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Abstract. Brownian motion is a central object in probability theory, with

connections to several disparate parts of mathematics. One such area is com-
plex analysis, with recent work exploring random surfaces in complex spaces.

In this paper, we present striking proofs via Brownian motion of several cen-

tral theorems in basic complex analysis. These proofs are rather satisfying and
offer insight not afforded by their analytic counterparts.
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1. Introduction

Despite originating from observations in biology and physics, Brownian motion
has found itself in a central position in modern probability theory, with applications
to diverse areas within and without mathematics. The purpose of this paper is
to describe how Brownian motion can cast new light on basic results in complex
analysis. In particular, we present probabilistic proofs of the maximum modulus
principle, Picard’s little theorem and the fundamental theorem of algebra. The
first and last of these are covered in any standard course on complex analysis and
Picard’s little theorem is often mentioned as a curiosity.

However, their analytic proofs (especially of Picard’s theorem) can sometimes
feel obfuscating, and require some doing. Brownian motion offers satisfying proofs
of these results. The proofs of Picard’s theorem and the fundamental theorem of
algebra rely on the so-called conformal invariance of Brownian, which states that a
sufficiently nice map sends Brownian motion to Brownian motion.

This paper assumes a knowledge of the basic definitions and results in complex
analysis as well as a familiarity with probabilistic reasoning. For the purposes of
the paper, f will be a holomorphic function unless stated otherwise, U will denote
an open, connected region and all functions will be assumed to be from and to the
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complex plane (or a subset). The letters E and P denote the standard expectation
and probability operators.

2. Brownian motion and harmonic functions

Much of this content is derived from [5].

Definition 2.1. A stochastic process B : [0,∞) → R is called Brownian motion
if it satisfies the following conditions

1. (Normal increments) For any s < t, Bt −Bs ∼ N(0, t− s).
2. (Independent increments) For all 0 ≤ t1 ≤ ... ≤ tN , the increments Bt1 −

B0, ..., BtN −BtN−1
are independent.

3. (Continuity) Bt is continuous with probability 1.

With B0 = 0, this is usually referred to as standard 1-dimensional Brownian
motion. For the purposes of this paper, however, we concern ourselves with 2-
dimensional complex-valued Brownian motion. In order to define it, we establish
the following notation. Fix ϵ > 0. Then, letting τ0 = τ0(ϵ) = 0, define τi(ϵ) =
inf{t > τi−1 : |Zt − Zτi−1

| =}. Then, let i = Zτi − Zτi−1
. Note that |i| = ϵ.

The following definition is due to Davis [3].

Definition 2.2. A stochastic process Z : [0,∞) → C is called complex Brownian
motion if it satisfies the following conditions

1. The path Zt is continuous and unbounded.
2. The complex-valued random variables i are uniformly distributed on {z : |z| =

ϵ}.
If complex Brownian motion satisfies the following the condition, it is called

standard complex Brownian motion.
3. The real-valued random variables τi − τi−1 are independent and identically

distributed. Moreover, E(τi(1)− τi−1(1)) =
1
2 .

Remark 2.3. Let Xt, Yt be standard (real-valued) Brownian motion. Then, it is
a standard fact in probability that Xt + iYt is standard complex Brownian mo-
tion. However, in this paper, we will only require complex Brownian motion (both
standard and otherwise). So, henceforth (standard) Brownian motion will refer
to (standard) complex Brownian motion. Unless indicated otherwise, Brownian
motion will start at 0.

We now discuss some of the theory of harmonic functions, which are intricately
linked both to analytic functions in complex variable theory and Brownian motion.
First, as always, we define these central objects.

Definition 2.4. A function u : U ⊂ C → R on a neighborhood U is called har-
monic if it satisfies Laplace’s equation:

∂2f

∂x2
+

∂2f

∂y2
= 0.

Harmonic functions also have the following equivalent definition. That they are
equivalent is a standard exercise. We will primarily use the second definition.

Definition 2.5. A function u : U ⊂ C → R on a neighborhood U is harmonic if
it obeys the following mean-value property at all z ∈ U such that {z : |z − z0| ≤



A COURSE IN COMPLEX ANALYSIS VIA BROWNIAN MOTION 3

ϵ} ⊂ U .

u(z0) =
1

2π

∫ 2π

0

u(z0 + ϵeiθ)dθ.

Harmonic functions are therefore those functions that are take on the average
value of the sphere at its centre. Harmonic functions and Brownian motion are
linked by the following theorem of Kakutani. The presentation is the same as
Davis’s [3].

