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Abstract. Lie groups are a type of group distinguished by having a nice,

smooth topological structure. Each Lie group has a corresponding Lie alge-

bra, and there is a rich relationship between the two objects. One important
theorem in the theory of Lie groups is the Borel Density theorem, which is used

to prove Ratner’s Orbit Closure theorem, a similarly significant result. This

paper assumes some basic algebraic and topological concepts and results, and
will build up to the statements of the two theorems and some basic examples.
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1. Lie Groups

A Lie group is a group G that is also a differentiable manifold. The following
properties must also be satisfied:

(1) The product map p : G×G → G defined by p(a, b) = ab is smooth.
(2) The inverse map i : G → G defined by i(a) = a−1 is smooth.

Many of the most interesting Lie groups are matrix Lie groups, though not every
Lie group is isomorphic to a matrix Lie group.

Definition 1.1. The general linear group over R of n× n matrices is the set of
all n× n invertible matrices with real entries under the group operation of matrix
multiplication. We typically denote this set GL(n,R).

Definition 1.2. The standard linear group over R, denoted SL(n,R), is the
set of all n× n matrices with determinant 1. This set forms a group under matrix
multiplication.

Both GL(n,R) and SL(n,R) are Lie groups. Another common Lie group is
SO(n,R), which is the collection of orientation preserving rotation matrices in Rn.

Definition 1.3. The exponential of an n× n matrix X is given by

eX =

∞∑
m=1

Xm

m!

1
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Theorem 1.4. For any X ∈ Mn(C), eX converges. Moreover, eX is continuous
in X.

Proof. See Proposition 2.1 in [1]. □

The exponential function is the key function relating a Lie group to to its corre-
sponding Lie algebra, which will be discussed later. In fact, the exponential function
can be generalized to all Lie groups, not just matrix Lie groups. This abstraction
requires the notion of a tangent vector, which we do not introduce until a little
later.

One interesting result is as follows.

Theorem 1.5. For any n× n real matrix X,

det(eX) = etrace(X)

Proof. We first consider the case when X is diagonalizable. Say X has eigenvalues
λ1, λ2, ...λn with corresponding eigenvectors v1, v2, ...vn. Then denote B as the
matrix with columns given by the eigenvectors v1, v2, ...vn, and C as the matrix
given by 

λ1 0 ... 0
0 λ2 ... 0
...
0 0 ... λn


We must consider eBCB−1

. The claim is eBCB−1

= BeCB−1. To see this, observe:

eBCB−1

=

∞∑
m=1

(BCB−1)m

m!

=

∞∑
m=1

BCmB−1

m!

= B(

∞∑
m=1

Cm

m!
)B−1

As desired. But C is a diagonal matrix, so we see in the sum
∑∞

m=1
Cm

m! that each

eigenvalue λi is given by λi =
∑∞

m=1
λm
i

m! = eλi . But recall the determinant is the
product of the eigenvalues, so

det(eX) = eλ1eλ2 ...eλn

= eλ1+λ2+...+λn

= etrace(X)

Now we are left with the case when X is not diagonalizable. However, it is a
linear algebra result that any matrix is the limit of a sequence of diagonalizable
matrices, reducing to the diagonalizable case above. Informally, this is because a
matrix A is diagonalizable when A has distinct eigenvalues. We can write some
non-diagonalizable matrix B as an upper triangular matrix in some basis with
the eigenvalues on the diagonal. Then, we can approximate B by changing the
eigenvalues to make them distinct – this approximation is diagonalizable. Using
this method, we can get arbitrarily close to our original matrix B. □
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2. Ratner’s Orbit Closure Theorem

We will now discuss Ratner’s Orbit Closure Theorem. We will not discuss the
proof, which is quite involved, but will instead walk through several examples.

Definition 2.1. A unipotent element g of a group G is an element such that
(g − e)n = 0 for some n where e is the identity element of G.

Example 2.2. We will mostly consider unipotent matrices, as we are mostly con-
cerned with matrix Lie groups. A square matrix A is unipotent when (A− I)n = 0
for some n. So, A − I is nilpotent. It is well known that nilpotent matrices have
only 0 as an eigenvalue, or (A − I)v = 0 for each eigenvector v. But then Av = v
for all eigenvectors v, so A only has 1 as an eigenvalue (with multiplicity n).

