
PERSISTENT HOMOLOGY WITH APPLICATION TO A

CONNECTIVITY-LOSS FUNCTION FOR AUTOENCODERS

JUNFEI SUN

Abstract. This paper discusses the persistent homology starting from simpli-

cial homology. We then turn to the efficient calculation method of persistence
regarding persistent homology using matrix reduction and pairing of positive

and negative simplices. We eventually establish a structural loss function for

autoencoders to carry out one-class learning tasks using persistent homology.

Contents

1. Introduction 1
2. Simplicial homology 2
2.1. Simplicial Complex 2
2.2. Construction of Homology 3
3. Persistent homology 6
3.1. Persistence 7
3.2. Pairing and Matrix Reduction 8
4. Connectivity Loss with Persistent Homology 13
4.1. Autoencoder 13
4.2. Connectivity Loss Function 14
Acknowledgments 22
References 23

1. Introduction

This paper begins by introducing simplicial homology and simplicial mapping
in Section 2.1, leading to the construction of simplicial homology and properties
of chain groups and boundary groups in Section 2.2. We also discuss calculat-
ing the Betti number, specifically for 0-dimensional holes, in Proposition 2.25 and
Proposition 2.26.

Before moving to Section 3, we explain induced mapping between homology
groups from simplicial mapping. In Section 3, we use induced mapping and the
concept of filtration to construct persistent homology groups. We explore the birth
and death of homology groups to understand persistence in Section 3.2, focusing
on an efficient method to calculate it using matrix reduction and pairing of positive
and negative simplices.

After Section 2 and Section 3 cover simplicial and persistent homology, the paper
explores a structural loss function for autoencoders in Section 4. This loss function

Date: JULY 22, 2023.

1

2 JUNFEI SUN

is based on persistent homology and aims to reshape the latent space of autoen-
coders efficiently for one-class learning tasks. We also discuss the differentiability
of the connectivity loss function and its impact on training results. Finally, Section
4.2.4 briefly explains how these structural features provide a scoring function for
one-class learning.

2. Simplicial homology

2.1. Simplicial Complex.

2.1.1. Construction of simplicial complex. We start our discussion of simplicial ho-
mology with the construction of the notion of a simplicial complex which will play
an essential role in the construction of homology later. We first give definitions
related to affine combinations.

Definitions 2.1. Let u = {u0, u1, u2..., uk} be a finite set of points in Rd. Let

x =
∑k

i=0 λiui be an affine combination. We call x a convex combination if λi is
non-negative for any 0 ≤ i ≤ k. The set of all points that are convex combinations
of u is called convex hull. We call the convex hull of k + 1 affinely independent
points a k-simplex (k is defined to be the dimension of this simplex) and denote
it by σ = conv{u0, u1, u2..., uk}.

Any subset of affinely independent points is still affinely independent. This
means that any subset of affinely independent points has its corresponding convex
hull and can define a simplex.

Definitions 2.2. Let u = {u0, u1, u2..., uk} be a finite set of points in Rd. Let
σ = conv{u0, u1, u2..., uk}. We call the convex hull of a non-empty subset of u a
face τ of σ and write τ ≤ σ. We call the face proper if it’s the convex hull of
a proper subset of u and write τ < σ. For any τ being a (proper) face of σ, we
call σ a (proper) coface of τ . The boundary of σ, denoted by bdσ, is the union
of all proper faces of σ. The interior of σ, denoted by intσ is everything that is
contained in σ but not the boundary of σ, i.e. intσ = σ/bdσ

Proposition 2.3. Any x ∈ σ belongs to the interior of one and only one face of σ

Definitions 2.4. A simplicial complexK is a collection of simplices that satisfies
the following conditions. 1) If a simplex σ is contained in K, then all its faces are
also contained in K. 2)For any two simplices in K, the intersection is either a
face of both simplices or empty. The dimension of simplicial complex K is the
maximum dimension of the simplices contained in K. The underlying space of
K, denoted by |K|, is a topological space (X, τ) with X being the union of all
simplices contained in K and τ being the topology defined by the Euclidean space
in which those simplices lie.

2.1.2. Simplicial Mapping. Now, we can construct a type of mapping between sim-
plices that are eventually going to resemble continuous maps between topological
spaces. Simplicial mapping would serve as an ingredient for persistent homology
which we would introduce in Section 3. Now, we will start by introducing a mapping
between vertices of different simplices from which a simplicial map induces.

Definitions 2.5. A vertex map is a map ϕ : V ertK → V ertL with K and L
being simplicial complexes, i.e. it maps with the vertices of every simplex in K

PERSISTENT HOMOLOGY WITH CONNECTIVITY-LOSS FOR AUTOENCODERS 3

map to vertices of a simplex in L. A simplicial map can be induced from every
vertex map ϕ, which is a function f : |K| → |L| with

f(x) =
∑k

i=0 βi(x)ϕ(ui)

where βi(x) is determined as the following. Let K have vertices u = {u0, u1,
u2..., uk}. Then for any point x contained in K, we know that x belongs to the
interior of exactly one simplex by Proposition 2.3. Let that simplex be σ = {uj1 ,
uj2 , uj3 ..., ujq} where ja < jb for any a < b and jq ≤ k. We can then represent x

with x =
∑q

i=0 λiui in which all λi are positive. Let βi(x) = λi if i ∈ j1, j2, ..., jq
and βi(x) = 0 for i /∈ j1, j2, ..., jq.

It’s worth mentioning a key property of the simplicial map before we move on to
the construction of homology which is that it preserves simplices across complexes.
To put it formally, we have the following proposition.

Proposition 2.6. Consider a simplicial map f : |K| → |L|. Its image of any
simplex in complex K is a simplex in complex L (not necessarily of the same di-
mension).

Remark 2.7. Now that we know this function preserves simplices and is linear in
each simplex. We can drop the underlying space of K and L and just denote
f : K → L

2.2. Construction of Homology. With the construction of a simplicial complex,
we can now start constructing the notion of homology groups. Generally, homology
groups capture information of meaningful topological information on spaces for
discerning and counting ’n-dimensional holes’ for topological spaces. Intuitively, an
”n-dimensional hole” is an n-dimensional subcomplex that is not a boundary of a
(n+1)-dimensional subcomplex. We will return to this intuition after constructing
the language of homology groups.

Definition 2.8. For a simplicial complex K and a dimension p, a p-chain is the
formal sum of all p-simplices σi in K. The formal sum takes the form of

c =
∑

aiσi

in which ai denotes coefficients assigned to each p-simplex. Additionally, we define
the addition between chains component-wise. In other words, for any c =

∑
aiσi

and c′ =
∑

biσi, we define c+ c′ =
∑

(ai + bi)σi

Remark 2.9. We will assume ai to be mod2 coefficients, which means that they can
be either 0 or 1 with the following computational rules: 0+0 = 0, 0+1 = 1, 1+1 = 0
for computational topology purposes. With such restrictions, we can intuitively
consider σi with a coefficient of 1 to mean ”includes σi” and 0 to mean the opposite.

Proposition 2.10. The set of all p-chains in a simplicial complex together with
addition forms an abelian group of p-chains Cp.

Remark 2.11. Note that we can define Cp for any integer p. For p smaller than 0
or bigger than the dimension of the simplicial complex, Cp is a group with only 0.

With mod2 coefficients, we can consider p-chains simply as a collection of p-
simplices. Then it makes sense to talk about the boundary of that collection.

Definition 2.12. For any p-simplex σ = conv{u0, u1, ..., uq}, we take the bound-
ary of that p-simplex to be the formal sum of all (p-1)-simplices in the complex
that are faces of this p-simplex. We write

4 JUNFEI SUN

∂pσ =
∑q

i=0 conv{u0, ..., ûi, ..., up}
Then for a p-chain c =

∑
aiσi, we define the boundary of this p-chain to be the

formal sum of boundaries of p-simplices in that chain. We write

∂pc =
∑

ai∂pσi

Remark 2.13. We can see that the boundary ∂p then constitutes a map from p-
chains to (p-1)-chains. We can then write ∂p : Cp → Cp−1

It should be clear from the definition that ∂p is a homomorphism as it respects
group operations. Formally, for c and c′ being p-chains ∂p(c+ c′) = ∂pc+ ∂pc

′

Definition 2.14. A chain complex is a sequence of chain groups connected by
boundary maps.

We now take a look at two subgroups of Cp that are particularly useful for the
construction of homology groups.

Definitions 2.15. A p-cycle is a p-chain whose boundary is 0. A p-boundary
is a p-chain that is the boundary of a (p+1)-chain.