Theorem 2.6. Let u be a harmonic function on the region U and u continuous
and bounded on U . Let τU = inf{t > 0 : Zt ∈ ∂U}. Then, if z0 ∈ U and
P (τU < ∞) = 1,

E(u(ZτU )) = u(z0),

for Brownian motion Zt such that Z0 = z0.

Proof. Fix ϵ > 0. Then, let N = min{k : B(Zτk(ϵ), ϵ)∩∂U = ∅}. We do not consider
the case N = 0, by simply taking ϵ to be sufficiently small, so that P (N ≥ 1) = 1.
Then,

E(u(Zτ1)) =
1

2π

∫ 2π

0

u(z0 + ϵeiθ)dθ = u(z0),

by the definition of expectation and the fact that u is harmonic.
Now, conditioned on N taking on the appropriate value, we see (by the tower

rule) that

E
(
u(Zτk)− u(Zτk−1

)
)
= E(E(u(Zτk)− u(Zτk−1

)|Zτk−1
))

= E

(
1

2π

∫ 2π

0

u(Zτk−1
+ ϵeiθ)dθ − u(Zτk−1

)

)
= E(0)

= 0.

So,

E(u(Zτk∧N
)) = E(u(Zτ1))+E(u(Zτ2)−u(Zτ1))+...+E(u(ZτN )−u(ZτN−1

)) = u(z0).

Taking k → ∞, we get E(u(ZτN )) = u(z0) by the dominated convergence theo-
rem. We have defined Brownian motion to be unbounded, so as ϵ → 0, ZτN → ZτR

with probability 1. So, u(ZτN ) → u(ZτR) by continuity. Then, another application
of the dominated convergence theorem completes the proof.

□

In the two-dimensional (complex) case, Brownian motion visits every neighbor-
hood infinitely often. To formalize this notion, we define the following.

Definition 2.7. A random continuous function X : [0,∞) → C is neighborhood
recurrent if for all z ∈ C, T > 0 and ϵ > 0,

P (there is a t > T such that |Xt − z| < ϵ) = 1.

The following theorem is the first application of Kakutani’s formula in this paper.

Lemma 2.8. Complex Brownian motion is neighborhood recurrent.
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Proof. Fix z0 ∈ C. Let 0 < ϵ < |z0| < R. Then, define

u(z) = log |z − z0|.

On U = {z : ϵ < |z| < R}, u is harmonic. This can be verified by a computation of
its derivatives. By Kakutani’s formula (2.6)

u(0) = E(ZτU ) = u(ϵ)P (|ZτU − z0| = ϵ) + u(R)P (|ZτU − z0| = R).

Since the Brownian motion started at 0 can only exit (and must exit) U from
{z : |z − z0| =} or {z : |z − z0| = R}, this is the same as

u(ϵ)P (|ZτU − z0| = ϵ) + u(R)(1− P (|ZτU − z0| = ϵ)).

Rearranging,

P (|ZτU − z0| = ϵ) =
u(0)− u(R)

u(ϵ)− u(R)
=

log |z0| − log |R− z0|
log |ϵ− z0| − log |R− z0|

.

This approaches 1 as R → ∞. So, in the limiting case, the probability that Brow-
nian motion gets ϵ-close to z0 is 1.

□

Remark 2.9. In 2 dimensions, Brownian motion is neighborhood recurrent. This
is unique to 2 dimensions in some sense, since 1-dimensional Brownian motion is
pointwise recurrent (hits every point infinitely often) and d-dimensional Brownian
motion is not neighborhood recurrent for d > 2. These results can be found in any
standard treatment of Brownian motion.

3. Whetting the appetite: the maximum modulus principle

Before presenting the central results of this paper (which rely on a property of 2-
dimensional Brownian motion called conformal invariance), we demonstrate a short
consequence of probabilistic methods in complex analysis, namely, the maximum
modulus principle. This follows by a fairly quick application of Kakutani’s formula
and the Cauchy-Riemann equations, which are reviewed below.

Fact 3.1. The Cauchy-Riemann equation say that if f = u + iv is a holomorphic
function,

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

In particular, u, v are both harmonic. Now we prove the maximum modulus
principle. This is a result I learned of from [2].

Proposition 3.1. Let f : U → C be a function, holomorphic on U and continuous
and bounded on U , where U is open and connected. Then,

|f(z)| ≤ sup
w∈∂U

|f(w)|,

for z ∈ U .
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Proof. Let f = u + iv, where u, v : U → C are harmonic by the Cauchy-Riemann
equations. Then, by Kakutani’s formula (Theorem 2.6),

f(z) = u(z) + iv(z) = E(u(ZτU )) + iE(v(ZτU )) = E(f(ZτU )).

