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Abstract. Automorphic forms gives rise to a large crossover between analysis

and number theory. Central to their study is the automorphic Laplacian whose
spectral decomposition allows for complete description of them. In this paper,

we study cusp forms by studying the discrete part of the spectral decomposition

of the automorphic Laplacian.
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1. Background on SL(2,R),PSL(2,R) and the Laplacian

We begin by introducing some vocabulary which will be essential to Sections 2
and 3. Section 3 will heavily rely on some fundamental results from Functional
Analysis and Spectral Theory. We refer the reader to Appendix A for a synopsis of
the material that will be used from these areas of study. One of the focal objects
of study in this paper is the complex upper half plane:

H = {z ∈ C | Im(z) > 0} ,

which we will use as a model for the hyperbolic plane. First note that H is a metric
space with metric

ρ(z, w) = log
|z − w|+ |z − w|
|z − w|+ |z − w|

,

1
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and it is more practical to re-write this as

(1.1) cosh ρ(z, w) = 1 + 2u(z, w), where u(z, w) =
|z − w|2

4ImzImw
.

Let G be the group G = SL(2,R). It is known that G acts faithfully and transitively
by Möbius transformations on the upper half plane H. Furthermore one can show
that the elements of G that fix i is Gi = SO(2,R), and thus we have that H ∼=
G/SO(2,R). Writing K = SO(2,R), we get a one-to-one correspondence between
points z ∈ H, and cosets gK, which send i to z. Using this correspondence, we can
understand that action of PSL(2,R) on H, as multiplication on itself. In order to
make better light of this correspondence, we use the Iwasawa decomposition (see
[10] p. 373 for the statement in full generality).

Proposition 1.1 (Iwasawa Decomposition of SL(2,R)). The group G = SL(2,R)
has the following decomposition

G = NAK,

where

N =

{(
1 x
0 1

)
: x ∈ R

}
,

A =

{(
a 0
0 a−1

)
: a ∈ R+

}
,

K = SO(2,R) =
{(

cos θ − sin θ
sin θ cos θ

)
: θ ∈ R

}
.

In other words, for every g ∈ G, there exist unique n, a, k in N,A,K respectively,
such that g = nak.

We call elements ofN,A,K translations, dilations and rotations respectively.

Note 1.2. Note that under the above correspondence, the point z = x+ iy corre-

sponds to the coset gK, where g =

(
1 x
0 1

)(
y

1
2 0

0 y−
1
2

)
=

(
y

1
2 xy−

1
2

0 y−
1
2

)
.

For any g ∈ PSL(2,R), the action of g on H can be understood by considering
the action of any element conjugate to g. An important invariant of these conjugacy
classes is the trace. It useful to distinguish the conjugacy classes of PSL(2,R) by
their action on H, and the trace allows us to do so.

Definition 1.3 (Parabolic, Hyperbolic and Elliptic motions). Let g ∈ PSL(2,R).
We say that

(a) g is hyperbolic if |tr(g)| > 2,
(b) g is parabolic if |tr(g)| = 2,
(c) g is elliptic if |tr(g)| < 2,

and the same is said about conjugacy classes in PSL(2,R).

Note 1.4. Note that the groups N,A,K defined above are parabolic, hyperbolic
and elliptic respectively. Furthermore, any g ∈ SL(2,R) has eigenvalues

{
λ, λ−1

}
,

and characteristic polynomial: x2−tr(g)x+1. Put t = tr(g)/2, then λ = t±
√
t2 − 1.

By considering the three possibilities: i) |t| > 1, ii) |t| = 1, iii) |t| < 1, the Jordan
Normal Form Theorem gives us

(a) g is hyperbolic iff g is conjugate to a dilation iff g fixes two points on R̂ ,
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(b) g is parabolic iff g is conjugate to a translation iff g fixes one point in R̂,
(c) g is elliptic iff g is conjugate to a rotation iff g fixes one point in H, and its

complex conjugate in H.

We finish the background section by introducing the Laplace operator on H
(for further details see [11]). For a Riemannian Manifold (M, g) with or without
boundary, the geometric Laplacian operator is the linear map ∆ : C∞(M) →
C∞(M) given by ∆ = grad◦div, and it is obtained in any smooth local coordinates
(xi) by

∆ =
1√
det g

∂

∂xi

(
gij
√
det g

∂

∂xj

)
,

where g = gij dx
i dxj , and gij = (g−1)ij . The upper half plane is a Riemannian

surface with boundary, and its Riemannian metric is given by g = y−2( dx 2+ dy 2).
From this we obtain the Laplacian on H

(1.2) ∆ =
1

y2

(
∂2

∂x2
+

∂2

∂y2

)
.

From now on, by ∆ we will mean the operator defined in (1.2). There is another
way to describe the Laplacian using geodesic polar coordinates. These arise
from the Cartan decomposition of the Lie Group G = SL(2,R). The geodesic polar
coordinates give a unique expression for every z = x + iy ∈ H as a pair (r, θ),
where r is the hyperbolic distance between i and z, and θ ∈ [0, 2π) is chosen such

that

(
cos θ − sin θ
sin θ cos θ

)
e−ri = z. From here we get an expression for x and y in

terms of (r, θ), which allows us to transform (1.2) into (r, θ)-coordinates. Finally,
using that cosh r = 1 + 2u (where u is as in (1.1)), we get an expression for ∆ in
(u, θ)-coordinates

(1.3) ∆ = u(u+ 1)
∂2

∂u2
+ (2u+ 1)

∂

∂u
+

1

16u(u+ 1)

∂2

∂θ2
.

2. Automorphic Forms and Cusp Forms

There are various treatments of automorphic forms. For example, in [5], the
attention is restricted to congruence subgroups. These are subgroups of SL(2,Z)
on H which for some N contain the subgroup

Γ(N) =

{
γ ∈ SL(2,Z) | γ ≡

(
1 0
0 1

)
mod N

}
.

The objects of study are the meromorphic functions on H which satisfy an au-
tomorphy condition (analogous to Definition 2.10) and some growth conditions.
These functions and congruence groups have a lot of interesting properties, and
their study provides a lot of intuition for the generalised approach to automorphic
forms which we will follow.

2.1. Fuchsian Groups and Cusps. Let G be the group G = PSL(2,R). It is
known that G acts faithfully and transitively by Möbius transformations on the
upper half plane H. In order to define automorphic forms, we will need the notion
of a lattice in G. For this we first need the notion of a wandering group action.
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Definition 2.1 (Wandering group action). The action of a Hausdorff topological
group G on a Hausdorff topological space X is wandering if every point x ∈ X,
has a neighbourhood Ux such that g(Ux) ∩ Ux ̸= ∅, for only finitely many g ∈ G.

With this definition we can define Fuchsian groups.

Definition 2.2 (Fuchsian Group). Let G = PSL(2,R). A subgroup Γ ≤ G is
Fuchsian if Γ has a wandering action on H.

We have an alternative characterisation for Fuchsian groups (see [13] p. 641).

Proposition 2.3. A subgroup in SL(2,R) is discrete if and only if it has a wan-
dering action on H when considered as a subgroup of PSL(2,R).

Note 2.4. By identifying Mn(R) ∼= Rn2

, it follows from the Heine-Borel Theorem:
Γ ≤ SL(2,R) is a discrete subgroup iff for all M > 0, the set {γ ∈ Γ | ∥γ∥ ≤M}
is finite. Hence, by Proposition 2.3, it follows that Fuchsian groups are countable.
This result will often be used without mention when carrying out summations over
a Fuchsian group.

It is worth noting the following fact.

Proposition 2.5. Every discrete subgroup of a Hausdorff group is closed. Hence
in particular, every Fuchsian group is closed.

We can now define a lattice in PSL(2,R).

Definition 2.6 (Lattice). A Fuchsian group that has finite covolume, vol(Γ\H) is
called a lattice in PSL(2,R).

It follows that for a lattice Γ, we can put the quotient topology on Γ\H by using
the projection π : H → Γ\H. With this topology Γ\H is a Hausdorff connected
space, and with appropriate charts it becomes a Riemann surface. From now on,
unless stated otherwise, Γ will be a lattice. Before moving to automorphic functions,
we first give more terminology related to Fuchsian groups.