Proposition 2.16. In a simplicial complex K, the set of all p-cycles forms a
subgroup of the group of p-chains, denoted by Zp = Zp(K). The same is true for
the set of all p-boundaries which is denoted by Bp = Bp(K).

Remark 2.17. We will from now on denote the group of p-cycles using Zp and the
group of p-boundaries using Bp

Lemma 2.18. For any integer p, ∂p∂p+1d = 0 for any (p+1)-chain d.

Proof. We will show ∂p∂p+1τ = 0 for any (p+1)-simplex τ . The statement follows
immediately. Note that ∂p+1τ consists of all the p-faces of τ .

Now, we will first show that every (p-1)-face of τ is a face of exactly two p-faces
of τ . Every (p-1)-face of τ is the simplex defined by p vertices of τ , let this set of
vertices be {u0, u1, ..., up−1}. This leaves only two vertices of τ which we denote
up and up+1 not included in this (p-1)-face. Then the only two p-simplex that can
have this (p-1)-face as a face are {u0, u1, ..., up−1, up} and {u0, u1, ..., up−1, up+1}
which is what we want to show.

We note that ∂p∂p+1τ as this the formal sum of all (p-1)-faces of all p-faces of τ ,
includes all (p-1)-faces of τ and exactly twice for each (p-1)-face. This proves that
all coefficients of all terms eventually get zeroed out and proves the claim. □

Corollary 2.19. For any integer p, we have Bp is a subgroup of Zp

Proof. Lemma 2.18 proves that every boundary of a p-chain is a p-cycle. This
means that any c ∈ Bp also satisfies c ∈ Zp which proves the corollary. □

The fact that Bp is a subgroup of Zp allows us to talk about the quotient groups
formed by Zp/Bp

Definitions 2.20. We call the p-th cycle group module the p-th boundary group
the p-th homology group, in notation, Hp = Zp/Bp. The p-th Betti Number is
defined to be the rank of the p-th homology group, in notations, βp = rank(Hp).
A class in Hp is called a homology class

PERSISTENT HOMOLOGY WITH CONNECTIVITY-LOSS FOR AUTOENCODERS 5

By the definition of taking quotient groups, any cycle c in Zp can give rise to a
homology class in Bp denoted [c] such that [c] = {c + b : b ∈ Bp}. Additionally,
every cycle in Zp is contained in one and only one homology class.

If we define the addition of the two classes to be [c]+[c′]=[c + c′], we have an
addition operation between classes that is independent of the representatives chosen
and consequently well-defined. It’s easy to check that the homology classes together
with this addition operation indeed form a group Hp.

Definition 2.21. If c and c′ belong to the same homology class, they are said to
be homologous, denoted by c ∼ c′

Notice that for any c and c′ to be homologous, they differ by a boundary, i.e.
(c−c′) ∈ Bp. This along with the fact that every cycle in Zp is contained in one and
only one homology class gives us an intuitive understanding of Hp: It’s a partition
of Zp into classes of cycles that only differ by a boundary. The extraction of this
topological feature helps us detect p-dimension holes. It turns out that they can
be counted by the p-th Betti number (except 0-dimension holes).

We will now explore how to calculate Betti numbers and how it’s linked to the
number of holes. To do that, we need to first examine some properties of quotient
groups.

Definition 2.22. Let V be a vector space over a field K and N a subspace of V. An
equivalence relation ∼N on V is defined to be that x ∼N y if x− y ∈ N . We define
the quotient space V/N to be the set of V/ ∼N which is the set of all equivalence
classes of V formed by ∼, along with addition being [v] + [u] = [v + u] and scalar
multiplication k[v] = [kv] for any v, u ∈ V and k ∈ K

Remark 2.23. It’s easy to check that V/N does form a vector space

Proposition 2.24. For any vector space V , if V is of finite dimension and N is
its subspace, we have dimV/N = dimV − dimN

Proposition 2.24 provides us with a concrete way to calculate Betti Numbers.

Proposition 2.25. For any integer p, βp = rankZp − rankBp

Proof. Firstly, Let n be the number of p-simplices in the simplicial complex. As
Cp is a group of cycles with modulo 2 coefficients, we can see that Cp is isomorphic
to Zn

2 which is an n-dimensional vector space obtained from vectors with modulo 2
coefficients through ϕ : Cp → Zn

2 , ϕ(
∑n

i=1 λiσi) = (λ1, λ2, ..., λn).
Therefore, Group Zp can be considered a subspace of Zn

2 and Bp a subspace
of Zp. It then makes sense to talk about the quotient space of Zp/Bp. From
Proposition 2.24, we have dimZp/Bp = dimZp−dimBp. Therefore, βp = rankHp =
dimZp/Bp = dimZp − dimBp = rankZp − rankBp □

Now that we have a way to calculate the Betti number, we still lack an expla-
nation of how it links to the measurement of holes. Intuitively, the rank of the
homology groups describes the number of ”basic” p-cycles that are not bounding a
(p+1)-simplex of the ”cycles modulo boundaries” structure. This intuition is put
in a more formal language specifically for 0-cycles in the following proposition.

Proposition 2.26. Let K be a finite simplicial complex. Then Betti number β0 of
K is the number of connected components of K

6 JUNFEI SUN

0-dimensional holes refer to edges that are required to connect the simplicial
complex into a path-connected complex. This means the number of connected
components minus 1 is the number of ”basic” 0-dimensional holes in a simplicial
complex.

Remark 2.27. This difference of 1 is specifically a problem with 0-dimensional holes.
If we want β0 to fit completely with the number of 0-dimensional holes, we can adopt
reduced homology.

We close this section with a discussion of the induced map between homology
groups. This induced map between homology groups will be essential to how persis-
tent homology links homology groups together which will be discussed in the next
section. Recall that for any two simplicial complexes K and L, a simplicial map
f : K → L maps each simplex in K linearly to L as introduced in Section 2.1.2.
We can then derive a map from p-chains in K to p-chains in L for each p. To do
that, we first define f# : Cp(K)→ Cp(L)

f#(
∑

aiσi) =
∑

aiµi

where
∑

aiσi is a p-chain in K and µi = f(σi) if f(σi) is still of dimension p (by
Proposition 2.6, f might map a simplex to a lower-dimensional simplex) and µi = 0
if f(σi) is of a lower dimension than p.

We will start from this f# to induce a map between Hp(K) and Hp(L). We
begin with the following lemma which is easily verified.

Lemma 2.28. For ∂K and ∂L being p-boundary maps in the two complexes, we
have f# ◦ ∂K = ∂L ◦ f#
Corollary 2.29. For f# : Cp(K) → Cp(L), we have f#(Zp(K)) ⊆ Zp(L) and
f#(Bp(K)) ⊆ Bp(L)

In words, the map f# maps cycles to cycles and boundaries to boundaries. There-
fore, it defines a map on the quotients which is an induced map on homology
f∗ : Hp(K)→ Hp(L). This can be achieved by defining

f∗([c]) = [f#(c)], [f#(c)] = f#(c) +Bp(L)

[c] is a homology group that’s contained in Hp(K) and [f#(c)] is a homology group
contained in Hp(L). The last thing that we need to check is that this defining of f∗
is well-defined, i.e. the choosing of the representation of a homology group doesn’t
change what a class maps to under f∗.

To show this, it suffices to show that for any c′ = c+ b for some b ∈ Bp(K), we
have f#(c

′) ∈ [f#(c)]. By the definition of f#, we have f#(c
′) =

∑
(ci + bi)µi with

µi = f(σi) if f(σi) still preserve dimension p and 0 if not and ci, bi being coefficients
of c and b for the corresponding σi. We then have f#(c

′) =
∑

ciµi +
∑

biµi =
f#(c) + f#(b). Finally, according to Corollary 2.29, we have f#(b) ∈ Bp(L) and
f#(c) ∈ Zp(L). This shows that f#(c

′) ∈ [f#(c)].

3. Persistent homology

We’ve now seen that homology can detect the number of n-dimensional holes
in a complex. However, when we try to derive topological features from a set of
data. We need to differentiate the existence of noise. And this yields the necessity
for persistent homology characterized by the dynamic variation of the homology
groups when we construct the whole complex ”step-by-step”.

PERSISTENT HOMOLOGY WITH CONNECTIVITY-LOSS FOR AUTOENCODERS 7

3.1. Persistence. To begin our discussion of persistent homology, we first intro-
duce the concept of filtration.

Definition 3.1. Let K be a simplicial complex. We call a function f : K → R
monotonic if for any σ and τ that are simplices contained in K, f(σ) ≤ f(τ)
whenever σ is a face of τ .

This implies that for any a ∈ R, we have K(a) = f−1(−∞, a] is a subcomplex of
K since it’s collection of simplices in a complex and any face of a simplex contained
in K(a) is also contained in it.