Then,

|f(z)| ≤ E(|f(ZτU )|) ≤ sup
w∈∂U

|f(w)|.

□

4. Conformal invariance of Brownian motion

In this section we prove that the image of Brownian motion under an non-
constant entire function is also Brownian motion. For the purposes of this paper,
we will not require the following definition, but it simplifies the discussion in the
remarks that follow.

Definition 4.1. A map f : U → C is conformal if it is holomorphic and f ′(z) ̸= 0
anywhere on U .

A map f : U → V ⊂ C is a conformal isomorphism if it is conformal, bijective
and its inverse is conformal (the third condition is redundant).

The title of this section is thus a slight misnomer, since we will not prove the
result, due to Lévy, that Brownian motion under a conformal isomorphism is a time
change of Brownian motion.

At first glance, it may seem that the result we are to prove is not just a simpler
case, but a disjoint one, since not all entire maps are conformal (sin, for example).
However, all non-constant entire maps are locally conformal on all but a countable
set without limit points. Since 2-dimensional Brownian motion avoids such sets
with probability 1 our case is indeed specific.

Now, we prove the following (striking!) result due to Davis [3].

Theorem 4.2. If f : C → C is a non-constant entire function and Zt is Brownian
motion started at z0, then f(Zt) is Brownian motion started at f(z0).

Proof. Continuity of f(Zt) follows by continuity of f . Furthermore, since {z :
|f(z)| ≥ n} is a neighborhood, and Brownian motion is neighborhood recurrent, Zt

visits it infinitely often with probability 1. So f(Zt) is almost surely unbounded.
Now, let τ1 = inf{t : |Zt−z0| = ϵ}. Then, we want to show that Zτ1 is uniformly

distributed on {z : |z−z0| = ϵ}. To do so, we claim that for all functions u harmonic
on S = {z : |z − z0| < ϵ} and continuous on S, E(u(f(Zτ1))) = u(f(z0)). This
follows by Theorem 2.6, letting R be the connected component of f(S) containing
f(z0) and noting that f ◦ u is harmonic on R.

Now, let τ2 = inf{t : |Zt − Zτ1 | = ϵ}. It follows that f(Zτ2) − f(Zτ1) is dis-
tributed independetly like f(Zτ1)− f(z0) by the memorylessness of Brownian mo-
tion. Continuing inductively, we see that f(Zτ1)− f(z0), ..., f(Zτn)− f(Zτn−1

) are
independently uniformly distributed on {z : |z| = ϵ}.

Therefore, we see that f(Zt) satisfies 1. and 2. in the definition of complex
Brownian motion, giving us the result.

□



6 ROHAN SONI

5. Picard’s little theorem

We have finally developed the tools to prove Picard’s little theorem probabilis-
tically. The theorem is given below. The proof is outlined in [3], but we follow
[1].

Theorem 5.1. If f is a non-constant, entire function then its image is all of C,
except possible one number.

The proof of this statement proceeds by contradiction, for which we assume that
f(C) does not contain a or b ∈ C. To simplify the proof, without loss of generality
we let a = 1, b = −1 and f(0) = 0.

Let ϵ be small enough that for any |z| < ϵ, f(z) can be connected to 0 by a curve
in f(C) ∩ B1/2(0). By neighborhood recurrence (Lemma 2.8), Zt (a Brownian
motion started at 0) visits {z : |z| < ϵ} infinitely often. Then, when Zt ∈ {z : |z| <
ϵ}, let Lt be the curve that connects 0 to Zt. Since the plane is not punctured,
the curve formed by the path of Zt and Lt must be a homotopic to a point. Thus,
f(curve) must be homotopic to a point. In proposition 5.2, we show that this is
not case, a contradiction!

Proposition 5.2. Let Lt be as above. Then, with probability 1, there is s such that
if t > s, the curve formed by f(Lt) and f(Zt) is not homotopic to a single point.

The idea of this proof is to observe that the Brownian motion gets ”tangled”
around 1 and −1 after enough time. This is because, upon returning to {z : |z| < ϵ}
the Brownian motion is roughly equally likely to go above and around 1, below
and around 1, above and around -1 and below and around -1. Only one of these
untangles the Brownian motion, whereas the other three tangle it up further. Then,
by the law of large numbers, the Brownian motion is going to get tangled at some
time. This probabilistic element is the essential idea and there is no way to replicate
such a proof without a probabilistic construction.

