
INTRODUCTION TO LINEAR DIMENSIONALITY REDUCTION METHODS

BAICHEN TAN

Abstract. This paper discusses classical techniques in dimensionality reduction methods. We study three
important linear high dimensional reduction methods: principal component analysis, classical multidimen-

sional scaling, and random projection. Detailed explanations will be given to illustrate the three methods’
intuition and theoretical foundations.
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1. Introduction

In recent years, dimensionality reduction has been gaining more and more attention in the realm of
statistics. Dimensionality reduction is a technique used to reduce the number dimensions of a dataset while
retaining essential information, such as pairwise distances or other geometric features. High-dimensional
datasets can lead to challenges in visualization, computational complexity, and overfitting. For example,
in genetics, we often have thousands of gene snippets to test disease effects, while we often only have
access to a limited number of patients as observations. In such a high-dimensional setting, traditional
statistical tools, such as linear regression, would fail since there are many more variables than equations
(observations). Moreover, many basic statistics such as correlation matrices scale quadratically (or worse)
in size with dimensionality, making their computation intractable for the dimensionality of many real-world
datasets. Therefore, dimensionality reduction is a very important technique in statistical analysis. This paper
examines three linear methods for dimensionality reduction: principal component analysis (PCA), classical
multidimensional scaling (CMDS), and random projections. Readers of this paper should be familiar with
linear algebra. We will give detailed proofs of the important theorems and lemmas in this paper; proofs of
some lemmas and propositions are relegated to [1] or to [2].

2. Principal Component Analysis (PCA)

Suppose we have a high dimensional dataset with a very large dimension p, but our data actually approx-
imately lies in a hyperplane of dimension k ≪ p. The goal of PCA is to project the original p dimensional
data onto the k dimensional hyperplane to reduce the dimensionality of our original dataset. In Figure 1, we
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Figure 1. Intuition of PCA

project a two dimensional dataset to an one dimensional line. As we can see, after the projection, the overall
geometry of our new dataset is roughly preserved. The idea of PCA is to find the “correct” hyperplane on
which to project the data as to minimize any distortion to the relative geometry.

2.1. Review of Linear Algebra. We first review some prerequisite linear algebra.

Theorem 2.1 (Singular Value Decomposition). Let A be an m× n matrix with rank r. Then there always
exists a singular value decomposition

A = UΣV T

where U,Σ, V T are given by:

U =
[
u1, u2, . . . , ur

]
∈ Rm×r,

Σ =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σr

 ∈ Rr×r

V T =


vT1
vT2
...
vTr

 ∈ Rr×n

where ui and vi are called the left and right singular vectors, respectively. The values σi are called the singular
values with the ordering σ1 ≥ σ2 ≥ ... ≥ σr. Importantly, each of the ui’s are orthogonal to each other and
each of the vi’s are orthogonal to each other.

We now introduce the Frobenius norms on matrices.

Definition 2.2 (Frobenius norm). The Frobenius norm of a matrix A ∈ Rm×n is defined as

∥A∥F =

 m∑
i=1

n∑
j=1

|aij |2
 1

2

= tr(ATA)
1
2
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We introduce two important properties of the Frobenius norm. The proof of the following two propositions
can be found in [1].

Proposition 2.3. The Frobenius norm is invariant under rotation by an orthogonal matrix U . That is, if
U is orthogonal, then ∥AU∥F = ∥UA∥F = ∥A∥F for any matrix A.

Proposition 2.4. Let A ∈ Rm×n be a matrix with rank r. Then the Frobenius norm of A is

∥A∥F =

(
r∑

i=1

σ2
i

) 1
2

where σi are singular values of A

2.2. The PCA Algorithm. Now we will explain the PCA method. Let X = [x1, ..., xn]
T ∈ Rn×p be our

dataset with n observations. The a-shift of a dataset X is denoted as

Xa = X − a

where a is a row vector in Rp. In practice, we often shift data by the sample mean, given by

X̄ =
1

n

n∑
i=1

xi.

As can see in Figure 2, shifting a dataset doesn’t change the relative geometry.

(a) Dataset before shift by sample mean (b) Dataset after shift by sample mean

Figure 2. Shifting a dataset

For simplicity, we shall assume in later part of this text that our dataset is already centered, that is,

X = X̂ = X − X̄.

Definition 2.5. We define the energy of a dataset

E(X) =

n∑
i=1

∥xi∥22 = ∥X∥2F .

Loosely speaking, PCA is a technique that identifies the subspace in which a dataset clusters. We first
consider the maximization problem of finding a one dimensional subspace S1 that maximizes the energy of
X after we project it onto S1. We use a unit vector v1 to represent the direction of S1. We denote the
projection transformation Rp → S1 by Tv1 , and the set of all directions in Rp by the unit sphere Sp−1. Thus,
our new coordinate v1 is the solution of the following maximization problem:

(2.6) v1 = argmax
a∈Sp−1

E (Ta(X))
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(a) projection with low energy (b) projection with high energy

Figure 3. Projection onto the first coordinate

Figure 4. Illustration of PCA on single data points

Figure 3 provides an intuitive visualization of why we want to perform this maximization. Because the
energy is the sum of the norms of the projected vectors, the projection in plot B preserves more energy than
that in plot A, and the projected data points in plot B represents the original data clustering better than
plot A does.