Definition 3.2. Let a1 < a2 < a3 < ... < an be the different values mapped to by
all the simplices in K through a monotonic function f : K → R. Let

Ki =

{
K(ai), 1 ≤ i ≤ n,

∅, i = 0.

We define a filtration from f as the following increasing (in the sense of con-
taining) sequence of complexes

∅ = K0 ⊆ K1 ⊆ ... ⊆ Kn = K

Definition 3.3. Let A and B be two sets and A ⊂ B, the inclusion map from A
to B is defined as ι : A→ B, ι(x) = x

Now, consider the inclusion map fromKi toKj with i < j as defined in Definition
3.3. Notice that the inclusion map from V ertKi to V ertKj is a vertex map as
defined in Definitions 2.5. Therefore, the inclusion map from Ki and Kj can be
considered as a simplicial map induced from the inclusion map from V ertKi to
V ertKj as stated in Definitions 2.5. Therefore, we can derive a map from the
homology group of Ki to that of Kj from this inclusion map for any dimension
p as mentioned at the end of the last section. We denote this function by f i,j

p :
Hp(Ki)→ Hp(Kj) for each dimension p.

Therefore, the filtration naturally induces a sequence of homology groups by this
map for any dimension p.

0 = Hp(K0)
f0,1
p−−→ Hp(K1)

f1,2
p−−→ ...

fn−1,n
p−−−−→ Hp(Kn) = Hp(K)

Definitions 3.4. We define the images of the above map induced by inclusion
map p-th persistent homology groups. In notations, Hi,j

p = Im(f i,j
p) for any

0 ≤ i ≤ j ≤ n. The Betti number, βi,j
p , is still defined as the rank of this group.

We now consider its relationship between the homology group Zp(Ki)/(Bp(Kj)∩
Zp(Ki)) which is well defined as (Bp(Kj) ∩ Zp(Ki)) is the intersection of two sub-
groups, thus also a group. This quotient group intuitively depicts how homology
classes of Ki changed with the change of the boundary group when we move from
i to j, thus containing the information on whether a homology class is still ”alive”
or has become trivial.

Proposition 3.5. For any integer p and any 0 ≤ i ≤ j ≤ n, the p-th persistence
homology group Hi,j

p is isomorphic to Zp(Ki)/(Bp(Kj) ∩ Zp(Ki)).

Proof. Let ϕ : Hi,j
p → Zp(Ki)/(Bp(Kj) ∩ Zp(Ki)), ϕ([c]) = [c] with c ∈ Zp(Ki).

Note that in ϕ([c]) = [c], [c] as an independent variable refers to a homology class
belonging to Hi,j

p . It makes sense as the induced map between homology groups

8 JUNFEI SUN

f i,j
p gives f i,j

p ([c]) = [ιi,j(c)] = [c] where ιi,j(c) is the inclusion map from Ki to Kj

which is a simplicial map as we’ve stated. Therefore, as long as c ∈ Zp(Ki), we
have [c] ∈ Im(f i,j

p) = Hi,j
p . Consequently, it’s reasonable to talk about [c] under

this context. To avoid confusion, we use the notation [cp] for [c] in Hi,j
p , and [cz]

for [c] in Zp(Ki)/(Bp(Kj) ∩ Zp(Ki)).
I will now show that ϕ is an isomorphism. It’s easy to see that ϕ is surjective as

every c ∈ Zp(Ki) is also contained in Zp(Kj) as mentioned above, thus there exists
[cp] in Hi,j

p such that ϕ([cp]) = [cz].
Now we show that ϕ is injective. For any [cz] = [c′z] in Zp(Ki)/(Bp(Kj)∩Zp(Ki)).

It’s easy to see that [cz] is contained in [cp] for any c. It then follows that [cp] and
[c′p] are not disjoint, which indicates [cp] = [c′p]. This proves the injectivity.

Finally, the group operation is obviously preserved through ϕ as ϕ([(c+ c′)p]) =
[cz] + [c′z] = ϕ([cp]) + ϕ([c′p]). □

Definition 3.6. Let γ be a class in Hp(Ki) with 0 ≤ i ≤ n. We say that γ is born
at Ki if it’s not contained in Hi−1,i

p .
Let ω be a non-trivial homology class born at Ki, we say that it dies at Kj

with i ≤ j ≤ n if it merges into the boundary class as we go from Kj−1 to Kj ,
i.e. f j−1,j

p (ω) = 0 where 0 denotes the boundary class and ω ̸= 0. We say that ω

doesn’t die if fn−1,n
p (ω) ̸= 0

To close this subsection, we define the concept of persistence used to depict ’how
long’ a class has survived throughout the filtration. This information is important
when we want to monitor the dynamic behavior of different homology classes.

Definition 3.7. Let γ be a homology class born at Ki and dies at Kj . We then
define the persistence of γ to be the difference in the monotonic function values
which induces Ki and Kj , i.e. pers(γ) = aj − ai. We also define the index
persistence of γ to be persId(γ) = j − i and the persistence tuple of γ to be
(i, j). If γ doesn’t die, the persistence tuple of γ is (i,∞).

3.2. Pairing and Matrix Reduction. We will explore an efficient way to calcu-
late persistence in this subsection. To do so, we need to be able to track how births
and deaths occur for different classes throughout a filtration. Notice that each time
we move from Ki to Ki+1, we add simplices into Ki to obtain Ki+1 because all the
simplices in Ki are contained in Ki+1. Therefore, the effect on homology groups as
we move from Ki to Ki+1 will be the same as the effect of us adding those simplices
one by one. Thus, we begin by considering the effect of adding any simplex into a
complex during a filtration process.

Now, consider σ which is a p-simplex as defined in Definitions 2.1. When we
add σ into a complex K, σ can only affect p-chain groups as it’s of dimension p. I
claim that there are only 2 possible cases:

1) The addition of σ forms (at least) a new p-cycle:
If this happens, we call σ positive. We then have the following proposition.

Proposition 3.8. A new p-cycle c created by a positive p-simplex σ added to
complex K belongs to a new homology class that isn’t contained in Hp(K), i.e. a
newly-born homology class.

Proof. As any simplex contained in K maps to a value smaller than or equal to
f(σ) through f with f being the monotonic function that induced the filtration,

PERSISTENT HOMOLOGY WITH CONNECTIVITY-LOSS FOR AUTOENCODERS 9

there cannot be any (p+1)-simplex that takes σ as a face in K. Assume for the
sake of contradiction that [c] ∈ Hp(K). It follows that there exists a p-cycle c′ in
K such that c− c′ ∈ Bp(K). However, note that σ is not contained in any p-cycle
c′ in K. And σ is contained in [c] by definition. Therefore σ must be contained in
c− c′, thus there exists a (p+1)-chain which contains σ in its boundary. It makes
a contradiction against that there cannot be any (p+1)-simplex that takes σ as a
face in K. □

Be aware that the addition of a positive σ might not only create one new p-chain.
This will lead to multiple new homology classes. However, the next proposition will
show that the number of ”independent cycles” will only increase by one.

Proposition 3.9. The addition of a positive p-simplex σ to a complex K increases
the rank of Zp by 1

Proof. The addition of σ to a complex K to form a new complex will create a
collection of newly-formed p-cycles that contain σ, denote them by {c1, c2, ..., cm}.
Let {z1, z2, ..., zn} be the original basis of Zp of the complex K before the addition
of σ to complex K. We can pick any ci and {z1, z2, ..., zn, ci} forms a new basis.
This is because, for any cj , we have cj + ci as a cycle that doesn’t contain σ. This
indicates cj + ci was a cycle before the addition of σ to complex K, thus can be
uniquely generated by {z1, z2, ..., zn}. Therefore, cj can be uniquely generated by
{z1, z2, ..., zn} together with ci which is the new basis. The case for any cycle that
is not in {c1, c2, ..., cm} is trivial. □

Therefore, we can conclude that the addition of any positive p-simplex leads to
an increase of rank(Zp) by 1 and no other changes, thus an increase of βp by 1
according to Proposition 2.25.

2) The addition of σ doesn’t create a new p-cycle:
This event grants σ to be called negative. Under such circumstances, we first

derive the following proposition

Proposition 3.10. If σ is negative, the boundary of σ as a (p-1)-cycle in K is not
a (p-1)-boundary before the addition of σ.

