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Abstract. We discuss the applications of the calculus of variations to solv-

ing various nonlinear problems. We emphasize the role of compactness, which
provides us with strong convergence results. In problems where there is a lack

of compactness, we discuss applications of concentration compactness tech-

niques, which analyze exactly why we do not have strong convergence and
what limiting behavior we can expect from our sequences. Finally, for prob-

lems that present us with additional structure, such as convexity, we discuss

compensated compactness principles, which use these additional tools to obtain
convergence results. We assume knowledge of real analysis and introductory

functional analysis.
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1. Introduction and Background Information

Compactness is a key tool used everywhere in analysis, especially optimization
problems. Given a bounded set of numbers, we may extract a convergent subse-
quence, which may then be an appropriate optimizer for such a problem.

However, with sequences of functions, there are complex behaviors we have to
take into account that cause convergence to fail. In general, there are four ways a
sequence of functions can fail to converge: it may concentrate onto a smaller and
smaller set, disperse to infinity, translate and move towards infinity while retaining
its shape, or oscillate with rapidly increasing oscillations.
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The principle of concentration compactness characterizes the types of limiting
behavior a weakly converging sequence of functions can have. Broadly speaking,
this principles says are three ”fundamental” limiting behaviors for such a sequence
{un}:

(1) {un} concentrates onto a compact set (Concentration).
(2) {un} vanishes, so its mass escapes to infinity (Vanishing).
(3) {un} splits into two masses diverging away from each other (Dichotomy).

When analyzing certain variational problems, when we do not have access to com-
pactness, we can use this principle. In practice, the best case we can hope for is
the concentration case, as this resembles compactness. In addition, this restricts us
to a bounded domain, which rules out specific types of limiting behavior, and on
which we have tools we can use to obtain convergence results. However, a sequence
concentrating onto too small of set may converge weakly to a measure, such as a
Dirac mass, whereas we want convergence to a function. So, we have to ensure this
case does not occur as well.

In variational problems, we take a minimizing sequence and try to prove conver-
gence, in some sense, to a minimizer. In doing so, we try to rule out vanishing and
dichotomy, as we cannot obtain convergence results in those cases, and study the
concentration case.

Another topic we discuss is compensated compactness. This is a technique that
aims to find and use hidden structure present in nonlinear PDE to obtain conver-
gence results. An example of this is the Div-Curl Lemma. In general, there is
nothing we can say about the product of weakly converging sequences. However,
if we have a modest assumption on certain linear combinations of derivatives, then
we can say that the product of these sequences does indeed converge weakly to the
product of weak limits.

We now present several important definitions and results that will be used
throughout the paper following [3].

Definition 1.1 (Sobolev Space). The Sobolev Space W 1,p(Rd) is the set of func-
tions for which the function and its weak derivative are in Lp. We define

||u||W 1,p(Rd) = (||u||p
Lp(Rd)

+ ||Du||p
Lp(Rd)

)1/p,

for 1 ≤ p <∞. This can be extended analogously for p = ∞, where

||u||W 1,∞(Rd) = |||u|+ |Du|||L∞(Rd),

and can be extended to W k,p(Rd), where we have more derivatives. We also define

W k,p
0 (U), which is the set of W k,p(U) functions that are also 0 on ∂U .

Remark 1.2. To appropriately define functions on a measure zero boundary and
functions defined almost everywhere, we use the trace operator, a bounded linear
operator that maps functions in W 1,p(U) to Lp(∂U).

Theorem 1.3 (Sobolev Inequality). Assume 1 ≤ p < d. Then, there exists C =
C(p, d) such that

||u||Lp∗ (Rd) ≤ C||Du||Lp(Rd),

for all u ∈ C1
c (Rd), where p∗ = pd/(p− d).
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Remark 1.4. We provide a brief discussion of how this exponent arises. First,
assume we have an inequality such as

||u||Lq(Rd) ≤ C||Du||Lp(Rd).

We show there is only one such q for which such an inequality holds, namely q = p∗.
To do so, let u ∈ C∞

c (Rd) that is not identically zero and let λ ∈ R be positive.
Now, define uλ(x) = u(λx). We note that∫

Rd

|uλ(x)|q dx =

∫
Rd

|u(λx)|q dx =
1

λd

∫
Rd

|u(t)|q dt.

A similar calculation shows ||Duλ||pp = λp−d||Du||pp. Applying the inequality to
uλ(x), we see that

1

λd/q
||u||Lq(Rd) ≤ C

λ

λd/p
||Du||Lp(Rd) =⇒ ||u||Lq(Rd) ≤ Cλ1+d/q−d/p||Du||Lp(Rd).

Now, if 1 + d/q − d/p > 0, we may let λ → 0 to obtain that ||u||Lq(Rd) = 0, a
contradiction, and similarly let λ → ∞ if 1 + d/q − d/p < 0. Therefore, 1 + d/q −
d/p = 0, so q = dp/(d− p). This exponent is known as p∗, the Sobolev conjugate.

Remark 1.5. If U ⊂ Rd is bounded, open, and with a C1 boundary, then the
analog of the Sobolev Inequality for functions u ∈W 1,p(U) is

||u||Lp∗ (U) ≤ C||u||W 1,p(U).

This follows by extension.

Theorem 1.6 (Rellich-Kondrachov Compactness). If U ⊂ Rd is bounded, open,
and with a C1 boundary, with 1 ≤ p < d, then W 1,p(U) is compactly embedded into
Lq(U) for all 1 ≤ q < p∗.

Remark 1.7. We give context to this embedding as follows. Letting τhu be the
translation of u by the vector h, the space W 1,p(U) can alternatively be described
as the functions u for which we have an estimate of the form

||u− τhu||p ≤ C|h|,
for all sufficiently small h. This is a type of ”Lp-Lipschitz” condition. As a techni-
cality, because u is only defined on U , the term u− τhu is only defined on a slightly
smaller domain than U . However, if we now have a bounded sequence of functions
in W 1,p, this uniform Lipschitz property enables us to apply Arzela-Ascoli and ob-
tain a subsequence that converges in Lp through a diagonalization argument. As
we are on a bounded domain, Lp space inclusions give us a convergent subsequence
in Lq for 1 ≤ q < p. Finally, to obtain this property for p < q < p∗, we use the Lp

interpolation inequality

||u||Lq(U) ≤ ||u||Lp(U)||u||Lp∗ (U).

Theorem 1.8 (Poincare Inequality). Let U ⊂ Rd be bounded and open. Then,

there exists C = C(p, d, U) such that, for all u ∈W 1,p
0 (U),

||u||Lp(U) ≤ C||Du||Lp(U).