We call v1 ∈ Sp−1 the first principal direction. Now we take a closer look at what happens to individual
data points in PCA. Figure 4 provides a visual explanation. Suppose we have two data points x1, x2 in the
original dataset X, and we want to project the them onto the line where the direction vector v1 lies. Then
the projected points y1, y2 are called the first principal components of x1, x2 respectively. They represent
the locations of the projected points in the original coordinate system. To generalize, for each xi ∈ X, its
first principal component is denoted as

(2.7) y1,i = Tv1 (xi) ∈ Rp

We can also write equation (2.7) in the form of matrix. We denote

Y1 = [y1,1, · · · , y1,n]T = [Tv1(x1), · · · , Tv1(xn)]
T = Tv1(X) ∈ Rn×p

Now suppose we want to project our dataset to a second basis vector. This means finding a second
principal direction v2 onto which to project the data that maintains as much as possible the information
that is not in the span by the first coordinate v1. In other words, for each data point xi, we want to project
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xi − v1y1,i onto a second subspace that maximizes the energy. Because xi − v1y1,i is the part of xi that is
not in the span of the first principal direction, it is linearly independent from v1y1,i, and therefore v2 and
v1 are also independent and thus they are orthogonal to each other. We denote the span(v1) as S1 and the
subspace of Sp−1 that is orthogonal to S1 as S⊥

1 ∩Sp−1. Therefore, the second principal component v2 is the
solution of the following problem:

(2.8) X1 = [x1 − v1y1,1, · · · , xn − v1y1,n]
T

v2 = argmax
a∈S⊥

1 ∩Sp−1

E (Ta(X1))

and for each xi − v1y1,i ∈ X1, we call

(2.9) y2,i = Tv2 (xi − v1y1,i)

the second principal component of xi − v1y1,i. Similarly, we can write equation (2.9) in matrix form

Y2 = [y2,1, · · · , y2,n]T = [Tv2(x1 − v1y1,1), · · · , Tv2(xn − v1y1,n)]
T = Tv2(X1) ∈ Rn×p

Then, using mathematical induction, we can calculate the successive principal directions as follows. As-
sume that the first s − 1 principal directions Vs−1 = {v1, · · · , vs−1} ⊂ Sp−1 and the corresponding s − 1
principal components {Y1, · · · , Ys−1} ⊂ Rp of X are well defined. We denote the subspace spanned by
v1, · · · , vs−1 as Ss−1 and the subspace of Sp−1 that is orthogonal to Ss−1 as S⊥

s−1 ∩ Sp−1. Now, we want to
project onto the sth coordinate the information in X that is not spanned by the previous s − 1 principal
components, which we denote as

(2.10) Xs−1 =

xi −
s−1∑
j=1

vjyj,i, 1 ≤ i ≤ n


Similarly, vs is orthogonal to v1 · · · vs−1. Then the sth principal direction is defined as

vs = argmax
a∈S⊥

s−1∩Sp−1

E (Ta (Xs−1))

and the sth principal component of X is Ys = Tvs (Xs−1).

While it is hard to solve the maximization problem described above directly, we can convert it into the
following minimization problem which is easy to solve:

Theorem 2.11. The projection Ta that maximizes the energy of a dataset X is also the projection that
minimizes the energy of the orthogonal vector (I − Ta)(X). Namely,

(2.12) v1 = argmax
a∈Sp−1

E (Ta(X)) = argmin
a∈Sp−1

E ((I − Ta) (X)) ,

and

(2.13) vs = argmax
a∈S⊥

s−1∩Sp−1

E (Ta (Xs−1)) = argmin
a∈S⊥

s−1∩Sp−1

E ((I − Ta) (Xs−1)) .

Proof. This is the direct result of the Pythagorean theorem. Recall that the energy is the sum of the
distances from each projected data point to the origin. Consider for now a single point. We want to find
the direction on the unit sphere that maximizes the distance between the projected data point and the
origin. Notice in Figure 5 that the distance from the original data point to the origin (i.e. the norm of the
vector c) is unchanged as the coordinate vector a is rotated around the origin. By the Pythagorean theorem,
∥c∥2 = ∥a∥2 + ∥b∥2. Thus, for fixed ∥c∥, maximizing ∥a∥ is equivalent to minimizing ∥b∥. The norm of b can
be represented as ∥xi − Ta(xi)∥ where Ta is our desired transformation that maximizes the energy.
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Figure 5. Illustration of the Pythagorean theorem

□

The solutions of principal directions can be obtained with the aid of the best k−rank approximation for
matrices.

Theorem 2.14 (Mirsky (1960), Eckart and Young (1936)). Let X ∈ Rn×p be our dataset, where each column
is a data point and each row is an observation. Let r = rank(X) and the SVD decomposition of X be:

X = UΣV T =

r∑
i=1

σiuiv
T
i

where U = [u1, u2, ..., ur] ∈ Rn×r, Σ = diag(σ1, ..., σr) ∈ Rr×r with σ1 ≥ σ2 ≥ ... ≥ σr, and V = [v1, ..., vr] ∈
Rp×r

Denote X̃ =
∑k

i=1 σiuiv
T
i , k ≤ r, then we have the following statement: X̃ is the rank k matrix that is

closest in Frobenius norm to X, i.e.

∥X − X̃∥F = min
rank(A)=k

∥X −A∥F

We call X̃ the best k-rank approximation of X.

A proof can be found in [1].
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Remark 2.15. We can also write the best k-rank approximation in the form of matrix multiplication. Let
the SVD of X be given by X = UΣV T and rank(X) = r. We denote

Uk = [u1, · · · , uk] ,Σk = diag (σ1, · · · , σk) , Vk = [v1, · · · , vk] , for some k ≤ r

Then the best k-rank approximation of X is

X̃ = UkΣkV
T
k

By the best k-rank approximation theorem, now we can then construct kth principal directions and
components of a high dimensional dataset X ∈ Rn×p using the following theorem.