Definition 2.7 (Fundamental Domain). Let Γ be a Fuchsian group. A set F ⊂ H
is a fundamental domain for Γ if it satisfies:

(1) F is a domain,
(2) Distinct points in F are not equivalent under Γ, i.e. if z, w ∈ F , then

w ̸∈ Γz.
(3) Any orbit of Γ contains at least one point in Γ, where the closure is taken

in the Ĉ-topology.

It is a well known fact that any Fuchsian group has a (not necessarily unique)
fundamental domain, and that by unimodularity, the hyperbolic measure of any
fundamental domain of a Fuchsian group is equal to the co-volume of that Fuchsian
group. For our purposes it is enough to know that any lattice has a fundamental
domain, which can be taken as the Dirichlet polygon

F (w) = {z ∈ H | ρ(w, z) < ρ(γw, z), for all γ ∈ Γ} ,
for some arbitrary w ∈ H with trivial stabilizer group. We can now define cusps of
a Fuchsian group.

Definition 2.8 (Cusp). Let Γ be a Fuchsian group. A cusp of Γ is an element of

the set F ∩ R̂, where F is a fundamental domain for Γ.



THE DISCRETE SPECTRUM OF THE AUTOMORPHIC LAPLACIAN 5

Example 2.9. Consider the lattice Γ = PSL(2,Z). It has a fundamental domain
given by

F =

{
z ∈ H | |Re(z)| ≤ 1

2
, |z| ≥ 1

}
.

and thus it only has one cusp, namely ∞ (see [5] p. 52).

2.2. Automorphic Forms and Cusp Forms. We begin by introducing the prop-
erty of automorphy, which is a notion common in all definitions of automorphic
forms. The automorphy property will crucial to many proceeding constructions.

Definition 2.10 (Automorphic Function). Let Γ be a lattice. A function f : H →
C is an automorphic function with respect to Γ if

f(γz) = f(z), ∀γ ∈ Γ.

The set of automorphic functions with respect to Γ is denoted A(Γ\H).

With this above definition, and the definition of a lattice, we can define auto-
morphic forms.

Definition 2.11 (Automorphic Form). Let Γ be a lattice. An automorphic form
with respect to Γ, is an automorphic function f ∈ A(Γ\H) which is an eigenfunction
of the Laplace operator

(∆ + λ)f = 0, λ = s(1− s).

We denote by As(Γ\H), the space of automorphic forms with respect to Γ with
eigenvalue λ = s(1− s).

The introduction of the Laplacian in the definition of automorphic forms can
seem arbitrary. One reason for this, is that the Laplacian has a large number of
interesting spectral properties. However, a more important reason is related to
invariant operators. These are linear operators T acting on functions f : H → C
which satisfy for all g ∈ G

T (f(gz)) = (Tf)(gz).

Of particular interest are the invariant differential operators, and ∆ is such an
operator. In fact, it is a very special operator, and a first important property is the
following (see [8] p. 387 for a more general result).

Theorem 2.12. Let M be a Riemannian manifold with geometric Laplacian op-
erator ∆. A diffeomorphism Φ : M → M is an isometry iff Φ commutes with
∆.

Another important property of the geometric Laplacian is that any invariant
differential operator on H is a polynomial in ∆. This follows from a much more
general result about symmetric spaces

In order to introduce cusp forms we need more notation concerning cusps of
lattices. We first consider the example PSL(2,Z). Recall that for an element
γ =∈ PSL(2,R), the point ∞ is mapped to a

c ∈ Q, when c ̸= 0, and is mapped
to ∞ when c = 0. Thus its stabiliser group is the subgroup of translations in

PSL(2,Z)∞ =

〈(
1 1
0 1

)〉
. Thus, for any lattice Γ, contained in PSL(2,Z), the

stabiliser group Γ∞ is a subgroup of the translations Γ∞ =

〈(
1 hΓ
0 1

)〉
. The
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constant hΓ is sometimes called the period of ∞ in Γ, and we write h when the
context is clear. For the general case, we have the following result, (see [1] p. 189)1.

Proposition 2.13. Let Γ be a Fuchsian group and let z ∈ Ĉ. Then the stability
group Γz is cyclic.

Now for a general Fuchsian group Γ, the stabilizers of∞ are all parabolic. Hence,

(after conjugation if necessary) we get Γ∞ =

〈(
1 hΓ
0 1

)〉
, for some hΓ. We will

make use of this convention throughout. Also, for a cusp a, there exists a σa such
that σa∞ = a. Then

(2.1) Γa =

〈
σa

(
1 hΓ
0 1

)
σa

−1

〉
.

Note that σa is not unique, as we can multiply it on the right by any translation
to get the same relation. We call such σa, a scaling matrix. Now suppose that
f ∈ A(Γ\H), then for any m ∈ Z we have

f

(
σa

(
1 mhΓ
0 1

)
z

)
= f

(
σa

(
1 mhΓ
0 1

)
σ−1
a σaz

)
= f(σaz).

Thus we have a Fourier expansion

f(σaz) =
∑
n

fan(y)e
(nx
h

)
,

where e(y) = exp(2πiy), and fan is given by

fan(y) =

∫ h

0

f(σaz)e

(
−nx
h

)
dx .

Here we use the notation; fa = fa0. One of the main goals of the spectral theory of
automorphic forms is to expand automorphic functions into automorphic forms. In
order to do this we use tools of spectral theory in a Hilbert space, called L(Γ\H).

Definition 2.14 (L(Γ\H)). Let Γ be a lattice. Define the inner product space
L(Γ\H) by

L(Γ\H) = {f ∈ A(Γ\H) : ∥f∥ <∞} ,
where we define the inner product by

⟨f, g⟩ =
∫
F

f(z)g(z) dµz ,

where F is a fundamental domain of Γ.

We will sometimes write Γ\H as the domain of integration, and this can be
understood as integrating over a fundamental domain.

We note that since Γ is a lattice, it has finite covolume, and thus every bounded
element of A(Γ\H) is in L(Γ\H). This naturally leads to the definition of the
following dense subspace of A(Γ\H).

Definition 2.15 (B(Γ\H)). Let Γ be a lattice. Define B(Γ\H) to be the set of
smooth bounded automorphic functions.

1The proof in [1] uses the fact that discrete subgroups of N,A,K, are cyclic. This can be
shown for N by noting that any such subgroup will have a minimal (1, 2)-entry, and the idea is

similar for A and K
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We now define an important subspace of B(Γ\H).

Definition 2.16 (Incomplete Eisenstein Series). Let Γ be a lattice and a be a cusp
for Γ. If ψ ∈ C∞

0 (R>0), a series of the form

Ea(z | ψ) =
∑

γ∈Γa\Γ

ψ(Im(σ−1
a γz)),

is called an incomplete Eisenstein series. The set of all such series is denoted
by E(Γ\H).

Note 2.17. (1) Note that for γ, γ′ ∈ Γ by (2.1), we have that

(2.2) Γaγ = Γaγ
′ ⇐⇒ γ ∈ Γaγ

′ ⇐⇒ γ = σa

(
1 mh
0 1

)
σ−1
a γ′,

for some m ∈ Z. Hence, using the invariance of Im(z) under translations,
we have that Im(σ−1

a γz) = Im(σ−1
a γ′z), and thus the sum is well defined.

Furthermore, it is clear from its definition that E(Γ\H) is a subspace of
A(Γ\H).

(2) It is easy to check that for any γ =

(
a b
c d

)
∈ PSL(2,R), we have that

(2.3) Im(γz) =
Im(z)

|cz + d|2
.

Also, if ψ ∈ C∞
0 (R>0), then there exists R, ε > 0 such that supp(ψ) ⊂ [ε,R].