Proof. We provide a brief proof of this statement using Theorem 1.6. For the sake
of contradiction, assume there exists a sequence {uk} such that

||uk||Lp(U) > k||Duk||Lp(U).
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This contradicts the existence of such a C because the k’s are increasing and
we cannot obtain a uniform bound on them. Without loss of generality, assume
||uk||Lp(U) = 1. Then, we have that ||Duk||Lp(U) < 1/k. We thus have boundedness

in W 1,p(U). Applying Rellich-Kondrachov, after passing to a subsequence (still de-
noted {uk}), uk → u Lp(U). This strong convergence ensures ||u||Lp(U) = 1. These
results ensure u has zero derivative, and so is constant. Because ||u||Lp(U) = 1,

u ̸= 0. However, this contradicts that u ∈W 1,p
0 (U), as u is non-zero on the bound-

ary. □

2. Weak Convergence

Weak convergence is an important concept in PDEs. To weaken the notion of
strong convergence on a space X, we instead test convergence against members of
the dual space X∗. To be specific, in Lp(U) for instance, we say a sequence of
functions {fk} ⊂ Lp(U) converges weakly to f if∫

U

fkg →
∫
U

fg,

for all g ∈ (Lp(U))∗ = Lq(U), where q is the Holder conjugate of p. One natural
question that arises is: if ϕ is smooth, then does ϕ(fk) ⇀ ϕ(f) whenever fk ⇀ f?
Letting ϕ(x) = x2, we will show this is not the case. We define fn(x) = sin(nx).
Applying Lemma 2.2, fn ⇀ 0 but f2n ⇀ 1/2. We conclude that not all smooth
functions are continuous with respect to weak convergence. In fact, the situtation
is much worse, as the only functions that are continuous with respect to weak
convergence are affine linear, which we prove below.

Lemma 2.1. If F (fk) ⇀ F (f) in L2(0, 1) for all fk ⇀ f in L2(0, 1), then F is
affine linear.

Proof. For the sake of contradiction, assume F is not affine linear. So, there exist
a, b and some λ ∈ (0, 1) such that

F (λa+ (1− λ)b) ̸= λF (a) + (1− λ)F (b).

We now define a sequence of functions {fk} as follows: partition (0, 1) into intervals
(i, i+1/k] of length 1/k. Then, we define fk to be a on the first λ portion of (i, i+
1/k] and b on the rest, and similarly for each other interval. Now, by boundedness of
our sequence of functions and as step functions are dense in L2(0, 1), we only need to
test weak convergence against step functions. We want to show fk ⇀ λa+(1−λ)b,
as this is exactly the linearity we want to obtain a contradiction. Testing against
the characteristic function of an interval I χI , we see that∣∣∣∣∫ 1

0

fkχI − [λa+ (1− λ)b]|I|
∣∣∣∣ ≤ 4max(a, b)

k
→ 0,

as the only error term comes from the two intervals [i, i+1/k] that may not overlap
perfectly with I. As testing against χI for intervals I is sufficient, we see that fk ⇀
λa+(1−λ)b. Applying the same argument, we have F (fk)⇀ λF (a)+(1−λ)F (b).
However, by assumption at the beginning of the proof, F (fk) ⇀ F (f) = F (λa +
(1− λ)b). As weak limits are unique, we obtain the desired contradiction. □

We also prove a lemma about rescalings and weak convergence. This gives con-
text to the idea that weak convergence is related to ”averaging”.



CONCENTRATION AND COMPENSATED COMPACTNESS TECHNIQUES IN PDE 5

Lemma 2.2. Let Q = [0, 1]d and f : Q → R be Q-periodic with f ∈ L2(Q). Let
fn(x) = f(nx). Prove fn ⇀ (f)Q =

∫
Q
f .

Proof. We want to show that
∫
Q
fng →

∫
Q
f
∫
Q
g for all g ∈ L2(Q). We first

observe that fn are uniformly bounded in L2(Q). Indeed,

(∫
Q

(fn)2
)1/2

=

 nd∑
i=1

∫
Qn

i

f2(nx) dx

1/2

=
1

nd

 nd∑
i=1

∫
Q

f2(x) dx

1/2

,

where Qn
i is a partition of Q into nd cubes of side length 1/n. Note that we have

used the periodicity of f . The last term on the right above is just ||f ||L2(Q). By

this uniform bound on f in L2(Q), it suffices to test weak convergence against
ϕ ∈ C∞

c (Q), a dense subset. We now see that∫
Q

fnϕ =

nd∑
i=1

∫
Qn

i

f(nx)ϕ(x) dx =

nd∑
i=1

1

nd

∫
Q

f(t)ϕ(cni + t/n) dt,

where we have made a change of variables and used the periodicity of f . Here,
cni denotes the bottom left corner of the cube Qn

i . This sum almost resembles a
Riemann sum. We now want to isolate the part that resembles a Riemann sum and
show the other components are negligible. From here, we Taylor expand to write
ϕ(cni + t/n) = ϕ(cni ) +Dϕ(cni ) · t/n+O(|t/n|2). Thus,∫

Q

fnϕ =

∫
Q

f

n∑
i=1

1

nd
ϕ(cni ) +

nd∑
i=1

1

nd

∫
Q

f(t)Dϕ(cni ) · t/n+O(|t/n|2) dt.

The first term approaches
∫
Q
f
∫
Q
ϕ as n→ ∞ by definition of the Riemann integral.

For the second term, we bound |t| ≤ 1 to obtain the second term is less, in absolute
value, than C/n (C ∈ R), which tends to 0 as n → ∞. The third term also tends
to zero in a similar manner. □

Remark 2.3. While we proved Lemma 2.2 for the rescalings f(nx) for n ∈ N, it
is also true for f(x/ε) for ε > 0. The only difference in the proof is the handling of
a negligible error term.

3. Concentration Compactness

3.1. Compactness on Bounded Domains. In light of 1.3, the Sobolev inequal-
ity, we may ask whether there is an optimal constant for that inequality and whether
this is attained for some specific function u. To obtain this constant, we consider
the following:

inf

{
||Du||p
||u||q

| u ∈W 1,p
0 (U), u ̸= 0

}
.

By the Sobolev inequality, we always have ||Du||p/||u||q ≥ C, and so we take the
infimum to obtain the optimal constant. We now present the following theorem.

Theorem 3.1. For 1 ≤ q < p∗, there is an optimal constant for the Sobolev
inequality and it is attained for some u ∈W 1,p

0 (U).
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Proof. We begin by noting that we may instead consider the simplified minimization
problem

min

{∫
U

|Du|p | u ∈W 1,p
0 (U),

∫
U

|u|q = 1

}
.

Here, we have also raised the norms to their respective powers for simplicity. Let m
denote the infimum. To show it is attained, and in fact a minimum, we take a mini-
mizing sequence {un}n∈N so

∫
U
|Dun|p → m. The minimum is finite, which follows

by considering any u ∈ C∞
c (U). After passing to a subsequence (which we continue

to denote by {un}), this ensures {Dun} is bounded in Lp. The Poincare inequality
ensures this controls the Lp norms of {un}, and so {un} is bounded in W 1,p. This
boundedness provides us with a subsequence (still denoted by {un}) that converges
weakly in W 1,p

0 (U) to some u ∈ W 1,p
0 (U). As we are on a bounded domain, we

apply the Rellich-Kondrachov compactness theorem, so un → u strongly in Lq(U)
and Lp(U). As

∫
U
|un|q = 1 for all n, strong convergence implies that

∫
U
|u|q = 1,

and so the limit u is admissible. In addition, as I[·] = ||D(·)||pp and I[un] → m,
Rellich-Kondrachov gives that I[u] = m. Thus, u is a minimizer.