Theorem 2.16. Let X ∈ Rn×p be our centered dataset, and let Uk,Σk, Vk be defined as remark 2.15. Then
columns v1, v2, · · · , vk of Vk are the k principal directions of X. Namely, they are the directions that minimize
the energy of (I − Ta) (X) , (I − Ta) (X1) , ..., (I − Ta) (Xk−1) respectively, where X1 and Xk−1 are defined
as (2.8) and (2.10). The k principal components of X are the column vectors of the matrix

Y = [y1, · · · , yn] = UkΣk,

Proof. Let r = rank(X) and assume k ≤ r. We prove the theorem by induction. For 1 ≤ s ≤ k, denote

Us =
[
u1 · · · us

]
,Σs = diag (σ1, · · · , σs) , Vs =

[
v1 · · · vs

]
and

Ys = UsΣs.

Note Ys consists of the first s rows of Y . Define the matrix Bs = YsV
T
s ∈ Rn×p. Suppose s = 1, then by

theorem 2.14, B1 = Y1V
T
1 is the best 1 rank approximation of X. Namely,

(2.17) ∥X −B1∥F = min
rank(B)=1

∥X −B∥F = ∥X − U1Σ1V
T
1 ∥F = ∥X −XV T

1 ∥F

Recall that in theorem 2.11, we want to minimize E ((I − Ta) (X)) , a ∈ Sp−1 to find the first principal
direction v1. Rewriting the energy sign in the form of Frobenius norm, we have

min E ((I − Ta) (X)) = min ∥ (I − Ta) (X) ∥F
= min ∥X − Ta(X)∥F

Notice that Ta(X) has rank 1, and therefore the minimization problem of finding the first principal direction
is equivalent to the best 1-rank approximation in equation (2.17). Namely, v1 is the first principal direction
and U1Σ1 is the corresponding first principal component of X.

Now suppose v1, · · · , vs−1 ∈ Vs−1 are the first s − 1 principal directions of X and Us−1Σs−1 are the
corresponding principal components, we want to prove that vs ∈ Vs is the sth principal direction of X. By
theorem 2.11, we want to minimize E ((I − Ta) (Xs−1)) , a ∈ S⊥

s−1 ∩ Sp−1 to find the sth principal direction
of X. Rewriting the energy in the form of the Frobenius norm, we have

min E ((I − Ta) (Xs−1)) = min ∥ (I − Ta) (Xs−1) ∥F
= min ∥Xs−1 − Ta(Xs−1)∥F
= min ∥X − Us−1Σs−1V

T
s−1 − Ta(Xs−1)∥F

= min ∥X −
(
Us−1Σs−1V

T
s−1 + Ta(Xs−1)

)
∥F

where the third equation holds because Xs−1 = X − Us−1Σs−1V
T
s−1 by the way Xs−1 is defined in (2.10).

We denote As = Us−1Σs−1V
T
s−1 + Ta(Xs−1). Notice that As is a rank s matrix because Us−1Σs−1V

T
s−1

has rank s− 1 and Ta(Xs−1) has rank 1 and Ta(Xs−1) is not in the span of v1, . . . , vs−1. Then, the energy
minimization problem in finding the sth principal direction becomes

min ∥X −As∥F , rank(As) = s

which is equivalent to the best s rank approximation problem defined in 2.14. Therefore, vs is the sth
principal direction of X.

To sum up, {v1, . . . , vk} ⊂ Rk are successive principal directions of X and the columns of Ys = UsΣs are
the corresponding d principal components of X.

□
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2.3. Statistical interpretation of PCA. Now we are going to discuss a statistical interpretation of PCA.
Let X = [x1, · · · , xn]

T ∈ Rn×p be our dataset. We now consider each column vector xi ∈ X as an observation
of the dataset, and each row the sample space of a variable.

For simplicity, we assume that our dataset X is already shifted by its sample mean so that all of its

components have zero mean, i.e. X = X̂. Recall that the variance of a random variable Z with n samples
{zi}ni=1 is computed by

Var(Z) = E
[
(Z − Z̄)2

]
=

1

n

n∑
i=1

(
zi − Z̄

)2
,

where Z̄ is the mean of Z. Particularly, when Z̄ = 0,

Var(Z) =
1

n

n∑
i=1

(zi)
2
=

1

n
∥z∥22.

We can think of each data point xi as a realization of some random variable following a certain distribution
such as Gaussian or Bernoulli depending on the data assumption. Remember that when trying to find the
first principal direction, we try to find the projection of X onto a lower dimension that maximizes the energy
argmax E (Ta(X)). Because energy of a dataset is defined as the sum of the square of the norm of each data
point, we can rewrite the formula in 2.6 as

argmax
a∈Sp−1

E (Ta(X)) = argmax
a∈Sp−1

n∑
i=1

∥ (Ta(xi)) ∥22

We can see that maximizing
∑n

i=1 ∥ (Ta(xi)) ∥2 is equivalent of maximizing the variance of Ta(X).Therefore,
the first principal direction of the dataset X is defined as the direction of maximum variance.

3. Classical Multidimensional Scaling (CMDS)

Classical multidimensional scaling (CMDS) is a dimensionality reduction method that preserves local
features between the data points. Specifically, given a set of high dimensional data points X, we wish to
project them onto some lower dimensional subspace in a way that preserves the pairwise distances between
them as much as possible.

3.1. Distance and Gram Matrices. In this section we will introduce the distance matrix and gram matrix.

Definition 3.1 (Euclidean distance and square-distance matrix). Let X = [x1, x2, · · · , xn]
T ∈ Rn×p be our

dataset. The Euclidean distance matrix is an n×n matrix D = [Dij ] whose each entry Dij is the Euclidean
distance between the data point xi and xj :

(3.2) [Dij ] = [∥xi − xj∥2]ni,j
The Euclidean square-distance matrix S is defined as

(3.3) [Sij ] = [∥xi − xj∥22]ni,j

Notice that both D and S are symmetric and invariant under shifts and rotations, since these transfor-
mations do not affect pairwise distances.