Thus if γ ∈ Γ

(2.4) Im(γz) ⩾ ε ⇐⇒ Im(z)

|cz + d|2
⩾ ε =⇒ Im(z)

ε
⩾ |c|Im(z),

and thus for the bound to hold, we need c ∈ [− 1
ε ,

1
ε ]. But Γ is discrete and

closed, and thus this holds for only finitely many values of c, irrespective
of z. Furthermore, for γ ∈ PSL(2,R), it follows by (2.2) that (σ−1

a γ̃)2,1 is
the same for all γ̃ ∈ Γaγ. Also, for m ∈ Z, we have that(

1 hm
0 1

)(
a b
c d

)
=

(
a+ hmc b+ hmd

c d

)
,

and thus we can identify the set of distinct Γaγ which satisfy (σ−1
a Γaγ)2,1 =

c with a subset of [0, hc]. But this is compact, and thus again by discreteness
and closedness of Γ, there are finitely many Γaγ which satisfy (σ−1

a Γaγ)2,1 =
c. Thus, the sum for Ea(z | ψ) has finitely many terms, each bounded by
∥ψ∥ which is finite. Hence in particular, we have shown that E(Γ\H) ⊆
B(Γ\H).

In fact, we have a much stronger result whose proof follows by studying the
geometry of the fundamental domain (see [9] Lemma 2.10). The above note can be
thought of as a motivation for the following result.

Lemma 2.18. Let Γ be a lattice, and let a be a cusp for Γ. For any z ∈ H, and
Y > 0, we have

#
{
γ ∈ Γa\Γ : Im(σ−1

a γz) > Y
}
< 1 +

10

caY
.
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We wish to study the orthogonal complement of E(Γ\H) in B(Γ\H), as the cusp
forms will arise from this subspace. We define the subspace C(Γ\H) and show that
this is indeed the orthogonal complement.

Definition 2.19 (C(Γ\H)). Let Γ be a lattice. Define C(Γ\H) to be the subspace
of B(Γ\H) consisting of all f such that fa ≡ 0, for any cusp a.

Proposition 2.20. Let Γ be a lattice. Then, C(Γ\H) is the orthogonal complement
of E(Γ\H) in B(Γ\H). Hence

L(Γ\H) = E(Γ\H)⊕ C(Γ\H),

where the closures are taken in L(Γ\H).

Proof. Let f ∈ B(Γ\H) and Ea(z | ψ) ∈ E(Γ\H). We compute the inner product
to get

⟨f,Ea(z | ψ)⟩ =
∫
Γ\H

f(z)
∑

γ∈Γa\Γ

ψ(Im(σ−1
a γz)) dµz

=
∑

γ∈Γa\Γ

∫
σ−1
a γF

f(σaz)ψ(y) dµz

where in the last equality we made the substitution z 7→ γ−1σaz. Now let γ ∈
Γ, z ∈ F . Then using the translations from (2.2), it follows that for some unique
γ′ ∈ Γaγ, we have that σ−1

a γ′z ∈ P , where P = {τ ∈ H : 0 < Re(τ) < h}. Clearly,
by the definition of F , this mapping is onto. Also, if γ, γ′ ∈ Γ, and z, z′ ∈ F , then
σ−1
a γz = σ−1

a γ′z′ if and only if z = γ−1γ′z′, and by the definition of F , this holds
iff z = z′. Thus this covering is one-to-one and onto and we have

⟨f,Ea(z | ψ)⟩ =
∫ ∞

0

(∫ h

0

f(σaz) dx

)
ψ(y)y−2 dy =

∫ ∞

0

fa(y)ψ(y)y
−2 dy .

Finally, the result follows from the fact that f ∈ E(Γ\H)⊥ iff ⟨f,Ea(z | ψ)⟩ = 0, for
all ψ ∈ C∞

0 (R>0). □

Definition 2.21 (Cusp Form). Let Γ be a lattice. The automorphic forms in
C(Γ\H) are called cusp forms with respect to Γ. We denote by Cs(Γ\H), the
space of automorphic forms with respect to Γ with eigenvalue λ = s(1− s).

3. Discrete Spectrum

In this section, we study the crucial ideas in order to show that C(Γ\H) is
spanned by cusp forms. This is done by using the theory of symmetric operators and
Hilbert-Schmidt operators. We will often use fundamental results from Functional
Analysis and Spectral Theory, where we will refer the reader to the relevant places
in Appendix A.

3.1. Compactification of Automorphic Kernels. We begin by introducing the
notion of automorphic kernels.

Definition 3.1 (Point-Pair Invariant). A smooth function k : H × H → C is a
point-pair invariant if k(σz, σw) = k(z, w), for all σ ∈ PSL(2,R).
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Note 3.2. Note that a point-pair invariant is only a function of ρ(z, w) (the hy-
perbolic distance between z and w). Hence we can make use of (1.1) to write such
a function as k(z, w) = k(u(z, w)), for some function k(u). For now we will always
assume that k(u) ∈ C∞

0 (R+).

Definition 3.3 (Invariant integral operator). An integral operator on L2(H,BH, µ),
with a point-pair invariant kernel k(z, w), is called an invariant integral opera-
tor.

Definition 3.4 (Automorphic Kernel). Let Γ be a lattice, and let k(z, w) be a
point-pair invariant. Its automorphic kernel is the function

(3.1) K(z, w) =
∑
γ∈Γ

k(z, γw),

and has associated to it the integral operator LK : A(Γ\H) → A(Γ\H) defined by

(LKf)(z) =

∫
Γ\H

K(z, w)f(w) dµ(w) .

Note 3.5. The above definition is well defined. Indeed, for fixed z ∈ H, the number
of nonzero terms in (3.1) is at most the number of distinct fundamental domains
that intersect the support of k(z, ·), which is compact.

We have a first interesting result which further motivates the use of these oper-
ators in order to study C(Γ\H).

Proposition 3.6. Let LK be an integral operator with automorphic kernel K. Then
LK maps the subspace B(Γ\H) into itself, and moreover, LK maps the subspace
C(Γ\H) into itself.

Proof. The fact that LK maps B(Γ\H) to itself follows directly from our condition
on k(u), as well as the definition of B(Γ\H). To see why the subspace C(Γ\H)
gets to itself, we simply calculate the constant term in the Fourier expansion of
(LKf)(z) at a cusp a. By using that f is automorphic, we have that

(LKf)a(y) =

∫ h

0

(LKf)(σaz) dx

=

∫ h

0

(∫
Γ\H

K(σaz, w)f(w) dµ(w)

)
dx

=

∫ h

0

(∫
H
k(σaz, w)f(w) dµ(w)

)
dx

=

∫
H
k(z, w)

(∫ h

0

f(σaw) dx

)
dµ(w) ,

where in the last equality, after changing the order of integration, we made the
substitution w 7→ σaw, and used the point-pair invariance of k. The result follows
from noting that the bracketed term in the final expression is fa(y). □

We now move towards defining our Hilbert-Schmidt operators. No matter how
small the support of k(u) is made, we cannot have the guarantee that K(z, w) is
bounded on F × F , for a fundamental domain F , as the number non-zero of terms
in the series for K(z, w) grows to infinity, as z and w approach cusps. In order to
define a new operator from LK , we need the notion of a principal part.
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Definition 3.7 (Principal Part). Let k be a point-pair invariant for a lattice Γ,
and let a be a cusp. Define the principal part of k at a by the series

(3.2) Ha(z, w) =
∑

γ∈Γa\Γ

∫
R
k(z, t+ σ−1

a γw) dt .

We define the principal part of the automorphic kernel K(z, w) to be

H(z, w) =
∑
[a]

Ha(z, w),

where the sum is taken over all the in-equivalent cusps of Γ, which is well defined
by the following

Note 3.8. Note that for fixed z ∈ H, the series Ha(z, ·) is an automorphic function
for Γ. Furthermore, if a is a cusp of Γ, then Γγ̃a = γ̃Γaγ̃

−1, and we can take
σγ̃a = γσa. Hence we have

Hγ̃a(z, w) =
∑

γ∈Γγ̃a\Γ

∫
R
k(z, t+ σ−1

γ̃a γw) dt =
∑

γ∈Γa\Γ

∫
R
k(z, t+ σ−1

a γ̃−1γ̃γw) dt

= Ha(z, w),

where here we have used that Γγ̃aγ = Γγ̃aγ
′ if and only if Γaγ̃

−1γ = Γaγ̃
−1γ′.

Hence H[a](z, w), is well defined, where [a] is the equivalence class of a under the
action of Γ.