Definition 2.3. A discrete subgroup is a subgroup where there exists an open
neighborhood U about the identity element e of G with U ∩G = {e}. A lattice Γ
in a group G is a discrete subgroup of G such that there exists a Borel measure on
G/Γ which is finite and G - invariant.

The second part of definition 2.3 can be reworded as the following: if we divide
G into equivalence classes based on the lattice, the collection of equivalence classes
has finite measure and the measure does not change under the group operation.

Example 2.4. One common lattice in the group R2 under vector addition is Z2. We
can identify the quotient R2/Z2 with the unit square with vertices (0, 0), (0, 1), (1, 0)
and (1, 1). Each point in R2 can be represented as a point in this unit square shifted
by some integer valued vector. Notice the quotient R2/Z2 has finite area (a finite
Borel measure). Additionally, the identity, (0,0), has an open region that does
not include any points with integer values (except (0,0) itself). To form this open
region, draw a circle of radius less then one about (0, 0). Furthermore, shifting any
region by a vector with integer coordinates has no affect on the measure (in this
case, area).

Example 2.5. We will now consider a simple example which can be used to intro-
duce Ratner’s orbit closure theorem. Let x be a point in R2 and let v be a vector
in R2. Consider the one parameter subgroup of R2 given by the mapping t → vt
where t ∈ R.

If v is zero we are left with the trivial case where x + vt is just the point x.
So long as v is nonzero, x + vt represents a line in R2. We can mod out by Z2,
considering the image of x+ vt in R2/Z2, denoted [x+ vt]. The angle v makes with
the x-axis determines the behavior of [x + vt]. If this angle is rational, [x + vt] is
closed and periodic in t. However, if the angle v makes with the x-axis is irrational,
it turns out [x + vt] is dense in R2/Z2. The key idea here is that the closure of
[x+ vt] forms a nice, clean subset of R2/Z2 - if v is the zero vector, we are left with
a point, if v is nonzero we get either a nice, discrete line, or the whole space.

A similar, more general property forms Ratner’s orbit closure theorem. In par-
ticular, R2 can be generalized to a connected Lie group, Z2 can be generalized to
an arbitrary lattice, and the one parameter subgroup [x + vt] is replaced with a
unipotent subgroup.

Ratner’s Orbit Closure Theorem can be stated several ways. We will adopt the
version used in [3].
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Theorem 2.6. Ratner’s Orbit Closure Theorem. Let G be a connected Lie
group and let U be a unipotent subgroup of G. For all lattices Γ in G and for
all x ∈ G, there exists a connected, closed subgroup L < G containing U where
xLx−1 ∩ Γ is a lattice in L with UxΓ = LxΓ.

Informally, Ratner’s Orbit Closure theorem says the closure of the orbit of any
point around a unipotent subgroup forms a nice, clean subset of the group. In fact,
the statement that xLx−1 ∩ Γ is a lattice in L is equivalent to the statement that
there exists a measure µ under which LxΓ has finite U -invariant measure. In other
words, the orbit Lx when modded out by Γ has a finite ‘area’.

Definition 2.7. For a group G, a one parameter subgroup is a continuous
mapping γ : R → G that preserves the group operation. Equivalently, γ(a + b) =
γ(a)γ(b) for all a, b ∈ R.
Example 2.8. We will consider the example of SL(2,R). We will consider the

unipotent one parameter subgroup U =

{[
1 t
0 1

]
| t ∈ R

}
. Any matrix of this

form is indeed unipotent, and we can check U forms a subgroup by checking U is
closed by the following calculation:[

1 t
0 1

] [
1 s
0 1

]
=

[
1 t+ s
0 1

]
We denote ut =

[
1 t
0 1

]
, as is typical, although the notation is clumsy. We will

consider a lattice given by Γ = SL(2,Z). It is a known fact in algebra that there
are only three connected subgroups of SL(2,R) that contain the subgroup U . Those
subgroups are:

(1) U itself.
(2) The collection of upper triangular 2 by 2 matrices.
(3) SL(2,R) itself.