From the definition 3.1 above, we can see that any matrix that can be written in the form (3.2) can be
considered as a Euclidean distance matrix. The goal of CMDS is to recover the points xi from knowledge of
D alone.

Definition 3.4. Let X = [x1, x2, ..., xn]
T ∈ Rn×p be a dataset. We define a Gram matrix G on dataset X

as

[Gij ] = [⟨xi, xj⟩]ni,j=1 = XXT

where ⟨·, ·⟩ is the standard Euclidean inner product. If the Gram matrix is defined on a centered dataset X̂,
then it is called the centering matrix, which we often denote as Gc.
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Because the entries of a Gram matrix G are vector inner products, Gram matrix is not shift invariant.
We also notice that G is a positive semi-definite (p.s.d) matrix because for any nonzero real column vector

z,

(3.5) zTGz = zTXXT z = zT (XT )TXT z = ∥XT z∥22 ≥ 0

For any dataset, we can easily determine its Gram matrix. Inversely, we can also think of any p.s.d matrix
as a Gram matrix of some dataset. This is because if an n × n p.s.d matrix G has rank m, then it has a
Cholesky decomposition

(3.6) G = XXT

where X = [x1, · · · , xn]
T
is an n×m upper triangular matrix, which we can view as the matrix representation

of some sort of dataset {x1, x2, ..., xn} ⊂ Rm. Given a p.s.d. matrix, we now want to investigate if it is a
centering Gram matrix for some set of points in Rm.

Definition 3.7. Write 1 = [1, 1, · · · , 1]T ∈ Rn, E = 11T , and let I denote the n× n identity matrix. Then
the n× n matrix H = I − 1

nE is called the n-centralizing matrix.

The following lemma helps us to check whether a dataset is centered and whether a positive semi-definite
matrix can be viewed as a centering Gram matrix.

Lemma 3.8. The n-centralizing matrix H have the following properties.

(1) H2 = H
(2) 1TH = H1 = 0,
(3) X is a centered data set, if and only if HTX = X,
(4) A positive semi-definite matrix C is a centering Gram matrix, if and only if HCH = C.

The proof of this lemma can be found as Lemma 1 in Chapter 6 of [2]

Remark 3.9. Let X ∈ Rn×p be a data matrix and G be its Gram matrix. Then the centered data set of X
is HTX, and the centering Gram matrix of X is Gc = HGH.

Just like PCA, we always shift our dataset by the sample mean in CMDS because the centering Gram
matrix has the following nice property.

Lemma 3.10. Let Gc be a centering Gram matrix. Then
∑n

i=1 G
c
ij = 0 for all j. That is, the sum of each

row is equal to zero.

Proof. We can rewrite the summation in Lemma 3.10 in the form of inner products,
n∑

i=1

Gc
ij =

n∑
i=1

⟨xi, xj⟩ =

〈
n∑

i=1

xT
i , xj

〉
Notice that because xi’s are centered, their summation

∑n
i=1 x

T
i adds up to 0. □

Now we want to explore the relationship between the Gram matrix and the distance matrix.

Lemma 3.11. Let X = [x1, x2, ..., xn]
T ∈ Rn×p be our dataset. The Gram matrix G and the Euclidean

distance matrix D has the following relation:

Dij = ∥xi − xj∥2 =
√
Gii +Gjj − 2Gij .

Proof. We compute

Dij =
√
∥xi − xj∥22

=
√
⟨xi, xi⟩+ ⟨xj , xj⟩ − 2 ⟨xi, xj⟩

=
√
Gii +Gjj − 2Gij

□

Theorem 3.12. For a given centered dataset X, its Euclidean square-distance matrix S and Gram centering
matrix Gc have the following relation.

Gc = −1

2
S
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Proof. By lemma 3.10, Gc has the property
∑n

i=1 G
c
ij = 0. Hence, the relation in lemma 3.11 immediately

gives us
n∑

i=1

D2
ij = nGc

jj +

n∑
i=1

Gc
ii

and
n∑

j=1

D2
ij = nGc

ii +

n∑
j=1

Gc
jj .

Therefore, the (i, j)-entry of S is given by

Sij = D2
ij −

1

n

 n∑
i=1

D2
ij +

n∑
j=1

D2
ij −

1

n

n∑
i,j=1

D2
ij


= D2

ij −Gc
ii −Gc

jj

= −2Gc
ij ,

completing the proof of the theorem. □

Theorem 3.12 shows the importance of centering our dataset in CMDS. Given a centered dataset, we can
always find its corresponding Euclidean square-distance matrix by its centering Gram matrix through the
equation Gc = − 1

2S.
By Theorem 3.12, we have the following corollary.

Corollary 3.13. Let A be a symmetric matrix. Then
(1) A is a Gram matrix of a data set if and only if it is a p.s.d matrix.
(2) A is a centering Gram matrix if and only if it is a centering p.s.d matrix. A centering p.s.d matrix is a
p.s.d matrix subtracted by its sample mean.
(3) A is a Euclidean square-distance matrix if and only if − 1

2A is a centering p.s.d matrix.

