℓt−1(z) +

1
γD

ϕ
zt−1

(z)
)

OMD+[ϕ(·), z0, γ]:
zt ← argminz∈Z

(
αtℓt(z) +

1
γD

ϕ
zt−1

(z)
)

Remark 6.18. To introduce the FGNRD framework, we show vanilla gradient
descent (Algorithm 6 below) can be understood as a two player Fenchel Game. For
f(·) convex, let

G = max
y∈∂f(w), w∈K

||y||2

and let R ∈ R be an upper bound to ||w0 − w∗|| where w∗ := argminw∈Kf(w).

Remark 6.19. Note that the use of Bregman divergence in the FGNRD Equivalent
(which helps specify the subgradient yt selected) involves the term 1

γD
ϕ
zt−1

(z) as in

Algorithm 5 to ensure we remain within a neighborhood of our previous iteration
upon descent.

Theorem 6.20. The FGNRD formulation is equivalent to vanilla gradient descent,
i.e. wt = xt at every time step, hence wt =

1
t

∑t
s=1 ws =

1
t

∑t
s=1 xs = xt.
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Algorithm 6 Vanilla gradient descent and its FGNRD equivalent

Require: Convex function f(·) and iterations T
Initialize: w0 = x0 ∈ K ⊆ Rd

Initialize: γ =

{
R

G
√
T
, if f(·) is non-smooth

1
2L , if f(·) is L-smooth

Gradient Descent[w0]:
wt := wt−1 − γδt−1 for δt−1 ∈ ∂f(wt−1)

wt :=
1
t

∑t
s=1 ws

FGNRD Equivalent:
g(x, y) := ⟨x, y⟩ − f∗(y)
αt := 1 for t ∈ {1, ..., T}
OAlgX := OMD[ 12 || · ||

2
2, x0, γ]

OAlgY := BESTRESP+

Proof. We find that

OAlgx := argminx∈Kαt−1ℓt−1(x) +
G
√
T

R

(1
2
||x||22 −

1

2
||xt−1||22 − ⟨xt−1, x− xt−1⟩

)
= argminx∈K⟨x, yt−1⟩ − f∗(y) +

G
√
T

R

(1
2
||x||22 − ⟨xt−1, x− xt−1⟩

)
= argminx∈K⟨x, yt−1 −

G
√
T

R
xt−1⟩+

G
√
T

2R
||x||22 := argminx∈KF (x)

so since K is convex, the minimum is reached when ∇F = 0, i.e.

0 = yt−1 −
G
√
T

R
xt−1 +

G
√
T

R
xt ⇒ xt = xt−1 −

R

G
√
T
yt−1

Now it suffices to show yt ∈ ∂f(xt):

yt = argminy∈K − (αt⟨xt, y⟩ − f∗(y))

= argmaxy∈K(⟨xt, y⟩ − f∗(y))

Then, since, for any z ∈ K we have

⟨xt, yt⟩ − f∗(yt) ≥ ⟨xt, z⟩ − f∗(z)

⇒ f∗(z) ≥ f∗(yt) + ⟨xt, z − yt⟩ ⇒ xt ∈ ∂f∗(yt)

By Theorem 6.4 we thus have

yt ∈ ∂f(xt)

□

Lemma 6.21. Let ϕ(.) be a β-strongly convex function with respect to the norm
|| · ||∗, and consider a sequence of lower semi-continuous convex loss functions
{αtℓt(.)}Tt=1. Then, for any comparator z∗ ∈ Z, OMD[ϕ(.), z0, γ] satisfies

α-REGz(z∗) ≤ 1

γ
Dϕ

z1(z
∗) +

γ

2β

T∑
t=1

||αtδt||2∗

for δt ∈ ∂ℓt(zt)
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Proof. We wish to show that

αtℓt(argminz∈Z{αt−1ℓt−1(z) +Dϕ
zt−1

(z)})− αtℓt(z
∗) ≤ 1

γ
Dϕ

z1(z
∗) +

γ

2β
||αtδt||2∗

By the minimality of αt−1ℓt−1(zt+1) +Dϕ
zt−1

(zt+1) we have

αt(ℓt(zt+1)− ℓt(z
∗)) ≤ 1

γ
(ϕ(z∗)− ϕ(zt+1) + ⟨∇ϕ(zt), zt+1 − z∗⟩)

hence

(∗) ⟨αtδt, zt+1 − z∗⟩ ≤ ⟨ 1
γ
(∇ϕ(zt)−∇ϕ(zt+1)), zt+1 − z∗⟩

since the convexity of ℓt ensures the existence of a δt ∈ ∂ℓt(xt) with δt ∈ ∂ℓt(z
∗).