The complex analytic aspect of the hypothesis is no longer necessary, so we
simply identify it with R2 in the following.

Proof. Let
A0 = {−1 < x < 1, y = 0},
A1 = {x < −1, y = 0},
A2 = {x > 1, y = 0},

A3 = {x = −1 or x = 1, y > 0},
A4 = {x = −1 or x = 1, y < 0}.

Let T1 = 0. let bi ∈ {0, 1, 2, 3, 4} be such that f(ZTi) ∈ Abi and

Ti+1 = inf{t > Ti : f(Zt) ∈
4⋃

j=0

Aj −Abi}.

The T ′
is are the times to hit a different Ai than the last one hit. We form the

following sequence that allow us to encode the information of the Brownian motion’s
traversal. Consider the sequence 0b1b2...bn and then reduce it according to the
following rules.

1. If the sequence ends in 030 or 040, delete the last two entries.
2. If bn−2 and bn are the same and bn−1 ̸= 0, delete the last two entries.
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3. If the sequence ends in 0 and has the form ...0bi1 ...bij0bij ...bi10, delete the
string bi1 ...bij0bij ...bi10.

Apply the rules until they cannot be applied anymore. Then, the resulting
sequence is our reduced sequence.

Note that this is a complete description of the homotopy class of f(Zt) with
f(Lt) added whenever Zt ∈ {z : |z| < ϵ}. Specifically, if this curve is homotopic to
0, the reduced sequence must be 0.

We will show that the number of 0’s in the reduced sequence goes to ∞ with
probability 1.

Now, suppose the last segment of the current reduced sequence between two 0’s
is 0bi1 ...bij0. To reduce the number of 0’s, the Brownian motion must travel so
that the next segment is bij ...bi10. By symmetry, however, we are equally likely to
get bi1 ...bij0, which would add one more 0. Moreover, there are always at least two
other sequences that would add zeros, and a non-zero probability of attaining these
two sequences next. So,

P (number of 0’s increases by 1) ≥ 1

2
+ δ,

P (number of 0’s decreases by 1) ≤ 1

2
+ δ.

By the law of large numbers, the number of 0’s goes to ∞ as the Brownian
motion keeps travelling. So, we have the result.

□

We have thus proved Picard’s little theorem!

6. Fundamental theorem of algebra

Having built this machinery to do probability in the complex plane, we can give
another (also striking) proof of a central theorem in mathematics, the fundamental
theorem of algebra. The central idea of the proof is that is if a polynomial avoids
0, it must avoid a neighborhood of 0. But since polynomials are entire, the image
of Brownian motion under a polynomial must be Brownian motion and so must
hit every neighborhood, which gives us a contradiction. We formalize this below,
following [1].

Theorem 6.1. Let p(z) be a non-constant polynomial with degree n. Then, 0 ∈
p(C).

Proof. As |z| → ∞, |p(z)| → ∞ (this is the only part of the proof in which we use
the fact that p is a polynomial, and not just an entire function). So, it is possible
to pick R such that |p(z)| ≥ 1 if |z| ≥ R.

Suppose, for a contradiction that p(z) ̸= 0. Note that p(BR(0)) is compact and
thus closed, and does not contain 0. Thus there is a neighborhood U of 0 such that
U ∩p(BR(0)) = ∅. Without loss of generality let U ⊂ B1/2(0). Then, U ∩p(C) = ∅.

Now consider a Brownian motion Zt started at 0. By conformal invariance, p(Zt)
is Brownian motion as well and thus neighborhood recurrent. So, it must hit U , a
contradiction.

Therefore, 0 ∈ p(C)!
□



8 ROHAN SONI

Acknowledgments

I would like to thank my mentor, Minjae Park, without whom my foray into
probability would not have been possible. Despite the slight departure of this
paper from the intended topic, I found his advice invaluable. I am also indebted to
Professor Peter May for allowing me to participate in the REU, which is always an
excellent experience. Finally, I would like to thank my family and my friends for
always believing in me.

References

[1] Richard F. Bass. Probabilistic Techniques in Analysis.

[2] N. Berestycki and J. R. Norris. Lectures on Schramm–Loewner Evolution.
[3] Burgess Davis. Brownian Motion and Analytic Functions.

[4] Tom Körner. Fourier Analysis.

[5] P. Mörters and Y. Peres. Brownian Motion.


	1. Introduction
	2. Brownian motion and harmonic functions
	3. Whetting the appetite: the maximum modulus principle
	4. Conformal invariance of Brownian motion
	5. Picard's little theorem
	6. Fundamental theorem of algebra
	Acknowledgments
	References