However, it is an algebraic result that there are no lattices in the upper triangular
matrices. Since part of Theorem 4.5 guarantees L has a lattice, we can safely
exclude the collection of upper triangular matrices. We can now use Ratner’s orbit
closure theorem and conclude for all x ∈ SL(2,R) either UxΓ = SL(2,R)xΓ or
UxΓ = UxΓ. In the first case, Ux is dense in SL(2,R); in the second case, Ux is
closed.

In this fashion, Theorem 2.6 can be used to find properties of orbits of points in
a Lie group.

Remark 2.9. We will not prove the theorem. Ratner’s orbit closure theorem is
typically proved as a corollary of Ratner’s genericity theorem, which is in turn a
result derived from Ratner’s measure classification theorem. A nice proof of the
measure classification theorem can be found in [2], and a proof for the orbit closure
theorem can be found in Ratner’s original paper [4].

3. Lie Algebras

Each Lie group has a corresponding Lie algebra. Many properties of the Lie
group can be studied through the Lie algebra. We will first discuss properties of
tangent vectors in an arbitrary smooth manifold M before applying this to the Lie
group setting.
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Informally, for a point x ∈ M , the tangent space is the space of directions one
can move from x. For example, given a sphere, the tangent space at any point x is
the tangent plane through x. Each direction one can move in the tangent space is
a tangent vector. More formally, consider a curve f : R → M that passes through
some point x ∈ M . We can map M locally to Rn, allowing us to fix coordinates.
So we can treat f near x as function of R to Rn, denoted f(λ) = (x1, x2, ...xn). We
can then consider the following derivative:

(3.1)
d

dλ
=

n∑
i=1

dxi

dλ

∂f

∂xi

Definition 3.2. If M is a smooth manifold and a curve f : R → M passes through
a point λ, then we say d

dλ is the tangent vector to the curve f at λ.

Note that by fixing a point λ and a tangent vector d
dλ , we can form an equivalence

relation by considering all the curves that yield a tangent vector of d
dλ at λ to be

equivalent. That is, we don’t care about what the curve does anywhere except at λ.
The collection of all possible tangent vectors d

dλ forms a vector space, as derivatives
behave nicely under addition and scalar multiplication.

Definition 3.3. The tangent space of a smooth manifold M at a point λ is the
vector space formed by the collection of all tangent vectors passing through λ.

Definition 3.4. We can define a Lie algebra g as a vector space over a field
of characteristic 0 paired with an operation, called the bracket operation, [·, ·] :
g× g → g satisfing the following properties.

(1) The bracket operation [X,Y ] is bilinear, or [kX, Y ] = k[X,Y ]
(2) The bracket operation [X,Y ] is skew symmetric, or [X,Y ] = −[Y,X].
(3) The Jacobi identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Remark 3.5. We will primarily consider real or complex Lie algebras, which are
Lie algebras over R or C. The above definition can be generalized to fields of
nonzero characteristic.

Note for matrix Lie algebras, this bracket operation is the same as the commu-
tator defined by [X,Y ] = XY − Y X.

Definition 3.6. Each Lie group has an associated Lie algebra. The Lie algebra
g of a Lie group G is defined as the tangent space of G at the identity element e,
denoted TeG.

Using the matrix exponential, we can draw a further relationship between a
matrix Lie group G and the Lie algebra g of G. Fix a curve f through a point
λ0 ∈ R. Consider another point on the curve λ0 + ϵ. We can use a Taylor series
expansion to calculate f(λ0 + ϵ).

f(λ0 + ϵ) =

∞∑
n=0

ϵn

n!

dnf

dλn

∣∣∣
λ0

(3.7)

= ef(λ0+ϵ)(3.8)

In this way the matrix exponential allows us to generate elements of the Lie
group from only elements of the Lie algebra. The Lie algebra of a matrix Lie group
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G is, in fact, the set of all matrices X such that etX ∈ G for real t. Several questions
follow naturally. Does a Lie algebra include all relevant information about a Lie
group? The answer, unfortunately, is no, although many important properties are
encoded by the Lie algebra. A later result, Theorem 3.21, gives that any finite
dimensional Lie algebra is the Lie algebra of some Lie group.

