
CLIFFORD ALGEBRAS AND BOTT PERIODICITY

BEN SLATER

Abstract. In this expository paper, we present Max Karoubi’s 1968 proof

of the real Bott Periodicity Theorem. This argument connects the eightfold

periodicity in real K-theory with an analogous eightfold periodicity in the
structures of the Clifford Algebras Ck,0 (observed in a 1964 paper by Michael

Atiyah, Raoul Bott, and Arnold Shapiro). We first introduce the Clifford

algebras and present their periodicity properties. We then explain Karoubi’s
argument, which directly connects the Clifford algebras to real K-theory, and

thereby offers an alternative proof of real Bott Periodicity. Along the way,

we note possible footholds for an analogous proof of real equivariant Bott
Periodicity.
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1. Introduction

Bott Periodicity is a fundamental result in topological K-theory. One way to
view it is as a pattern in the real K theory of a space X, namely that

KOn+8(X) = KOn(X)

Equivalently, one can, as Raoul Bott originally did in the 1959 paper [3], take
the direct limit O(∞) of the orthogonal groups O(n), with appropriate inclusions
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O(n) → O(n+ 1) defined, and compute the homotopy groups of O as follows:

π0(O(∞)) = Z2

π1(O(∞)) = Z2

π2(O(∞)) = 0

π3(O(∞)) = Z
π4(O(∞)) = 0

π5(O(∞)) = 0

π6(O(∞)) = 0

π7(O(∞)) = Z
πn+8(O(∞)) = πn(O(∞))

One notes that KO−n(∗), where ∗ is the space consisting of a single point, is
isomorphic to πn(O(∞)).

In the 1964 paper [2], Bott, working with Michael Atiyah and Arnold Shapiro,
found a similar periodicity in the Clifford algebras Ck,0.1 Furthermore, they found
Abelian groups Ak associated with these Clifford algebras with the curious property
that Ak ∼= πK(O(∞)) ∼= KO−k(∗). In fact, Atiyah, Bott, and Shapiro found an
isomorphism between the graded ring composed of the groups Ak and the graded
ring

∑
k≥0KO

−k(∗), connecting the algebraic and K-theoretic periodicity results

[2][Theorem (11.5)]. However, in order to show that this map was indeed an iso-
morphism, they needed to use Bott Periodicity; they were not able to prove this
theorem from the structure of the Clifford algebras.

In the 1965 paper [8], Regina Wood used Atiyah, Bott, and Shapiro’s results on
Clifford algebras to prove an eightfold periodicity result about the loop spaces of the
general linear group GL(∞,Z). In particular, Wood showed that GL(∞,R)∗, the
path component of GL(∞) containing the basepoint, is weak homotopy equivalent
to the eightfold loop space Ω8(GL(∞,R))∗. The result is presented as a special
case of Proposition 4.7 in [8].

Max Karoubi provided a more abstract proof of real Bott Periodicity in 1968, in
[5]. Karoubi defined the K-theory of a certain type of category, a so-called Banach
category. His definition of this K-theory is built upon the theory of modules of
Clifford algebras, and so for a Banach category C, one immediately gets Kn+8(C) ∼=
Kn(C) from Atiyah, Bott, and Shapiro’s work. Karoubi then shows how to relate
the real topological K-theory of a space X to K-theory of a certain category, from
which he is able to derive Bott periodicity more generally.

In this paper, we are specifically interested in presenting Karoubi’s proof. Karoubi’s
audacious approach to the problem is to define several new notions of K-theory in a
more categorical setting, define groups Kn whose periodicity is an immediate con-
sequence of the periodicity of Clifford Algebras, and then show that these abstract
K-groups are isomorphic to the KO-theory of familiar topological spaces.

We begin by introducing the Clifford algebras Ck,0 and studying the modules
over them, restricting ourselves to the most part to the ingredients needed for
Karoubi’s proof of Bott Periodicity. Conspicuously missing from this exposition
are the Spin groups, which play no part in Karoubi’s proof. Then, we build up the

1They referred to these algebras simply as Ck; we will often use this notation when we only
need to consider a single Clifford algebra
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mountain of definitions underlying Karoubi’s proof: we introduce Banach categories
and the group K(C); the notion of a C-bundle; the K-theory of functors and of
certain pullback diagrams called Banach Squares; and the K-theory of categories,
functors, and Banach squares with respect to Clifford algebras, which is where
periodicity originates. With these definitions in place, we obtain a general theorem
about these categorical notions of K-theory, which has real Bott Periodicity as a
corollary.

We will focus on describing the large-scale arguments made in these papers; many
details will be left to their original sources. Along the way, we will allude to places
where proofs may be adapted to account for equivariance; the only known proof of
real equivariant Bott Periodicity, due to Atiyah in [1], relies on tools from analysis,
and a proof of the equivariant case using the more algebraic tools of Karoubi would
be quite desirable.

2. Clifford Algebras

Clifford Algebras can be defined quite generally, as follows. Let k be a field, V a
vector space over k, and Q a quadratic form on V . Let T (V ) be the tensor algebra
over V . That is,

T (V ) = k ⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·

There is a natural (Z-)grading on T (V ), where we view elements in the V ⊗k sum-
mand to be in the grade-k subspace, and consider the negative-graded components
to be zero.

Now, we take the quotient of T (V ) by the ideal I generated by v⊗v−Q(v) ·1 for
each v ∈ V , and call this quotient C(V,Q). C(V,Q) is known as a Clifford algebra.
Notice that this quotient identifies elements of the grade-n space with elements
of the grade-(n − 2) space. For instance, we identify the grade-2 element v ⊗ v
with the grade-0 element Q(v) · 1. Thus, we can naturally view C(V,Q) as being
Z2 graded: elements of T (V ) which were 2k-graded are 0-graded in C(V,Q), and
those which were (2k + 1)-graded are 1-graded in C(V,Q). We have an injection
iQ : V → C(V,Q) given by composing the natural injection of V into T (V ) with
the quotient map V → C(V,Q); that this map is indeed an injection is seen in [2,
Proposition (1.1)].

The Clifford algebra C(V,Q) enjoys the following property, as noted in [2, Propo-
sitions (1.2)-(1.3)].

Proposition 2.1. Let A be a k-algebra and ϕ : V → A a linear map, such that
for all x ∈ V we have ϕ(x)2 = Q(x) · ϕ(1). Then there exists a unique map

ϕ̃ : C(V,Q) → A such that ϕ̃ ◦ iQ = ϕ.

In particular, this extension is defined on tensor products of elements of V , such
as x⊗ y, by ϕ̃(x⊗ y) = ϕ(x)ϕ(y), using the algebra structure of A. The condition
that ϕ(x)2 = Q(x) · ϕ(1) ensures that the homomorphism is compatible with the
fact that in C(V,Q), we have x⊗ x = Q(x)⊗ 1.

We can naturally view C(V,Q) as a vector space over k.

Proposition 2.2. The dimension of C(V,Q) as a k-vector space is 2dimk(V ). If
e1, . . . , en is a basis for V , then a basis of C(V,Q) is given by products of the form
ei1 · · · eir , i1 < i2 < · · · < ir.
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A proof is given in [2, Proposition (1.4)] by comparing C(V,Q) to the exterior
algebra on V . In fact, if we let Q be the quadratic form Q(v) = 0, then C(V,Q)
actually is the exterior algebra.

We also have the following general property, which allows us to combine or
decompose Clifford algebras.

Lemma 2.3. Let V = V1⊕V2 be an orthogonal decomposition of V (with respect to
the inner product ⟨x,Ay⟩ corresponding to the quadratic form Q(x) = xTAx). Let
Q1 be the restriction of Q to V1, and likewise for V2. Then we have an isomorphism

ψ : C(V,Q) ∼= C(V1, Q1)⊗̂kC(V2, Q2)

where ⊗̂ denotes the Z2-graded tensor product over k.

Specifically, the algebra C(V1, Q1)⊗̂kC(V2, Q2) has the same underlying set as
the ordinary tensor product over k. If x is in the i-grade of C(V2, Q2) and y is in
the j-grade of C(V1, Q1), then we have

(u⊗ x) · (y ⊗ v) = (−1)ijuy ⊗ xv

where u and v can be any elements of the appropriate algebras.

Proof of Lemma 2.3. Consider a vector v ∈ V ; let v1 and v2 be the projections of v
onto V1 and V2. Define ϕ : V → C(V1, Q1)⊗̂kC(V2, Q2) by ϕ(v) = (v1⊗1)+(1⊗v2).
This map is linear, and we observe that

ϕ(v)2 = ((v1 ⊗ 1) + (1⊗ v2))
2

= Q(v1)(1⊗ 1) +Q(v2)(1⊗ 1) + (v1 ⊗ 1)(1⊗ v2) + (1⊗ v2)(v1 ⊗ 1)(2.4)

= Q(v1)(1⊗ 1) +Q(v2)(1⊗ 1) + (v1 ⊗ v2)− (v1 ⊗ v2)(2.5)

= (Q(v1) +Q(v2))(1⊗ 1)(2.6)

= Q(v)(1⊗ 1),(2.7)

where we have arrived at 2.5 by using the multiplication in the given tensor product;
in particular, the minus sign has appeared as a result of the 1-grading on v1 and
v2. It follows that the map ϕ satisfies the conditions of 2.1, and so there is a
homomorphism extending ϕ,

ϕ̂ : C(V,Q) → C(V1, Q1)⊗̂kC(V2, Q2).

That ϕ̂ is an isomorphism can be seen by checking that a basis of C(V,Q) is mapped
to a basis of C(V1, Q1)⊗̂kC(V2, Q2); see [2, Proposition (1.6)]. □

We now restrict our attention to some specific Clifford algebras. We focus on the
real vector spaces Rk, with orthonormal basis e1, e2, . . . , ek. Let Qp,q, for p+q = k,
be the quadratic form on Rk defined by

Qp,q(ei) =

{
−1, i ≤ p

1, p+ 1 ≤ i ≤ p+ q
(2.8)

In other words, Qp,q is negative on the first p basis elements and positive on the
remaining q basis elements. We will denote by Cp,q the Clifford algebra C(Rk, Qp,q).
The Clifford algebras Ck,0 and C0,k are of particular interest, and so we will also
refer to them as Ck and C ′

k, respectively.
The algebras Cp,q are related by the following special case of Lemma 2.3:
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Corollary 2.9. The Clifford algebra Cp+p
′,q+q′ is isomorphic to

Cp,q⊗̂RC
p′,q′

In particular, Ck is isomorphic to the k-fold graded tensor product of C1 with
itself.

The structure of the algebras Ck is elucidated by the following result.