Before we conclude, we present the PDE that the minimizer u solves. To find
this PDE, we use a parameterization technique that is discussed in thorough detail
in Theorem 3.7. We find that

∆pu = λuq−1

for some λ > 0, where ∆p is the p-Laplacian, defined as

∆pu = div(|Du|p−2Du).

□

3.2. Abstract Principle. We have seen that the Rellich-Kondrachov compactness
theorem played a critical role in showing the minimizer was attained in the con-
straint set. After taking a minimizing sequence, we used this compactness theorem
to show the weak limit of the sequence had an Lq norm of 1. We do not have access
to this theorem on unbounded domains. The general principle of concentration
compactness is concerned with what can happen with a sequence of functions with
fixed mass.

Indeed, consider a sequence {un} ⊂ L2(Rd) such that
∫
Rd |un|2 = λ for all n,

and assume un ⇀ 0 in L2(Rd). Following [4], we can imagine a few scenarios for
how this occurs.

(1) un disperses. So, un approaches 0 a.e. and the L2 mass spreads out as

n→ ∞. An example is un(x) = e−(x/n)2/n.
(2) un ”moves” to infinity. So, un still approaches 0 a.e. but the L2 mass shifts

arbitrarily far away as n→ ∞. An example is un = χ[n,n+1].

(3) un concentrates. So, as n → ∞ the L2 mass is contained in a smaller and

smaller set, with larger and larger spikes. An example is un(x) = ne−(nx)2 .
(4) un oscillates. So, as n → ∞, un has more and more high oscillations. An

example is un(x) = sin(2nπx)χ[0,1].

On a bounded domain, the first two possibilities cannot occur. So, on an un-
bounded domain, not only do we not have access to the powerful Rellich-Kondrachov
compactness theorem, but there are additional, complicating behaviors that un can
exhibit that make analyzing such a sequence difficult. We now prove the following
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theorem which characterizes all the possible limiting behaviors that a sequence with
fixed L1(Rd) mass can have.

Theorem 3.2. Let ρn be a non-negative sequence of real-valued functions on Rd

with ||ρn||L1(Rd) = λ for all n. Then, there exists a subsequence {ρnk
} for which we

have exactly one of following possibilities:

(1) (Compactness) There exist translations {yn} such that for all ε > 0, there
exists some R such that supk ||ρnk

||L1(BR(yk)) > λ− ε.
(2) (Vanishing) For all R > 0,

lim
k→∞

sup
y∈Rd

∫
BR(y)

ρnk
= 0.

(3) (Dichotomy) Two diverging humps arise. So, there exists 0 < α < λ and
ρ1k, ρ

2
k > 0, in L1, such that for all ε > 0, there exists k0 such that, if

k ≥ k0, then

||(ρ1k + ρ2k)− ρnk
||L1 < ε,

∣∣∣∣∫
Rd

ρ1k − α

∣∣∣∣ < ε,

∣∣∣∣∫
Rd

ρ2k − (λ− α)

∣∣∣∣ < ε

.

3.3. Failure of Compactness. We now discuss the embeddingW 1,q(U) ⊂ Lq∗(U),
for 1 ≤ q < n, which follows from the Sobolev inequality, and illustrate how it is,
in fact, not a compact embedding.

Theorem 3.3. The embedding W 1,p(B2) ⊂ Lp∗
(B2) is not compact (B2 denotes

the ball of radius 2 centered at the origin).

Proof. We begin by defining uε(x) = u(x/ε) for some u ∈ W 1,p(B2) such that
supp(u) ⊂ B1 and u ̸= 0 everywhere. We now define a family of functions vε =
ε−d/p∗

uε. As u is supported in B1, as ε gets smaller, as soon as x/ε ̸∈ B1, uε(x) =
0, and so vε → 0 a.e. By change of variables, ||vε||Lp∗ (B1) = ||u||Lp∗ (B1) and

||Dvε||Lp(B1) = ||Du||Lp(B1). As discussed with the Sobolev Inequality, p∗ is the
only exponent that ensures these rescalings are the same. We then observe that

||vε||pLp(B1)
=

∫
B1

ε−dp/p∗up(x/ε) dx = εd(1−p/p∗)

∫
B1

up(y) dy,

and therefore {vε} is bounded in W 1,p(B1). We have thus obtained the desired
contradiction, as vε → 0 a.e. but {vε} has constant Lp∗

(B1) norm and is bounded
in W 1,p(B1). □

We now present a theorem following [2] characterizing exactly how this compact-
ness fails.

Theorem 3.4. Assume 1 < p < d,

fk → f in Lp
loc , Dfk ⇀ Df in Lp(Rd;Rd).

Also, assume

|Dfk|p ⇀ µ in M(Rd) , |fk|p
∗
⇀ ν in M(Rd).

Then, there exists a countable set J , points {xj}j∈J ⊂ Rd and non-negative weights
{µj , νj}j∈J such that

ν = |f |p
∗
+

∑
j∈J

νjδxj µ ≥ |Df |p +
∑
j∈J

µjδxj .



8 SAMANTHAK THIAGARAJAN

In addition,

νj ≤ Cp∗

p µ
p∗/p
j ,

where Cp is the optimal constant for the Sobolev inequality. Finally, if f ≡ 0 and

ν(Rd)1/p
∗ ≥ Cpµ(Rd)1/p, then ν is concentrated at a single point.

Proof. To begin, consider the case where f ≡ 0, with ϕ ∈ C∞
c (Rd). Applying the

Sobolev inequality,(∫
Rd

|ϕfk|p
∗
)1/p∗

≤ Cp

(∫
Rd

|D(ϕfk)|p
)1/p

.

Applying the product rule, D(ϕfk) = fkDϕ + ϕDfk. Noting that f ≡ 0 and the
definitions of ν and µ,(∫

Rd

|ϕ|p
∗
dν

)1/p∗

≤ Cp

(∫
Rd

|ϕ|p dµ
)1/p

.

As we arbitrarily chose ϕ ∈ C∞
c (Rd), for any Borel set E, we obtain ν(E)1/p

∗ ≤
Cpµ(E)1/p by approximating χE . Consider the set D = {x ∈ Rd | µ(x) > 0}. By
definition of µ, as weakly convergent sequences are bounded, µ(Rd) < ∞. Thus,
D is not uncountable and there exist points {xj} and weights {µj} such that µ ≥∑

j µjδxj
. We don’t have any information on the behavior of µ off of these Dirac

masses, so we cannot obtain an equality, but rather an inequality. We now want to
obtain a characterization of the measure ν.

Recalling the definition of absolute continuity in the context of measures, we see
that ν is absolutely continuous with respect to µ. Invoking the Radon-Nikodym
Theorem, there exists an L1 function Dµν such that ν(E) =

∫
E
Dµ(ν) dµ, where,

by the Lebesgue Differentiation Theorem, µ-a.e.,

Dµν(x) = lim
r→0

ν(Br(x))

µ(Br(x))
.