Proof. (1) is already proved in equation (3.5) and (3.6). (2) can be easily proved by lemma 3.8 (4). We
now want to prove (3). For the backwards direction, write Gc = − 1

2A. If Gc is a centering p.s.d matrix, by
equation (3.6), Gc has a Cholesky decomposition

G = XXT

where A can be seen as the Euclidean square-distance matrix of the dataset X. For the forwards direction,
if A is a Euclidean square-distance matrix, then by theorem 3.12, Gc = − 1

2A is the centering Gram matrix
of X so that it is a centering p.s.d matrix. □

The relationship between the centering Gram matrix and the (square) distance matrix is important in
CMDS. We can observe that Corollary 3.13 helps us determine whether a given matrix can be viewed as
a (centering) Gram matrix or distance matrix. Recall that the intuition of CMDS is that given a distance
matrix, we want to construct a configuration of points that reflects this distance matrix. The Gram matrix
can then help us find the formula for finding the low dimensional configuration set such that the distance
matrix of this low dimensional configuration set is not distorted much from the original distance matrix.

3.2. The CMDS algorithm. Let X = [x1, x2, ..., xn]
T ∈ Rn×p be a centered dataset, and let D = [Dij ]

be the distance matrix of our dataset. CMDS tries to find a configuration Y = [y1, · · · , yn]T on a lower k
dimensional subspace such that the distance matrix of Y is as close as possible to the matrix D. Namely,

∥yi − yj∥2 ≈ Dij ,∀i, j.

Lemma 3.14. Assume that an n × n matrix D is a Euclidean distance matrix and S is the corresponding
square-distance matrix. Let Gc = − 1

2S. If the rank of Gc is r. Then there is an r-dimensional centered

vector set X = [x1, · · · , xn]
T ∈ Rn×r such that

∥xi − xj∥2 = Dij , 1 ≤ i, j ≤ n.
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Proof. By theorem 3.12, Gc is a centering Gram matrix. Since the rank of Gc is r, there exists an n × r
centered data matrix X such that Gc = XXT by Cholesky decomposition. Then the centered data set X
satisfies the above relation. □

We call r in Lemma 3.14 the intrinsic configuration dimension of D and X the exact configuration of D.
In section 3.1, we have shown how to determine if a p.s.d matrix is a distance matrix. Now for any distance

matrixD, we can find the corresponding Gram matrix Gc by theorem 3.12 and the decomposition Gc = XXT

gives you the exact dataset X for the original distance matrix. If we wish to reduce the dimensionality of
the data, then we can try to find a lower rank Y = [y1, · · · , yn]T such that the Gram matrix of Y is close to
Gc. We use the following loss function to judge whether a certain configuration Y ’s distance matrix is close
to the original dataset’s distance matrix.

η(Y ) =

n∑
i,j=1

(
∥xi − xj∥22 − ∥yi − yj∥22

)
, s.t. yi = Pxi,

where P is an orthogonal projection from Rp to a k-dimensional subspace Sk ⊂ Rr and X is an exact
configuration of D. Our goal is to find the Y that minimizes the loss function η, namely,

(3.15) Y = argmin
Y ∈Rn×k

η(Y ), s.t. Y = PX

We need to show that each term of the loss function is non-negative so that they won’t cancel each other
out. To prove this, we need the following theorem.

Theorem 3.16. Let x be a vector and Px be an orthogonal projection. Then the norm of x is always greater
than or equal to Px, namely,

∥Px∥2 ≤ ∥x∥2
Before the proof of this theorem, we first take an intuitive look at why this is true. As we can see in

Figure 6, when we project two vectors to a lower dimension, their distance always shrinks. The length of
the projected vector is always shorter than that of the original vector when we project the data point to a
lower dimension.

Figure 6. Illustration of Orthogonal Projection

Proof of Theorem 3.16. We compute

∥x∥22 = ∥Px+ x− Px∥22
= ∥Px+ (I − P )x∥22
= ∥Px∥22 + ∥(I − P )x∥22 + 2(Px)T (I − P )x

= ∥Px∥22 + ∥(I − P )x∥22
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where the last equation holds because

2(Px)T (I − P )x) = 2xTPT (I − P )x

= 2xT (PT − PTP )x

= 0

because the orthogonal projection matrix P is symmetric and P 2 = P
Then, since ∥x∥22 = ∥Px∥22 + ∥(I − P )x∥22 and ∥(I − P )x∥22 ≥ 0, we have ∥Px∥22 ≤ ∥x∥22 and thus

∥Px∥2 ≤ ∥x∥2, as desired. □

We can then denote x = xi − xj for xi, xj ∈ X and Px = yi − yj . By theorem 3.16, each term of
∥xi − xj∥22 − ∥yi − yj∥22 is always larger or equal to 0.

In order to find a solution for the above problem (3.15), we introduce the following 3 lemmas.

Lemma 3.17. If X is a centered dataset, and A is an orthogonal projection transformation to a lower
dimension, then the transformed dataset XA is still centered.

Proof. Because X is centered, by Lemma 3.8 (3), X = HTX and so XA = HTXA where H is the n-
centralizing matrix. Then by lemma 3.8 (3) again, XA is a centered dataset. □

Lemma 3.18. Let X be a centered dataset with corresponding Euclidean square-distance matrix S = [Sij ],
and let Gc be its centering Gram matrix. Then

tr (Gc) =
1

2n

n∑
i=1

n∑
j=1

Sij

The proof of this lemma is expanding the entrywise summation and can be found in Chapter 6 Lemma
6.4 in [2], and it immediately yields lemma 3.19.

Lemma 3.19. Let X = [x1, · · · , xn]
T
be the centered dataset and D to be its distance matrix. Then

∥X∥F =
1√
2n

∥D∥F .

The proof of this lemma can be found in Chapter 6 Lemma 6.5 in [2].
We now explain the method for finding the solution of the minimization problem in the equation (3.15).