Proof. If ∂σ is a (p-1)-boundary before the addition of σ, then there exists a p-
chain d such that ∂d = ∂σ. However, this means that after the addition of σ,
∂(d+ σ) = ∂σ+ ∂σ = 0. This tells us that d+ σ is a new p-cycle which provides a
contradiction to the hypothesis. □

Intuitively, Proposition 3.10 indicates that the addition of a negative simplex
fills in a non-trivial (p-1)-cycle, thus inducing the death of some (p-1)-homology
class. Similarly to case one, although the addition of one negative simplex may
fill multiple non-trivial (p-1)-cycles. Only one ”independent class” will die of the
addition of a negative simplex.

Proposition 3.11. The addition of a negative p-simplex σ to a complex K in-
creases the rank of Bp−1 by 1

The proof of the above proposition is similar to that of Proposition 3.9 and will
not be shown. And according to Proposition 2.25, as rank(Zp−1) won’t change
after the addition of a negative σ to complex K, we have βp−1 will decrease by 1

10 JUNFEI SUN

given that βp−1 = rank(Zp−1)− rank(Bp−1).

Now, Proposition 3.8 to Proposition 3.11 provide us with a clear idea regarding
how adding one simplex to a complex affects the rank of Zp or Bp−1 and the births
and deaths of homology groups. One step from Ki to Ki+1 is the same as several
steps of adding simplices in Ki+1 but not in Ki one at a time. This enables us to
track βp for each step of going through any filtration. Specifically, at each step of
the filtration, we have

βp = #posp −#negp+1

in which #posp denotes the number of positive p-simplices and #negp+1 denotes
the number of negative p-simplices. This is justified by the fact that βp = 0 for any
filtration at K0 and any integer p.

Therefore, for any particular homology class, we can determine the positive
simplex that gave birth to this homology class and the negative simplex that led to
the death of this homology class. By pairing this pair of simplices, we can calculate
the persistence of this homology class.

To carry out this task efficiently, we introduce a matrix representation for all
simplices in a filtration that stores boundary information.

Definition 3.12. Given a sequence [σi] of all simplices in a filtration induced by
a monotonic function f such that 1) f(σi) < f(σj) ⇒ i < j and 2)σi is a face of
σj ⇒ i < j, we define the boundary matrix ∂ set up by this sequence with the
following expression

∂[i, j] =

{
1, σi is a codimension one face of σj

0, otherwise.

Remark 3.13. Note that such a sequence can always be constructed for any filtration
as f is monotonic.

Definitions 3.14. We define low(j) to be the index of the row of lowest ’1’ in
column j. If the column contains no 1, low(j) is simply not defined. We also call a
matrix R to be reduced if for any j1 ̸= j2, we have low(j1) ̸= low(j2)

We now introduce a reduction algorithm that possesses the ability to turn a
boundary matrix ∂ with m columns into a reduced matrix:

Algorithm 1 Reduction algorithm

R = ∂
for j ← 1 to m do

for j0 ← j to 1 do
if low(j0) = low(j) then add column j0 to column j
end if

end for
end for

The correctness of this algorithm is straightforward: each time we add column
j0 to j, we guarantee that low(j) ̸= low(j0) because low(j) decreases after this
addition. Moreover, the following additions that take place in this inner for-loop
won’t make low(j) = low(j0) again because any addition will only decrease low(j).

PERSISTENT HOMOLOGY WITH CONNECTIVITY-LOSS FOR AUTOENCODERS 11

Therefore, after the inner for-loop for the jth column ends, the jth column won’t
have the same row index of lowest 1 with any previous columns. Inductively, the
whole matrix will have no two equal row indices for the lowest 1 after the entire
algorithm terminates.

Note that the reduced matrix of a given boundary matrix is not unique. We
can continue adding columns after we reach a reduced matrix and this will result in
different reduced matrices. However, the uniqueness of the lowest 1’s is guaranteed.

Proposition 3.15. For a given boundary matrix ∂, its lowest 1’s are unique re-
gardless of its reduced matrix R

Proof. For any entry Rij of matrix R, we can consider its lower left submatrix of R

with Rij being its top, right corner entry. We can denote this submatrix Rj
i . The

addition of columns doesn’t change the rank of any submatrix. Therefore, we have
that rank(Rj

i) = rank(∂j
i).

We now consider the following expression:

rR(i, j) = rank(Rj
i)− rank(Rj

i+1) + rank(Rj−1
i+1)− rank(Rj−1

i)

Firstly, note that rR(i, j) = r∂(i, j). Secondly, we observe that any linear com-

bination of the non-zero columns in Rj
i is non-zero because they have different row

indices for the lowest 1’s. It follows that rank(Rj
i) =number of non-zero columns.

With these two observations, we move to evaluate this expression.
Case 1): If Rij is a lowest 1 of the reduced matrix R, then the number of

non-zero columns for Rj
i+1, R

j−1
i+1 , and Rj−1

i are all exactly 1 less than that of Rj
i .

Therefore, rR(i, j) = 1
Case 2): If Rij is not a lowest 1 of the reduced matrix R, then we can consider

2 subcases:
2a): None of the 1 to (j − 1)

th
columns has a lowest 1 at row i. Under this case,

Rj
i has the same number of non-zero columns with Rj

i+1. Similarly, Rj−1
i+1 has the

same number of non-zero columns with Rj−1
i . This gives us rR(i, j) = 0.

2b): One of the 1 to (j − 1)
th

columns has the lowest 1 at row i. It follows

that Rj
i has one more non-zero column than Rj

i+1 and Rj−1
i has one more non-zero

column than Rj−1
i+1 . This also gives us rR(i, j) = 0.

Therefore, as long as Rij is not the lowest 1, we have rR(i, j) = 0.
All in all, we could use rR(i, j) as an indicator of whether Rij is a lowest 1. To be

more precise, rR(i, j) = Rij . However, we know that rR(i, j) = r∂(i, j). Therefore,
whether Rij is a lowest one depends solely on r∂(i, j) and doesn’t depend on the
reduction process. □

Corollary 3.16. (Pairing Lemma) We have i = low(j) if and only if r∂(i, j) = 1

From the above, we know that the lowest 1’s don’t depend on the reduction
process. We then ask what these lowest 1’s represent. The answer to this question
will lead us to Theorem 3.17 which gives an efficient way to calculate the persistence.

We begin by considering the matrix Rk−1 representing the matrix we have before
the kth iteration of the outer loop of Algorithm 1. This is a matrix whose columns
that represent simplices before σk are in the reduced form. As we enter the kth

iteration, it attempts to zero out the kth column and there can be two outcomes:
the kth column can be zeroed out or not. We will see that whether the kth column

12 JUNFEI SUN

can be zeroed out in the kth iteration or not is directly linked to σk being a positive
or negative simplex.

Case 1) The kth column can be zeroed out.
Claim: case 1 implies that σk is positive. To see this, we first notice that by

the construction of Algorithm 1, any jth0 column (1 ≤ j0 ≤ k − 1) being added to
the kth column requires they share the same row index for their lowest 1. I claim
that this is only possible if σj0 is of the same dimension as σk.

To see the above, let this dimension of σk be p. Any possible 1 in the kth column
of row index i must correspond to a σi with dimension p−1. And if jth0 column has
a one at ith row, σj0 must also have a 1-less-dimension face with dimension p− 1,
thus we have dim(σj0) = p. After we add the jth0 column to the kth column, if
there still exists any 1’s in the kth column, it must either come from a 1 in the jth0
column or is originally from the kth column. It follows that it must still correspond
to a (p-1)-dimensional simplex. Therefore, any other columns added to the kth

column follow the same argument above and have to correspond to a p-dimensional
simplex. Inductively, all additions of columns in the kth iteration must be with
columns representing p-dimensional simplices.

Furthermore, if the kth column corresponds to a p-dimensional simplex σk, the
resultant kth column after the addition represents a boundary of a p-chain that
contains σk. By ’representing’, we mean that for the kth column after the iteration
with 1’s on row {i1, i2, ...im}, we have

∑m
j=1 σij as a boundary. This can be shown

inductively. For the base case when k = 1, this is immediate. Now, assume that all
1 to k−1 columns represent boundaries after the addition of their iterations. Before
the kth iteration, the kth column contains the boundary of σk. Let the columns
that are going to be added to the kth column be of column indices {j1, j2, ..., jn}.
As shown above, all σj1 , σj2 , ..., σjn are p-dimensional simplices. According to the
induction hypothesis, any column with index jq, 1 ≤ q ≤ n has row indices of 1’s
corresponding to a boundary of a p-chain that contains σjq . We denote this p-

chain Pjq . Therefore, adding them to the kth column eventually gives rise to the

boundary of
∑q

t=1 Pjt + σk which is a p-chain that contains σk.
All in all, if the kth column got zeroed out after the kth iteration. It means that

∂(
∑q

t=1 Pjt + σk) = 0, i.e.,
∑q

t=1 Pjt + σk is a cycle. This must be a new cycle as
it contains σk. Therefore, σk is positive.