Proposition 2.10. For ei, ej two basis vectors of Rk, we find that in Ck, we have

e2i = −1for i ̸= j, eiej = −ejei

Proof. That e2i = −1 follows immediately from viewing Ck as the k-fold graded
tensor product of C1 with itself. To see that eiej = −ejei, one can write

eiej = ei(ei + ej − ei)

= ei(ei + ej)− e2i

= (ei + ej − ej)(ei + ej)− e2i

= (ei + ej)
2 − ej(ei + ej)− e2i

= (ei + ej)
2 − ejei − e2j − e2i

= −2− ejei + 1 + 1

= −ejei

where we have used the fact that for our quadratic form Q with Q(es) = −1 for all
s, we have Q(ei + ej) = −2. □

Note that the proof that eiej = −ejei holds just the same in C ′
k, except that we

will write

(ei + ej)
2 − ejei − e2j − e2i = 2− ejei − 1− 1

instead.
In fact, there are even more relations between the various algebras Cp,q. Before

exploring them further, however, let us consider the first few algebras Ck.

Example 2.11. Let us attempt to identify the Clifford algebra C1 = C1,0. This
algebra is built upon the vector space R1, generated by the single basis element e1.
The tensor algebra T (R1) can be viewed as consisting as polynomials of the form

a0 + a1e1 + a2(e1 ⊗ e1) + · · ·+ ane
⊗n
1

Now, we quotient out by the relation e1 ⊗ e1 = Q(e1) · 1 = −1. The result is that
all elements of C(V,Q) can be written in the form a+ be1, with the multiplication

(a+ be1)(c+ de1) = (ac− bd) + (bc+ ad)e1

This algebra, then, is isomorphic to the complex numbers C.
By Proposition 2.2, we could have immediately seen that the the dimension (over

R) of C1 is 2 (since the underlying vector space is 1-dimensional); of course, the
dimension of C as a real vector space is also 2, as we would expect.

Example 2.12. Let us now study the Clifford algebra C2. By Proposition 2.2 and
Proposition 2.10, we can express C2 as a 4-dimensional real vector space with the
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basis 1, e1, e2, e1e2 and the following multiplication relations:

e1 · e2 = e1e2e2 · e1 = −e1e2
e2 · (e1e2) = e1(e1e2) · e2 = −e1
(e1e2) · e1 = e2e1 · (e1e2) = −e2

e21 = e22 = (e1e2)
2 = −1e1 · e2 · (e1e2) = −1

It is now apparent that C2 is isomorphic to the quaternions, H, with e1, e2, and e1e2
filling the roles of i, j, and k, respectively. One notes that in this isomorphism, we
should think of the quaternions i and j as being 1-graded, since they are expressed
as products of odd numbers of basis elements of R2; likewise, 1 and k are both
0-graded.

Example 2.13. Finally, let us consider C3. By Proposition 2.2 and Proposition
2.10, we write C3 as an 8-dimensional real vector space with basis

e1e2

e3e1e2

e2e3e1e3

1e1e2e3

As an algebra, there is an anti-commutative multiplication, and the square of any
of these basis elements is −1.

There is a non-obvious isomorphism between C3 and H⊕H. In particular, one
can take 1 = (1 + e1e2e3)/

√
2 and 1̄ = (1− e1e2e3)/

√
2 to be the identity elements

of the first and second copies of H. In the first copy, we let

i = (e1e3 + e2)/(
√
2)

j = (e2e3 + e1)/
√
2

k = (e1e2 − e3)/(
√
2)

and it is a straightforward exercise to verify the quaternion relationships, recalling
that the ”−1” which these elements should square to is −1− e1e2e3. Similarly, we
define

ī = (e1e3 − e2)/
√
2

j̄ = (e2e3 − e1)/
√
2

k̄ = (e1e2 + e3)/
√
2

Notice that the elements 1, i, j, k in the first copy of H, and the elements 1̄, ī, j̄, k̄
in the second copy of H, are all ”mixed-grading,” that is, they are written as the
sums of grade-0 elements of C3 and grade-1 elements. Thus, the isomorphism C3

∼=
H ⊕ H in some sense ”respects the Z2 grading of C3” less than the isomorphisms
C2

∼= H or C1
∼= C do.

As this third example shows, identifying the Clifford algebras Ck by hand quickly
becomes quite difficult as the number of basis elements grows. First, we leave the
following fact, corroborated in [2, page 11], as an elementary exercise.

Proposition 2.14. The algebras C ′
1 and C ′

2 (i.e., C0,1 and C0,2) are isomorphic
to R⊕ R and R(2), the ring of all 2× 2 matrices, respectively.
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As it turns out, knowing C1, C2, C
′
1, and C

′
2 is enough to compute, with relatively

little computation, the rest of the algebras Ck and C ′
k. The following result allows

us to bootstrap our way up.

Lemma 2.15. We have the following isomorphisms:

C ′
k+2

∼= Ck ⊗R C
′
2

Ck+2
∼= C2 ⊗R C

′
k

Note that these are ordinary, ungraded tensor products. Thus, this lemma is
more useful than Lemma 2.3 when it comes to identifying the Clifford algebras;
while the ungraded structures of the algebras Ck and C ′

k turn out to be quite
familiar, the grading is often quite awkward, as the C3

∼= H⊕H example shows.

Proof of Lemma 2.15. We shall prove the first isomorphism; the proof of the sec-
ond is exactly analogous. Let e1, . . . , ek be the generators for Ck and e′1, e

′
2 the

generators for C ′
2. Let v1, . . . , vk+2 be an orthonormal basis of Rk+2 with respect

to the negative-definite quadratic form used to define Ck+2. Consider the linear
map ψ : Rk+2 → Ck ⊗R C

′
2 defined on the basis v1, . . . , vk by

ψ(vi) =

{
ei−2 ⊗R (e′1e

′
2), 2 < i ≤ k + 2

1⊗R ei, 1 ≤ i ≤ 2ψ

Note that in C ′
2, we have (e′1e

′
2)

2 = −1; since multiplication in C ′
2 is anticommuta-

tive, we have

e′1e
′
2e

′
1e

′
2 = −e′1e′2e′2e′1 = −1

Thus, for 2 < i ≤ k + 2,

ψ(vi)
2 = e2i−2 ⊗R (e′1e

′
2)

2

= (−1)⊗R (−1)

= 1⊗ 1

and for i = 1 or i = 2, we have ψ(vi)
2 == 1 ⊗R (e′i)

2 = 1 ⊗R 1. Thus, the map
ψ satisfies the property described in Proposition 2.1, so that ψ extends to a map
ψ̃ : C ′

k+2 → Ck⊗RC
′
2. To see that the map is an isomorphism, it is enough to check

that the dimensions as real vector spaces are equal and that ψ maps the basis of
C ′
k+2 to a linearly independent set in Ck ⊗R C

′
2, which follows from the fact that

product vi1 · · · vir in the basis of C ′
k+2 is mapped to a unique product in Ck⊗R C

′
2,

and these products must be linearly independent. Thus, the map ψ̃ is bijective,
and thus an isomorphism of R-algebras. □

We have a few corollaries which are both easy and extremely useful;.

Corollary 2.16. C4
∼= C ′

4.

Proof. Using the isomorphisms of Lemma 2.15, we write

C4
∼= C2 ⊗R C

′
2

C ′
4
∼= C2 ⊗R C

′
2

from which the result immediately follows. □
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In fact, one can verify directly that C4 and C ′
4 are isomorphic as graded algebras.

Another less direct proof appears in [5, page 172] as a consequence of [5, Proposition
(1.1.14)]. We will make use of a corollary of this fact

Corollary 2.17. There is an isomorphism of graded algebras between Cp,q+4 and
Cp+4,q

Proof. By Lemma 2.3, we write Cp,q+4 as Cp,q⊗̂C0,4, apply the isomorphism men-
tioned above to show that this tensor product is isomorphic to Cp,q⊗̂C4,0, and then
apply Lemma 2.3 again to get an isomorphism to Cp,q+4 □

We have a similar result about ungraded tensor products, which indicates a
four-fold periodicity in the algebras Ck.

Corollary 2.18. Ck+4
∼= Ck ⊗R C4.

Proof. Using Lemma 2.15, we write

Ck+4 = Ck+2+2
∼= C2 ⊗R C

′
k+2C

′
k+2

∼= C ′
2 ⊗R Ck

so that

Ck+4
∼= Ck ⊗R C

′
2 ⊗R C2

But using Lemma 2.15 again, C ′
2 ⊗R C2

∼= C4. Thus, Ck+4
∼= Ck ⊗R C4. □

It is this four-fold periodicity which will play a key role in Karoubi’s proof of
Bott Periodicity. And yet of more immediate interest is the following corollary,
which exhibits the first hint that the Clifford algebras may have something to do
with the eightfold periodicity phenomenon.

Corollary 2.19. There is an isomorphism Ck+8
∼= Ck ⊗R C8. Likewise, there is a

isomorphism Ck+8′
∼= C ′

k ⊗R C
′
8

Proof. Using Corollary 2.18, we write Ck+8
∼= Ck+4 ⊗R C4

∼= Ck ⊗R C4 ⊗R C4. We
apply the result again to get C8

∼= C4 ⊗R C4, and conclude that Ck+8
∼= Ck ⊗R C8.

The same argument gives the result for the algebras C ′
k. □

Notice that C8
∼= C4⊗RC4 and C ′

8
∼= C ′

4⊗RC
′
4. Since C4 and C ′

4 are isomorphic,
this implies that C8

∼= C ′
8. In fact, both are isomorphic to the full algebra of 16×16

real matrices.
One can now calculate every algebra Ck. The results, as seen in [2, Table 1], are

as follows; here, F (n) denotes the ring of n × n matrices with entries in the ring
F . We also include the results of the tensor products Ck ⊗R C, which correspond
to the two-fold complex Bott Periodicity

k Ck C ′
k Ck ⊗R C

1 C R⊕ R C⊕ C
2 H R(2) C(2)
3 H⊕H C(2) C(2)⊕ C(2)
4 H(2) H(2) C(4)
5 C(4) H(2)⊕H(2) C(4)⊕ C(4)
6 R(8) H(4) C(8)
7 R(8)⊕ R(8) C(8) C(8)⊕ C(8)
8 R(16) R(16) C(16)
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Note that since C8 = R(16), Ck ⊗R C8 = Ck(16), the algebra of 16 × 16 matrices
with entries in Ck. Thus, the algebras after C8 can all be easily computed using
the table above.