As long as µ(Br(x)) ̸= 0,

ν(Br(x))

µ(Br(x))
≤ Cp∗

p µ(Br(x))
p∗/(p−1).

Now, for any x ̸∈ D, by definition of D, we see that µ(Br(x)) → 0 as r → 0, giving
that Dµν(x) = 0 if x ̸∈ D, µ-a.e. The same reasoning shows that ν is a finite
measure, and thus the existence of weights {νj} with νj = Dµν(xj)µj such that
ν =

∑
j νjδxj

. This completes the proof if f ≡ 0.

Next, assume additionally that ν(Rd)1/p
∗ ≥ Cpµ(Rd)1/p. We thus have that

ν(Rd)1/p
∗
= Cpµ(Rd)1/p. We thus see that(∫

Rd

|ϕ|p
∗
dν

)1/p∗

≤ Cp

(∫
Rd

|ϕ|p dµ
)1/p

≤ Cp

(∫
Rd

|ϕ|p
∗
dµ

)1/p∗

µ(Rd)1/n,

where we have proceeded by applying Holder’s Inequality with p∗/p and n/p (which
are Holder conjugates). By approximation, this gives

ν(E) = Cp∗

p µ(Rd)n/(n−p)µ(E) = Cp
pν(Rd)p/nµ(E).

We see that(∫
Rd

|ϕ|p
∗
dν

)1/p∗

≤ Cp

(∫
Rd

|ϕ|p dµ
)1/p

= ν(Rd)−1/n

(∫
Rd

|ϕ|p dν
)1/p

.
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Approximating again, we see that for any E such that E is Borel, ν(E)1/p
∗
ν(Rd)1/n ≤

ν(E)1/p. If ν(E) ̸= 0, then we see that ν(Rd) ≤ ν(E), and as ν(E) ≤ ν(Rd) by
properties of measures, ν(E) = ν(Rd). We now claim this implies ν is concentrated
at a single point. For the sake of contradiction, assume we have a rectangle E such
that ν(E) > 0. Now, we split E into two disjoint Borel sets, E1 and E2. Consider
the case where ν(E1), ν(E2) > 0. We know ν(E1) = ν(E2) = ν(Rd). Additionally,
ν(E1) + ν(E2) = ν(E) = ν(Rd). Thus, ν(Rd) = 0, which is impossible. Thus, only
one of ν(E1) and ν(E2) is positive. Repeatedly applying this process shows ν is
concentrated at a single point.

For the general case, we define an auxiliary function gk = fk − f . As we now
have that gk → 0 strongly in Lp

loc, the results for the zero case hold for gk. Now,

|Dgk|p ⇀ µ− |Df |p and |gk|p
∗
⇀ ν − |f |p∗

in M(Rd), which follow by Lemma 3.5,
proved below. This completes the proof.

□

3.4. Minimizer on Global Domain. As we discussed earlier, we cannot simply
apply the Rellich compactness theorem to obtain a strong convergence result on
unbounded domains because minimizing sequences can exhibit complicated limiting
behaviors. Instead, we have to resort to different techniques. Before doing so, we
will prove the Brezis-Lieb Lemma, which is an improvement of Fatou’s Lemma.
This lemma allows us to express the limit of the Lq norms of a sequence {fk} in
terms of the Lq norms of fk − f and f . We take inspiration from [1].

Lemma 3.5. If fk ⇀ f in Lq(U), fk → f a.e. in U , and 1 ≤ q <∞, then

lim
k→∞

(||fk||qq − ||fk − f ||qq) = ||f ||qq.

Proof. We first note that we can prove the estimate

|a+ b|q ≤ (ε+ 1)|a|q + C(ε)|b|q,

where C is a constant depending on ε and q.
To prove this, first assume a < b. Letting f(x) = xq, the Mean Value Theorem

implies there exists a c ∈ (a, b) such that

(a+ b)q − bq = qacq−1 < q(aδ)

(
b

δ1/(q−1)

)q−1

≤ δqaq +
bq(q − 1)

δq/(q−1)2
.

We can obtain the desired inequality from this inequality by appropriating choosing
δ and applying Young’s inequality in a different order.

From here, we define functions {gεk} to be such that

gεk = ||fk|q − |fk − f |q − |f |q| − ε|fk − f |q.

As fk → f a.e., gεk → 0 a.e. as k → ∞. The inequality at the beginning of the
proof allows to say gεk ≤ Cε|f |q. Thus, gεk is bounded from above by a function in
Lq, which is in L1 as we are on a bounded domain. In addition, gεk → 0 a.e. Thus,
by the Lebesgue Dominated Convergence Theorem, gεk → 0 in L1. Thus,

lim sup
k→∞

∫
U

||fk|q − |fk − f |q − |f |q| ≤ ε sup
k

∫
U

|fk − f |q.

The boundedness of {fk} and f in Lq ensures that the term on the left is, in fact,
arbitrarily small. This completes the proof. □
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Before we proceed to solving two minimization problems, we present one more
theorem. The importance of this theorem is to addressing the vanishing condition
that can happen with functions with fixed L1 mass. Importantly, it says that if we
have functions disappearing in Lp of a ball of radius 1 over all of Rd, then we can
obtain strong convergence to 0 in Lq for certain q.

Theorem 3.6. Let p < d. Assume uk is a bounded sequence of functions in
W 1,p(Rd) and it satisfies

lim
k→∞

sup
x∈Rd

∫
B1(x)

|uk(y)|p dy = 0,

Then uk → 0 in Lq(Rd) for any q ∈ (p, p∗).

Proof. Using the interpolation inequality for Lp norms and the Sobolev inequality,
for any q ∈ (2, 2∗) we see that

||u||Lq ≤ ||u||θp||u||1−θ
p∗ ≤ C||u||θp||Du||1−θ

p ,

for some θ ∈ (0, 1). Thus, it suffices to prove the result for any q ∈ (p, p∗), as the
inequalities above then give us the convergence for all of (p, p∗). We now consider
the sequence uk. Let Q denote an integer cube of length 1. Choosing q ∈ (p, p∗) so
q(1− θ)/p∗ = p/p∗, ∫

Q

|uk|q ≤ C

(∫
Q

|uk|p
)qθ/p

||Duk||pLp∗ (Q)
.

Noting that we can cover Rd by countably many cubes Qn,

||uk||qLq(Rd)
≤ C

∑
n

(∫
Qn

|uk|p
)qθ/p

||Duk||pLp∗ (Qn)

≤ C sup
n

(∫
Qn

|uk|p
)qθ/p

sup
k

||uk||pW 1,p(Rd)
.

Here, we note that uk is a bounded sequence inW 1,p(Rd). Then, by the assumption
of the proof, we see that the supremum over n goes to zero as k → ∞. Thus, uk → 0
in Lp for any p ∈ (p, p∗). □

We can now use these theorems and concentration compactness techniques to
solve the following minimization problem.