Theorem 3.9. The Lie algebra g of a matrix Lie group G is a Lie algebra, that is,
TeG satisfies the the axioms of definition 3.4 under the commutator bracket given
by [X,Y ] = XY − Y X.

Proof. See section 3.3 of [1]. □

Example 3.10. Consider the cross product in R3. Notice if g = R3, then the cross
product satisfies the above axioms of the bracket operation. Recall for vectors
v, w ∈ R3, v × w = ||v|| ∗ ||w|| sin(θ)n where n is perpendicular to both v and w
and follows the right hand rule. Notice (αv)×w = α(v ×w), and w × v = −v ×w
as the orientation of n flips. The Jacobi identity is the most involved to verify, but
it can be done. So, R3 paired with the cross product is a Lie algebra.

Example 3.11. We will show the Lie algebra sl(n,R) of the special linear group
SL(n,R) is given by the collection of n×n matrices with trace 0. Recall we stated
earlier the Lie algebra g of a matrix Lie group is given by all matrices X such that
etX ∈ G for t ∈ R.

In this case, we are looking for X with etX ∈ SL(n,R). Equivalently, det(etX) =
1. By Theorem 3.3, etrace(tX) = 1, so et∗trace(X) = 1 for all t ∈ R. This is true
exactly when trace(X) = 0.

So sl(n,R) is precisely the collection of n× n matrices with trace 0.

The following definitions are important for the setup of the Borel Density theo-
rem.

Definition 3.12. A subalgebra h of a Lie algebra g satisfies h ⊂ g and is closed
under the bracket operation, so [X,Y ] ∈ h for all X,Y ∈ h.

Definition 3.13. A subalgebra h is an ideal in g if [X,Y ] ∈ h for all X ∈ g and
all Y ∈ h.

Definition 3.14. A Lie algebra g with dim(g) ≥ 2 is simple when the only ideals
in g are g and {0}. A Lie algebra g is semisimple if the Lie algebra is the direct
sum of simple Lie algebras. We call a Lie group semisimple if the corresponding
Lie algebra is semisimple.

Simple Lie algebras can be classified with so-called Dynkin diagrams. More
details can be found in [6].

Example 3.15. We show the Lie algebra sl(2,C) is simple. Recall sl(n,R) is the
set of real matrices with trace 0, and similarly sl(n,C) is the set of complex matrices
with trace 0. Note the bracket operation is simply the commutator [X,Y ] = XY −
Y X. We first notice any matrix in sl(2,C) can be represented as some linear
combination of the following matrices:

X =

[
0 1
0 0

]
Y =

[
0 0
1 0

]
Z =

[
1 0
0 −1

]
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So we suppose h is some subalgebra of sl(2,C). Say H = aX + bY + cZ and
H ∈ h. We will show if either a, b, or c is nonzero then h = sl(n,C) which is
sufficient to show sl(2,C) is simple.

We will need a couple identities. First, notice

[X,Y ] = XY − Y X = Z

Notice also

[Z,X] = 2X

and

[Z, Y ] = −2Y

We first will assume b ̸= 0 and consider the following:

[X, [X,H]]

We first calculate [X,H], which is in h by definition.

[X,H] = XH −HX

= X(aX + bY + cZ)− (aX + bY + cZ)X

= bXY − bY X + cXZ − cZX

= b[X,Y ] + c[X,Z]

By the identities established above, b[X,Y ]+c[X,Z] = bZ−2cX. Now we calculate

[X, [X,H]] = [X, bZ − 2cX]

= X(bZ − 2cX)− (bZ − 2cX)X

= bXZ − bZX

= −b2X

This means, should b ̸= 0, some nonzero multiple of X is in h. But h is a subspace
of g by definition, so X ∈ h as well. But then the identities above guarantee Z ∈ h
and hence Y ∈ h. Since h contains the entire basis for g, h = g.

So we can safely suppose b = 0. We next suppose c ̸= 0. Considering [X,H],
which we calculated above, we see [X,H] is just some multiple of X, reducing to
the argument from the previous paragraph.