The pattern amongst the Clifford algebras Ck is striking enough in isolation, but
the true beauty emerges when we consider the modules over these algebras. Let
M(Ck) be the Grothendieck completion of the commutative monoid generated by
the irreducible Z2-graded Ck modules (i.e. those which contain no submodules) un-
der the operation of direct sum.2 We define the Abelian group N(C0

k) analogously,
using the ungraded modules over the 0-graded component of Ck; henceforth, we
denote by Cik the i-graded component of Ck. These two constructions turn out to
be equivalent:

Proposition 2.20. The map R which maps a Z2-graded module M = M0 ⊕M1

to the 0-graded component M0 induces an isomorphism, M(Ck) ∼= N(C0
k).

This result is proven in [2, Proposition (5.1)]. The proof is short, although not
especially enlightening. It proceeds by defining the map S, which sends M0 to
Ck ⊗C0

k
M0, and then verifying that S ◦R and R ◦S are both naturally isomorphic

to the identity. The next result can be proven somewhat more directly.

Proposition 2.21. There is an isomorphism Ck ∼= C0
k+1.

Proof. Let e1, . . . , ek+1 be an orthonormal basis of Rk+1 yielding generators for
C0
k+1 and, abusing notation slightly, let e1, . . . , ek be an orthonormal basis of Rk

yielding generators for Ck. We consider the map ϕ : Rk → C0
k+1 which maps

each basis element ei to eiek+1 Then since ϕ(ei)
2 = eiek+1eiek+1 = −1, we use

Proposition 2.1 to get an extension ϕ̃ : Ck → Ck+1. This map sends the basis
element ei1 · · · eir to the same basis element of Ck+1 if r is even, and sends it to
ei1 · · · eirek+1 if r is odd. Since every basis element of C0

k+1 is either a 0-graded

basis element of Ck or a 1-graded basis element of Ck times ek+1, the map ϕ̃ maps
a basis of Ck to a basis of C0

k+1; thus, it is bijective, and therefore an isomorphism
of algebras. □

These two propositions directly yield the following corollary:

Corollary 2.22. The Abelian groupM(Ck) is isomorphic to N(Ck−1), the Grothendieck
completion of the commutative monoid generated by the ungraded Ck−1-modules un-
der direct sum.

Fortunately, the algebras Ck do not admit many irreducible modules. For R
a division ring or field, the matrix algebra R(n) is simple (see [4, Theorem (3.8),
p. 368]), and since irreducible modules over a ring correspond to maximal ideals,3

the only irreducible modules over all Ck algebras of this form are the algebras
themselves. The remaining algebras Ck are of the form R(n)⊕R(n) for R a division
ring. This implies that the only irreducible modules over these algebras are given

2The reader unfamiliar with this construction may view M(Ck) as being the free Abelian group
generated by the irreducible Z2-graded modules over Ck, although we will soon need to conflate

the formal expression S + S and the Ck-module S ⊕ S, for S an irreducible Ck module.
3This can be shown by taking an R-module M and considering the R-module generated by a

nonzero element m ∈ M . If M is irreducible, then the R-module generated by m must be all of
M , and one can then show that the module generated by m is isomorphic to R/I for I maximal

by using, for instance, the first isomorphism theorem
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by R(n)⊕1 and 1⊕R(n). Thus, every N(Ck) is either Z⊕Z, when k = −1 mod 4,
or Z otherwise; it follows thatM(Ck) is Z⊕Z when k = 0 mod 4 and Z otherwise.

To make things more interesting, and to coax out a property of Ck which is
merely 8-periodic and not 4-periodic, we consider certain mapsM(Ck+1) →M(Ck),
defined as follows. We have natural injections ik : Ck → Ck+1 defined by sending
the generators ei in Ck to the corresponding generators in Ck+1. These induce
maps i∗k :M(Ck+1) →M(Ck). Let Ak be the cokernel of the map i∗k.

Example 2.23. A1 = Z2. To see this, we first recall that C2 = H, C1 = C, and
thus M(C2) and M(C1) are generated by H and C, respectively. Viewing H as
being generated by 1, e1, e2, e1e2 and C as being generated by 1, e1, we observe that
i∗1 maps the H-module H to the C-module C ⊕ C; that is, when we only consider
the action of C1 ⊂ C2 on the C2-module H, the submodule generated by 1 and e1
becomes ”detached” from the submodule generated by e2 and e1e2. Multiplication
by 1 is still the identity, and multiplication by e1 switches the two generators of
each submodule and multiplies by −1. Thus, i∗1 maps the generator of M(C2) to
twice the generator of M(C1), so that the cokernel of this map is Z2

If one computes the rest of these cokernels, as in [2], one obtains the following
results (see Table 2 of [2]).

k Ck M(Ck) Ak
1 C Z Z2

2 H Z Z2

3 H⊕H Z 0
4 H(2) Z⊕ Z Z
5 C(4) Z 0
6 R(8) Z 0
7 R(8)⊕ R(8) Z 0
8 R(16) Z⊕ Z Z

Furthermore, since Ck+8
∼= C8 ⊗R Ck, we have Ak ∼= Ak+8. For details, see [2, §6]

and in particular [2, Proposition (6.8)], in which this isomorphism is given explicitly
by forming a Z-graded ring from the groups M(Ck), with multiplication given by
graded tensor products, and using this structure to show that multiplication by the
unique irreducible C8-module induces an isomorphism between Ak and Ak+8

We now have an eightfold periodicity in the cokernels Ak. Furthermore, these
cokernels correspond exactly to the homotopy groups of O. This suggests a deep
connection between the Clifford algebras Ck and real K-theory. Before moving on
to Karoubi’s proof of Bott Periodicity, which elucidates that connection, we make
a quick note for those interested in the equivariant case.

Remark 2.24. Let G be a group and let Z[G] be the corresponding group ring
over Z. Suppose we consider the groups M(Ck)⊗Z Z[G]. Then the right exactness
of the tensor product turns the right exact sequence

M(Ck+1) →M(Ck) → Ak → 0

into the right exact sequence

M(Ck+1)⊗Z Z[G] →M(Ck)⊗Z Z[G] → Ak ⊗Z Z[G] → 0
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In other words, not only do we see the eightfold periodicity when we introduce a
group action, we see it in the exact same way. This perhaps suggests that the equi-
variant scenario may not be all that different, algebraically, from the nonequivariant
case.

3. Karoubi’s Proof

We now present Karoubi’s 1968 proof of real Bott Periodicity, as described in
[5]. The proof requires quite a bit of preliminary development first, so we begin
by defining and studying the K-Theory of Banach Categories. We will then define
the category of C-bundles over a space X, where C is a Banach category; the
motivating example for this is when C is the category of finite dimensional real
vector spaces, in which case a C-bundle over X is just a real vector bundle over X.
These bundles motivate the definitions of the K-theory of functors and of certain
pullback diagrams, which we call Banach Squares.

We will then incorporate Clifford algebras, defining the group Kn of a Banach
category C to be, more or less, ”the K-theory of the Cn-modules in C.” The four-
and eight-fold periodicity of the modules over Clifford algebras, which we studied in
the previous section, thus induce by definition an eightfold periodicity on Kn(C).
These K-theory groups are, in fact, not topological at all; each one is just the
Grothendieck completion of a certain monoid. In the last part of this section,
we put all this machinery together; we outline Karoubi’s proof of a theorem which
connects the new groups Kn with the familiar KO-groups of certain pairs of spaces.
In fact, we will prove a more general result pertaining to certain KV groups, for V
a vector bundle of X, which are the ”K-theory of the category of C-bundles over
X which are also C(V )-modules.

Most of this section consists of definitions; the miracle of Karoubi’s proof is that
they turn out to be the right definitions.

3.1. Banach Categories and their K-theory. First of all, we need to develop
some basic theory of Banach categories. We begin with the basic definitions and
some examples relevant to K-theory. The next main goal will be to define the
K-theory of a Banach category, and more generally the K-theory of an additive
category, which is defined like topological K-theory, by way of Grothendieck com-
pletions. Once we have those basic definitions out of the way, we will be in a
position to study more complicated structures.

First, we recall the definition of an additive category.

Definition 3.1. A category C is called preadditive if for all objects X and Y in
C, the hom set homC(X,Y ) has the structure of an Abelian group, and the for all
objects X,Y , and Z in C, the composition map

homC(X,Y )× homC(Y,Z) → homC(X,Z)

is bilinear.

Definition 3.2. A preadditive category C is called additive if it has all finite
products.

Of particular note for our purposes is that an additive category has a zero object
and direct sums, see [7, Definition (12.3.8)].
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We need several more definitions before we work our way up to the definition of
a Banach category. First, we introduce the preliminary notion of a ”k-prebanach
category:”

Definition 3.3. Let C be an additive category, and let k be a field (either R or C).
We call C a k-prebanach category if:

(1) For each pair of objectsM,N in C, the hom-set homC(M,N) has the struc-
ture of a Banach space over k, with the same additive structure as when C
is simply viewed as an additive group.

(2) For all triples of objects M,N,P in C, the composition map

homC(M,N)× homC(N,P ) → homC(M,P )

is both bilinear and continuous.

The property that makes a prebanach category into a Banach category has to
do with idempotent endomorphisms.

Definition 3.4. Let C be a category and X an object in C. An endomorphism
p : X → X is idempotent if p ◦ p = p. An idempotent endomorphism is also called
a projection.

Notice that in the category of vector spaces, an idempotent endomorphism is
just a projection in the familiar sense.

Definition 3.5. A k-prebanach category C is called k-Banach if every idempotent
endomorphism p : X → X admits a kernel.

In essence, a Banach category is a category whose hom-sets are Banach spaces,
where composition is both bilinear and continuous, and with kernels for all idempo-
tent endomorphisms. The existence of direct sums is a crucial property of Banach
categories, as we use it to define a vast generalization of the familiar group K(X)
of vector bundles over X.

Definition 3.6. Let C be a small additive category. We define the K-theory of
C, written K(C), to be the Grothendieck completion of the Abelian monoid of
isomorphism classes of objects in C under direct sum.

Remark 3.7. Definition 3.6 does not make use of the full structure of Banach
categories. The condition that the hom-sets of a Banach category C must be normed
topological spaces will be used in the construction of C-bundles in the following
section. The condition that these hom-sets must also be real vector spaces is more
subtle, and will be useful when we consider the K-theory of functors, as in the
proof of Proposition 3.19.

The similarity of Definition 3.6 to the definition of topological K-theory is no
mere coincidence; our next goal will be to construct from a space X a Banach
category whose K-theory is K(X). Of course, we will actually construct something
more general.