Theorem 3.7. If p < d, then for p < q < p∗,

min

{∫
Rd

|Du|p + |u|p |
∫
Rd

|u|q = λ

}
,

is attained.

Proof. Let Eλ = {u ∈ W 1,p |
∫
Rd |u|q = λ}, I[u] =

∫
Rd |Du|p + |u|p, and J(λ) =

minEλ
I[u].

Step 1 : Our first step is to reduce the problem of finding the minimizer for J(λ)
to J(1). To do so, let v ∈ E1. Now, we let u(x) = λαv(x), where λ > 0. We want
to choose α so u ∈ Eλ. If ||u||qq = λ, then∫

Rd

|λαv(x)|q dx = λαq
∫
Rd

|v(x)|q dx = λ,
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so λαq−1 = 1, and so α = 1/q. Substituting into I[u], we obtain that the common
coefficient on each term is λp/q. We thus see that we can apply this invertible
transformation to move from any sequence in Eλ to E1. In other words, there is a
sequence in E1 corresponding to Eλ which induces a coefficient in the action of the
functional I on the sequence. Thus, we see that J(λ) = λp/qJ(1).

Step 2 : We now intend to prove some bounds on J(1). The absolute values
ensure J(1) ≥ 0. We want to show this inequality is strict. To see this, we first
apply the Lp interpolation inequality to some u ∈ E1, so for some θ ∈ (0, 1),

1 = ||u||q ≤ ||u||θp||u||1−θ
p∗ ≤ C||u||θp||Du||1−θ

p ≤ CI[u],

where the last step follows from Young’s inequality. Thus, we have 1/C ≤ I[u] for
all u ∈ E1, and so J(1) > 0. Then, choosing u ∈ C∞

c (Rd), J(1) <∞.
Step 3 : Now, let {un} be a minimizing sequence. We will pass to several subse-

quences, but still denote our subsequences by {un} for brevity. As {un} is bounded
in W 1,p(Rd), by reflexivity, we may pass to a weakly convergent subsequence, and
so un ⇀ u in W 1,p(Rd). By definition of the W 1,p norm, this implies that un ⇀ u
in Lp and Dun ⇀ Du in Lp. In addition, by assumption, un is bounded in Lq, so
un ⇀ u in Lq. The Rellich compactness theorem gives us strong convergence in
Lp
loc, which in turn gives us pointwise convergence a.e.
Step 4 : We now apply the Lemma 3.5. Because un ⇀ u in Lp and un → u

pointwise a.e.,

||un||pp = ||u||pp + ||u− un||pp + o(1).

We may also apply this lemma to {Du} in Lp and {un} in Lq. In particular, we
see that

1 = ||un||qq = ||u||qq + ||u− un||qq + o(1).

Now, let λ = ||u||qq and 1 − λ = limn→∞ ||u − un||qq. This makes u a candidate for
J(λ) and u−un a candidate for J(1−λ). We now combine the equalities from the
Brezis-Lieb lemma applied to {un} and {Dun} in Lp to obtain

I[un] = ||un||pp + ||Dun||p = ||u||pp + ||Du||p + ||u− un||pp + ||Du−Dun||pp + o(1),

and we note that the right-hand side is I[u]+I[u−un]+o(1). Now, u and u−un are
candidates for two different minimization problems, J(λ) and J(1−λ), respectively.
So, I[u] ≥ J(λ). J(λ) is continuous in λ as shown earlier, as J(λ) = λp/qJ(1). Thus,
as ||u − un||qq → 1 − λ, we may pass this limit through J . Finally, note that, by
definition of {un}, I[un] → J(1). Thus, we see that J(1) ≥ J(λ) + J(1− λ).

Step 5 : First, we observe, by the lower semicontinuity of || · ||q, that ||u||q ≤
lim infn→∞ ||un||q. Thus, if λ = 1, then ||u||qq = 1, which implies our minimizer is
in the constraint set and indeed attained. So, we want to show λ = 1. First, we
show λ = 0 or λ = 1. By Step 1, we have

1 ≥ λp/q + (1− λ)p/q.

To show this occurs for λ = 0 or λ = 1, we let f(λ) = λp/q +(1−λ)p/q. Taking the
derivative, we see that

f ′(λ) =
p

q
λp/q−1 − p

q
(1− λ)p/q−1.

If f ′(λ) = 0 (for λ ∈ [0, 1]), we must have that λ = 1/2. Taking the second
derivative, we find that f ′′(1/2) < 0, so λ = 1/2 is in fact a maximum of f(λ) on



12 SAMANTHAK THIAGARAJAN

[0, 1]. The other extrema must therefore occur at λ = 0 and λ = 1, for which we
have f(0) = f(1) = 1.

Now, for the sake of contradiction, assume λ = 0. This implies ||u||q = 0, and
so u = 0. We know uk ⇀ u in W 1,p(Rd), which implies uk → u in Lp

loc(Rd) by
the Rellich-Kondrachov compactness theorem. As u = 0, the condition in Lemma
3.6 is met, and thus the lemma implies that uk → 0 in Lq(Rd), as p < q < p∗.
However, this is a contradiction as ||uk||q = 1 for all k, by construction of the
problem. Therefore, λ > 0, and so λ = 1, which shows the minimizer is attained.
Before we conclude, let us describe the PDE this minimizer solves.

Step 6 : We now present the PDE the minimizer solves. Let u be the minimizer
for J(λ) and choose some ϕ ∈ C∞

c (Rd). Now, define a function

v(t) =
u+ tϕ

||u+ tϕ||q
,

for t ∈ R. The motivation for this is to parameterize our functional I around the
minimizer. We now define i(t) = I[v(t)]. As v(0) = u, the minimizer for J(λ),
i′(0) = 0. Writing out this equation will give us the PDE that u solves. We observe

i(t) = ||u+ tϕ||−p
q

(∫
Rd

|Du+ tDϕ|p + |u+ tϕ|p
)
.

Let f(t) = ||u+ tϕ||−p
q and g(t) be the quantity in parentheses. Note that

f ′(t) =
−p
q

(∫
Rd

|u+ tϕ|q
)−p/q−1 (∫

Rd

q|u+ tϕ|q−2(u+ tϕ)(ϕ)

)
,

g′(t) =

∫
Rd

[
p|Du+ tDϕ|p−2(Du+ tDϕ)(Dϕ) + p|u+ tϕ|p−2(u+ tϕ)(ϕ)

]
.

Applying the product rule and expanding the equation i′(0) = 0, we find

||u||−q
q

(∫
Rd

|u|q−2uϕ

)(∫
Rd

|Du|p + |u|p
)

=

∫
Rd

|Du|p−2Du ·Dϕ+ |u|p−2uϕ.

This is the weak formulation of the PDE u solves. The PDE itself is

I[u]

λ
uq−1 = −∆pu+ up−1.

□

We now apply these concentration compactness techniques to another minimiza-
tion problem. This problem is concerned with attaining the optimal constant for
the Sobolev inequality.

Theorem 3.8. The following minimum is attained:

min

{
||Du||Lp(Rd)

||u||Lp∗ (Rd)

| u ∈W 1,p(Rd)

}
.