Proposition 3.9. Let Γ be a lattice, let k be a point-pair invariant for Γ, and let
a be a cusp. For fixed z ∈ H, the principal part Ha(z, ·) is in B(Γ\H). Moreover, it

is orthogonal to the space C(Γ\H), and is thus in the subspace E(Γ\H), where here
the closure is taken in the space B(Γ\H).

A proof of this result can be found in [9] p. 58. Instead of reproducing the proof,
we discuss the important elements of the proof. Fix z ∈ H. We first note that
smoothness of Ha(z, ·) follows directly from our restriction on k. For boundedness,
fix w ∈ H, and note that since k has compact support in R+, it follows that for some
R = R(k) > 0, a restriction on γ and t for the integrand in (3.2) to be non-zero is
|z − t− σ−1

a γw|2 ⩽ R · Im(z)Im(σ−1
a γw). Also, using Lemma 2.18 we get

|Ha(z, w)| ⩽ |
∑

γ∈Γa\Γ

∫
R
k(z, t+ σ−1

a γw) dt | ⩽
∑

γ∈Γa\Γ

∫
R|
k(z, t+ σ−1

a γw)| dt

⩽
∑

γ∈Γa\Γ

2(R · Im(z))
1
2 (Im(σ−1

a γw)
1
2 ∥k∥ ⩽ Cz,k

∑
γ∈a(n)

(Im(σ−1
a γw)

1
2

⩽ Cz,k

∑
n

1

n2

(
1 +

1

(n+ 1)4

)
< +∞,

where Cz,k is some relabelled constant, and

a(n) =

{
γ ∈ Γa\Γ | 1

(n+ 1)2
≤ (Im(σ−1

a γw))
1
2 ⩽

1

n2

}
.

The final part of the proposition follows by computing ⟨Ha(z, ·), f⟩, where by suit-
ably changing the order of integration, the term fa appears in the integrand. We
can now define a new integral operator which will turn out to be Hilbert-Schmidt.
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Definition 3.10 (Compact Part). Let Γ be a lattice, and let K(z, w) be an auto-
morphic kernel. Define the compact part of K(z, w) to be

K̂(z, w) = K(z, w)−H(z, w).

The compact part of an automorphic kernel naturally defines an integral operator
LK̂ on A(Γ\H). As we shall see, this operator is Hilbert-Schmidt on the Hilbert
space L(Γ\H). Moreover, from Proposition 3.9, we have the following result.

Proposition 3.11. Let K be an automorphic kernel with respect to a lattice Γ.
Then LK̂ = LK on the subspace C(Γ\H).

We now arrive to one of the crucial points of this section.

Proposition 3.12. Let Γ be a lattice with a fundamental domain F . Then K̂(z, w)
is bounded on the set F × F . Hence, since Γ has finite co-volume, it follows that
LK̂ is a Hilbert-Schmidt operator on L(Γ\H).

The most important takeaway from the result is that LK̂ is Hilbert-Schmidt. For
a full proof of this result, see [9] p. 67, where a slightly more general result is proved.
In the proof of [9], there is the use of the following version of the Euler-Maclaurin
formula: for f ∈ C∞

0 (R), we have that∑
n∈Z

f(n) =

∫
R
f(t) dt +

∫
R
(t− ⌊t⌋ − 1/2)f ′(t) dt ,

which can be checked by integration by parts.
The main idea is that the non-parabolic motions carry a uniformly bounded

weight in the sum for K(z, w), and thus we must only examine the parabolic mo-
tions. Furthermore, using Poisson summation and integration by parts, one can
use the compact support of all derivatives of k(u) to show that for any N∑

m∈Z
k(z, w +m) =

∫
R
k(z, w + t) dt +O((Im(z)Im(w))−N ).

Thus, when defining K̂(z, w), we have essentially taken away the unbounded part
in the sum for K(z, w), leaving only the bounded part.

We make a final important remark concerning automorphic kernels.

Note 3.13. Throughout this section, we have used point-pair invariants k(z, w)
under the assumption that k(u) be compactly supported. This is quite a strong
condition, and it turns out that we can impose weaker growth conditions on k(u).
With care, one can show that all preceding results of this section hold true when
k(u) ∈ C∞(R+) subject to the growth condition

(3.3) |k(u)|, |k′(u)| ≪ 1

(u+ 1)2
.

We assumed compactness in order to give a more intuitive account of the construc-
tion of the compact part of an automorphic kernel, but from now on, we assume
that our point-pair invariants are subject to the growth condition in (3.3).
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3.2. The Automorphic Laplacian. In order to get a spectral decomposition
of the space C(Γ\H), we need a self-adjoint operator. This will come from the
Laplacian. More precisely, we will first define the Laplacian on a dense subspace
of L(Γ\H), and then use the theory of unbounded operators to extend it to a
self-adjoint operator on L(Γ\H). The Laplacian acts on all smooth automorphic
functions, but we do not have much control of its range as of yet. In this pursuit,
we first define ∆ on a dense subset of L(Γ\H), so that the range of ∆ restricted to
this set is contained in the dense subspace B(Γ\H).

Definition 3.14 (D(Γ\H)). Let Γ be a lattice. Define the subspace D(Γ\H) of
L(Γ\H) by

D(Γ\H) = {f ∈ B(Γ\H) | ∆nf ∈ B(Γ\H), for all n} .

Note 3.15. It follows its definition that D(Γ\H) contains all compactly supported
functions in B(Γ\H) and thus D(Γ\H) is a dense subset of L(Γ\H). Furthermore,
all cusp forms are in D(Γ\H).

As it turns out, the space D(Γ\H) is exactly the space we need to get a self-
adjoint extension of ∆.

Proposition 3.16. The restriction of −∆ on D(Γ\H) is symmetric and non-
negative.

One can deduce the symmetry of −∆ from Green’s First identity on R2, which
still holds true on a fundamental domain F ⊆ H due to the fact that functions in
f ∈ D(Γ\H) have that both f and ∆f are smooth and bounded, and that Γ has
finite co-volume. The expression that we obtain is

(3.4)

∫
F

∆fg dµ(z) = −
∫
F

∇f · ∇g dx dy +

∫
∂F

∂f

∂n
g ds ,

where ∂
∂n = y ∂

∂ and ds = ds
y . The reason for writing the expression in such a way

is that ds is a PSL(2,R)-invariant differential form: for γ =

(
a b
c d

)
∈ PSL(2,R)

we have using (2.3)

γ∗( ds ) = γ∗
(
1

y
ds

)
=

|cz + d|2

y

(
1

|cz + d|2

)
ds = ds .

and thus, (3.4) is independent of the chosen fundamental domain. Finally symmetry
of ∆ follows from the fact that the integral along the boundary will be cancelled
out by the opposite sides of ∂F . Non-negativity of −∆ is immediate from (3.4).
Note that for an eigenfunction f ∈ D(Γ\H) with eigenvalue λ = s(1− s), since −∆
is symmetric it follows that λ must be real and non-negative. If s is real, it follows
that s ∈ [0, 1]. If s ̸∈ R, then it follows that 1 − s = s, and thus s must lie on the
line: Re(s) = 1

2 .
We have now shown that −∆ is symmetric and non-negative on D(Γ\H), and

we can thus apply Friedrich’s Theorem (see Theorem A.17) to obtain a self-adjoint
extension of ∆. We call this extension of ∆, the automorphic Laplacian, which
is densely defined, and which we will still denote by ∆.

Note 3.17. The automorphic Laplacian is a self-adjoint operator on L(Γ\H), and
it thus has a spectral decomposition on that space. In the remainder of the section,
we consider the subspace C(Γ\H), and we show that the automorphic Laplacian
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has pure-point spectrum in this case. Throughout the discussion, it will be worth
keeping in mind that since ∆ (our original Laplacian) is defined on a dense subset of
the closed subspace C(Γ\H), any result that holds true for ∆ on this dense subset,
holds for its self-adjoint extension.