3.2. Banach Category Bundles. The following construction, given as Lemma
and Definition (1.2.2) in [5], allows us to obtain a Banach category from a prebanach
one; this construction is known as the Karoubi envelope.4 Let C be a prebanach

4More generally, this construction turns a preadditive category into a pseudo-abelian one



CLIFFORD ALGEBRAS AND BOTT PERIODICITY 13

category. Let C′ be the category whose objects are pairs (E, p), where E is an
object in C and p : E → E is an idempotent endomorphism. The morphisms in C′

from (E, p) to (E′, p′) will be given by maps f : E → E′ such that p′ ◦ f = f ◦ p.
That is, the following diagram must commute:

E
f //

p

��

E′

p′

��
E

f
// E′

Now, we introduce an equivalence relation between maps (E, p) → (E′, p′) in
C′, namely that f and g are equivalent if p′ ◦ f = p′ ◦ g. We denote by f ′ the
equivalence class of f under this relation. Now, let C̃ be the category with the same
objects as C′, and with morphisms given by the equivalence classes of morphisms
in C′. Intuitively, one should think of the object (E′, p′) as representing the image
of the projection p; two maps into the pair (E′, p′) are then equivalent if they have
the same images in the image of p′.

Proposition 3.8. C̃ is a Banach category.

We offer a sketch of the proof below; the remainder of the details can be verified
through a straightforward diagram chase, see [5, Definition and Lemma (1.2.2)].

Proof. Most of the Banach category structure of C̃ is inherited from C; we need
only check that if (E, p) is an object in C̃ and f : (E, p) → (E, p) is an idempotent
endomorphism of that object, then we can find a kernel of f . This kernel is given
by the map

(1− f ′) : (E, p ◦ (1− f ′)) → (E, p)

where 1 is the equivalence class of the identity map E → E. In particular, let
g′ : (F, q) → (E, p) be a map such that f ′ ◦ g′ = 0. Then one can show, by a
diagram chase, that g′ : (F, q) → (E, p) factors uniquely through the map g′ :
(F, q) → (E, p(1− f ′)). □

The idea behind this construction is that the kernel of a projection f : E → E
is represented by E together with a projection onto the orthogonal complement of
the image of f , that is, a projection onto the kernel of f ; the vector-space structure
of the hom-sets of C guarantees the existence of a map (1− f) given f .

We will make extensive use of this construction, which is sometimes called
the idempotent completion or the Karoubi envelope construction. Its usefulness,
broadly speaking, is that it allows us to access ”subobjects” of the objects in an
abstract Banach category.

The following examples, which can be found in [5, page 178] describe important
examples of Banach categories.

Example 3.9. Let VR be the category of finite dimensional real vector spaces. The
hom-sets in VR are described by finite dimensional real vector spaces, so in particular
they are Banach spaces; the composition maps are given by matrix multiplication,
which is both bilinear and continuous, since we are in the finite dimensional case.
Since all the objects in VR are finite dimensional vector spaces, this category cer-
tainly has all finite products. Finally, the kernels of projection maps are just the
classical kernels with injections; since these will always be finite dimensional vector
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spaces with linear maps, these kernels always exist in VR. Thus, VR is a Banach
category.

The next example suggests a connection between Banach categories and topo-
logical K-theory.

Example 3.10. Let A be a Banach algebra, i.e. an algebra over R or C which is
also a Banach space. Let C be the category of free A-modules of finite type. One
can check that C is a prebanach category; the associated Banach category C̃ can be
identified with the category L(A) of projective A-modules of finite type. If X is a
compact space and A is the R-algebra of continuous functions X → R, then A is,
in turn, equivalent to the category EK(X) of finite-dimensional vector bundles over
X. This equivalence is the Serre-Swan theorem; see, for instance, [6].

It is worth noting that Banach algebras played a central role in Wood’s proof of
the Bott periodicity theorem.

Our final two examples (also found in [5, page 178]), for now, describe Banach
subcategories of EK(X). The first will play a role in the proof of Bott periodicity,
while the second will not be used here, but explains one way to bring equivariance
into the picture.

Example 3.11. Let V be a vector bundle over X, equipped with a non-degenerate
quadratic form Q. Then we define C(V ) to be the algebra bundle over X whose
fibers are the Clifford algebras C(V,Q) over the fibers of V . Let EV (X) be the
subcategory of EK(X) consisting of vector bundles which are also C(V ) modules and
maps which are also module homomorphisms. The prebanach category structure
is then inherited from the Banach category structure of EK(X). Furthermore, we
constructed EK(X) as a Banach category through the construction described in
Proposition 3.8, and so the kernel of a projection f : E → E appears as a pair
(E, p(1 − f ′)); in particular, if E is a C(V ) module, this kernel is as well. Thus,
EV (X) is a Banach category. Notice that among the objects in this category is the
bundle C(V ) itself, which gains a C(V ) action by the usual multiplication of the
Clifford algebra; in particular, EV (X) is not empty.

Example 3.12. Let G be a topological group which acts on a compact space X.
Let EG(X) be the category of finite dimensional vector bundles with an action by
G compatible with projection onto X. The hom-sets in EG(X) can be viewed as
closed subspaces of the corresponding hom-sets in EK(X), making EG(X) into a
Banach category as well.

The most obvious feature of Banach categories is the Banach space structure of
the hom-sets. Of special interest, then, are the functors between Banach categories
which preserve this structure.

Definition 3.13. Let C and C′ be two Banach categories. A functor ϕ : C →
C′ is called linear-continuous if for all objects M,N in C, the natural map from
homC(M,N) to homC′(ϕ(M), ϕ(N)) is linear and continuous. A linear continuous
functor which is also an equivalence of categories is called an equivalence of Banach
categories.

Two particularly important classes of linear-continuous functors are the Serre
functors and quasi-surjective functors, defined as follows.
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Definition 3.14. Let C and C′ be Banach categories and ϕ : C → C′ a linear-
continuous functor. We say that ϕ is a Serre functor if it satisfies the following
equivalent conditions:

(1) For all objectsM in C, the the natural map Am : AutC(M) → AutC′(ϕ(M))
is a Serre fibration.

(2) For all objects M in C, the natural map Em : EndC(M) → EndC′(ϕ(M))
is surjective.

(3) For all pairs of objects M,N in C, the natural map Em,n : homC(M,N) →
homC′(ϕ(M), ϕ(N)) is surjective.

A proof of the equivalence of these conditions is given in [5, Proposition (1.2.7)].

Definition 3.15. Let C and C′ be two Banach categories and ϕ : C → C′ a functor
between them. The functor ϕ is called quasi-surjective if every object in C′ is a
direct factor of an object in the image of C′.

The fact that the hom-sets in Banach categories are required to be Banach spaces,
and not merely vector spaces, hints at the importance of the topological structure
of Banach categories, as does the use of Serre fibrations in defining Serre functors.
Another important feature of this structure is that it allows us to define a notion
of ”C-bundles over topological spaces” when C is a Banach space.

Let C be a Banach category and X a topological space. Let us construct the
category CT (X), called the ”category of trivial C-bundles over X,” as follows. The
objects of CT (X) are the objects of C. A map M → N in CT is a continuous map
from X to homC(M,N); that is, it is a choice of map fx ∈ homC(M,N) for each
point x ∈ X, such that these maps vary continuously with X.

Example 3.16. If we take C to be VR, then CT (X) is the category of trivial real
vector bundles over X; in particular, the objects in this category represent the fiber
Rk and the morphisms are continuous maps which are linear on each fiber.

The hom-sets of CT (X) inherit a vector space structure from the vector space
structure of the hom-sets of C. If we use the norm of the hom-sets of C, we can
assign the supremum norm to each map X → homC(M,N), that is, to each map in
homCT (X)(M,N))), making the hom-sets of CT (X) into Banach spaces. In partic-
ular, this choice of norm ensures that the hom-sets are complete. Bilinearity and
continuity of composition can be shown using the fact that these properties hold at
each point; CT (X) has the same finitary products as C. Thus, CT (X) is a prebanach
category, although not necessarily a Banach category.

Using Proposition 3.8, we define C(X) to be the Karoubi envelope of CT (X),
and call C(X) the category of locally-trivial C-bundles, or simply the category of
C-bundles. Formally, an object in C(X) is a pair (E, px), where E is an object in C
and px is a family of projections E → E, continuously parametrized by the points
of X. One should think of the objects in C(X) as being an object E of C and a
continuous assignment of subobjects of E to points of x by considering the images
of the family px of projection maps. The maps in C(X) from (E, p) to (E′, p′) are
families of maps ϕx : E → E′, considered up to equivalence at each point x after
composition with p′x.

Given a map f : Y → X, we get pullback maps f∗T : CT (X) → CT (Y ) and f∗ :
C(X) → C(Y ). Both CT (X) and CT (Y ) have the same objects as C, by construction,
so f∗T maps an object E in CT (X) to the corresponding object in CT (Y ). The
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behavior of f∗T on morphisms is as follows. Recall that a morphism in CT (X) from
M to N is a family ϕx of morphisms from M to N continuously parametrized
by points in X. The functor f∗T maps the family ϕx in homCT (X)(M,N) to the
family ϕf(y), which is continuously parametrized by points in Y , and is therefore
an element of the hom-set homCT (Y )(M,N).

The functor f∗ : C(X) → C(Y ) is defined similarly. On objects, f∗ maps a
pair (E, px), where E is an object of C and px is a family of projections E → E
continuously parametrized by points in X, to the pair (E, pf(x)) in C(Y ). The
behavior of f∗ on the morphisms in C(X) is as follows. Recall that a map in C(X)
from (E, px) to (E′, p′x) is an equivalence class of the maps in CT (X) from E to E′,
with ϕx equivalent to ψx if p′x ◦ ϕx = p′x ◦ ψx. In other words, the maps, ϕx and
ψx must agree on the image of p′x at each point x in X. If this is the case, then we
must also have, at each point y of Y ,

p′f(y) ◦ ϕf(y) = p′f(y) ◦ ψf(y)
Therefore, we define f∗ as taking the equivalence class of the morphism ϕx in C(X)
to the equivalence class of ϕf(y) in C(Y ).

The fundamental example of a locally-trivial C-bundle, and the one which will
be important to the proof of Bott periodicity, is the case where C is the category
L(k) of finite dimensional k-vector spaces and X is compact. In this case, C(X) is
equivalent to the category Ek(X) of k-vector bundles over X. For more details on
this equivalence, see the remark on page 184 of [Kar]. Intuitively, and in a sense
made precise by Karoubi in [5] in the results from Proposition (1.2.8) to Lemma
(1.2.15), for any C-bundle (E, p) in C(X) and any point x ∈ X, we can find a
neighborhood U of x such that the restriction of (E, p) to U is a trivial bundle.5

In other words, a C-bundle can actually be thought of as a bundle whose fibers are
objects in C.

Since C(X) is a Banach category, we can use Definition 3.6 to define K(C(X)).

Example 3.17. If C is the category LR, then using the equivalence between C(X)
and ER(X), we see that K(C(X)) is isomorphic to the Grothendieck completion of
the vector bundles over X under direct sum; that is, K(C(X)) is isomorphic to the
familiar group KO(X).