Proof. We note that this minimization problem is the same as showing

min

{∫
Rd

|Du|p |
∫
Rd

|u|p
∗
= λ

}
is attained for each λ ≥ 0. Denote our functional by I[·] and our constraint set by
Eλ. The proof of this statement follows the same program as Theorem 3.7. Letting
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C be the optimal constant for the Sobolev Inequality, the PDE the minimizer solves
is

−∆pu = Cpup
∗−1.

□

4. Compensated Compactness

4.1. Convexity and Lower Semicontinuity. In dealing with minimization prob-
lems, we often encounter a functional of the form

I[w] =

∫
U

F (Dw) dx,

and want to minimize it over, say, the set S = {u ∈ W 1,q(U) | w = g on ∂U},
where F : Rd → R is smooth. Typically, we have a quadratic growth assumption
on F , so there exists a C such that, for all p,

|F (p)| ≤ C(1 + |p|2).
This is a reasonable assumption for minimization over H1(U) = W 1,2(U) because
then, for all u ∈ H1(U),

∫
U
F (Du) <∞. We observe the theorems and ideas present

in [2]. We will discuss a theorem relating convexity and lower semicontinuity, but
first let’s imagine we have a minimizer u to the problem above and that u is smooth.
We will see if we can obtain information about F . Let v ∈ C0

c (U) be Lipschitz.
Then, let’s define i(t) = I[u + tv]. Because u is the minimizer of I, i must have a
minimum at t = 0. In addition, it’s second derivative is therefore non-negative at
t = 0. Thus, we see that

i′′(0) =

∫
U

∑
i,j

Fyi,yj (Du)vxivxj ≥ 0,

where 1 ≤ i, j ≤ d. We will abbreviate this sum as Fyi,yj
(Du)vxi

vxj
. We now want

to choose a specific v to learn something about F . To this end, let η ∈ C∞
c , ξ ∈ Rd,

and ε ∈ R. Next, let z : R → R be defined so

z(x) =

{
x x ∈ [0, 1]

2− x x ∈ [1, 2]
,

and extended to be periodic with period 2. This is known as a ”sawtooth” function.
We now define

v(x) = εη(x)z

(
x · ξ
ε

)
.

We will now use v as our test function in the equality for i′′(0). First, note that
vxi

vxj
equals(

εη′(x)z

(
x · ξ
ε

)
+ η(x)z′

(
x · ξ
ε

)
ξi

)(
εη′(x)z

(
x · ξ
ε

)
+ η(x)z′

(
x · ξ
ε

)
ξj

)
.

As ε → 0, because η and z are bounded, εη′(x)z(x · ξ/ε) → 0. Substituting into
i′′(0) ≥ 0 and letting ε→ 0, we are left with

lim
ε→0

∫
U

Fyi,yj
(Du)η2(x)

(
z′
(
x · ξ
ε

))2

ξiξj ≥ 0.

As η2(x) ≥ 0, this implies ⟨Fyi,yj (Du(x))ξ, ξ⟩ ≥ 0. This is the definition of convex-
ity if we can take Du(x) = p for any p.
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Finally, before presenting the theorem, we introduce the notion of weak lower
semicontinuity.

Definition 4.1. A functional ϕ is said to be weakly lower semicontinuous if

lim inf
n→∞

ϕ(un) ≥ ϕ(u)

for all sequences {un} such that un ⇀ u.

We now present a connection between lower semicontinuity and convexity.

Theorem 4.2. Weak lower semicontinuity of I[·], with respect to weak convergence
in W 1,q(U), is equivalent to the convexity of F .

Proof. First, assume I[·] is weakly lower semicontinuous. Assume our domain is
Q = (0, 1)n, and let p ∈ Rd. Let v ∈ C∞

c (Q) be a test function. We now split Q, for
k ∈ N, into 2kn disjoint, identical cubes. The side length of each of these cubes is
thus 1/2k. For each k, denote this collection by {Qi}kni=1 with centers {xi}. Then,
for x ∈ Qi, define

uk(x) =
1

2k
v(2k(x− xi)) + p · x.

The first term vanishes as k → ∞, and so let u(x) = p · x. By the boundedness
of v on Q, we obtain that uk → u in W 1,q(Q), which gives weak convergence in
W 1,q(Q). By the definition of lower semicontinuity, I[u] ≤ lim infk→∞ I[uk]. Thus,

Ln(Q)F (p) ≤ lim inf
k→∞

I[uk] =

∫
Q

F (Dv + p),

where we have used the fact uk ⇀ u in W 1,q(U), and so Duk ⇀ Du in W 1,q(U) as
well, along with 2.2. Here, u = p · x is a smooth minimizer and, as supp(v) ⊂ Q,
u and {uk} all have the same boundary conditions, so u is a smooth minimizer
lying in the same constraint class. So, u is a smooth minimizer of the minimization
problem

min

{∫
Q

F (Dw) | w = u on ∂Q

}
,

and so D2F (p)ξ · ξ ≥ 0 for all p, so F is convex.
Now, assume F is convex. We want to show if uk ⇀ u, then lim infk I[uk] ≥ I[u].

To simplify this, we first assume we have coefficients {bj}m1 and {cj}m1 so

F (p) = max
1≤j≤m

(bj · p+ cj).

So, we have a finite set of affine functions of which F is the maximum of. We assume
this because, if F is convex, then we can find a set of affine functions for which F
is the supremum of. So, proving this theorem for a finite set is sufficient because
we can then apply the Monotone Convergence Theorem to obtain the result when
we have a supremum instead of a maximum.

We now define a set

Ej = {x ∈ U | F (Du(x)) = bj ·Du(x) + cj}.
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By the definition of F , U = ∪jEj . Assuming the affine functions are distinct,
Ei ∩ Ej = Ø if i ̸= j. We now see that

I[u] =

∫
U

F (Du) dx =

m∑
j=1

∫
Ej

bj ·Du(x) + cj dx

≤ lim inf
k→∞

m∑
j=1

∫
Ej

F (Duk) dx,

which follows from linearity of the integrand and the assumption on the structure
of F . Then, we note that the last line is lim infk→∞ I[uk]. Thus, the functional I[·]
is weakly lower-semicontinuous. □

In Lemma 2.1, we see that a functional that is continuous with respect to weak
convergence is affine linear. Here, we see a similar idea. Functionals of the form
I[u] =

∫
F (Du) that are weakly lower semicontinuous with respect to weak conver-

gence are convex, and convex functions are in turn the supremum of affine linear
functions.

For a typical minimization problem on bounded domains, we utilize compactness
from Rellich-Kondrachov to conclude that, for a minimizing sequence {un}, I[un] →
I[u], so the weak limit of {un} is indeed a minimizer. On unbounded domains, even
though we don’t have access to compactness, and thus strong convergence in L2,
we may still obtain convergence of the energies using the convexity argument in
Theorem 4.2, and so we see convexity compensating for the lack of compactness.

We next present the following theorem about the convergence of the energies
and its relationship to weak convergence. Before doing so, we define an important
term.