3.3. Discrete spectrum of ∆. The spectral resolution of the extension ∆ re-
stricted to C(Γ\H) will come from the following sequence of results:

Theorem 3.18 (Hilbert-Schmidt Theorem for integral operators.). Let (X,A, µ)
be a seperable σ-finite measure space, and let Ak be a self adjoint Hilbert-Schmidt
integral operator. Then Ak has pure point spectrum in L2(X,A, µ). The eigenspaces
of Ak are finite dimensional. The range of Ak is spanned by eigenfunctions of Ak,
and any maximal system {fn} of eigenfunctions of Ak is an orthonormal basis for

Im(Ak).

For the following two results, see [9], p. 26-30. Note that Proposition 3.20
follows from the fact that the results in this section of [9] still hold true subject to
the conditions in (3.3).

Proposition 3.19. Let k(z, w) be a smooth point-pair invariant on H × H. We
have

∆zk(z, w) = ∆wk(z, w).

Hence, the invariant integral operators commute with the Laplace operator.

Proof. First center geodesic polar coordinates at w (i.e. send w to i), and consider
the expression for ∆zk(z, w) using the expression found in (1.3). Repeating the
same procedure with z and w switched, and using that k(u) only depends on u
gives the result. □

Proposition 3.20. Any eigenfunction of ∆ is also an eigenfunction of all invariant
integral operators.

Theorem 3.21. Let A,B be a pair of commuting symmetric operators in a Hilbert
pace H, and suppose that the with eigenspaces of A are finite dimensional. Then
there exists a maximal orthonormal system of eigenvectors of A which are also
eigenvectors of B.

Note 3.22. Theorem 3.21 follows from the Spectral Theorem for Hermitian ma-
trices applied to the eigenspaces of A. Note that the Theorem does not assert the
existence of a Hilbert basis. Furthermore, the reason why we only need to consider
symmetric operators and not self adjoint operators is precisely because the proof
restricts its attention to the eigenspaces of A, and the restrictions of A and B to
these spaces are self-adjoint, which is all that we need.

Suppose now that A is compact and defined on the whole space H. Then by
Theorem A.25, the image of A is spanned by its eigenfunctions, and there is an
orthonormal basis of Im(A) consisting entirely of eigenvectors of A. Hence (if
necessary), restricting the domain of A to a domain for which it commutes with B,
by Theorem 3.21, it follows that the image of the restriction of A will be spanned
by eigenvectors of B, and that its closure will have an orthonormal basis consisting
entirely of eigenvectors of A which are also eigenvectors for B. With this in mind, if
we can find a compact self-adjoint operator A : D(Γ\H) → D(Γ\H) which commutes

with the automorphic Laplacian, and satisfies C(Γ\H) ⊆ Im(A), then we will be
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able to deduce that C(Γ\H) is spanned by cusp forms. We will do this by making
use of all of the theory described above.

Motivated by Proposition 3.19, we will consider a symmetric invariant integral
operator L, from which we will obtain a self-adjoint Hilbert-Schmidt operator L̂
which is equal to L on C(Γ\H). We will then show that L maps C(Γ\H) into a
dense subspace of itself. From there, we get the main result of this section (see [9]
Theorem 4.7).

Theorem 3.23 (Spectral Resolution of ∆ in C(Γ\H)). Let Γ be a lattice. The
space C(Γ\H) is spanned by cusp forms. Hence, the automorphic Laplacian ∆
has pure point-spectrum in C(Γ\H). The eigenspaces have finite dimension. For
any complete orthonormal system of cusp forms {uj}, every f ∈ C(Γ\H) has the
expansion

f(z) =
∑
j

⟨f, uj⟩uj(z),

converging in the norm topology. Moreover, if f ∈ C(Γ\H) ∩ D(Γ\H), then the
series converges absolutely on compact subsets of H.

To finish this section, we will break down some of the key steps that allow us to
find the suitable invariant operator from which we can deduce Theorem 3.23. Recall
that the automorphic Laplacian is a self-adjoint operator, and hence its eigenvalues
are all real. Thus, for s ∈ C\R, it follows from Proposition A.33, that the resolvent,
Rs is defined on L(Γ\H). As it turns out, for s ∈ C with Re(s) > 1, we can express
Rs as an invariant integral operator. In order to do so, we must first describe the
kernel of Rs.

Definition 3.24 (The Green’s function for ∆). For Re(s) > 1, define the Green’s
function to be the function Gs(u) on R+ defined by the integral

(3.5) Gs(u) =
1

4π

∫ 1

0

(ξ(1− ξ))s−1(ξ + u)−s dξ .

The integral in (3.5) clearly converges absolutely for Re(s) > 0, but for our
purposes, only the values of s in the region Re(s) > 1, will be useful to consider.
One can show that Gs(u) is an eigenfunction of ∆ corresponding to the eigenvalue
λ = s(1 − s). Note that in this context, we are considering ∆ acting on smooth
automorphic functions in A(Γ\H), and it is not symmetric in this space.

We now give a result which justifies the naming of Gs(u). A proof of this result
can be found in [9] Theorem 1.17.

Theorem 3.25. Let s ∈ C with Re(s) > 1. If f is smooth and bounded on H, then

(3.6) −(Rsf)(z) =

∫
H
Gs(u(z, w))f(w) dµ(w) .

The main idea in proving the above result is to show that the integral operator
on the rhs of 3.6 defined on smooth and bounded functions on H commutes with
(∆ + s(1 − s)), and then to use an argument involving Green’s Theorem. The
way one deduces the commutativity of the two operators, is by making use of the
SL(2,R)-invariance of the integral operator on the rhs of 3.6. Since SL(2,R) is a
matrix Lie group, for each X ∈ sl(2,R), we use the map t 7→ exp(tX) to define a
linear operator LX : C∞(G) → C∞(G), which satisfies Leibniz rule. We then use
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the three basis elements X1, X2, X3 for sl(2,R) to write ∆ as an expression in terms
of the operators LX1 ,LX2 ,LX1 . This is when we use SL(2,R)-invariance from 3.6,
and from here the commutativity follows. For more details on Lie algebras, see [7],
and for a detailed account of differential operators derived from Lie algebras, see
[10].

In order to define the operator for the proof of Theorem 3.23, we must study
the behaviour of Gs(u). A first important property of the Green’s function is the
following easy result.

Proposition 3.26. Let s ∈ C with Re(s) = σ > 1, then for any x > 0, we have

sup
u≥x

∣∣∣∣ Gs(u)

(1 + u)σ

∣∣∣∣ <∞.

Clearly, Gs(u) has a singularity at 0. Motivated by Proposition A.34, one might
wonder whether this singularity is cancelled out when considering Ga(u) −Gs(u).
This turns out to be the case.

Proposition 3.27. Let s ∈ C with Re(s) > 1. Then, Gs(u) satisfies the following
bounds

Gs(u) =
1

4π
log

1

u
+O(1), u→ 0,(3.7)

G(n)
s (u) =

Cn

un
+O(1), u→ 0,(3.8)

where Cn = (−1)n(n−1)!
4π .

For a proof of (3.7), see [9] Lemma 1.7. The proof of (3.8) is done by an al-
most identical argument. We can now construct the operator we wished for in the
discussion preceding the statement of Theorem 3.23.

Let a, s ∈ C with Re(s) > Re(a) ≥ 2. Consider the invariant integral operator
L = Ra − Rs : L(Γ\H) → L(Γ\H), which has kernel k(u) = Gs(u) − Ga(u). Note
that in Theorem 3.25 , it was only proved that the restriction of the operator −Rs to
the subspace of smooth and bounded functions on H, is an integral operator with
kernel equal to Gs(u). However, if LK is the integral operator on L(Γ\H) with
automorphic kernel obtained from k(u) = Gs(u)−Ga(u), then by Proposition 3.27,
it follows that LK is bounded. Hence, since the space B(Γ\H) is dense in L(Γ\H), it
follows that L is defined on the entire space L(Γ\H), and its restriction to B(Γ\H)
is an integral operator, with automorphic kernel obtained from k(u). Furthermore,

by the definition of Gs(u), one can see that k(u(z, w)) = k(u(w, z)), and thus L̂ is
a self-adjoint Hilbert-Schmidt operator. Note that L is also self-adjoint. We need
one final result before giving our concluding argument.

Proposition 3.28. With the above definitions, the operator L̂ maps the subspace
space C(Γ\H) densely into itself.