There are a couple of advantages of Karoubi’s theoretical approach to the K-
theory of a space, as opposed to the classical one. The first is that it situates
KO(X) within a broader theory, providing us with a standard way of generalizing
results in K-theory. The second is that it opens the door to alternative definitions
of the groups Kn(C); we can choose a definition that makes the eightfold periodicity
of real K-theory a complete triviality, and we then are left with showing that these
general definitions are actually related to the classical groups KOn(X).

3.3. K-Theory of Functors. Beyond the group K(C), we will need to define two
other types of categorical K-theory: the K-theory of a functor, and K-theory of a
category or functor with respect to a vector bundle.

Let C and C′ be two Banach categories, and let ϕ : C → C′ be a linear-continuous
functor. Let Γ(ϕ) be the set of pairs of objects in C which are isomorphic in
C′; we describe elements of Γ(ϕ) as triples (E,F, α), where α : ϕ(E) → ϕ(F ) is

5The restriction is induced as the pullback functor from C(X) to C(Y ) induced by the inclusion
U → X



CLIFFORD ALGEBRAS AND BOTT PERIODICITY 17

an isomorphism. An elementary triple is one of the form (E,E, Id); two triples
(E,F, α) and (E′, F ′, α′) are called homotopic if there is a triple (e, f,ℵ) in the set
Γ(ϕ[0, 1]) whose restriction to {0} is isomorphic to (E,F, α) at and whose restriction
to {1} is (E′, F ′, α′). Here, ϕ[0, 1] is the functor from C([0, 1]), the category of C-
bundles over the space [0, 1], to C′([0, 1]); this functor is induced by ϕ. Notice
that e and f are both pairs (Ē, pt) and (F̄ , qt), with the families of projections
pt and qt parametrized by the interval [0, 1]. Thus, a homotopy of triples consists
of an object e containing E and E′ as subobjects, usually direct factors, with a
homotopy from projection onto E to projection onto E′; an object f containing F
and F ′ as subobjects with a similar homotopy of projections; and a homotopy of
maps ℵt : e→ f such that ℵ0 is α and ℵ1 is α′.

We take K(ϕ) to be the monoid we get if we quotient Γ(ϕ) by the equivalence
relation generated by taking homotopy equivalences and adding elementary triples;
we will refer to the image of (E,F, α) under this quotient by d(E,F, α). It may
seem odd to call this monoid K(ϕ), since we expect the K theory of an object to
be a group. The following proposition clarifies this choice of name.

Remark 3.18. The reader familiar with the topological results of [2, §7] should
have in mind for this section the characterization of the relative K-theory K(X,Y )
as being given by vector bundles E1 and E2 such that 0 → E1 → E2 → 0 is exact on
Y , i.e. such that the restrictions of E1 and E2 to Y are isomorphic. In particular,
if C is the category of real finite dimensional vector spaces and ϕ is the restriction
functor C(X) → C(Y ), then K(ϕ) agrees with KO(X,Y ) in the sense described in
[2].

Proposition 3.19. K(ϕ) is an Abelian group.

We present this relatively simple proof in order to give some idea of how one
works with the K-theory of a functor, since we will omit most of the other proofs
of this form. It is also notable because it uses the vector space structure of the
hom-sets of the Banach categories. This proof appears in [5, Proposition (1.3.5)]

Proof. We want to show that d(E,F, α) + d(F,G, β) = d(E,G, β ◦ α). This will
imply that (E,F, α−1) is an inverse for (E,F, α) (since α is an isomorphism, it is
always invertible). We know that

d(E,F, α) + d(F,G, β) = d(E ⊕ F, F ⊕G,α⊕ β)

The isomorphism α⊕ β can be factored:

E ⊕ F
α⊕1 // F ⊕ F

1⊕β // F ⊕G

There is an automorphism γ : F ⊕ F → F ⊕ F given by the block matrix
(
0 −1
1 0

)
;

it is homotopic to the identity by the rotation
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. Likewise, there is

an isomorphism δ : F ⊕ G → G ⊕ F given by the block matrix
(

0 1
−1 0

)
. We then

have a composition:

E ⊕ F
α⊕1 // F ⊕ F

γ // F ⊕ F
1⊕β // F ⊕G

δ // G⊕ F

This composition applies β◦α to the first component and the identity to the second
component. Thus, we have that

d(E,F, α) + d(F,G, β) = d(E ⊕ F,G⊕ F, β ◦ α⊕ 1) = d(E,G, β ◦ α)
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where the last equality comes from the equivalence of triples which differ by the
elementary triple (F, F, 1). Thus, we have verified the identity which guarantees
inverses, and so we conclude that K(ϕ) is a monoid. □

This general strategy of ”rotating a direct sum” is one of the main computa-
tional techniques used by Karoubi to study the K-theory of functors. Most of the
calculations we omit use this technique to characterize equivalence classes within
K-theory of functors.

In fact, even the K-theory of a functor is not enough to prove the result we are
interested in. We instead need to consider the K-theory of a ”Banach square”6

defined as follows.

Definition 3.20. A Banach square is a commutative diagram

C
ϕ2 //

ϕ1

��

C2
ψ2

��
C1

ψ1

// C12

where the objects are all Banach categories, the morphisms are all linear-continuous
functors, and there is a natural isomorphism c21 : ψ1ϕ1 → ψ2ϕ2.

In fact, the K-theory of a Banach square D is just the K-theory of a certain
linear-continuous functor. Let D be a Banach square as in Definition 3.20; let C′

be the category whose objects are triples (E1, E2, ϵ), where Ei is an object in Ci
and ϵ : ψ1E1 → ψ2E2 is an isomorphism in C12. The morphisms of C′ are given by
pairs of maps f1 : E1 → E′

1 and f2 : E2 → E′
2 such that the following diagram in

C12 commutes:

ψ1E1
ψ1f2 //

ϵ

��

ψ1E
′
1

ϵ′

��
ψ2E2

ψ2f2 // ψ2E
′
2

Notice that because D is made up of Banach categories and linear-continuous func-
tors, C′ will also be a prebanach category. We take ϕD : C → C′ to be the functor
mapping an object E ∈ C to the trio (ϕ1E, ϕ2E, c12(E)) and mapping a morphism
in E to the two image morphisms in E1 and E2. It can be verified directly that
this function is linear and continuous, which follows from the fact that ϕ1 and ϕ2
are.

We can now define K(D), the K-theory of the Banach square, as the K-theory
of the functor ϕD. The elements of this group can be thought of as quadruples
(E,F, α1, α2), where E and F are objects in C and αi is an isomorphism ϕiE → ϕiF .
We consider an elementary quadruple to be (E,E, Id, Id), and consider K(D) to be
the group of equivalence classes of these quadruples up to homotopy and addition
of elementary quadruples; as in the K-theory of a functor, the equivalence class
of (E,F, α1, α2) is denoted d(E,F, α1, α2). Like in the K-theory of a functor,
homotopy is defined in terms of quadruples relative to the induced map

ϕD([0, 1]) : C([0, 1]) → C′([0, 1])

6Called a grille carrée by Karoubi, but we take the liberty of renaming it to highlight the
important Banach-category properties
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For our purposes, it is enough to consider the K-theory of a special type of
Banach square. Let X be a compact space and Y ⊂ X a closed subspace. Let C, C′

be two Banach categories and ϕ : C → C′ a linear continuous functor. We now take
D to be the Banach square

C(X)
ϕ(X) //

r

��

C′(X)

r′

��
C(Y )

ϕ(Y ) // C′(Y )

where ϕ(X) and ϕ(Y ) are the functors induced by ϕ, and r and r′ are the restric-
tion functors induced by the inclusion of Y into X. The natural isomorphism c21
represents the fact that it does not matter if we restrict a C-bundle over X to one
over Y and then map via ϕ to a C′-bundle, or if we map a C-bundle over X to a
C′-bundle over X, and then restrict this bundle to Y .

In a square like this, we will write K(X,Y ;ϕ) to mean K(D).
Let us take a moment to unpack the definitions at work here. An object in

K(X,Y ;ϕ) is given by:

(1) Two objects, E and F , in the category C.
(2) Two continuous families of projections: px : E → E and qx : F → F ,

parametrized by points x ∈ X.
(3) A continuous family of isomorphisms α1,y : (E, p) → (F, q), parametrized

by points y ∈ Y , and a family of isomorphisms α2,x : ϕ(X)(E, p) →
ϕ(X)(F, p), which are compatible with the natural transformation c21.

(4) The equivalence class of this data.

We will make special use of the case where X is Dn, the n-ball in Rn, and Y is
Sn−1, viewed as the boundary of Dn. The result [5, Lemma (1.3.8)] characterizes a
convenient set of representatives for K(Dn, Sn−1;ϕ); because our goal is to present
the ideas of Karoubi’s proof, and not the calculations involved, this result will not
be presented here, although the weaker fact that the elements K(Dn, Sn−1;ϕ) can
all be expressed in the form d(E,E, α1, α2) is interesting.

3.4. Cliffordian K-Theory: Kn and Kp,q. It is finally time for Clifford algebras
to make their return. We will use them to construct groups Kn(C) for a Banach
category C so that the eightfold periodicity of these groups is an immediate con-
sequence of the periodicity of modules over Clifford algebras. From there, proving
real Bott Periodicity is merely a matter of showing that this definition has a genuine
interpretation in terms of topological K-theory.

Let C be a Banach category and Cp,q the Clifford algebra C(Rp+q, Qp,q), where
Qp,q is the quadratic form from 2.8. Let Cp,q be the subcategory of C of objects in
C which are also modules over Cp,q, as in Example 3.11. Notice that isomorphisms
between the various Clifford algebras Cp,q induce equivalences between the cate-
gories Cp,q. If Cp,q is isomorphic to Cp

′,q′ , then this isomorphism gives an action
of Cp,q on the objects of Cp′,q′ , and vice versa. In Corollary 2.16, we showed that
C4,0 is isomorphic to C0,4, and as we mentioned then, they are in fact isomorphic
as graded algebras. It follows that C4,0 is equivalent to C0,4.

There are two particular equivalences of categories of the form Cp,q which we
should mention; the first is a direct consequence of the structure of the Clifford
algebras; the second is somewhat more difficult to verify.
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Proposition 3.21. Let C be a Banach category. Then Cp+4,q is isomorphic to
Cp,q+4.

Proof. It suffices to show that Cp+4,q ∼= Cp,q+4; Using Lemma 2.3 and Corrolaries
2.16 and 2.18, we write

Cp+4,q ∼= Cp+4,0⊗̂RC
0,q

∼= C4,0 ⊗R C
p,0⊗̂RC

0,q

∼= C0,4 ⊗R C
0,q⊗̂RC

p,0

∼= Cp,q+4

□

The next equivalence is on the level of categories, not Clifford algebras, and so
the proof is somewhat less straightforward.