Definition 4.3. F is said to be uniformly strictly convex if there exists a γ > 0
such that

ξTD2F (p)ξ ≥ γ|p|2

for all p, ξ ∈ Rd.

Theorem 4.4. With assumptions of quadratic growth and uniform strict convexity
of F , if uk ⇀ u in W 1,2 and I[uk] → I[u], then uk → u in W 1,2(U).

Proof. Applying the Taylor Series expansion on F (as we know F is smooth) and
the uniform convexity assumption, given x, y ∈ Rd,

F (y) ≥ F (x) +DF (x) · (y − x) +
γ

2
|y − x|2.

Applying this to Duk and Du, we see that

I[uk] ≥ I[u] +

∫
U

DF (Du)(Du−Duk) +
γ

2

∫
U

|Du−Duk|2.

We observe that DF (Du) ∈ L2(U) by the assumptions on F . Indeed, |DF (Du)| ≤
C(1 + |Du|). We have uk ⇀ u in W 1,2(U) and I[uk] → I[u], and thus

γ

2

∫
U

|Du−Duk|2 ≤ I[uk]− I[u] +

∫
U

DF (Du)(Du−Duk) → 0.

Thus, Duk → Du in L2(U). The Sobolev inequality then gives that uk → u in
L2∗(U), and as we are on a bounded domain, we have uk → u in L2(U). Combining
these, we see that uk → u in W 1,2(U). □
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Remark 4.5. We note that this is an example of convexity providing strong com-
pactness. Indeed, we proved that quadratic growth and uniform strict convexity
alone imply {uk} is bounded in H1(U) =W 1,2(U). We then obtain a subsequence
(still denoted {un}) that converges weakly in H1(U). Finally, convexity of F en-
sures I[·] is lower semicontinuous and so this ensures I[un] → I[u].

4.2. Div-Curl Lemma. We now present a theorem dealing with the product of
weakly convergent sequences. First, we discuss the need for such a theorem. In sec-
tion 2, we showed that sin(nx)⇀ 0 but sin2(nx)⇀ 1/2. Thus, the problem of the
product of such sequences is nontrivial. In general, we cannot obtain information
about such a product, but when we have additional information on the structure
of certain derivatives of each sequence, we can. We present the following theorem,
taking inspiration from [5].

Theorem 4.6. Let Ω ⊂ Rd be an open, bounded set. {vn}, {div(vn)}, {wn}, {curl(wn)}
are bounded in L2(Ω), and vn ⇀ v and wn ⇀ w in L2(Ω). Then, vn · wn ⇀ v · w
in L2(Ω).

Remark 4.7. We define div(vn) =
∑

i ∂iv
i, where vi denotes the i-th component of

v. The divergence of a function is a vector. We also define curl(wn)i,j = ∂jw
i−∂iwj .

The curl of a function is a matrix.

Remark 4.8. For the case where the functions wn are in fact potentials on a
bounded domain, we can prove the Div-Curl Lemma directly. So, assume wn = Dzn
for some sequence of functions {zn} with the same assumptions on the sequences
{vn} and {wn}. In addition, assume zn → z in L2(U) and Dzn ⇀ Dz in L2(U).
Then, we note that∫

U

vn · wnϕ =

∫
U

vn ·Dznϕ = −
∫
U

Dvn · znϕ−
∫
U

vn ·Dϕzn,

where we have applied integration by parts. We now have a zn coefficient in each
integral. We know zn → z in L2(U) and, additionally, vn ⇀ v and Dvn ⇀ Dv in
L2(U). As the product of weak and strong convergence is strong, we see that∫

U

vn · wnϕ→ −
∫
U

Dv · zϕ−
∫
U

v ·Dϕz =
∫
U

v · wϕ.

This is a simpler proof of the Div-Curl Lemma for this special case. We now present
the proof of the general Div-Curl Lemma.

Proof. We want to show that∫
Ω

vn · wnϕ→
∫
Ω

v · wϕ

for all ϕ ∈ C∞
c (Ω). To show this, fix such a ϕ and choose ψ ∈ C∞

c such that ψ ≡ 1
on supp(ϕ). Define

ṽn =

{
ϕvn in Ω

0 in Rd \ Ω
, and w̃n =

{
ψwn in Ω

0 in Rd \ Ω
.

Applying Plancherel,
∫
Rd

̂̃vn · ̂̃wn =
∫
Ω
vn · wnϕ. We now want to make sure

the Fourier Transform of ṽn and w̃n preserves the properties of vn and wn. As
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vn ⇀ v, we may directly compute that ̂̃vn ⇀ ̂̃v in L2(Rd), as does {wn}. Apply-

ing Plancherel, {̂̃vn} and {̂̃wn} are bounded in L2(Rd). Similarly,
∑

i
̂̃vin(ξ) and

curl( ̂̃wn) are bounded in L2(Rd).

Now, let’s look at the convergence of
∫
Rd

̂̃vn · ̂̃wn. We consider the convergence
over BR and then over R \ BR. In this case, BR is considered as the set of low
frequencies and R \BR as the set of high frequencies.

For the low frequencies, first note that

|̂̃vn(ξ)| = ∣∣∣∣∫
Rd

ṽn(t)e
−2πit·ξ dt

∣∣∣∣ ≤ ∫
Ω

|ϕ||vn| ≤ sup
Ω

|ϕ||Ω|1/2||vn||L2(Ω),

where |Ω| denotes the Lebesgue measure of Ω. So, ||̂̃vn||∞ ≤ CΩ||vn||L2(Ω). In
addition, we see that

ˆ̃vn(ξ) =

∫
Rd

ṽne
−2πit·ξ dt =

∫
Rd

ηvne
−2πit·ξ dt→

∫
Rd

ηve−2πit·ξ dt = ϕ̂v,

as ϕe−2πit·ξ ∈ L2(Rd) because ϕ is supported in Ω. So, ̂̃vn → ̂̃v pointwise. We may

apply the same argument to ̂̃wn. Then, using the Lebesgue Dominated Convergence
Theorem, we see that∫

BR

̂̃vn ̂̃wn − ̂̃v ̂̃w =

∫
BR

̂̃wn(̂̃vn − ̂̃v) + ∫
BR

̂̃v( ̂̃wn − ̂̃w) → 0.

This gives convergence of the low frequencies.
To tackle the high frequencies, we make use of the following lemma:

Lemma 4.9. If V,W ∈ Cd, then for all 1 ≤ j ≤ d,

ξj
∑
i

ViWi =Wj

∑
i

ξiVi +
∑
i

[ξjWi − ξiWj ]Vi.

Let V = ̂̃vn and W = ̂̃wn. We have

|ξj |̂̃vn · ̂̃wn ≤ | ̂̃wn||div(̂̃vn)|+ |curl( ̂̃wn)||̂̃vn|.
Integrating both sides and applying Holder’s inequality, we find that the LHS is

bounded in L1(Rd). Here, we have used the uniform boundedness of ̂̃vn, div(̂̃vn),̂̃wn, and curl( ̂̃wn). Summing over j, we see that |ξ|̂̃vn · ̂̃wn ∈ L1(Rd), where we have
noted that |ξ| ≤

∑
i |ξi|. From here, we see that∣∣∣∣∣

∫
Rd\BR

̂̃vn · ̂̃wn

∣∣∣∣∣ ≤ 1

R

∫
Rd\BR

|ξ|̂̃vn · ̂̃wn.