Case 2)The kth column cannot be zeroed out
Claim: case 2 implies that σk is negative. Let l = Low(j) after the kth iteration.

Also, recall that the kth column represents a boundary of a p-chain after the kth

iteration, which is a (p-1)-cycle. We denote this cycle by γ. Then we have the
following three observations.

Obs1 ∂σk is homologous to γ.
This follows immediately from that γ is obtained by adding (p-1)-cycles that

are boundaries (represented by previous columns) to ∂σk (represented by the kth

column) when we add the previous columns to the kth column during the kth

iteration of the outer loop of Algorithm 1. Therefore, γ − ∂σk ∈ Bp−1

Obs2 Let the simplicial complex which is the collection of {σ1, σ2, ..., σk−1} be
denoted Kk−1, we have ∂σk is not a boundary in Kk−1, but becomes a boundary
in Kk.

To see why ∂σk is not a boundary in Kk−1, we first notice that the kth col-
umn can’t be zeroed out. This implies that ∂σk can’t be expressed as linear

PERSISTENT HOMOLOGY WITH CONNECTIVITY-LOSS FOR AUTOENCODERS 13

combinations of the basis of Rk−1, thus not by any linear combination of bound-
aries of {σ1, σ2, ..., σk−1}. It follows that ∂σk can’t be a boundary in Kk−1 =
{σ1, σ2, ..., σk−1}.

Obs3 The cycle γ is created when adding σl. Consequently, the homology class
[γ] was created when adding σl. And when σl was added, it had no coface. In other
words, γ was not a boundary in Kl.

Finally, according to (1) and (2), we know that γ was not a boundary in Kk−1

because ∂σk which is homologous to γ was not a boundary in Kk−1. Therefore, we
have that γ dies at the time when σk is added. In other words, σk kills a homology
class that is created by σl where l = low(k). This gives us the following theorem.

Theorem 3.17. For a reduction matrix R of a boundary matrix, let a non-zero
column with index k that corresponds to σk of dimension p and has 1 at row
{i1, i2, ..., im} in increasing order. We have that [σi1 + σi2 + ...+ σim] represents a
homology class created at low(k) and killed at k.

Therefore, with the above theorem, we can efficiently pair the positive simplex
that gave birth to a homology class and a negative simplex that killed the class.
This enables us to calculate the persistence of all classes throughout the filtration
effectively. This concludes the current section and we will move on to how this no-
tion of persistent homology along with an efficient way of calculating the persistence
using pairing and matrix applies to a loss function for autoencoders.

4. Connectivity Loss with Persistent Homology

In this section, we will introduce a structural-loss function using persistent ho-
mology for autoencoders that can be implemented in one-class learning tasks. To
begin with, we first give a brief introduction to what autoencoders are.

4.1. Autoencoder. Autoencoders are a type of artificial neural network that car-
ries out the task of encoding data under unsupervised learning circumstances. Gen-
eral autoencoders consist of three parts:

(1) Encoder: Layers that compress data into a lower-dimensional representa-
tion

(2) Bottleneck: contains the compressed lower-dimensional representation
(3) Decoder: decodes the compressed representation of the data back to its

original form

Given a data space X, we let {xi}, xi ∈ X be a set of training data. We can
denote f : X → Z ⊂ Rn as the (non-)linear function that corresponds to the
encoder. Similarly, we denote g : Z ⊂ Rn → X as the (non-)linear function
that corresponds to the decoder. The encoder and the decoder are decided by
parameters θ and ϕ during the process of learning. The learning has a goal to find
these two parameters that minimize the following expression∑

i

L(xi, gϕ(fθ(xi))a

with L : X × X → R being a reconstruction loss function that measures the
deviation of the reconstruction of the input data gϕ(fθ(xi)) from the original input
data set xi. We want to minimize this deviation so that the autoencoder can
effectively represent a set of data in lower dimensions. This can be made sure when
we can construct the original data as much as possible from the representation.

14 JUNFEI SUN

When Z ⊂ Rn has a much smaller dimension than the dimension of X, we refer
to z = fθ(x) as the latent representation of x, and Z is termed the latent space.

We will now introduce a structural-loss function that controls the topological
feature of the latent space. It assists the task of one-class learning by autoencoder
together with the reconstructional loss function. One-class learning refers to learn-
ing to determine whether a data point belongs to a class of data using only training
data points that belong to this class.

4.2. Connectivity Loss Function.

4.2.1. Persistent homology for latent representations. Given r ≥ 0, we can consider
the union of the closed balls with radius r around every zi = fθ(xi) with respect
to some metric on Rn:

Sr =
⋃
i

B(zi, r)

In particular, we are curious about the number of connected components of Sr as
a topological feature of the latent representations. According to Proposition 2.26,
homology groups capture the number of connected components. Therefore, we need
a way to treat the zi as vertices and construct complexes as r varies to capture the
information on 0-dimensional homology groups at different r. This is closely linked
to the persistent homology groups in Definitions 3.4 and the persistence tuple in
Definition 3.7. We will first construct a filtration linked to the change of r.

Definition 4.1. Consider S ⊂ Rn in a metric space (Rn, δ) with a finite num-
ber of elements. We denote the number of elements in S with |S|. Let V(S) =
{u ∈ P ({1, ..., |S|}) : |u| = 1 or 2} where P ({1, ..., |S|}) refers to the power set of
{1, ..., |S|}. Define

fS : V(S)→ R, fS(u) =

δ(zi, zj)

2
, u = {i, j}

0, u = {i}.

Then, we define the Vietoris-Rips index set with respect to r ≥ 0 as the
following:

Vidx
r (S) = f−1

S ((−∞, r])

and we define the Vietoris-Rips complex with respect to r ≥ 0 restricted to
1-skeleton as the following:

Vr(S) =
⋃

u∈Vidx
r (S)

conv({zi : i ∈ u})

Remark 4.2. Firstly, notice that Vr(S) contains all single vertices because they map
to 0 through fS . Moreover, it includes all pairs of vertices {zi, zj} with half of their

distance smaller or equal to r (equivalently, B(zi, r) ∩B(zj , r) ̸= ∅), and the edges
connecting zi and zj .

Now, we arrange all distances between pairs of zi and zj into an increase se-
quence: (ϵk)

M
k=1. It follows that

∅ ⊂ V0(S) ⊂ V ϵ1
2
(S) ⊂ ... ⊂ V ϵM

2
(S)

PERSISTENT HOMOLOGY WITH CONNECTIVITY-LOSS FOR AUTOENCODERS 15

can be viewed as a filtration as each element is a complex and this whole sequence
is increasing in the sense of inclusion. We let ϵ0 = 0 and call this filtration the
Vietoris-Rips filtration of S. Similarly, we call

∅ ⊂ Vidx
0 (S) ⊂ Vidx

ϵ1
2
(S) ⊂ ... ⊂ Vidx

ϵM
2
(S)

the Vietoris-Rips index filtration of S.

Remark 4.3. Vietoris-Rips index filtration is a sequence of collections of indices
whereas Vietoris-Rips filtration is the sequence of complexes formed by the latent
representations with the indices in the corresponding Vietoris-Rips index filtration

Now, we can construct 0-dimensional persistent homology with this Vietoris-Rips
filtration like the one defined in Definitions 3.4:

0 = H0(V0(S))→ H0(V ϵ1
2
(S))→ ...→ H0(V ϵM

2
(S))

This persistent homology helps observe how different ϵi affect the connectivity
of V ϵi

2
. Notice that we have an edge between vi and vj in Vr(S) if and only if

B(zi, r)∩B(zj , r) ̸= ∅ according to Remark 4.2. Therefore, this persistent homology
also indicates how different r = ϵi

2 affect the connectivity of Sr

According to the definition of persistence tuple in Definition 3.7, the above 0-
dimensional persistent homology produces a multi-set of persistence tuples (i, j)
with i < j in which each (i, j) corresponds to a 0-dimensional homology class born
at V ϵi

2
(S) and dies at V ϵj

2
(S). All tuples can be computed efficiently by the method

of matrix reduction and pairing introduced in Section 3.2. At the same time, (i, j)
indicates a connected component of Sr that persists from S ϵi

2
to S ϵj

2
.

Definition 4.4. We call the multi-set of all persistence tuples the persistence
barcode of this 0-dimensional persistent homology

0 = H0(V0(S))→ H0(V ϵ1
2
(S))→ ...→ H0(V ϵM

2
(S))

out of the filtration ∅ ⊂ V0(S) ⊂ V ϵ1
2
(S) ⊂ ... ⊂ V ϵM

2
(S) with each Vr(S) as defined

in Definition 4.1, and denote it as B(S).