Proposition 3.22. There exists a linear-continuous functor χ from Cp,q to Cp+1,q+1

which gives an equivalence of Banach categories.

Proof. Let {e1, . . . , ep, ε1, . . . , εq} be the basis for Rp+q which gives a set of gener-
ators for Cp,q; likewise, let {e1, . . . , ep+1, ε1, . . . , εq+1} be a basis for Rp+q+2 giving
a basis for Cp+1,q+1.

We define χ as follows. For an object E in Cp,q, we define χ(E) to be E ⊕ E;
the actions of the generators e1 through ep and ε1 through εq in Cp+1,q+1 on each
component of χ(E) are the same as the actions of the corresponding generators in
Cp,q on E. The action of the new generators ep+1 and εq+1 on χ(E) are given by
the matrices (

0 −1
1 0

)
and

(
0 1
1 0

)
,

respectively. A morphism f : E → F in Cp,q is mapped by χ to the morphism
χ(f) : E ⊕ E → F ⊕ F whose action on the components is given by the matrix(

f 0
0 f

)
The map from f to

(
f 0
0 f

)
is both linear and continuous as a function of f , so χ is

a linear-continuous functor.
We define an inverse functor χ′ : Cp+1,q+1 → Cp,q by selectively ”forgetting the

action of ep+1 and εq+1,” as follows. The action of the element η = ep+1εq+1 on an
object E in Cp+1,q+1 is a Cp,q-module automorphism, and the composition η ◦ η is
given by the action of (ep+1εq+1)

2. Now, the anticommutativity of multiplication in
a Clifford algebra, along with the knowledge that Q(ep+1) = −1 and Q(εq+1) = 1,
shows that the element (ep+1εq+1)

2 of Cp+1,q+1 is equal to the unit 1. Thus, η is

in fact an involution. We now let E0 be the kernel of the action of 1−η
2 and let E1

be the kernel of the action of 1+η
2 ; since η is an involution, the composite of these

two maps is zero and E can be written as E0 ⊕ E1. We define the functor χ′ by
χ′(E) = E0 and χ′(f) = f |E0

; the restriction of f is both linear and continuous, so
χ′ is a linear-continuous functor.

One now must check that χ′ ◦ χ is naturally isomorphic to the identity on Cp,q
and that χ ◦ χ′ is naturally isomorphic to the identity on Cp+1,q+1. For the first
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identity, we compute that the automorphism η on χ(E) = E ⊕ E is given by(
0 1
1 0

)(
0 −1
1 0

)
=

(
1 0
0 −1

)
It follows that 1−η

2 is just projection of E⊕E onto the second component; then the
kernel of this map is the first component of E⊕E, which is naturally isomorphic to
E. On the other hand, if E = E0⊕E1 is an object of Cp+1,q+1, the map χ◦χ′ sends
E to E0 ⊕E0. We therefore need to check that E0 ⊕E1 is naturally isomorphic to
E0⊕E0; this isomorphism is given as follows. By the definition of the decomposition
E = E0 ⊕ E1, the action of ep+1 on E is given by a matrix of the form(

0 −α−1

α 0

)
and it follows that the matrix (

1 0
0 α

)
gives an isomorphism from E0⊕E0 to E0⊕E1, which preserves the first component
of E0 ⊕ E0 and sends an element x in the second component to −ep+1x. □

The decomposition E = E0 ⊕ E1 using elements 1−η
2 and 1+η

2 is reminiscent of
the isomorphism between C3 and H⊕H that we gave in Example 2.13. Given that
the two components are related by multiplication by the element ep+1, which is
1-graded in the algebra Cp+1,q+1, one might now ask whether the categories Cp+q
have a Z2-grading. The answer is yes.

Definition 3.23. A Z2-graded prebanach category is a prebanach category C such
that every hom-set homC(M,N) can be decomposed into the direct sum of vector
spaces hom0

C(M,N) ⊕ hom1
C(M,N), such that this grading is compatible with the

direct sum of objects and the composition of morphisms. That is, the grade of the
composite of two morphisms is the sum of the grades of each morphism, and the i-
grade of the hom-set of direct sums is the direct sum of the i-grades of the hom-sets
of the summands. For example, homi(M⊕N,P ) ∼= homi(M,P )⊕homi(N,P ), and
likewise if the target of the hom-set is a direct sum of objects. A graded Banach
category is a graded prebanach category in which every grade-zero projection admits
a kernel

We can define the graded Clifford category Ĉp,q as the subcategory of C consisting
of objects which can be viewed as graded Cp,q-modules and graded Cp,q-module
homomorphisms. The graded-algebra isomorphism between Cp+4,q and Cp,q+4,
which follows from Lemma 2.3 and the graded algebra isomorphism between C4,0

and C0,4, then induces an equivalence of graded Banach categories between Ĉp+4,q

and Ĉp,q+4. Likewise, we have an equivalence of graded Banach categories between
Ĉp,q and Ĉp+1,q+1.

Remark 3.24. By letting the generator ϵq+1 stand in for grading, we get an

isomorphism between Cp,q+1 and (Ĉp,q)0. (Recall that Q(ϵq+1) = +1). To view
objects E and F of the ungraded category of Cp,q+1 as objects of the graded category
Cp,q, we say that a map f : E → F of Cp,q modules is of 0-graded if it commutes
with multiplication by εq+1 and 1-graded if it anticommutes, that is, if f ◦ εq+1 =
−εq+1 ◦ f , where the map εq+1 is given by the Cp,q+1-module action. Notice that
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if f is 0-graded, then it is also a map of Cp,q+1 modules, so that the zero-grade
of Ĉp,q consists of those elements of C with an action by Cp,q+1, and is therefore
equivalent to Cp,q+1.

To simplify future notation, we define Cn to be the category Cn,0 when n is
non-negative and C0,−n when n is negative; we define Ĉn analogously.

For any graded Banach category Ĉ, let UĈ : Ĉ0 → C be the forgetful functor

which simply forgets the grading on the zero-graded component of Ĉ; this functor
U is quasi-surjective. This definition allows us to define the Cliffordian K-theory
of a category.

Definition 3.25. Let C be a Banach category. The group Kp,q(C) is the K-theory
of the forgetful functor UĈp,q ). The groupKn(C) isK-theory of the forgetful functor
UĈn .

In other words, an element of Kp,q is the equivalence class of a pair of graded
objects (E,F ) in C together with a map α which makes E and F isomorphic
as ungraded objects. One can view Kp,q(C) as a kind of ”graded” Grothendieck

completion of the monoid of isomorphism classes of objects in Ĉp,q under direct
sum.

At last, we are ready to prove something which at least resembles Bott period-
icity.

Theorem 3.26. The group Kn+8(C) is isomorphic to the group Kn(C).

Proof. We already know that Cp,q is isomorphic to Cp+1,q+1 as a graded algebra,
and that Cp+4,q is isomorphic to Cp,q+4 as a graded algebra. Then the graded
algebra Cp,q is isomorphic to the graded algebra Cp+4,q+4, which in turn is isomor-
phic to the graded algebra Cp+8,q, as well as to the graded algebra Cp,q+8. These
isomorphisms of graded algebras induce isomorphisms between the graded Banach
categories Cp+8,q, Cp,q+8, and Cp,q. These give isomorphisms between Kp+8,q(C),
Kp,q+8(C), and Kp,q(C). Now, choosing either p = n and q = 0, or p = 0 and
q = −n when n is negative, yields the desired isomorphism between Kn(C) and
Kn+8(C). □

This theorem looks a lot like Bott Periodicity, but so far it is not clear whether
or not it means anything from the perspective of topological K-theory. We have
seen, for instance in Example 3.17, a way to connect the group K(C) where C is a
a Banach category with the topological group KO(X), but the groups Kn(C) are,
so far, totally formal. The remainder of our work will be to connect the groups
Kn(C), in certain cases, with the real topological K-theory of certain spaces, and
to use this connection to derive a genuine periodicity in the topological setting.

When n = 0, we have a relatively simple connection between Kn(C) and the
group K(C); as we discussed in Example 3.17, the right choice of category C gives
an isomorphism between K(C) and KO(X) for a space X. Notice that the elements
of K0(C) are triples (E,F, α), where E and F are two graded objects in C and
α : E → F is an isomorphism. We have the following equivalence

Proposition 3.27. The group K0(C) is isomorphic to K(C), by the homomorphism
sending a triple d(E,F, α) in K0(C) to the equivalence class [E0]− [F 0] in K(C)

We offer a sketch of the proof below; it appears in [5, Proposition (2.1.7)], and
is proven as a special case of [5, Proposition (2.1.10)].
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Sketch of Proof. What must be shown is that the map is injective and surjective.
To show injectivity, we consider an object d(E,F, α) such that E0 ∼= F 0; we must
show that d(E,F, α) = 0. To do so, we might write E = H ⊕E1 and F = H ⊕F 1,
express both E and F as ”subobjects” of H ⊕E1 ⊕F 1 (i.e. images of projections),
and then show that the endomorphism of H ⊕E1 ⊕ F 2 induced by α is homotopic
to the identity. Along the way, we might add or subtract elementary triples. To
show surjectivity, one must produce, for each object E in C, an object in Ĉ0 whose
0-graded component is isomorphic to E, and an object F in Ĉ0 which is isomorphic
to E in C but whose 0-graded component is isomorphic by a map α to the zero
object; then (E,F, α) in K0(C) will map to [E0]− [0] = [E] in K(C). For instance,
one can either put all of E in grade 0 or all of it in grade 1. The only elements in C0

are of grade-0, so the grading of objects and hom-sets is more-or-less arbitrary. □

Before moving on, we will state, but in the interest of time not prove, a relevant
technical result, which allows us to easily find Serre functors and quasi-surjective
functors between categories Cp,q and C′p,q.

Proposition 3.28. Let C and C′ be two Banach categories and ϕ : C → C′ a Serre
functor. Then the restricted functor ϕp,q : Cp,q → C′p,q is a Serre functor. Likewise,
if ϕ is quasi-surjective, then so is ϕp,q

This statement is proven in [5, Proposition (2.1.8)]. This statement allows us
to pass from Banach square of categories to Banach squares of the subcategories
with action by a Clifford algebra Cp,q. We now extend our Cliffordian K-theory to
functors.