Theorem 3.20. Let X ∈ Rn×r be the configuration of D = [Dij ]. Let rank(X) = r and the SVD of X be
given by

X = UΣV T

For a given k ≤ r, let Vk = [v1, · · · , vk] and Y = XVk. Then Y is a solution of the minimization problem in
(3.15) with

η(Y ) =

r∑
i=k+1

σ2
i

Proof. Let Sk be a k-dimensional subspace of Rr and B ∈ Rr×k be a matrix whose columns form an
orthonormal basis on Sk. Then BBT represents the corresponding orthogonal projection from Rr to Sk.
Now observe ∥∥(I −BBT

)
(xi − xj)

∥∥2
2
=
[(
I −BBT

)
(xi − xj)

]T (
I −BBT

)
(xi − xj)

= (xT
i − xT

j )(I −BBT )(I −BBT )(xi − xj)

= (xT
i − xT

j )(I − 2BBT +BBTBBT ) (xi − xj)(BTB = I)

= (xT
i − xT

j )(I −BBT )(xi − xj)

= xT
i xj − xT

i BBTxi − xT
j xi + xT

j BBTxi − xT
i xj

− xT
i xj − xT

i xj + xT
i BBTxj + xT

j xj − xT
j BBTxj

where the last term is exactly the expansion of the term

∥xi − xj∥22 − ∥BBTxi −BBTxj∥22
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and so we have

(3.21)
∥∥(I −BBT

)
(xi − xj)

∥∥2
2
= ∥xi − xj∥22 − ∥BBTxi −BBTxj∥22

Then the loss function η(Y ) becomes

(3.22) η(Y ) =

n∑
i,j=1

∥xi − xj∥22 − ∥BBTxi, BBTxj∥22 =

n∑
i,j=1

∥∥(I −BBT
)
(xi − xj)

∥∥2
2

Therefore, the minimization problem is transformed to the problem of finding a B∗ ∈ Rr×k such that
minimizes η(Y ):

(3.23) B∗ = argmin
B∈Rr×k

n∑
i,j=1

∥∥(I −BBT
)
(xi − xj)

∥∥2
Notice thatX

(
I −BBT

)
∈ Rn×r. We write Ẑ = [z1, · · · , zn] = (X

(
I −BBT

)
)T such that each z1, · · · , zn ∈

Rr. Notice that Ẑ is still centered by Lemma 3.17. We use DẐ to denote the distance matrix of Ẑ. By
Lemma 3.19, we have

(3.24)
∥∥DẐ

∥∥2
F
= 2n∥Ẑ∥2F

By equation (3.22), we have

(3.25) η(Y ) =

n∑
i,j=1

∥∥(I −BBT
)
(xi − xj)

∥∥2
2
=
∥∥DẐ

∥∥2
F

and

(3.26) ∥Ẑ∥F = ∥ẐT ∥F =
∥∥X −XBBT

∥∥
F

Therefore, minimizing η(Y ) is equivalent of minimizing
∥∥DẐ

∥∥2
F

by equation (3.25), and is then equivalent

to minimizing ∥Ẑ∥F by equation (3.24). Namely,

min η(Y ) = min
∥∥DẐ

∥∥2
F
= min ∥Ẑ∥F .

Because ∥Ẑ∥F = ∥ẐT ∥F =
∥∥X −XBBT

∥∥
F
by equation (3.26), we have

min η(Y ) = min ∥Ẑ∥F = min
∥∥X −XBBT

∥∥
F

Then our goal of minimizing η(Y ) is equivalent to minimizing
∥∥X −XBBT

∥∥
F
. Notice that XBBT has rank

k because we are projecting X to a k-dimensional subspace by BBT . Therefore, minimizing
∥∥X −XBBT

∥∥
F

becomes the best k-rank approximation problem. Letting A = XBBT , we have

min
∥∥X −XBBT

∥∥
F
= min

rank(A)=k
∥X −A∥F

By Theorem 2.14, the solution of the above minimization problem is A = UkΣkV
T
k = XV T

k where Uk,Σk, V
T
k

are defined as remark 2.15. Then we have that

B∗B
T
∗ = Vk

is the solution of our minimization problem in equation (3.23), so our lower dimensional configuration is
Y = XVk, and the error term follows

η (XVk) = ∥X −XVk∥2F =

r∑
i=k+1

σ2
i

by Proposition 2.4. □
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3.3. Comparison between CMDS and PCA. The starting point between PCA and CMDS are different:
in PCA, we are given the dataset and we want to project onto a lower dimensional subspace: to achieve this
goal we identify the most important components in a given dataset X that retain the largest variance. In
CMDS, we are given the distance matrix of a dataset, and we focus on finding a set of points in a lower-
dimensional Euclidean space that maintain the greatest similarities, using an Euclidean distance matrix for
n data points. Figure 7 provides an intuitive understanding of the difference between PCA and CMDS.

e

(a) Illustration of CMDS (b) Illustration of PCA

Figure 7. Comparison between CMDS and PCA

As we can see in Figure 7, in subplot 7a, CMDS tries to minimize the difference between the square of the
length of the green line segment and that of the blue line segments, i.e. ∥xi − xj∥22 − ∥yi − yj∥22. In subplot
7b, PCA tries to minimize the sum of the length of the green line segments. Therefore, the starting point of
PCA and CMDS are different.

However, PCA and CMDS yield the same results. As we can see in Theorem 2.16, the way we find the k

principal directions and components is to find the k-rank approximation
∑k

i=1 σiuiv
T
i = UkΣkV

T
k . Similarly,

in CMDS, the configuration is Y = XVk = UΣV TVk which, if we write in the form of summation of row
and column vectors, gives us the same result as finding the k-rank approximation in the PCA method. We
can see that while PCA gives us the principal components Vk which form a basis that spans the subspace in
which the transformed data lies, CMDS gives us the coordinates XVk of the coordinates of the transformed
data.