We now find that
αtℓt(zt)− αtℓt(z

∗) ≤ ⟨αtδt, zt − z∗⟩

= ⟨ 1
γ
(∇ϕ(zt+1)−∇ϕ(zt)), z∗ − zt+1⟩+ ⟨

1

γ
(∇ϕ(zt)−∇ϕ(zt+1))− αtδt, z

∗ − zt+1⟩

+⟨αtδt, zt − zt+1⟩
so by (∗) we have

≤ ⟨ 1
γ
(∇ϕ(zt+1)−∇ϕ(zt)), z∗ − zt+1⟩+ ⟨αtδt, zt − zt+1⟩

=
1

γ
(Dϕ

zt(z
∗)−Dϕ

zt+1
(z∗)−Dϕ

zt(zt+1)) + ⟨αtδt, zt − zt+1⟩

Then, since ⟨αt∇ℓt(zt), zt − zt+1⟩ ≤ γ
2β ||αtδt||2∗ +

β
2γ ||zt − zt+1||2,

≤ 1

γ
(Dϕ

zt(z
∗)−Dϕ

zt+1
(z∗)) +

γ

2β
Dϕ

zt(z
∗)

We now sum from t = 1 to t = T and the result follows. □

Lemma 6.22. Algorithm 6 satisfies f(wT )−minw∈K f(w) = O(GR√
T
).

Proof. By Lemma 6.17, OAlgX satisfies

α-REGx(x∗) ≤ 1

γ
Dϕ

x0
(x∗) +

γ

2

T∑
t=1

||αtyt||22

while OAlgY suffers no regret (prescient). Further, since

||y||22 − ||x||22 − 2⟨x, y − x⟩ = ||y − x||22
we have that ϕ(x) = 1

2 ||x||
2
2 is 1-strongly convex with respect to the Euclidean norm

|| · ||2, hence

α-REG
x
[OMD] +α-REG

x
[BESTRESP+] ≤ 1

At

(
1

γ
Dϕ

x0
(x∗) +

T∑
t=1

γ

2
||αtyt||2

)

≤ 1

T

(R2

γ
+

γTG2

2

)
=

1

T

(
RG
√
T +

RG
√
T

2

)
=

3RG

2
√
T
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= O
(GR√

T

)
□
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Appendix A.

Theorem A.1. Let P∗ ∈ Pk be the PCA solution for a centered data matrix
X = (Φ(x1), ...,Φ(xm)) ∈ Rn×m. Then, P∗ = UkU

T
k , where Uk ∈ Rn×k is

the matrix formed by the top k singular vectors of C := 1
mXXT . Moreover, the

associated k-dimensional representation of X is given by Y = UT
kX.

Proof. For P = PT an orthogonal projection matrix, we seek to minimize

||PX−X||2F =

n∑
i=1

n∑
j=1

((PX−X)ij)
2 = Tr[(PX−X)T (PX−X)]

= Tr[XTP2X−XTPTX−XTPX+XTX] = Tr[XTPX− 2XTPX+XTX]

= Tr[X2]− Tr[XTPX]

hence we would like to maximize

Tr[XTPX] = Tr[XTUkU
T
kX] = Tr[UT

kXXTUk]

=

k∑
i=1

( n∑
j=1

(UT
kXXT )ij(Uk)ji

)
=

k∑
i=1

( n∑
j=1

( n∑
ℓ=1

(UT
k )iℓ(XXT )ℓj

)
(Uk)ji

)
so for ui := ((Uk)1i, ..., (Uk)ni),

=

n∑
i=1

(
uT
i XXTui

)
where

PX = UkU
T
kX

so that Y := UT
kX is a k-dimensional representation of X. □
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Theorem A.2. The following holds for the PCA gradient:

∂

∂Uk
||UkU

T
kX−X||2F = 2(XXTUUTU+UUTXXTU− 2XXTU)

Proof. We find that

∂

∂Uk
||PX−X||2F =

∂

∂Uk

(
Tr[XTP2X]− 2Tr[XTPX] + Tr[XTX]

)
We decompose the right hand side and relax notation as U := Uk (since we know
our desired dimension k):

∂

∂U
Tr[XTP2X] =

∂

∂U
Tr[XTUUTUUTX]

= (XT )T (UTUUTX)T +(UUTX)(XTU)+(XTUUT )(UTX)T +(X)(XTUUTU)

= 2XXTUUTU+ 2UUTXXTU

so that
∂

∂U

(
Tr[XTP2X]− 2Tr[XTPX]

)
= 2XXTUUTU+ 2UUTXXTU− 2

(
(XT )T (UTX)T + (X)(XTU)

)
= 2(XXTUUTU+UUTXXTU− 2XXTU)

□

Appendix B.

Proposition B.1. The solution to the laplacian eigenmaps minimization is UT
L,k,

where L = D −W is the “graph Laplacian” and UT
L,k are the bottom k singular

vectors of L (excluding 0 if the underlying neighborhood graph has connections).