Definition 3.29. Let C and C′ be two Banach categories, and ϕ : C → C′ a graded,
quasi-surjective Serre functor. The graded K-theory of ϕ, written K̂(ϕ), is the
K-group of the Banach square

Ĉ0 ϕ0

//

UC

��

Ĉ′0

UC′

��
C

ϕ // C′

In particular, we can use the isomorphism between Cp,q+1 and
(
Ĉp,q

)0

mentioned in

Remark 3.24 to define, for a quasi-surjective Serre functor ψ : C → C′, the K-groups
Kp,q(ψ). We define Kp,q(ψ) to be the K-group of the Banach square

Cp,q+1 ψ
p,q+1

//

��

C′p,q+1

UC′

��
C

ϕ // C′

.

For the purposes of notation, we will suggestively define Kn(ψ) to be Kn,0(ψ)
when n is positive and K0,−n(ψ) when n is negative.

Ordinarily, the K-theory of a Banach square would be formed by equivalence
classes of certain quadruples. A simpler characterization of Kp,q(ψ) is given in [5,
page 205], and goes as follows. Consider the set Γp,q(ψ) of triples (E,F, α), where
E and F are objects of Cp,q+1 and α : E → F is an isomorphism of Cp,q modules.
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We call (E,F, α) elementary if α has degree 0; a homotopy between two triples
(E,F, α) and (E′, F ′, α′) will be a triple (e, f,ℵ) in Γp,q(ψ[0, 1]) whose restriction
to 0 is (E,F, α) and whose restriction to 1 is (E′, F ′, α′). We can express Kp,q(ψ)
as the quotient of Γp,q(ψ) by the equivalence relation generated by homotopy and
addition of elementary triples.

Like with the Cliffordian K-groups of categories, K0(ψ) is isomorphic to K(ψ),
with the triple d(E,F, α) mapping to the triple d(E0, F 0, α0), as seen in [5, Propo-
sition (2.1.10)]. There is another characterization of Kp,q(ψ) which is sometimes
useful. First, we introduce a shorthand term.

Definition 3.30. A grader ε on an object E of Cp,q is an involution ε : E → E
which anticommutes with the action of the generators of Cp,q. A grader induces a
grading on E by letting E0 be the kernel of the map 1−ε

2 .

A grader therefore plays the role of η in the proof of Proposition 3.22.
Let ∆p,q(ψ) be the additive category whose objects are triples (E, ε1, ε2), where

E is an object of Cp,q and ε1 and ε2 are two graders of E such that ψ(ε1) = ψ(ε2).
A morphism in ∆p,q(ψ) from (E, ε1, ε2) to (F, η1, η2) is given by a map f : E → F
of Cp,q modules such that ηif = fεi. We call a triple (E, ε1, ε2) elementary if
ε1 = ε2. We call two triples σ1 = (E, ε1, ε2) and σ2 = (F, η1, η2) homotopic if there
is an object (e, ξ1, ξ2) of the category ∆p,q(ψ([0, 1])) whose restriction to 0 is σ1 and
whose restriction to 1 is σ2.

In [5, Proposition (2.1.12)], it is shown that the group Kp,q(ψ) is isomorphic to
the quotient of the monoid Γ, consisting of the objects of ∆p,q(ψ) under direct sum,
by the equivalence relations generated by homotopy and addition of elementary
triples.

We will introduce two new pieces of notation, both of which will be important
to the general statements of Bott Periodicity, and both of which are just special
cases of constructions we have already seen.

The first piece of notation is for a special case of the Cliffordian K-theory of a
functor. Let X be a compact space, Y a closed subspace of X, and ρ : C(X) →
C(Y ) the restriction functor. Then we denote by Kp,q(X,Y ; C) the group Kp,q(ρ);
likewise,Kn(X,Y ; C) will denote the groupKn(ρ). In particular, if C is the category
of real finite dimensional vector spaces, then K0(X,Y ; C) is the relative K-theory
of the pair (X,Y ), as discussed in Remark 3.18.

The second piece of notation is a slight generalization of the notation Cp,q and
Kp,q. Suppose we have a compact space X, a closed subspace Y of X, a finite di-
mensional vector bundleW overX whose fibers are equipped with a non-degenerate
quadratic form Q, and a sub-bundle V of W such that the restriction of Q to V is
non-degenerate. For a Banach category C and a vector bundle V over X with non-
degenerate quadratic form Q, we denote by CV (X) the subcategory of C consisting
of objects which are C(V ;Q)-modules and morphisms which are C(V ;Q)-module
homomorphisms, where C(V ;Q) is the algebra bundle over X.

We define KW ;V (X,Y ; C) to be the K-theory of the Banach square

CW (X) //

��

CV (X)

��
CW (Y ) // CV (Y )
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where the vertical arrows are given by restriction and the horizontal arrows are
given by inclusion of CW into CV , since V is a sub-bundle of W , every C(W,Q)
bundle is a C(V,Q|V ) bundle by forgetting the action of points in W which are
not in V . More explicitly, the elements of KW ;V (X,Y ; C) can be viewed as triples
(E,w1, w2), where E is an object in C and w1 and w2 are both structures of C(W )-
modules on E which restrict to the same C(V )-module structures over X and the
same C(W )-module structures over Y ; these triples are taken modulo homotopy
and addition of elementary triples (E,w,w). Specifically, the ”structure of a C(W )
module on E” specifies the action of C(W ) on E by specifying a map from C(W )
to the Banach space of endomorphisms on E.

In the special case where V is any vector bundle over X with a non-degenerate
quadratic form Q, and T 0,1 is a trivial line bundle X × R1 spanned by a basis
element et, with the quadratic form R(et) = 1, we use KV (X,Y ; C) to refer to
KW ;V (X,Y ; C). As in Remark 3.24, the group KV (X,Y ; C) is associated with the
subcategory of C of graded C(V ;Q) modules.

The important case to us is when V is the trivial bundle T p,q = X ×Rp+q with
the quadratic form Qp,q, given by

Qp,q(ei) =

{
−1, 1 ≤ i ≤ p

1, p < i ≤ p+ q

In this case, a C(T p,q;Qp,q)-module is just a Cp,q-module, and so KV (X,Y ;C)
is just Kp,q(X,Y ; C). If V is the zero vector bundle, that is V = X × R0, then
KV (X,Y ; C) is just K0(X,Y ; C), and in particular if Y is the empty set, then
KV (X,Y ; C) will be denoted KV (X; C).

3.5. Bott Periodicity. At long last, it is time for the theory of Banach categories
to pay off; we will connect the notions of Cliffordian K-theory with actual topo-
logical K-theory, allowing us to connect the periodicity of Clifford modules, which
we have already exploited, with the periodicity of K-theory. We will show that for
any compact space X, we have an isomorphism between Kn(X) and Kn+8(X).

Let X be a compact space and V a vector bundle over X equipped with a non-
degenerate form Q. Let V = V ′ ⊕ V ′′ be an orthogonal decomposition of V with
respect to Q such that the restriction of Q to V ′ is positive definite. Let 1 be the
trivial line bundle over X. If S(V ⊕ 1) is the unit sphere bundle associated with
V ⊕ 1, and S+(V ⊕ 1) is the bundle of upper hemispheres, with ”upper” defined
relative to the trivial line bundle component, we have a projection p from S+(V ⊕1)
onto the ball bundle B(V ′). For example, we can view B(V ′) as being the unit disk
passing through the equator of the unit sphere S(V ′ ⊕ 1). Note that the projection
p is a homeomorphism which fixes S(V ′), the boundary of B(V ′). Let π be the
canonical projection of S+(V ⊕ 1) onto X; let π̄ : B(V ′) → X be the result of
composing π with the inverse of p.

Theorem 3.31. There is an isomorphism

KV ′⊕V ′′
(X; C) ∼= K π̄∗V ′′

(B(V ′), S(V ′); C),
where π̄∗V ′′ is the pullback bundle over B(V ′).

The proof of Theorem 3.31 is rather arduous; we will give a sketch of it shortly,
along with directions to the details in [5]. First, however, let us present the main
attraction.
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Corollary 3.32 (Real Bott Periodicity Theorem). The real topological K-theory
of a compact space X has period 8. That is, KO−n(X) ∼= KO−n−8(X).

Proof. Let V ′ be the bundle T 0,8 and let V ′′ be the zero bundle, so that π̄∗(V ′′)

will be zero as well. Then V = V ′ ⊕ V ′′ is just the bundle T 0,8. Furthermore, KV ′

of any pair of spaces in any Banach category is just K0,8 = K−8. By Theorem 3.26,
K−8(X; C) is isomorphic to K0(X; C). This isomorphism, together with Theorem
3.31 tells us that

K0(X; C) ∼= KV ′⊕V ′′
(X; C) ∼= Kπ∗(0)(B(V ′), S(V ′); C) = K0(B(V ′), S(V ′))

Let us take C to be the category of finite dimensional real vector spaces, so that
for a compact space Y and closed subspace Z, the group K0(Y,Z; C) is simply the
real K-theory KO(Y,Z). Then we have the isomorphism

KO(X) ∼= KO(B(V ′), S(V ′))

since V ′ is the trivial R8 bundle over X, B(V ′) and S(V ′) are the trivial D8 and
S7 bundles over X, respectively. Thus, we have that

KO(X) ∼= KO(X ×D8, X × S7)

We now need only appeal to basic properties of topological K-theory. First, we
rewrite KO(X × D8, X × S7) as the reduced group K̃O((X × D8)/(X × S7)),

which is just the reduced group K̃O(X × S8). We rewrite X × S8 as the smash
product X+ ∧ S8, which is just Σ8X+. Now, we apply the suspension axiom to

get K̃O(Σ8X+) ∼= K̃O
−8

(X+), and then use the definition of reduced K-theory to
show that this reduced group is isomorphic toKO−8(X). Thus, we have shown that
KO0(X) ∼= KO−8(X). To get the full result, that is, to show that KO−n(X) ∼=
KO−n−8(X), we apply the above isomorphism to the suspension Σn(X) to get
KO(Σn(X)) ∼= KO−8(Σn(X)). The suspension isomorphism then tells us that

KO−n(X) ∼= KO−n−8(X)

□

All that remains is to sketch the proof of Theorem 3.26; there is a homomorphism
t between KV ′⊕V ′′

(X; C) and Kπ∗V ′′
(B(V ′), S(V ′); C), which Karoubi proves is an

isomorphism. The map is actually defined from KV ′⊕V ′′
(X; C) to Kπ∗V ′′

(S+(V ′ ⊕
1), S(V ′); C), and defined as follows. An element d(E,w1, w2) of K

V ′⊕V ′′
(X; C) is

mapped to the triple d(π∗E, ε(w1), ε(w2)). Here π∗(E) is the pullback of E. We
view E as an object of CT (X), that is, it is an object of C whose morphisms to an
object F are continuous maps from X to homC(E,F ); the pullback of E lies in the
category CT (S+(V ′⊕1), and corresponds to the same object of C as E does (but has
different morphisms into and out of it). The map ε maps a C(V ′ ⊕ V ′′;Q)-module
structure on E to a C(V ′′ ⊕ 1)-module structure on π∗(E) as follows. The action
of the vector (v′′, µ) ∈ (V ′′ ⊕ 1) on the object π∗(E) above the point7 (ν′, λ) in the
module structure ε(wi) is given by

ε(wi)(ν
′′, µ) = wi(0, ν

′′, 0) + µwi(ν
′, 0, λ)

7The object which can be thought of as ”the fiber of π∗(E) above a point x” is the pair (F, px),
that is, it is the object in C associated with E paired with a single projection map from the family

of projection maps given as an object of E.
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where wi maps a point p in V ′⊕V ′′⊕1 to the element of homCT (S+(V ′′⊕1))(π
∗E, π∗E),

which is the pullback by π of the element wi(p) in homCT (X)(E,E) originally spec-
ified.