Remark 4.5. It’s a multi-set because several homology groups can die at the same
V ϵj

2

Proposition 4.6. For any (i, j) being a persistence tuple of a homology class γ in
the 0-dimensional persistent homology

0 = H0(V0(S))→ H0(V ϵ1
2
(S))→ ...→ H0(V ϵM

2
(S))

, we have i = 0.

Proof. Note that any vertex is contained in S0, this means that all possible con-
nected components appear at V0(S). Recall that according to the discussion in
Section 3.2, all 0-dimensional homology classes must be created by a positive 0-
simplex which is a vertex. Therefore, all 0-dimensional homology classes are also
created at V0(S), including γ. It follows that i = 0. □

Also, for j in any (i, j), we know that either 1 ≤ j ≤M or j =∞.

Proposition 4.7. Fix 1 ≤ j ≤ M , there exists (0, j) as a persistence tuple if and
only if there exists a pair of vertices v1 and v2 with δ(v1, v2) = ϵj that were not in
the same connected component in V ϵj−1

2
(S).

16 JUNFEI SUN

Proof. To prove the forward direction, we assume (0, j) is a persistence tuple.
It follows that there exists a 0-dimensional homology class which dies at V ϵj

2
(S).

According to the discussion in Section 3.2, this can only happen if there exists a
negative simplex added when entering V ϵj

2
(S). By the construction of Vietoris-

Rips filtration, all the simplices that are added when entering V ϵj
2
(S) are edges

between pairs of vertices whose distances in between are ϵj . Let the edge between
v1 and v2 be a negative simplex. According to Proposition 3.10, this implies that
v1 + v2 /∈ B0(V ϵj−1

2
(S)), i.e. it’s not a boundary before entering V ϵj

2
(S). Within

the proof of Proposition 2.26, we’ve established that v1 + v2 ∈ B0(V ϵj−1
2

(S)) ⇐⇒
(there exists a path joining v1 and v2 in V ϵj−1

2
(S)). Therefore, we have that v1 and

v2 are not path-connected in V ϵj−1
2

(S), thus not connected in V ϵj−1
2

(S).

Now we prove the other direction. Assume that there exists a pair of vertices
v1 and v2 with δ(v1, v2) = ϵj that were not in the same connected component in
V ϵj−1

2
(S). This implies moving into V ϵj

2
(S) adds an edge between v1 and v2. Since

v1 and v2 were not path-connected in V ϵj−1
2

(S), we use again the reasoning in the

proof of Proposition 2.26 and observe that v1 + v2 /∈ B0(V ϵj−1
2

(S)). It follows that

[v1 + v2] wasn’t trivial in H0(V ϵj−1
2

(S)). But it turns trivial in H0(V ϵj
2
(S)) as it’s

the boundary of the edge. This means that it dies at j, i.e. there exists a persistence
tuple (0, j) □

Definition 4.8. Let S ⊂ Rn be a finite set and (ϵk)
M
k=1 be the increasing sequence

of distances of all pairs of points in S. Let B(S) be the persistence barcode of the
Vietoris-Rips filtration of S. We now define

D(S) = {d : (0, d) ∈ B(S), d ̸=∞}
as a multi-set of death times.

4.2.2. Construction of Connectivity Loss. With the above construction of Vietoris-
Rips filtration and set of death times, we can now introduce the connectivity loss
function which helps us learn the desired connectivity structure for a batch S of
latent representations.

Definition 4.9. Let D(S) be the set of death times for S. Given η > 0, we define

Lη(S) =
∑

d∈D(S)

|η − ϵd|

as the connectivity loss

Remark 4.10. This connectivity loss punishes a deviation from a configuration in
which all death times ϵd = D(S) are equal to η, i.e. the complex Vη(S) is connected.
This ensures that we move towards a structure in which each representation of S
will have at least one neighbor within a radius of η. We will discuss the utility of
this structure for the one-class learning task of the autoencoder in Section 4.2.3.

For the connectivity loss function defined in Definition 4.9 to be put into the
training process, we have to make sure it’s possible to compute the partial derivative
of this function with respect to its inputs which are the data points in S. This is
essential for carrying out back-propagation which uses gradient descent. In the
following analysis, we fix the metric of the metric space in which the latent spaces
lie to be p-norm: Z ⊂ (Rn, δ) = (Rn, ∥ · ∥).

PERSISTENT HOMOLOGY WITH CONNECTIVITY-LOSS FOR AUTOENCODERS 17

Definition 4.11. Let S ⊂ Rn and all latent representations zi ∈ S. We define
death indicator function 1i,j : S × ...× S → R

1i,j(z1, z2, ..., z|S|) =

{
1, ∃d ∈ D(S) : ϵd = ∥zi − zj∥
0, otherwise.

in which (ϵk)
M
k=1 is an increasing sequence of all pairwise distances between vertices

in S.

Theorem 4.12. Let S ⊂ Rn and we assume that all the distances between pairs
of vertices are distinct. Let (L)η(S) be the connectivity loss function as defined in
Definition 4.9. We have the following:

Lη(S) =
∑

{i,j}⊂{1,...,|S|}

|η − ∥zi − zj∥| · 1i,j(z1, ..., z|S|)

where 1i,j is the death indicator function as defined in Definition 4.11

The above theorem can be easily verified by proving inequalities from both di-
rections. Now we can move to show the differentiability of the loss function by
introducing the lemma below.

Lemma 4.13. Let S ⊂ Rn. Assume that all pairwise distances of vertices are
distinct. For any 1 ≤ q ≤ |S| and 1 ≤ v ≤ n, let

S′ = {z′1, ..., z′n}, z′i =
{

zi, 1 ≤ i ≤ n, i ̸= q

zq + h · ev, i = q.

where ev is the v-th unit vector and h ∈ R. It follows that there exists ξ > 0 such
that |h| < ξ ⇒ 1i,j(S) = 1i,j(S

′)

Proof. To show that 1i,j(S) = 1i,j(S
′), we notice that the death indicator function

is determined by the Vietoris-Rips index filtration of S. Therefore, it suffices to
prove S and S′ have the same Vietoris-Rips index filtration.

Let (ϵk)
M
k=1 be the increasing sequence of pairwise distances between vertices

of S, and (ϵ′k)
M
k=1 be the same for S′. We will first show that (ϵ′k)

M
k=1 is strictly

increasing when |h| is smaller than a fixed value.
Notice that for the case ∥z′i−z′j∥ ≤ ∥zi−zj∥, we can only have ∥z′i−z′j∥ < ∥zi−zj∥

when z′j = zj + h · ev and z′i = zi. This gives us ∥zi − zj∥ = ∥z′i − z′j + h · ev∥ ≤
∥z′i − z′j∥+ |h|. It follows that when ∥z′i − z′j∥ ≤ ∥zi − zj∥, we have

|∥z′i − z′j∥ − ∥zi − zj∥| = ∥zi − zj∥ − ∥z′i − z′j∥ ≤ ∥z′i − z′j∥+ |h| − ∥z′i − z′j∥ = |h|

Similarly, under the case ∥z′i − z′j∥ ≥ ∥zi − zj∥, we have ∥z′i − z′j∥ ≤ ∥zi − zj∥+ |h|,
which gives us

|∥z′i − z′j∥ − ∥zi − zj∥| = ∥z′i − z′j∥ − ∥zi − zj∥ ≤ ∥zi − zj∥+ |h| − ∥zi − zj∥ = |h|

Combining the two results above, we have that |∥z′i − z′j∥− ∥zi − zj∥| ≤ |h| for any
i, j.

Let µ = min
1≤k<M

ϵk+1 − ϵk. As we’ve assumed that all pairwise distances are

distinct, we can denote ϵk = ∥zik − zjk∥ where zik and zjk are two unique vertices.

18 JUNFEI SUN

For any 1 ≤ k < M , we have

ϵ′k+1 − ϵ′k = ∥z′ik+1
− z′jk+1

∥ − ∥z′ik − z′jk∥
≥ ∥zik+1

− zjk+1
∥ − |h| − ∥zik − zjk∥ − |h|

= ϵk+1 − ϵk − 2|h|
≥ µ− 2|h|

It follows that (ϵ′k)
M
k=1 is strictly increasing if |h| < µ

2 .

Now, we move to show that the Vietoris-Rips index filtration ∅ ⊂ Vidx
0 (S) ⊂

V ϵ1
2
(S) ⊂ ... ⊂ Vidx

ϵM
2

(S) is the same as ∅ ⊂ Vidx
0 (S′) ⊂ Vidx

ϵ′1
2

(S′) ⊂ ... ⊂ Vidx
ϵ′
M
2

(S′)

when |h| < µ
2 . We will show this inductively.