Now if a ̸= 0 and b = c = 0, we just get H = aX and again X ∈ h, reducing to
the previous argument.

We will now generalize the notion of the matrix exponential to non-matrix Lie
groups. In particular, we can define the exponential function on an arbitrary Lie
group as follows.

Definition 3.16. Say G is a Lie group with identity e and Lie algebra g. Let
γ : R → g be the unique one parameter subgroup of G where the tangent vector at
e equal to X. Define the exponential map e : g → G by eX = γ(1).

Remark 3.17. It is not immediately clear why there exists a unique γ as described
in the above definition. In fact, γ is a so called integral curve. Given a manifold
M , a vector field is a function assigning each point m ∈ M a vector from the
tangent space Tm of m. Denote the vector associated with m by the vector field
vm. When we have a vector field and select a point m ∈ M , if we wish to draw
a curve through m with the derivative of the curve at m equal to the vm, there is
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precisely one curve we can draw. This curve is given by the differential equation
dm
dλ = vm.

There are a series of theorems relating Lie groups to their Lie algebras, which
we will now present.

Theorem 3.18. Isomorphic Lie groups have isomorphic Lie algebras.

Proof. A proof can be found in [10]. □

The converse of Theorem 3.18 is not true. Two Lie groups with isomorphic Lie
algebras are not necessarily isomorphic. However, we do get the following slightly
weaker result.

Theorem 3.19. If g and h are isomorphic Lie algebras, then their corresponding
Lie groups are locally isomorphic.

Proof. A proof can be found in [10]. □

Although two different Lie groups may have the same Lie algebra, there is still a
special Lie group that is unique to any given Lie algebra. This is described in the
following result.

The next two theorems are major results in the theory of Lie groups. Both
proofs are quite involved, but the results are worth mentioning as they are both
foundational in the field.

Theorem 3.20. Ado’s Theorem. Any Lie algebra g over a field of characteristic
0 is isomorphic to a Lie algebra of a matrix Lie group.

Proof. A proof can be found in [11]. □

Theorem 3.21. Lie’s third theorem. For any finite dimensional Lie algebra g,
there exists some unique simply connected Lie group G whose Lie algebra is g.

Proof. This theorem is typically proved using Theorem 3.20, though several proofs
exist. A proof can be found in [11]. □

We now pivot to the adjoint representation. The adjoint representation of a Lie
group G is a representation of G as a collection of linear transformations of the Lie
algebra g of G.

Definition 3.22. For a Lie group G with a Lie algebra g, we define the following
linear map. For A ∈ G, define AdA(X) : g → g given by AdA(X) = AXA−1.

Remark 3.23. We can verify AdA is linear in the following fashion.

AdA(X)AdA(Y ) = (AXA−1)(AY A−1)

= AXY A−1

= AdA(XY )

There is some sense in which this is an odd definition. After all, A ∈ G but
X ∈ g, so a natural question is whether or not it makes sense at all to consider the
product AXA−1. In the case of an n×n matrix Lie group, elements of the tangent
space at any point are n× n matrices, so the product AXA−1 is well defined. An
analogous statement can be made for non-matrix Lie groups.
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Definition 3.24. For a Lie algebra g and X ∈ g, we define adX : g → g by
adX(Y ) = [X,Y ].

We will denote the collection of all invertible linear transformations over a Lie
algebra g by GL(g). We are now prepared to define the adjoint map.

Definition 3.25. The adjoint map or adjoint representation of a Lie group
G with Lie algebra g is defined as Ad : G → GL(g) given by A 7→ AdA.

Ad is a homomorphism, as shown in proposition 3.33 of [1]. So, we can treat
GL(g) as a Lie group. We denote the Lie algebra of GL(g) as gl(g).

Definition 3.26. Analogously, the adjoint map or adjoint representation of
a Lie algebra g is the map ad : g → gl(g) given by X 7→ adX .

In fact, these definitions have a natural relation: it turns out that differentiating
Ad at the identity gives ad, or x → adx is given by d(AdX)e(X).