With the map t : KV ′⊕V ′′
(X; C) → Kπ∗V ′′

(S+(V ′ ⊕ 1), S(V ′); C) defined, it
remains to show that it is an isomorphism. Let us sketch Karoubi’s proof of this
fact; the gory details are found in [5, Section 2.2], with specific results cited as they
arise.

Proof of Theorem 3.26. The basic strategy is to work by induction on the dimension
of V ′. This uses the following special case of the base case, namely the case where
the space X is just a point.

Theorem 3.33. Let C be a Banach category. Then there is a map T : Kp,q+1(C) →
Kp,q(D1, S0; C), which is both a homomorphism and an isomorphism.

This result is given in [5, Theorem (2.2.2)], and needs several steps; the descrip-
tion of the homomorphism T can be found there, and uses the fact, given in [5,
Lemmas (2.2.3) and (2.2.4)], that the elements of Kp,q(D1, S0; C) are parametrized
in terms of the cosines and sines of an angle θ between 0 and π, a special grading
εq+1, and a family α of Cp,q module isomorphisms parametrized by θ, with α(0)
the identity and α(π) anticommuting with εq+1. All of this is proven by carefully
studying the K-groups Kp,q(D1, S0). The choices of families α(θ) break down into
certain types (”Laurentian,” ”quasi-polynomial,” and ”quasi-affine”), based on how
they relate to θ and εq+1; restricting α to each of these types of families of auto-
morphisms gives new K-theories Kp,q

L ,Kp,q
P , and Kp,q

A . Karoubi next shows, in [5,
Lemmas (2.2.5)-(2.2.9)] that each map in the following sequence is an isomorphism,
and we take T to be its composite:

Kp,q+1(C) t4 // Kp,q
A (D1, S0)

t3 // Kp,q
P (D1, S0)

t2 // Kp,q
L

t1 // Kp,q(D1, S0)

The proof that t1 is an isomorphism, in [5, Lemma (2.2.5)], uses the existence of
Fourier series to show that any family of isomorphisms α(θ) can be viewed as a
”Laurentian” family. The proof that t2 is an isomorphism, in [5, Lemma (2.2.6)],
uses explicit rotation homotopies between elements of the various K-groups in or-
der to show that t2 is injective and surjective; likewise, the proof that t4 is an
isomorphism, in [5, Lemma (2.2.9)], also proceeds by explicit construction of rele-
vant homotopies. The proof that t3 is an isomorphism, in [5, Lemma (2.2.8)], uses
an explicit description of inverses of elements in each of these modified K-groups,
given in [5, Lemma (2.2.7)]. The culmination of these efforts is an isomorphism T
between Kp,q+1(C) and Kp,q(D1, S0; C).

Next, we prove the case where V ′ and V ′′ are both trivial bundles, by induction
on p. We suppose that Theorem 3.26 holds when the dimension of V ′ is less than
n. We construct a homomorphism

(3.34) s : KV ′⊕V ′′
(X,Y ) → KV ′′

(X ×B(V ′), X × S(V ′) ∪ Y ×B(V ′))

which is equal to T when Y is the empty set, and assume by induction that this
map is an isomorphism when the dimension of V ′ is less than n. Now, we take V ′

to be a trivial n-dimensional real vector bundle, with V ′
1 the first n− 1 dimensions

of this bundle and V ′
2 the nth dimension. The inductive hypothesis gives us an

isomorphism

(3.35) t : KV ′
1⊕(V ′

2⊕V
′′)(X) → KV ′

2⊕V
′′
(S+(V ′

1 ⊕ 1), S(V ′
1))
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Applying s now gives us an isomorphism to the rather monstrous looking group

(3.36) KV ′′
(S+(V ′

1⊕1)×XS+(V ′
2⊕1), S+(V ′

1⊕1)×XS(V ′
2)∪S(V ′

1)×XS+(V ′
2⊕1)

Fortunately, Karoubi constructs, in [5, page 219], a homeomorphism h between the
pair in (3.36) and the pair (S+(V ′

1 ⊕ V ′
2 ⊕ 1), S(V ′

1 ⊕ V ′
2)). This homeomorphism

induces an isomorphism in the K-groups, and so by reassembling the components
of V ′, we have that KV ′⊕V ′′

(X) is isomorphic to KV ′′
(S+(V ′ ⊕ 1), S(V ′)).

It remains to prove the case where the vector bundles are nontrivial. For B
a subspace of A, we use the abbreviation KV

1 (A,B) to mean the group KV (A ×
D1, A × S0 ∪ B × D1); notice that the pair in (3.36) is of this form. For a single
space A, the abbreviation KV

1 (A) denotes the group KV (A×D1, A×S0), that is, it
is the special case where B is the empty set. The isomorphism s from (3.34) shows
that KV

1 (A,B) is isomorphic to KV⊕1(A,B), where 1 is the trivial line bundle over
A.

Karoubi shows ([5, Lemma (2.2.11)]) that given subsets U1 and U2 of X, we have
a Mayer-Vietoris exact sequence

KV
1 (U1)⊕KV

1 (U2) // KV
1 (U1 ∩ U2)

d // KV (U1 ∪ U2) // KV (U1)⊕KV (U2) // KV (U1 ∩ U2)

(3.37)

One then takes a closed cover {Tλ} of X where the bundles V ′ and V ′′ are trivial on
each set and uses compactness of X to make this cover finite; we can now prove the
result on X by proving it over induction on the finite set, using the Mayer-Vietoris
sequence to show that if the theorem holds on U1 =

⋃n−1
i=1 Ti, U2 = Tn, and U1∩U2,

then it holds on U1∪U2. To do this, one adds to the diagram in (3.37) an analogous
exact sequence, using the maps

t :KV
1 (A) → KV ′′

1 ((B(V ′), S(V ′))A)

t :KV (A) → KV ′′
((B(V ′), S(V ′))|A)

to get a diagram like

KV
1 (U1) ⊕ KV

1 (U2) //

t

��

KV
1 (U1 ∩ U2)

d //

t

��

KV (U1 ∪ U2) //

t

��

KV (U1) ⊕ KV (U2) //

t

��

KV (U1 ∩ U2)

t

��
KV ′′

1 (B(V ′), S(V ′))⊕2 // KV ′′
1 (B(V ′), S(V ′)) // KV ′′

(B(V ′), S(V ′)) // KV ′′
(B(V ′), S(V ′)) // KV ′′

(B(V ′), S(V ′))

In the above diagram, all ball and sphere bundles should be viewed as being
restricted to the appropriate subspaces U1, U2, U1 ∩ U2, and U1 ∪ U2. Karoubi
shows that the diagram commutes in [5, Corollary (2.1.13)]. In the base case,
where both U1 and U2 are from the cover by subspaces on which V is trivial, the
four outer vertical maps are just the map from (3.35); in particular, since the bundle
V is trivial on U1, U2, U1 ∩ U2, these arrows are isomorphisms. Since the diagram
commutes, the Five Lemma implies that the middle vertical map is an isomorphism.
Thus, in this step, KV (U1∪U2) is isomorphic to KV ′′

(B(V ′), S(V ′)). In subsequent
steps of the induction, the inductive hypothesis is exactly that the four outer arrows
commute. Thus, we also get that KV (U1∪U2) is isomorphic to KV ′′

(B(V ′), S(V ′)).
By completing the induction on the finite family {Ti}, we conclude that KV (X) is

isomorphic to KV ′′
(B(V ′), S(V ′)). □
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In the proof of real Bott Periodicity, all our vector bundles were trivial. We
presented the full result because it is a useful tool in its own right. For example, the
following ”Generalized Bott Periodicity Theorem” appears in [5, Theorem (2.3.2)].

Theorem 3.38 (Generalized Bott Periodicity Theorem). Let C be a real Banach
category. Then there exists an isomorphism

βR : K(C) → K(D8, S7; C),

In [5, Remark 2, page 222], Karoubi explains how one can obtain a cohomol-
ogy theory hn(X,Y ) from the groups Kn(X), Kn(Y ), and Kn(ϕ), where ϕ is the
restriction map C(X) → C(Y ). This allows one to obtain Theorem 3.38 by apply-
ing the suspension axiom repeatedly. On the other hand, if one takes C to be the
category of finite dimensional real vector bundles over X, then one recovers the
classical real Bott Periodicity Theorem. On the other hand, if we take C to be the
category of real G-vector bundles over a compact G space X, Theorem 3.38 yields
an isomorphism between KG(X) and KG(X ×D8, X × S7, an isomorphism noted
by Karoubi in [5, Page 224].

We conclude with a final remark on the equivariant case. Karoubi’s proof of Bott
Periodicity uses the periodicity of the groups M(Ck) (and a similar periodicity
of the groups M(C ′

k)). We previously mentioned, in Remark 2.24, a periodicity
in the groups M(Ck) ⊗ Z[G]. One might try, then, to define subcategories Cp,qG
that capture this tensor product. One could also try to define this subcategory to
be the subcategory of objects of C which are (Ck ⊗ Z[G])-modules, although the
difficulty here is that such a definition requires one to understand a great deal about
representations of G.
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Supérieure, 4e série, 1(2):161–270, 1968.

[6] nLab authors. Serre-Swan theorem. https://ncatlab.org/nlab/show/Serre-Swan+theorem,

August 2023. Revision 16.
[7] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.

[8] R. Wood. Banach algebras and bott periodicity. Topology, 4(4):371–389, 1966.

https://ncatlab.org/nlab/show/Serre-Swan+theorem
https://ncatlab.org/nlab/revision/Serre-Swan+theorem/16
https://stacks.math.columbia.edu

	1. Introduction
	2. Clifford Algebras
	3. Karoubi's Proof
	3.1. Banach Categories and their K-theory
	3.2. Banach Category Bundles
	3.3. K-Theory of Functors
	3.4. Cliffordian K-Theory: Kn and Kp,q
	3.5. Bott Periodicity

	Acknowledgments
	References