Thus, the contribution off of a ball can be made arbitrarily small. This is why we
split into low and high frequencies: We can control the contribution off of a ball
of large radius, and so if we have convergence on BR for all R, then we desired
convergence on Rd is achieved. This completes the proof. □

4.3. Homogenization. We now introduce homogenization following [2]. To begin,
we consider the PDE {

−div(A(x/ε)Duε) = f in U

uε = 0 on ∂U
.

If A is periodic, then A(x/ε) has rapid oscillations that repeat by periodicity. In-
vestigating the system at the ε-level allows us to analyze the system at a specific,
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microscopic level. However, directly computing characteristics of this system, such
as its solutions, is much too computationally expensive because of the rapid oscil-
lations. Instead, we approximate the system for small ε by sending ε → 0. We
can envision this as dividing the domain into cells, each of which is on the ε scale,
where the system is the same across each cell. Instead of directly describing this
system, we instead investigate its average behavior. This is what homogenization
is: looking for the ”average” on an incredibly small scale. This naturally leads to
two questions:

(1) What is the limit u of {uε}ε>0 as ε → 0? What equation does it solve?
Surprisingly, we find that the homogenized matrix for the PDE u solves is
not A.

(2) In what sense does uε → u as ε→ 0?

As a note, we may sometimes also use short-hand notation to indicate the first
condition of the PDE as −(aij(x/ε)u

ε
xi
)xj

. The convenience of this will become
clear soon. We assume a few things about this PDE. We assume an L∞ condition
on A, so |A(y)| ≤ C and that A is periodic on on the unit cube Q ⊂ Rd. In addition,
we assume A is uniformly elliptic, so ξTA(y)ξ ≥ ν|ξ|2 for ν > 0. Now, assume we
have weak solutions {uε} to this PDE. Using uε as our test function, we see that

uε is uniformly bounded in W 1,2
0 (U).

This uniform boundedness furnishes us with a subsequence, still denoted {uε},
that converges weakly to some u ∈ W 1,2

0 (U). What PDE does u solve? Before we
discuss this, we need a lemma.

Lemma 4.10 (Fredholm Alternative). Let H1
#(Q) be the set of functions periodic

on the unit cube Q ⊂ Rd, and let V = {u ∈ H1
#(Q) |

∫
Q
u = 0}. Assume f ∈ L2(Q).

Then, there exists a unique w ∈ V such that, for all ϕ ∈ V ,∫
Q

ADw ·Dϕ =

∫
Q

fϕ.

Remark 4.11. The proof follows using the Riesz-Representation Theorem.

First, we consider the following system of PDEs:{
−(aij(y)w

l
yi
)yj

= (ail(y))yi
in Rd

wl is Y -periodic
,

where 1 ≤ l ≤ n. The first condition is shorthand notation for the equation
−div(ADwl) = div(Al), where Al is the l-th column of A. These PDEs are known
as corrector problems. The Fredholm alternative provides us with a solution wl,
for each l, to this PDE, as we note that

∫
Y
(ail(y))yi

= 0 by the periodicity of A.

Using these functions wl, we consider the coefficients

ãil =

∫
Y

aij(y)(δjl + wl
yj
(y)),

and the corresponding PDE:{
−(ãiluxi

)xl
= f in U

u = 0 on ∂U
.

We now prove the following theorem:

Theorem 4.12. u solves the PDE above.
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Proof. By our boundedness conditions, for each j, aij(x/ε)u
ε
xi

converges weakly to,

say, ξj : Rd → R (where we have denoted our subsequence as ε). We now see that∫
U

fv =

∫
U

aij(x/ε)u
ε
xi
vxj

=⇒
∫
U

fv =

∫
U

ξ ·Dv,

by taking limits. We now define a set of functions, known as correctors, for a
fixed l, by vε(x) = xl + εwl(x/ε). We now note that

(aij(x/ε)v
ε
xj
)xi = (aij(x/ε)δjl)xi + (aij(x/ε)(w

l(x/ε))xj )xi = 0.

So, vε solves (aij(x/ε)v
ε
xj
)xi = 0, weakly. Let η ∈ C∞

c (U) be a test function and
define v = ηvε. We see that∫

U

fηvε =

∫
U

aij(x/ε)u
ε
xi
(ηvε)xj

=

∫
U

aij(x/ε)u
ε
xi
ηxj

vε + aij(x/ε)u
ε
xi
ηvεxj

=

∫
U

aij(x/ε)u
ε
xi
ηxj

vε − uε(aij(x/ε)ηv
ε
xj
)xi

=

∫
U

aij(x/ε)u
ε
xi
ηxjv

ε − uεaij(x/ε)ηxiv
ε
xj
.

We have boundedness of the wl in L2, which gives that vε → xl in L
2(U). Noting

that rescalings converge to the average, we see that

aij(x/ε)v
ε
xj

= aij(x/ε)(δjl + wl(x/ε)xj )⇀ ãil,

in L2(U). Taking the limit as ε→ 0 on each side of∫
U

fηvε =

∫
U

aij(x/ε)u
ε
xi
ηxj

vε − uεaij(x/ε)ηxi
vεxj

and noting the convergence results we have already proved, we obtain∫
U

fηxl =

∫
U

ξjxlηxj
− uãilηxi

,

where we have noted that the product of strong and weak convergence is strong.
Indeed, we know that uε → u strongly in L2 by the Rellich compactness theorem.
We have an integral equality involving ξ. Indeed,∫

U

fηxl =

∫
U

ξlη + ξjηxjxl,

where we have again used summation notation. Importantly, the derivative of xl
picks out the l-th component. Noting that ãil is constant, we apply integration by
parts to see that ∫

U

uxi
ãilη =

∫
U

ξlη.

Now, we’re almost done! Noting the integral equality that ξ satisfies, from the
beginning, we have ∫

U

fv =

∫
U

ξ ·Dv =

∫
U

ÃDu ·Dv.

This completes the proof. □

We now present a non-trivial application of the Div-Curl Lemma to the sequence
{uε}.
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Theorem 4.13. Given {uε} as defined in Theorem 4.12, the energies A(x/ε)Duε ·
Duε ⇀ A∗Du ·Du.

Proof. We knowDuε ⇀ Du. Note that curl(Duε) = 0. Next, we knowA(x/ε)Duε ⇀
A∗Du, and div(A(x/ε)Duε) = f ∈ L2(U). We now have two weakly converging se-
quences, one with vanishing curl and one with constant, bounded divergence. Thus,
we can apply the Div-Curl Lemma to say that the product of these sequences con-
verges weakly to the product of weak limits. So, A(x/ε)Duε ·Duε ⇀ A∗Du·Du. □
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