Proof. We find that, for x ∈ Rn and Y ∈ Rk×m we have

(YLYT )ij =

m∑
ℓ=1

m∑
t=1

YiℓLℓtY
T
tj =

∑
ℓ,t

Yiℓ(D−W)ℓtYjt

=
∑
ℓ,t̸=ℓ

Yiℓ(−Wℓt)Yjt +
∑

ℓ=t,s̸=ℓ

YiℓWℓsYjℓ

(B.2) =
∑
ℓ,t ̸=ℓ

Wℓt(YiℓYjℓ − YiℓYjt)

while ∑
ℓ,t

Wℓt||y′
ℓ − y′

t||22 =
∑
ℓ,t

Wℓt(y
′
ℓ − y′

t)
T (y′

ℓ − y′
t)

=
∑
ℓ,t

Wℓt((y
′
ℓ)

2 − 2(y′T
t y′

ℓ) + (y′
t)

2)

=
∑
ℓ,t

Wℓt

( m∑
j=1

(y′
ℓ)

2
j − 2(y′

t)j(y
′
ℓ)j + (y′

t)
2
j

)
=
∑
ℓ,t

Wℓt

( m∑
j=1

Y ′
jℓ

2 − 2Y ′
jtY

′
jℓ + Y ′

jt
2
)
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hence by (3.3)

=

k∑
j=1

2(Y′LY′T )jj

so for Y := Y′T , by the final simplification used in Theorem 1.5,

= 2

k∑
j=1

yT
j Lyj

thus Y = UT
L,k are the bottom k singular vectors of L. □

Appendix C.

Lemma C.1. For K and D as defined in Definition 5.6, we have Kij = 1
2 (Kii +

Kjj +D2
ij)

Proof. We find that

Kij =

m∑
ℓ=1

XT
iℓXℓj =

1

2

( m∑
ℓ=1

X2
ℓi −X2

ℓi +X2
ℓj −X2

ℓj + 2XℓiXℓj

)
=

1

2

( m∑
ℓ=1

X2
ℓi +X2

ℓj − (Xℓj −Xℓi)
2
)
=

1

2
(Kii +Kjj − ||xi − xj ||2)

=
1

2
(Kii +Kjj −D2

ij)

□

Lemma C.2. For K and X∗ as defined in Definition 5.6, we show that K∗ :=
X∗TX∗ satisfies

K∗ = K− 1

m
K11T − 1

m
11TK+

1

m2
11TK11T

Proof. Let K∗ := X∗TX∗. We have

1

m
(K11T )ij =

1

m

m∑
t=1

Kit =
1

m

m∑
t=1

m∑
ℓ=1

XℓiXℓt =

m∑
ℓ=1

(x)ℓ(xi)ℓ

1

m
(11TK)ij =

1

m

m∑
t=1

Ktj =
1

m

m∑
t=1

m∑
ℓ=1

XℓtXℓj =

m∑
ℓ=1

(x)ℓ(xj)ℓ

and

1

m2
(11TK11T )ij =

1

m2

m∑
t=1

(11T )it(K11T )tj =
1

m

m∑
t=1

m∑
ℓ=1

(x)ℓ(xt)ℓ =

m∑
ℓ=1

(xℓ)
2

Then,

K∗
ij =

N∑
ℓ=1

X∗
iℓ
TX∗

ℓj =

N∑
ℓ=1

(xi − x)ℓ(xj − x)ℓ

=

N∑
ℓ=1

(xi)ℓ(xj)ℓ − (xi)ℓ(x)ℓ − (xj)ℓ(x)ℓ + (x)2ℓ

= Kij −
1

m
(K11T )ij −

1

m
(11TK)ij +

1

m2
(11TK11T )ij
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so that

K∗ = K− 1

m
K11T − 1

m
11TK+

1

m2
11TK11T

□

Lemma C.3. For K∗ defined in Lemma 5.8 and D defined in Definition 5.6 we
have

K∗
ij = −

1

2

(
D2

ij −
1

m

m∑
t=1

(D2
it +D2

tj) +
1

m2

m∑
t=1

m∑
ℓ=1

D2
tℓ

)
Proof. From Lemma 5.8 we have

K∗
ij = Kij −

1

m
(K11T )ij −

1

m
(11TK)ij +

1

m2
(11TK11T )ij

=
1

2
(Kii +Kjj −D2

ij)−
1

m
(K11T )ij −

1

m
(11TK)ij +

1

m2
(11TK11T )ij

=
1

2
(Kii +Kjj −D2

ij)−
1

m

m∑
t=1

Kit −
1

m

m∑
t=1

Ktj +
1

m2

m∑
t=1

m∑
ℓ=1

Ktℓ

so that applying Lemma 5.7 to Kit and Ktj we have

=
1

2
(Kii+Kjj−D2

ij)−
1

2m

m∑
t=1

(
(Kii+Ktt−D2

it)+(Ktt+Kjj−D2
tj)−

1

m

m∑
ℓ=1

(Ktt+Kℓℓ−D2
tℓ)
)

=
1

2
(−D2

ij)−
1

2m

m∑
t=1

(
(Ktt −D2

it)−D2
tj −

1

m

m∑
ℓ=1

(Kℓℓ −D2
tℓ)
)

=
1

2

(
−D2

ij −
1

m

m∑
t=1

(Ktt −D2
it −D2

tj) +
1

m2

m∑
t=1

m∑
ℓ=1

(Kℓℓ −D2
tℓ)
)

= −1

2

(
D2

ij −
1

m

m∑
t=1

(D2
it +D2

tj) +
1

m2

m∑
t=1

m∑
ℓ=1

D2
tℓ

)
□
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