The adjoint representation of both a Lie group or Lie algebra represents elements
of that Lie group or Lie algebra as linear transformations. This can be quite useful,
as linear transformations can be easy to work with. Much of Lie group theory is
devoted to the representation theory of Lie groups, and representing Lie groups in
different ways. This method is used often in physics, as Lie groups like SO(3,R)
are used to model the rotations of particles and different representations can be
applied to simplify certain problems.

4. Adjoint Representation Generalization of Ratner’s Theorem

We will now introduce some concepts needed for the generalization of Ratner’s
theorem. We will speak briefly about the Zariski topology, which is a rich topic
in its own right, but we only need a couple of basic properties. Recall topological
spaces are typically defined by a collection of open sets whose complements are
closed. The Zariski topology, on the other hand, is defined by a collection of closed
sets whose complements are open. The Zariski closure is denoted Zcl and is a
closure in the traditional sense under the Zariski topology. For our purposes it is
enough to present a much simplified view of the Zariski topology.

Definition 4.1. Let S be a set of polynomials over Rn. Define the set V (S) =
{x ∈ Rn | f(x) = 0 for all f ∈ S}. A set C is closed in the Zariski topology if and
only if C = V (S) for some set of polynomials S.

Remark 4.2. It is worthwhile to note G = Zcl(Γ) if and only if every polynomial
that vanishes on Γ also vanishes identically on G.

Remark 4.3. A worthwhile exercise is showing the Zariski topology indeed forms
a topology, or the following properties are satisfied.

(1) The empty set and Rn are both open under the Zariski topology.

Proof. Note if S contains only the zero polynomial, then V (S) = Rn, so
Rn is closed and ∅ is open. However, ∅ is closed as well, if S consists of
one constant nonzero polynomial then V (S) is empty. This means Rn is
open. □

(2) The Zariski topology is closed under arbitrary union.
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Proof. Suppose we have some collection of Zariski open sets in Rn. We can
denote this set {Rn \ V (Sλ)}λ∈Λ for some index set Λ. Consider the union⋃

λ∈Λ Rn \ V (Sλ). But this is just Rn \
⋂

λ∈Λ V (Sλ). Notice that⋂
λ∈Λ

V (Sλ) = {x ∈ Rn | f(x) = 0 for all f ∈
⋃
λ∈Λ

Sλ}

= V (
⋃
λ∈Λ

Sλ)

So we have
⋃

λ∈Λ Rn \ V (Sλ) = Rn \ V (
⋃

λ∈Λ Sλ) which is open and we
are done. □

(3) The Zariski topology is closed under finite intersection.

Proof. We can deal with finite intersections in much the same fashion.
Suppose we have a finite collection of Zariski open sets in Rn denoted
{Rn\V (Sk)}k∈N for some index setN . Consider the intersection

⋂
k∈N Rn\

V (Sk). Recall this is Rn \
⋃

k∈N V (Sk). But now⋃
k∈N

V (Sn) = {x ∈ Rn | f(x) = 0 for all f ∈ Sk for some k ∈ N}

We will show the special case with the union of only two closed sets, which
can quickly be expanded to the case of finite union. Call our two closed
sets V (S1) and V (S2). Define S3 = {fg | f ∈ S1 and g ∈ S2}. Now, if x ∈
V (S1), then x vanishes for all polynomials in S1 and hence all polynomials
in S3. Similarly, for all x ∈ V (S2), we see x ∈ V (S3). So V (S1) ∪ V (S2) ⊂
V (S3).

Let x ∈ V (S3). We see fg(x) = 0 for all f ∈ S1 and all g ∈ S2. Should
f(x) ̸= 0 and g(x) ̸= 0 for some f ∈ S1 and g ∈ S2, we see immediately
fg(x) ̸= 0, an immediate contradiction. So V (S3) ⊂ V (S1) ∪ V (S2). We
conclude that V (S1) ∪ V (S2) = V (S3), exactly what we wished to show.
This result can be quickly expanded to the case of finite union. the set⋃

n∈N V (Sn) is closed for finite N and hence
⋂

k∈N Rn \V (Sk) is open. □

Here are a series of definitions needed for Borel’s Density theorem.

Definition 4.4. An algebraic group over some field is an algebraic variety with
a group structure. Algebraic varieties are a complex topic, largely beyond the
scope of this paper. It suffices for us to recognize GL(n,R) and SL(n,R) are both
R-algebraic groups. Further reading is found in [8].