For the base case, we have that Vidx
0 (S) = Vidx

0 (S′) = {{1}, ..., {|S|}}.
Assume that Vidx

ϵk
2

(S) = Vidx
ϵ′
k
2

(S′). By the definition of fS in Definition 4.1,

we have f−1
S (ϵk+1

2) = {{ik+1, jk+1}}. This is because ϵk+1 = ∥zik+1
− zjk+1

∥ and
the pairwise distances between any two vertices in S are distinct by the assump-

tion of this lemma. Also, we have f
′−1
S (

ϵ′k+1

2) = {{ik+1, jk+1}} because the pair-
wise distances between any two vertices in S′ are distinct when |h| < µ

2 because

ϵ′k+1 = ∥z′ik+1
− z′jk+1

∥ and it’s proven that (ϵ′k)
M
k=1 is strictly increasing when this

is satisfied. Therefore, we have

V ϵ′
k+1
2

(S′) = V ϵ′
k
2

(S′) ∪ f ′−1
S (

ϵ′k+1

2
)

= V ϵk
2
(S′) ∪ f ′−1

S (
ϵ′k+1

2
)

= V ϵk
2
(S′) ∪ f−1

S (
ϵk+1

2
)

= V ϵk+1
2

(S)

Therefore, we’ve proven that by letting ξ = µ
2 , we have that when |h| < ξ, the

Vietoris-Rips index filtration of S and S’ are the same, thus 1i,j(S) = 1i,j(S
′) for

any i, j. □

Theorem 4.14. Let S ⊂ Rn and pairwise distances are distinct. For any 1 ≤ q ≤
|S| and 1 ≤ v ≤ n, we have that the partial derivative of Lη(S) with respect to v-th
coordinate of zq exists:

∂Lη(S)

∂(zq)v
=

∑
{i,j}⊂{1,...,|S|}

∂|η − ∥zi − zj∥|
∂(zq)v

· 1i,j(z1, ..., zn)

Proof. According to Lemma 4.13, let S′ be defined as in Lemma 4.13 for q and
v, we have that 1i,j(S) = 1i,j(S

′) when |h| < µ
2 , i.e. 1i,j is locally constant with

respect to (zq)v. This implies that
∂1i,j(S)
∂(zq)v

= 0. By Theorem 4.12, we have that

Lη(S) =
∑

{i,j}⊂{1,...,|S|} |η − ∥zi − zj∥| · 1i,j(S). Now, according to the product

PERSISTENT HOMOLOGY WITH CONNECTIVITY-LOSS FOR AUTOENCODERS 19

rule:

∂Lη(S)

∂(zq)v
=

∑
{i,j}⊂{1,...,|S|}

∂|η − ∥zi − zj∥|
∂(zq)v

· 1i,j(S) + |η − ∥zi − zj∥| ·
∂1i,j(S)

∂(zq)v

=
∑

{i,j}⊂{1,...,|S|}

∂|η − ∥zi − zj∥|
∂(zq)v

· 1i,j(S)

□

Therefore, we’ve proven that the connectivity loss function defined in Defini-
tion 4.9 can be put into the training process through back-propagation given the
existence of every partial derivative proven in Theorem 4.14.

4.2.3. Connectivity loss impact analysis. Finally, we analyze the impact of this
connectivity loss on the training result. If we merely train with the connectivity
loss with batches of size a ∈ R, by the connectivity loss in Definition 4.9, we ideally
obtain a parameterization θ of fθ (the encoder as introduced in Section 4.1) that
makes every a − sized random sample S to satisfies ϵd = η for every d ∈ D(S)
(all using the definitions in Section 4.2). However, as mentioned in Section 4.1, we
must train the autoencoder with both this connectivity loss and the reconstruction
loss to ensure the autoencoder can decode the information back to its original form.
Therefore, ideally, we have every ϵd to be in [α, β] such that η ∈ [α, β]. To depict
this situation, we introduce the following definition:

Definition 4.15. Let S ∈ Rn be a finite set and (ϵk)
M
k=1 the increasing sequence

of distances between vertices in S. We define S to be α − β − connected if
min

d∈D(S)
ϵd = α and max

d∈D(S)
ϵd = β

Now, we need to be aware that as we trained the connectivity loss with only
a−sized batches, only S with |S| = a can satisfy that fθ is α−β− connected. But
realistically, the trained network will also be fed with samples with a size more than
a. Therefore, we need to analyze how the trained encoder impacts the structure of
the latent space when fed with samples more than size a.

To begin with, we will first analyze how the α−β− connected structure impacts
the density of the latent space. Briefly, the trained neural network can ensure a
certain density in the latent space that is linked to the size of the sample and the
batch size a.

Lemma 4.16. Let M ⊂ Rn with 2 ≤ a ≤ |M | where a is the batch size used for
training. If M satisfies that for any S ⊂ M with |S| = a, we have S is α − β −
connected , then it follows that for d = |M | − a and any z ∈ M , we can specify
Mz ⊂M with |Mz| = d+ 1 such that Mz ⊂ B(z, β)\B(z, α)

Proof. For any z ∈ M , we can construct a set of points {z1, ..., zd+1} in M induc-
tively with the following steps.

Firstly, we can find S1 ⊂ M such that z ∈ S1 and |S1| = a. It follows from
the assumption that S1 is α − β − connected, which implies that z ∈ S1 has a
neighbor at a distance within [α, β] (all other vertices lie in this range of distance
from z). We denote this neighbor to be z1 with z1 ∈ B(z, β)\B(z, α) and z1 ∈ S1.
Let M1

z = z1
Now assume that for i ≤ d = |M | − a, we can consider Si ∈M with zi ∈ Si and

|Si| = a which gives usM i
z = {z1, ..., zi}. We have |M\M i

z| = |M |−i ≥ |M |−d = a.

20 JUNFEI SUN

Therefore, we can find Si+1 ⊂ M\M i
z such that z ∈ Si+1 and |Si+1| = a. This

implies that Si+1 is α − β − connected, and we can find zi+1 ∈ B(z, β)\B(z, α)
and zi+1 ∈ Si+1 by the same logic as that for z1. Note that zi+1 is distinct from
any zj with j < i because z ∈ Si+1 ⊂ M\M i

z, which means that we can construct
M i+1

z = {z1, ..., zi+1}.
Therefore, the above proves that we can construct M i+1

z with any i ≤ d =
|M | − a. Therefore, it follows that we can construct Md+1

z = {z1, ..., zd+1} and
Md+1

z ⊂ B(z, β)\B(z, α). Therefore, letting Mz = Md+1
z concludes the proof. □

Definition 4.17. Let S ⊂ Rn and ϵ > 0. We define S to be ϵ − dense if for any
z ∈ S, there exists z′ ∈ S and z′ ̸= z such that ∥z − z′∥ ≤ ϵ. Let d ∈ N. We say
that S is d − ϵ − dense if for any z ∈ S, there exists M ⊂ S\z with |M | = d such
that for any z′ ∈M , we have ∥z − z′∥ < ϵ

Corollary 4.18. Let M ⊂ Rn with 2 ≤ a ≤ |M | where a is the batch size used for
training. If M satisfies that for any S ⊂ M with |S| = a, we have S is α − β −
connected , then it follows that M is (|M | − a+ 1)− β − dense

Proof. By Lemma 4.16, for every z ∈ M , we can construct Mz ⊂ B(z, β)\B(z, α)
with |Mz| = |M | − a+ 1. Therefore for any z′ ∈Mz, we have ∥z − z′∥ ≤ β □

Remark 4.19. Lemma 4.16 and Corollary 4.18 give us information on a densification
phenomenon for samples with sizes larger than a. In particular, if the sample is
mapped to M through the trained fθ, then there are at least |M | − a + 1 latent
representations within a distance of β for any z ∈ M . The density around z
increases with |M | if a is fixed and increases as a decreases if |M | is fixed.

Now, we will utilize the densification conclusion drawn from Lemma 4.16 and
Corollary 4.18 to study further the effect on the size of the sample to a specific
structural feature of the latent space which will be introduced in the definition
below. This feature will be crucial in explaining the utility of this connectivity loss
function to the autoencoder and the task of one-class learning.

Definitions 4.20. Let S ⊂ Rn and µ > 0. We say that S is µ − separated if
every pair of distinct elements z, z′ ∈ S satisfies ∥z − z′∥ ≥ µ.

For some X ⊂ Rn, we define the µ − metric entropy of X to be

Nµ(X) = max{|S| : S ⊂ X and S is µ− separated}

Now, our goal is to show that if the sample has enough elements, the sample is
not µ − separated for some µ > 0. We will make this statement precise starting
with the following corollary.