Proof. We prove this by showing that the image of L restricted to this space contains
D(Γ\H) ∩ C(Γ\H), and then appeal to Proposition 3.11, to get the result. Let
f ∈ D(Γ\H), and define

g = (a(1− a)− s(1− s))−1(∆ + s(1− s))(∆ + a(1− a))f.

Then by Proposition A.34, since C(Γ\H) ⊆ B(Γ\H), it follows that Lg = f . Now
suppose that f ∈ C(Γ\H). Then by Proposition 2.20, g = e + c, for some unique
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e ∈ E(Γ\H), c ∈ C(Γ\H). But g is in the subspace D(Γ\H) ⊆ D(Γ\H), and thus
c ∈ C(Γ\H). Now since both Lg and Lc are in C(Γ\H), so is Le, and hence
L2e ∈ C(Γ\H). Since L is self-adjoint, we have

0 = ⟨L2e, e⟩ = ⟨Le, Le⟩ = ∥Le∥2 ,
and thus Le = 0. Finally, using the Proposition A.34 and the fact that Ra is
injective gives the result. □

Note that k(u) is a point-pair invariant, and by Propositions 3.26 and 3.27, by
our choice of a and s, it follows that k(u) respects the sufficient conditions in Note
3.13. We can thus apply Proposition 3.12 to L, to obtain a self-adjoint Hilbert-
Schmidt operator L̂.

Finally, recall that C(Γ\H) is the orthogonal complement of E(Γ\H) in B(Γ\H),
and it is thus a closed subspace of B(Γ\H). Let us now restrict our attention to the
Hilbert spaceH = C(Γ\H). Since L is an invariant integral operator, by Proposition

3.19, it follows that ∆ and L commute. By Proposition 3.11, L̂ = L on H, and
thus ∆ and L̂ commute on H. Applying Theorem 3.18 to L̂ : H → H, using the
fact that its image is dense in H, and combining this with Theorem 3.21, gives us
Theorem 3.23.

Appendix A. Essential Background on Spectral Theory

A.1. Spectral Decomposition. The spectral decomposition of self adjoint oper-
ators will be in the background of much of the motivation for the work done on
Eisenstein series. We give a brief summary of the important notions leading to
its construction. For a more detailed account on this topic, see [12] Chapter 7,
and for more details on Spectral Theory see [14]. We first recall some terminology
concerning measures. For a topological space X, we will write BX for the σ-algebra
generated by the open sets in X.

Definition A.1 (Absolutely Continuous). Let µ and ν be measures on a measur-
able space (X,A). We say that µ is absolutely continuous with respect to ν,
written µ≪ ν if

ν(A) = 0 =⇒ µ(A) = 0,∀A ∈ A.

Definition A.2 (Singular). Let µ and ν be measures on a measurable space (X,A).
We say that µ and ν are singular, written µ ⊥ ν if there exist disjoint sets A,B ∈ A
satisfying:

A ∩B = ∅, A ∪B = X, µ(B) = ν(A) = 0.

Definition A.3 (Pure Points). Let X be a topological space, and let µ be a Baire
measure on (X,BX), i.e µ is finite on compact subsets of X. The pure points of
µ is the set

P = {x ∈ X : µ(x) ̸= 0}.
A Borel measure µ on R is called continuous if it has no pure points, and is called
a pure point measure if µ(X) =

∑
x∈X µ({x}), for any Borel set X.

Note A.4. For a Baire measure on (X,BX), P is countable, and defining the
measures µpp on (X,BX) by

µpp =
∑

x∈X∩P

µ({x}), µcont = µ− µpp,
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we can write µ = µcont + µpp, where µcont is continuous and µpp is pure point.

Theorem A.5 (Lebesgue Decomposition Theorem). For any two σ-finite signed
measures µ and ν on a measurable space (X,A), there exist two σ-finite signed
measures ν0 and ν1 such that ν0 is absolutely continuous with respect to µ, ν1 and
µ are singular, and ν = ν0 + ν1. Moreover, ν0 and ν1 are uniquely determined by
µ and ν.

The above theorem admits the following refinement in the measure space (R,BR),
which follows by combining the Lebesgue Decomposition Theorem and Note A.4
(see Theorems 1.13 and 1.14 in [12] for further details).

Theorem A.6. For any σ-finite measure on the measurable space (R,BR), we can
write ν as a sum of three mutually singular measures

ν = νac + νsc + νpp

where νac ≪ λ1, νsc is continuous and singular with respect to λ1, and νpp is pure
point.

In order to discuss the spectral decomposition, we need to introduce spectral
measures. The construction of these makes use of the following result, whose proof
can be found in [6]. Here, by a positive linear functional ψ, we mean that ψ(f) ⩾ 0,
whenever f ⩾ 0.

Theorem A.7 (Riesz-Markov-Kakutami Representation Theorem). Let X be a
compact Hausdorff space. For any positive linear functional ψ on C(X), there is a
unique Baire measure µ on (X,BX) such that ∀f ∈ C(X)

ψ(f) =

∫
X

f(x) dµ .

Now let H be a Hilbert space, and let T ∈ B(H) be self-adjoint, where B(H) is
the C∗-algebra of linear bounded operators on H. Recall that for A ∈ B(H), if σ(A)
is the spectrum of A, then σ(A) is a non-empty compact subset of C. Moreover,
since T is self-adjoint, σ(T ) ⊂ R. Furthermore, for any polynomial P ∈ C[t], since
T is self-adjoint we have

∥P (T )∥ = sup
λ∈σ(T )

|P (λ)|.

Now by Stone-Weierstrass, if f ∈ C(σ(T )), there exists a sequence of polynomials
Pn which converge to f uniformly. We can thus define f(T ) as the limit of the
sequence (Pn(T )) in B(H). Now fix h ∈ H, and note that the map ψh : C(σ(T )) →
R given by C(σ(T )) ∋ f 7→ (h, f(T )h), is a positive linear functional. The image
of ψh being R is due to the self-adjointess of f(T )2 for any f ∈ C(σ(T )):

(h, f(T )h) = (f(T )h, h) = (h, f(T )h),

and the positivity of ψh follows similarly after noting that for positive f we can
write f = (

√
f))2. We can thus apply the Riesz-Markov-Kakutami Representation

Theorem to obtain a measure µh on σ(T ) such that∫
σ(T )

f dµh = (h, f(T )h).

2Theorem VII.1 in [12] gives more details as to why f(T ) is self-adjoint
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The measure µh is called the spectral measure associated to h. By the refinement
of Lebesgue’s Decomposition Theorem, µh can be decomposed into three mutually
singular parts, µac, µsc and µpp, which satisfy the analogous properties as in Theo-
rem A.6. For each α ∈ {ac,sc,pp}, define the subspace Hα of H by

(A.1) Hα = {h ∈ H : µh = µα}.
These subspaces are invariant under T since for h ∈ H and A ∈ Bσ(T ), we have

µT (h)(A) =

∫
σ(T )

1A dµT (h) = (T (h),1A(T )T (h)) = (h, T1A(T )T (h))

=

∫
σ(T )

x21A dµh(x),

and thus µT (h))(A) = 0 whenever µh(A) = 0. We can now make use of the Spectral
Theorem in its multiplication operator form to obtain a decomposition of H in
terms of the subspaces defined in (A.1).

Theorem A.8 (Spectral Theorem). Let H be a seperable Hilbert space, and let T
be self adjoint operator in B(H). Then there exists a sequence of spectral measures
(µhn)

N
n=1, (where N = 1, 2, ... or ∞) on σ(A) and a unitary operator, U : H →⊕N

n=1 L
2(R,BR, µhn

)), such that for every f = (fn)
N
n=1 we have

(UTU−1f)n(λ) = λfn(λ).

With the above setup, we can make use of Theorem A.6, noting that the three
measures obtained are mutually singular to write for each n

L2(R,BR, µhn) = L2(R,BR, µhn:ac)⊕ L2(R,BR, µhn:sc)⊕ L2(R,BR, µhn:pp).