4. Random Projection

CMDS is a dimensionality reduction method without the direct access to the original dataset. In this
section, we are going to introduce another method called random projection which, similar to PCA, operates
on the dataset itself. While PCA is good at preserving global properties of a dataset, it may not maintain
local relationships. For example, notice that in Figure 8, while the distance between the two yellow points
is well preserved after PCA, the distance between the two green points is poorly preserved. This is because
PCA projects the data points to a lower dimensional hyperplane in the direction of maximal variance. This
means that when we project the data points onto the lower dimensional subspace, the subspace will tend to
align in a way that fits points far away from the center and so the greatest pairwise distance will be preserved
well while the smaller ones are less so. Thus, for points that are are close to the center but are relatively far
away from each other (like the yellow points in the figure), their distances may shrink to be arbitrarily small
after PCA. To preserve local data distances in dimensionality reduction, we can use random projection. We
will first introduce Lipschitz embeddings, which are important in the application of random projection.

Definition 4.1. A mapping f : V ⊂ Rp → Rk is called a Lipschitz mapping on V if there exist two positive
constants A and B such that for each pair of vectors u, v ∈ V ,

A∥u− v∥22 ≤ ∥f(u)− f(v)∥22 ≤ B∥u− v∥22
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Figure 8. Illustration that PCA doesn’t preserve local distances

From this, we can see that Lipschitz embeddings have a nice property of giving a lower and upper bound to
the distance between any two vectors in the range of f . Random projections seek to employ this property of
Lipschitz embeddings to preserve pairwise distances of the data points. We use random matrices to represent
these random projections.

4.1. Random Matrices. A random matrix is a matrix such that each entry is an i.i.d random variable
following a certain distribution. Here we introduce the most common type of random matrix.

Definition 4.2. A matrix R is Gaussian random matrix if each of its entry is a random variable following
normal Gaussian distribution N(0, 1). Namely,

R = [rij ], f(rij) =
1√
2π

exp

(
−r2ij
2

)
where f is the probability density function of normal distribution.

We shall note that while we introduce Gaussian random matrices, there exist other types of random
matrices. For example, we can have a Bernoulli random matrix where each entry follows a Bernoulli random
variable. For this paper, we shall assume in later part of this text that all random matrices are Gaussian
random matrices.

Next we will introduce some interesting properties about random matrices. First, we shall notice that
since each entry of a random matrix R ∈ Rm×n is an i.i.d Gaussian random variable, if a ∈ Rn is a vector,
then Ra ∈ Rm is a vector of linear combinations of Gaussians. Therefore, each entry of Ra is also a Gaussian
random variable. We now explain the relationship of the mean and variances between the random matrix R
and that of the random vector Ra.

Lemma 4.3. Let R = [rij ] be a k × p matrix, in which all entries are i.i.d. N(0, 1). Let the mapping
f : Rp → Rk be defined by

(4.4) f(a) =
1√
k
Ra, a ∈ Rp.

Then we have

E
[
∥f(a)∥22

]
= ∥a∥22.

Proof. We shall first notice that f(a) is a random vector in Rk, of which all components are i.i.d. random
variables with 0 mean and variance 1

k∥a∥
2
2. We denote the ith row vector of R by ri and denote the inner
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product
〈
ri, a

〉
by ci. Then f(a) = c = [c1, · · · , ck]T . We have

E [ci] =
1√
k

p∑
j=1

ajE [rij ] = 0,

E [cicj ] =
1

k

p∑
m=1

p∑
l=1

alamE [rilrjm] = 0, i ̸= j,

and

E
[
c2i
]
= E


 p∑
j=1

aj (rij)

2


=
1

k

 p∑
j=1

a2iE
[
r2ij
]
+ 2

∑
l ̸=m

alamE [ril]E [rim]


=

1

k

p∑
j=1

a2i ,

which yields that all entries of f(a) are i.i.d. random variables with 0 mean and variance 1
k∥a∥

2
2. Finally, we

have

E
[
∥f(a)∥22

]
=

k∑
i=1

E
[
c2i
]
= k

∥a∥22
k

= ∥a∥22.

□

This lemma shows that for any random matrix R = [ri,j ] with E[rij] = 0 and Var(ri,j) = 1, we have
E[∥Ra∥22] = ∥a∥22 for any vector a. In particular, let R = [rij ] be a k × D random matrix. If a is a unit

vector, then
√
kRa is a k-dimensional random vector whose entries are i.i.d random variables with 0 mean

and variance 1.

4.2. Dimensionality Reduction with Random Projection. Let X = [x1, x2, · · · , xn]
T ∈ Rn×p be our

high dimensional dataset. Random projection tries to project our high dimensional dataset to a lower
dimension by a linear mapping f defined in (4.4).

We should first notice that for any random projection f : Rp → Rk where k < p, the projection f cannot
be a Lipschitz embedding. This is because by the rank-nullity theorem, f has nontrivial null space. Namely,
there exists nonzero x1 ̸= x2 such that f(x1) = f(x2) = 0. Therefore we cannot find positive constants A
and B such that

A∥x1 − x2∥22 ≤ ∥f(x1)− f(x2)∥22 ≤ B∥x1 − x2∥22
because A∥x1 − x2∥22 is larger than 0 while ∥f(x1)− f(x2)∥22 is equal to 0.

Therefore, random projection method does not aim to find a Lipschitz embedding f : Rp → Rk. Rather,
it seeks to find an embedding that is Lipschitz on a subset X ⊂ Rp with a high probability such that this
embedding, after projecting our original dataset to lower dimension k with some restrictions, preserves the
pairwise distances between data points by restricting the pairwise distances between a lower and an upper
bound.