Now we will introduce Borel’s density theorem, an important result in the study
of Lie groups and an ingredient in the proof of Ratner’s Orbit Closure Theorem.

Theorem 4.5. The Borel Density Theorem. Let G be a connected semisimple
R-algebraic group such that all connected, normal, compact subgroups of G are
trivial. Suppose Γ < G is a lattice. Then Γ is Zariski dense in G.

Proof. A proof can be found in section 4.7 of [2]. □

We will now consider the simple example of SL(n,R) with the lattice SL(n,Z).
To build up to the case of SL(n,R) we first look at the case of R under the lattice
Z.
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In order to show Zcl(Z) = R, we must show any polynomial f with f(x) = 0
when x ∈ Z is the 0 polynomial. Since any nonzero polynomial has a finite number
of roots, this statement is vacuously true.

Next we show Zcl(Zn) = Rn. So, suppose f is a function with f(x) = 0 for all
x ∈ Zn. We note that it is sufficient to show f(q) = 0 for all q ∈ Qn. This is because
Qn is dense in Rn, and polynomials are continuous. That is, if by contradiction
f(q) = 0 for all q ∈ Qn and f(r) ̸= 0 for some r ∈ Rn, the continuity of f is
immediately violated.

Fix some q ∈ Qn with q = ( q1p1
, q2
p2
, ..., qn

pn
) where qi

pi
∈ Q. Now define g(t) = f(tq).

Notice f(tq) = 0 when t q1p1
, t q2p2

, ...t qnpn
are all integers. This happens when t is an

integer multiple of the least common multiple of p1, p2, ..., pn. But there are infinite
integer multiples of t, and a nonzero single variable polynomial has finitely many
roots, so g is identically 0. This means (setting t = 1) we see f(q) = g(1) = 0. This
holds for all q ∈ Qn, so f is identically 0 and hence Zcl(Zn) = Rn.

We finally arrive at the case of SL(n,R) with the lattice SL(n,Z). We consider a
polynomial f in n2 variables. Suppose f(X) = 0 for all X ∈ SL(n,Z). Next, recall
that elementary matrices representing row addition generate SL(2,R) as described
in [7]. Denote the elementary matrix with 1 along the diagonal, a real number r in
row i and column j, and 0 everywhere else by eij(r). We can decompose any matrix
X ∈ SL(n,R) by X = ei1j1(r1)ei2j2(r2)...einjn(rn). In a similar fashion to above,
we can restrict to the rationals - it suffices to show for any Q ∈ SL(n,Q) we have
f(Q) = 0. We fix some Q ∈ SL(n,Q) and denote Q = ( q1p1

, q2
p2
, ...

qn2

pn2
). We now

consider Q(t) = (t q1p1
, t q2p2

, ...t
qn2

pn2
). Now f(Q(t)) is a single variable polynomial,

and f(Q(t)) is 0 when t is an integer multiple of the least common multiple of
p1, p2, ...pn2 . There are infinitely many such t values, so f is identically 0. This
holds for all Q ∈ SL(2,Q) and this is all we must show to conclude Zcl(SL(n,Z)) =
SL(n,R).

In the following theorem the notation ⟨U⟩ denotes the subgroup generated by
elements of U . This generalization of Ratner’s orbit closure theorem is further
discussed in [5].

Theorem 4.6. Let G be a Lie group and Γ be a closed subgroup (not necessarily a
lattice). Let W ≤ G and U ⊂ W such that U consists of AdG-unipotent elements
and AdG(W ) ⊂ Zcl(AdG(⟨U⟩)). Suppose G/Γ has a finite G-invariant measure.
Then for all x ∈ G/Γ, there exists a closed subgroup L < G containing W with
Wx = Lx.

Remark 4.7. There is another part to this theorem that serves as an analog to
the second part of Ratner’s Orbit Closure theorem - the bit where xΓx−1∩Γ forms
a lattice in L. Recall this is equivalent to the existence of a finite measure on
Lx/Γ. In this case, instead of L we look at the connected component of L about
the identity denoted L0.
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