Corollary 4.21. Let M ⊂ Rn with 2 ≤ a ≤ |M | where a is the batch size used
for training. If M satisfies that for any S ⊂ M with |S| = a, we have S is α −
β − connected, then for any µ > 0, if |M | − a+ 1 > Nµ(B(x, β)\B(x, α)) for any
x ∈ Rn, we have that M is not µ− separated.

Proof. By Lemma 4.16, for any z ∈M , we can specify Mz ⊂ B(z, β)\B(z, α) with
|Mz| = |M | − a + 1. Then if |M | − a + 1 > Nµ(B(z, β)\B(z, α)), we have that
|Mz| is bigger than the largest order of a set that in B(z, β)\B(z, α) that can be
µ−separated. It follows that Mz is not µ−separated. Because Mz ⊂M , it follows
that M is not µ− separated. □

PERSISTENT HOMOLOGY WITH CONNECTIVITY-LOSS FOR AUTOENCODERS 21

Remark 4.22. It should be clear that Nµ(B(x, β)\B(x, α)) is invariant across any
x ∈ Rn

Finally, we will try to understand more about Nµ(B(x, β)\B(x, α)) and how it’s
linked to the dimension n of the latent space.

Proposition 4.23. Let µ < 2α and α < β. Under the metric space (Rn, ∥ · ∥), we
have that

Nµ(B(x, β)\B(x, α)) ≤ (
2β

µ
+ 1)n − (

2α

µ
− 1)n

Proof. We let M be any M ⊂ B(x, β)\B(x, α) for some x ∈ Rn and M is µ −
separated. Then fix z ∈M , for any y ∈ B(z, µ

2) we have ∥y∥ ≤ ∥y−z∥+∥z∥ <
µ
2+β

and ∥y∥ ≥ ∥z∥ − ∥z − y∥ ≥ α − µ
2 . It follows that for every z ∈ M , we have

B(z, µ
2) ⊂ B(x, β + µ

2)\B(x, α − µ
2). Moreover, as M is µ − separated, for any

z, z′ ∈ M and z ̸= z′, ∥z − z′∥ ≥ µ ⇒ B(z, µ
2) ∩ B(z′, µ

2) = ∅. In conclusion, all
B(z, µ

2) with z ∈M are disjointly contained in B(x, β + µ
2)\B(x, α− µ

2).
Now, let λ be the Lebesgue measure in Rn. We then have

|M | · λ(B(x,
µ

2
)) = λ(

⋃
z∈M

B(z,
µ

2
))

This is because the Lebesgue measure has the property of countable additivity:

λ(
⋃
z∈M

B(z,
µ

2
)) =

|M |∑
λ(B(z,

µ

2
)) = |M | · λ(B(x,

µ

2
))

As all B(z, µ
2) with z ∈M are contained in B(x, β+ µ

2)\B(x, α− µ
2) and λ is transla-

tion invariant, we consequently have λ(
⋃

z∈M

B(z, µ
2)) ≤ λ(B(x, β+ µ

2)\B(x, α− µ
2)),

which gives us

|M | · λ(B(x,
µ

2
)) ≤ λ(B(x, β +

µ

2
)\B(x, α− µ

2
))

Given that λ(B(x, r)) = 2n

n! r, we have the volumes of balls in the above equation
with this formula and get

|M | · µ
n

n!
≤ 2n

n!
((β +

µ

2
)n − (α− µ

2
)n)

|M | ≤ 2n

µn
((β +

µ

2
)n − (α− µ

2
)n)

= (
2β

µ
+ 1)n − (

2α

µ
− 1)n

As M is an arbitrary µ − separated set in B(x, β)\B(x, α), we conclude that

Nµ(B(x, β)\B(x, α)) ≤ (2βµ + 1)n − (2αµ − 1)n. □

Finally, Corollary 4.21 and Proposition 4.23 together provide a way to assess
whether a sample M has enough elements to be not µ− separated, which is stated
in the following corollary.

Corollary 4.24. Let M ⊂ Rn with 2 ≤ a ≤ |M | where a is the batch size used for
training. If M satisfies that for any S ⊂ M with |S| = a, we have S is α − β −
connected, then if |M | − a + 1 > (2βµ + 1)n − (2αµ − 1)n, it follows that M is not

µ− separated

22 JUNFEI SUN

In particular, if we let µ = η which is the value of η specified for the connectivity
loss as defined in Definition 4.9, we have that if |M |−a+1 > (2βη +1)n− (2αη −1)n,

then M is not η − separated.

4.2.4. Connectivity Loss and One-Class Learning. Finally, as promised, we will now
see briefly how is this linked to the task of one-class learning.

The task of one-class learning is stated as the following: let C ⊂ X be a
class of data. We are given m training data points all coming from C, i.e. T =
{x1, x2, ..., xm} ⊂ C. We want to be able to determine whether any given sample
y ∈ X belongs to class C.

In a nutshell, we train the autoencoder with the reconstruction loss in com-
bination with the connectivity loss. After that, we will ideally have that M =
z1, z2, ...zm = fθ(T) satisfies that for any S ⊂M with |S| = a where a is the batch
size in training, we have S is α − β − connected for some α < β as mentioned in
Section 4.2.3.

Now we calculate the latent representation of y and denote it zy. If y belongs to
C, given that the autoencoder captures the feature of class C by its reconstruction
function into the connectivity structure on the latent space with the assistance
of the connectivity loss. Ideally, the addition of zy into M should preserve the
connectivity structure and any S ⊂ M ∪ {zy} with |S| = a still imply that S is
α− β − connected.

Therefore, as long as |T | is large enough, for any M ′ ⊂ M ∪ zy that satisfies

|M ′|−a+1 > (2βη +1)n−(2αη −1)
n, M ′ is not η−separated, i.e. there exists z ∈M ′

that has a neighbor within the distance of η according to Corollary 4.24. With |T |
large, there will be lots of M ′ which contains zy that satisfies this condition. This
leads to a large value of the following:

s(y) = |{zi : ∥zi − zy∥ ≤ η, 1 ≤ i ≤ m}|
Therefore, we can take s(y) as a score for the membership of a given point y ∈ X

to be in class C. This score function requires no optimization but only the connec-
tivity structure of the latent space. At this stage, we can see how such a structural
loss function can help with the task of one-class learning for an autoencoder. It
enables us to use the structure of the latent space itself to efficiently evaluate the
membership of a given point in a class.

Acknowledgments

I’d like to express my gratitude to my mentor, Becky Zhang, for her invaluable
guidance throughout the topic selection, learning process, and paper writing. Her
dedicated support in teaching me algebraic topology from scratch, with regular,
active communication and access to essential materials, has been invaluable.

I’m also thankful to Professor Peter May for organizing the exceptional Math
REU program. This program has allowed me to achieve more than I ever thought
possible within a short timeframe. Special thanks to Professors Danni Rudenko
and Laszlo Babai for their excellent mentorship.

Lastly, I want to extend my heartfelt appreciation to my family and friends for
their unwavering support, without which I wouldn’t have been able to complete
this program or anything else.

PERSISTENT HOMOLOGY WITH CONNECTIVITY-LOSS FOR AUTOENCODERS 23

References

[1] Edelsbrunner, et al. “Topological Persistence and Simplification.” Discrete &amp; Com-
putational Geometry, vol. 28, no. 4, 2002, pp. 511–533, doi:10.1007/s00454-002-2885-2.

[2] EDELSBRUNNER, HERBERT. Computational Topology: An Introduction. AMER MATH-

EMATICAL SOCIETY, 2022.
[3] Hofer, C., Kwitt, R., Niethammer, M. & Dixit, M.. (2019). Connectivity-Optimized

Representation Learning via Persistent Homology. Proceedings of Machine Learning

Research97:2751-2760 Available from https://proceedings.mlr.press/v97/hofer19a.html.
[4] Baldi, Pierre. Deep Learning in Science. Cambridge University Press, 2021.

[5] Chapter 4: Persistent Homology Topics in Computational Topology: An ..., web.cse.ohio-
state.edu/∼wang.1016/courses/5559/Lecs/Chap4-Persistence.pdf.

[6] MA 331: Topology, personal.colby.edu/ sataylor/teaching/F14/MA331/MA331.php.

	1. Introduction
	2. Simplicial homology
	2.1. Simplicial Complex
	2.2. Construction of Homology

	3. Persistent homology
	3.1. Persistence
	3.2. Pairing and Matrix Reduction

	4. Connectivity Loss with Persistent Homology
	4.1. Autoencoder
	4.2. Connectivity Loss Function

	Acknowledgments
	References