Lemma 4.5 (Johnson and Lindenstrauss Lemma (JL Lemma)). For any 0 < ε < 1 and any integer n > 0,
let k be a positive integer such that

(4.6) k ≥ 4
(
ε2/2− ε3/3

)−1
lnn

Then for any dataset X ⊂ Rp of n points, let f : Rp → Rk be defined as (4.4). Then for any two xi, xj ∈ X,

(4.7) (1− ε)∥xi − xj∥22 ≤ ∥f(xi)− f(xj)∥22 ≤ (1 + ε)∥xi − xj∥22
holds with probability 1− 1

n .
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We shall notice the intuition behind the lower bound on k. In the inequality (4.6), ε is the error tolerance,
which measures how tight the bound is on ∥f(xi) − f(xj)∥2, as stated in the inequality (4.7). As ε gets

smaller, we allow for less error and 4
(
ε2/2− ε3/3

)−1
lnn becomes bigger, and thus k has a higher lower

bound. Similarly, as n gets larger, 4
(
ε2/2− ε3/3

)−1
lnn also becomes bigger, and thus k has a higher lower

bound. Intuitively, with less error or with more data points, our dimensionality reduction problem becomes
harder, so we cannot project k to a very low dimension while still preserving pairwise distances well.

To prove the JL lemma, we need the following lemma first.

Lemma 4.8. Let R be a k × p (k ≤ p) Gaussian random matrix and a ∈ Rp be a unit vector. Let y = Ra
and 1 < β. Then

(4.9) Pr

[
∥y∥22 ≤ k

β

]
< exp

(
k

2

(
1− 1

β
− lnβ

))

(4.10) Pr
[
∥y∥22 ≥ kβ

]
< exp

(
k

2
(1− β + lnβ)

)
The proof of this lemma can be found in Chapter 7 Lemma 7.3 of the book [2].

Proof of JL Lemma. Let R be a k×p random matrix whose entries are i.i.d. random variables ∼ N(0, 1). We
want to show that the linear map R satisfies the inequality (4.7). For each pair of xi and xj inX with xi ̸= xj ,
we set

a =
xi − xj

∥xi − xj∥2
, z = R(a) y =

√
kz

Then

Pr

(
∥f(xi)− f(xj)∥22

∥xi − xj∥22
≤ (1− ε)

)
= Pr

(
∥z∥22 ≤ (1− ε)

)
= Pr

(
∥y∥22 ≤ (1− ε)k

)
.

Similarly,

Pr

(
∥f(xi)− f(xj)∥22

∥xi − xj∥22
≥ (1 + ε)

)
= Pr

(
∥y∥22 ≥ (1 + ε)k

)
.

Applying formula (4.9) in Lemma 4.5 to y with 1
β = 1− ε, we have

Pr
(
∥y∥22 ≤ (1− ε)k

)
< exp

(
k

2
(1− (1− ε) + ln(1− ε))

)
≤ exp

(
k

2

(
1− (1− ε)−

(
ε− ε2

2

)))
= exp

(
−kε2

4

)
≤ exp(−2 lnn) =

1

n2
,

where the inequality ln(1− ε) ≤ −ε− ε2/2 is used in second line, and the condition

k ≥ 4
(
ε2/2− ε3/3

)−1
lnn

is applied to deriving the inequality in the last line. Similarly, we have

Pr
(
∥y∥22 ≥ (1 + ε)k

)
< exp

(
k

2
(1− (1 + ε) + ln(1 + ε))

)
≤ exp

(
k

2

(
−ε+

(
ε− ε2

2
+

ε3

3

)))
= exp

(
−
k
(
ε2/2− ε3/3

)
2

)
≤ exp(−2 lnn) =

1

n2
.

Therefore, for each pair xi and xj in X,

Pr

(
∥f(xi)− f(xj)∥22

∥xi − xj∥22
/∈ [1− ε, 1 + ε]

)
<

2

n2
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Since the cardinality of X is n, there are a total of n(n − 1)/2 pairs. The probability of the event that at

least one pair does not satisfy Lemma 4.6 is less than 1− n(n−1)
2

2
n2 = 1/n > 0. □

From the proof above, we can see that a random matrix R, while not a Lipschitz embedding on the whole
vector space Rp, can help preserve local properties of a dataset X ⊂ Rp with high probability. Specifically,
if we have a dataset X with a very large number of observations n, then the probability that we can bound
the distances of all pairs of f(xi), f(xj), xi, xj ∈ X is 1− 1

n .
With the information above, now we can construct the algorithm for random projections.

4.3. Random Projection Algorithm. The random projection algorithm consists of two steps: first, we
create a random matrix R; and second, we multiply the created random matrix with our high-dimensional
dataset X and output the projected dataset RX.

Let xi, xj be two data points from X. Recall the formula (4.7) in JL lemma,

(1− ε)∥xi − xi∥22 ≤ ∥f(xi)− f(xj)∥22 ≤ (1 + ε)∥xi − xj∥22
We can rewrite the formula as

(1− ε)∥xi − xj∥22 ≤
∥∥∥∥ 1√

k
Rxi −

1√
k
Rxj

∥∥∥∥2
2

≤ (1 + ε)∥xi − xj∥22

We can take the constant 1√
k
out of the norm operator, and move 1

k the the other sides of the inequations,

(1− ε)∥xi − xj∥22 ≤ 1

k
∥Rxi −Rxj∥22 ≤ (1 + ε)∥xi − xj∥22

k(1− ε)∥xi − xj∥22 ≤ ∥Rxi −Rxj∥22 ≤ k(1 + ε)∥xi − xj∥22
Therefore, the JL lemma guarantees that the random projection algorithm can bound the pairwise distances
of our projected dataset RX with an upper bound k(1+ ε) and lower bound k(1− ε) with a high probability
of 1− 1

n .
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