Furthermore, by the Spectral Theorem, UTU−1 acts on f(x) as multiplication by
x and it follows that for α ∈{ac,sc,pp}, for ψ ∈ L2(R, µhn) and for any n

ψ ∈ L2(R,BR, µhn
)α ⇐⇒ ψ ∈ L2(R,BR, µhn:α)

This leads us to the spectral decomposition theorem.

Theorem A.9 (Spectral Decomposition). Let H be a seperable Hilbert space, and
let T be self adjoint operator in B(H). Then H can be decomposed into invariant
subspaces

H = Hac ⊕Hsc ⊕Hpp.

A.2. Unbounded Operators. We now give a brief account of the results con-
cerning unbounded operators that are needed in order to construct the automorphic
Laplacian. In the following definitions, by an operator A on a Hilbert space H, we
mean a map A : D(A) → H, where D(A) ⊆ H is closed under addition and scalar
multiplication, and A is linear on D(A). A subset of H that satisfies the conditions
on D(A) is sometimes called a linear manifold. We will say that an operator A is
non-negative if ⟨Af, f⟩ ⩾ 0 for all f ∈ D(A). Note that the eigenvalues of these
operators are always non-negative.

Definition A.10 (Symmetric Operator). Let H be a Hilbert space, and let A
be a linear operator, with a dense domain D(A) ⊆ H. Then A is symmetric if
∀x, y ∈ D(A)

⟨Ax, y⟩ = ⟨x,Ay⟩.

We have the following easy result.
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Proposition A.11. Let A be a symmetric operator on a Hilbert space H

(1) The eigenvalues of A are real.
(2) Eigenvectors of A in D(A) corresponding to distinct eigenvalues are orthog-

onal.

Definition A.12 (Closed Operator). Let A be an operator on a Hilbert space H.
We say that A is closed if its graph is closed in H ⊕H.

Definition A.13 (Adjoint). Let A be an operator on a Hilbert space H, with a
dense domain D(A) ⊆ H. Define the set

D(A∗) = {k ∈ H : h 7→ ⟨Ah, k⟩is a bounded linear functional on D(A)} .

If k ∈ D(A∗), then by the Riesz-Fréchet Theorem (see [2] Theorem 5.2), there
exists a unique fk ∈ H such that ⟨A·, k⟩ = ⟨·, f⟩ on D(A). Denote this unique fk
by fk = A∗k. Then the adjoint of A, is the map A∗ : D(A∗) → H. We say that A
is self-adjoint if A = A∗.

We have the following interesting result, which in particular says that self-adjoint
operators are closed (see [3] p. 305).

Proposition A.14. Let A be a densely defined operator on a Hilbert space H.
Then,

(a) A∗ is a closed operator.
(b) A∗ is densely defined iff A is closable.
(c) If A is closable, then its closure is (A∗)∗.

Note that self-adjoint operators are always symmetric, but the converse is not
always true.

Definition A.15 (Extension). If A,B are operators on a Hilbert space H, then A
is an extension of B, written B ⊆ A if gr(B) ⊆ gr(A), where gr(A) ⊆ H ⊕H is
the graph of A.

We have the following equivalent formulations for symmetric operators.

Proposition A.16. If A is a densely defined operator on a Hilbert space H, TFAE:

(a) A is symmetric
(b) ⟨Af, f⟩ is real for all f ∈ D(A)
(c) A ⊆ A∗.

For a deeper discussion on the unbounded operators, see Chapter 10 of [3]. One
of the most important results from the theory of bounded operators is that the
non-negative symmetric operators have a self-adjoint extension.

Theorem A.17 (Friedrich’s Theorem). Let A be a non-negative densely defined
operator on a Hilbert space. Then A has a positive self-adjoint extension.

For a proof of this result, see [4], (p. 329-334). Note that in their proof, it is
assumed that ⟨Af, f⟩ ⩾ ⟨f, f⟩, for every f ∈ D(A), and an inner product is defined
on D(A) by

(A.2) (f, g) = ⟨Af, g⟩.
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In order to prove Theorem A.17 (where instead we assume that (Af, f) ⩾ 0 on
D(A)), one can mimic the argument in [4], by substituting the inner product on
D(A) given by A.2, with the inner product

(f, g) = ⟨f, g⟩+ ⟨Af, g⟩,
defined on D(A).

Note A.18. It is worth noting that no proper extension of a self-adjoint operator
is symmetric. This follows from the fact that A ⊆ B =⇒ B∗ ⊆ A. Thus, if A is
self-adjoint and B is a symmetric extension of A, we have

A ⊆ B ⊆ B∗ ⊆ A∗ = A.

A.3. Compact Operators. In the spectral resolution of ∆ in C(Γ\H), we use the
Hilbert-Schmidt integral operators. The most important property is that they are
compact operators, and we thus have a good understanding of their spectra. We
briefly outline some of the most important results of this theory. See [2] Chapter
7 for an introductory development to compact operators, and see [14] Section 2.8
for a development of Hilbert-Schmidt integral operators. We begin by recalling
terminology concerning the spectrum.

Definition A.19 (Point Spectrum, Continuous Spectrum, Residual Spectrum, Re-
solvent). Let T ∈ B(H), we define

(1) The point spectrum, denoted by σp(T ), is the set of eigenvalues of T .
(2) The continuous spectrum, denoted by σc(T ), is the set complex numbers

λ, which are not eigenvalues of T , but for which the range of T − λ is a
proper dense subset of H.

(3) The residual spectrum, denotes by σr(T ), consists of all remaining ele-
ments in σ(T ).

Finally, the resolvent set of T is the set ρ(T ) = C \ σ(T ).

We now define compact operators in the context of Banach spaces, although for
our purposes we will only study those acting on Hilbert spaces.

Definition A.20 (Compact Operator). Let X and Y be normed spaces. A linear
transformation T : X → Y is compact if for any bounded sequence (xn) ∈ X, the
sequence (Txn) in Y has a convergent subsequence. We denote the space of these
by K(X,Y ). Equivalently, one can define T to be compact if for every bounded set

A ⊂ X, the set T (A) ⊂ Y is compact.

It is immediate that all compact operators are bounded. More interestingly,
when Y is Banach, one can prove using a Cantor diagonalization argument that
the space K(X,Y ) is closed in B(X,Y ). There are many other interesting results
concerning these operators on Banach spaces, and one of particular interest is the
following.

Theorem A.21. Let X be a normed space, H be a Hilbert space, and let T ∈
K(X,Y ). Then there is a sequence of finite rank operators which converge to T in
B(X,H).

Note that by our previous remark, the converse of the above Theorem is true,
even when H is just a normed space. We now restrict our attention to Hilbert
spaces. One can show that T ∈ K(H) iff T ∗ ∈ K(H), and thus all results that
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hold for T , will also hold for T ∗. Our first result concerns the position of 0 in the
spectrum.

Proposition A.22. If H is an infinite-dimensional Hilbert space, and T ∈ K(H),
then 0 ∈ σ(T ). Furthermore, if H is not seperable, then 0 ∈ σp(T ).

If H is not seperable, there are examples where 0 ∈ σ(T )\σp(T ). The first state-
ment follows from the fact that T is not invertible when H is infinite dimensional.
The second statement is a consequence of the fact that T (H) is seperable, and thus
T (H)⊥ ̸= ∅. Our next result shows that the eigenspace of a nonzero eigenvalue of
a compact operator T ∈ B(H) is finite dimensional.

Proposition A.23. If H is an infinite-dimensional Hilbert space, T ∈ K(H), and
λ ̸= 0, then Ker(T − λ) is finite dimensional.

This result follows from the fact that the kernel of a bounded operator is closed,
and thus if it is infinite-dimensional, it must contain an orthonormal sequence
(see [2] Theorem 3.40). Since orthogonal sequences do not contain convergent
subsequences, we get a contradiction of the compactness of T . We now give our
main result which describes the spectrum of a compact operator on an infinite-
dimensional Hilbert space.

Theorem A.24. Let H be an infinite dimensional Hilbert space and let T ∈ K(H).
Then 0 ∈ σ(T ), and σ(T ) is either finite or has the form {0, λ1, λ2, ...}, where
(λn) is a sequence of distinct complex numbers converging to 0. For each non-
zero λ ∈ σ(T ), we have that λ ∈ σp(T ), and the eigenspace corresponding to λ is
finite-dimensional.

Of particular interest are the self-adjoint compact operators for which a lot more
can be said. The following result summarizes properties of these which will be useful
for our purposes.

Theorem A.25. Let A be a self-adjoint compact operator on a Hilbert space H.
Then A has pure point spectrum in H, i.e. σ(A) = σp(A). The set of non-zero
eigenvalues of A is non-empty and is either finite or consists of a sequence which
tends to zero. Each non-zero eigenvalue is real and has finite multiplicity. Eigen-
vectors corresponding to different eigenvalues are orthogonal. The range of A is
spanned by eigenvectors of A. Any maximal orthonormal system {en} of eigenvec-

tors of A is an orthonormal basis for the Hilbert space Im(A), and the operator A
has the representation

Ax =
∑
n≥1

λn⟨x, en⟩en,

where {λn} is the set of eigenvalues corresponding to {en}.
We now turn our attention to Hilbert-Schmidt operators which are defined on a

seperable Hilbert spaces.

Definition A.26 (Hilbert-Schmidt Operator). Let H be a seperable Hilbert space,
let {en} be an orthonormal basis for H. A Hilbert-Schmidt operator is an
operator A : H → A which satisfies

(A.3)

∞∑
n=1

∥Aen∥2 <∞.

For such an operator we denote the sum in (A.3) by ∥A∥2HS.
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Note A.27. The above definition does not depend on the choice of orthonormal
basis. Indeed by Parseval’s Theorem, for any operator A, and orthonormal bases
{ei} , {ẽj}, we have∑

i

∥Aei∥2 =
∑
i,j

|⟨Aei, ẽj⟩|2 =
∑
i,j

|⟨ei, A∗ẽj⟩|2 =
∑
j

∥A∗ẽi∥2 =
∑
j,k

|⟨A∗ẽj , ẽk⟩|2

=
∑
j,k

|⟨ẽj , Aẽk⟩|2 =
∑
k

∥Aẽk∥2 .

As it turns out, Hilbert-Schmidt operators are not only bounded, but they are
compact.

Proposition A.28. Every Hilbert-Schmidt operator A is compact, and satisfies
∥A∥ ⩽ ∥A∥HS.

The estimate follows from considering ∥Ae∥ for unit vectors e, and using the
fact that one can always complete {e} to an get an orthonormal basis for H. For
compactness, one can fix an orthonormal basis {en}, and use (A.3) to show that
A is the limit of the sequence of finite rank operators Fn = APn, where Pn is the
projection on to the subspace span {e1, ..., en}.

There is a class of Hilbert-Schmidt operators of particular interest.

Definition A.29 (Hilbert-Schmidt integral operator). Let (X,A, µ) be a seperable
σ-finite measure space. An operator Ak : L2(X,A, µ) → L2(X,A, µ) of the form

(Akf)(x) =

∫
X

k(x, y)f(y) dµ(y)

where k ∈ L2(X ×X,A⊗A, µ⊗ µ), is called a Hilbert-Schmidt integral oper-
ator.

It turns out that these operators are well-defined, and they are Hilbert-Schmidt
operators on the seperable Hilbert-Space L2(X,A, µ). It turns out that these are all
of the Hilbert-Schmidt operators on L2(X,A, µ) (see [14] Proposition 2.8.6). One
can also show by direct computation that A∗

k(x,y) = A
k(y,x)

. In particular, Theorem

A.25 applies for the operators Ak whose kernels k(x, y) satisfy k(x, y) = k(y, x).
From here we get the Hilbert-Schmidt Theorem for integral operators, and which
we summarize in Theorem 3.18.

A.4. Resolvent Operators. In this section, we give a brief discussion of the re-
solvent operators of a densely defined symmetric closed operator on a Hilbert space.
These arise naturally from the definition of the spectrum. Note that in this section,
our operators will be unbounded (see the brief discussion on unbounded operators
A.2)

Definition A.30 (Resolvent operator, regular point). Let A be densely defined
symmetric closed operator on a Hilbert spaceH. For λ ∈ C\R, define the resolvent
operator Rλ on Im(A− λ) by Rλ = (A− λ)−1.

We have a first interesting result.

Proposition A.31. Let A be densely defined symmetric closed operator on a
Hilbert space H, and let λ ∈ C \R, then Rλ is well-defined on D(Rλ) = Im(A−λ).
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Moreover, Rλ is a bounded operator on its domain with

(A.4) ∥Rλ∥ ≤ 1

|Im(λ)|
.

Moreover, if A is also assumed to be positive, and Re(z) < 0, we have

∥Rλ∥ ≤ 1

|Re(λ)|
.

The proof of the first part follows by expanding Im⟨(A− λ)x, x⟩, for x ∈ D(A),
(use the symmetry of A to get that ⟨Ax, x⟩ ∈ R), and applying the Cauchy-Schwartz
inequality, to get an expression from which we can deduce injectivity of (A − λ)
and (A.4). The second part follows by expanding Re⟨(A− λ)x, x⟩.

Note A.32. We can rewrite A.4 as

∥(A− λ)x∥ ≥ |Im(λ)| ∥x∥ , ∀x ∈ D(A).

From this it follows that if for some sequence (xn) ⊆ D(A), the sequence ((A−λ)xn)
is convergent, then the sequence (xn) is also convergent, and thus so is (Axn).
Hence, since A is closed, it follows that (xn) converges to some x ∈ D(A), and
(Axn) converges to Ax. Hence, ((A − λ)xn) converges to (A − λ)x ∈ Im(A − λ),
and thus Im(A− λ) is closed.

Of particular interest are the resolvent operators of densely defined self-adjoint
closed operators. A first reason for this is that they are defined on the entire Hilbert
space H.

Proposition A.33. Let A be a densely defined self-adjoint on a Hilbert space H,
and let λ ∈ C \ R. Then, Rλ is defined on the entire space H.

This follows from the fact that (A − λ) is injective. Hence, if the closed set
Im(A − λ) were not the entire space H, it would have a non-empty orthogonal
complement. One can then show that this orthogonal complement lies in D(A∗) =
D(A), and moreover using the fact that A is self-adjoint and densely defined, one
can show that this orthogonal complement lies in the kernel of (A− λ), which is a
contradiction.

Another interesting property coming from the self-adjoint operators is the fol-
lowing formula.

Proposition A.34 (Hilbert Formula). Let A be a densely defined self-adjoint on
a Hilbert space H, and let λ, γ ∈ C \ R. Then

Rλ −Rγ = (λ− γ)RλRγ .

Acknowledgments

I would like to thank Professor May for organising the 2023 REU program.
The REU which was an incredibly enriching experience, which provided a fun and
dynamic environment for me to continue my mathematical development during the
summer. I would like to thank my mentor DeVon Ingram, for his useful topic
suggestions and references; and for his insights on an early draft of this paper.



24 SIDNEY STANBURY

References

[1] Alan F. Beardon. The Geometry of Discrete Groups. Graduate Texts in Mathematics.
Springer New York, NY, 1983.

[2] Martin A. Youngson Bryan P. Rynne. Linear Functional Analysis. Springer Undergraduate

Mathematics Series. Springer London, 2nd edition, 2007.
[3] John B. Conway. A course in functional analysis. Graduate texts in mathematics ; 96.

Springer Science+Business Media, New York, 2nd edition, 2010.

[4] B. Sz¨okefalvi.-Nagy F. Riesz. Functional Analysis, Translated from the 2nd French ed. by Leo F. Boron.
F. Ungar Pub. Co., New York, 1955.

[5] Jerry Shurman Fred Diamond. A First Course in Modular Forms. Graduate Texts in Math-
ematics. Springer New York, NY, 2005.

[6] D. J. H. Garling. A ‘short’ proof of the riesz representation theorem.Mathematical Proceedings

of the Cambridge Philosophical Society, 73(3):459–460, 1973.
[7] Brian C. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction,

volume 222 of Graduate Texts in Mathematics. Springer, New York, 2010.

[8] S. Helgason. Differential geometry and symmetric spaces. Academic Press, New York, 1962.
[9] Henryk Iwaniec. Spectral methods of automorphic forms, volume 53. American Mathematical
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