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Abstract. Geometric complexes are a powerful tool of geometric decompo-

sition; random geometric complexes add a probabilistic element that makes

approximation methods much more flexible. We will demonstrate one such

asymptotic method of studying homology, revealing the uniformly percolating

behavior of homology groups of every dimension of the random Rips complex

by an analysis only of its underlying geometric graph. We follow Kahle [3]

while relying heavily on results about random geometric graphs from Penrose

[5] and utilizing the Fundamental Theorem of Discrete Morse Theory [7] de-

veloped by Forman, both of which are at the intuitive heart of the subject of

geometric complexes, which is geometric simplification.
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1. Introduction

The study of geometric complexes is a field where we examine the geometric

interactions between a set of points in a space, with ties to topology, geometry, al-

gebra, and combinatorics. A precursor to geometric complexes is geometric graphs,

where we attach edges between points that are within a certain distance of each

other to lay a graph structure on our points, which are now vertices. The power

of a geometric graph is immediately intuitive as a way to manage distance-based

networks such as social circles if the vertices are individuals, digital systems if the

vertices are nodes, molecular bonds if the vertices are atoms etc.
1
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Our goal is to reveal that there is often a richer geometry behind a set of points

embedded in a space than a geometric graph is capable of revealing. Indeed, of-

tentimes we wish not only to extract information from a “point cloud,” but also to

utilize those points to understand the ambient space in which they lie. Extending

the notion of connected components and cycles in graphs, we will study the homo-

topy and homology of geometric complexes, which offers a far more comprehensive

geometry on a vertex set and its underlying space, especially when the dimension

of our space is great.

To geometrically understand a space, ideally we can cover it with the body of a

geometric complex, which then “tessellates” the space. The geometric complex will

“triangulate” the space into simpler parts, known as simplices, which possess simple

combinatorial description and geometric properties. The idea is to make a complex

space more understandable by analyzing its elementary components. Indeed, we

will introduce and use results from Discrete Morse Theory, which is precisely the

study of identifying which elementary components of a geometric complex comprise

the entire homotopy of a triangulated space. With some classes of spaces, such as

finite topological spaces [9], we can understand their homotopy completely by simple

homotopy equivalence to geometric complexes.

However, sometimes we do not even possess enough information about a geo-

metric object to triangulate it via a complex or to find a homotopy equivalent one.

This is where we finally arrive at random geometric complexes. Even if we are

unable to yield a specific “tessellating” complex, we can try to derive universal

properties about complexes taken randomly on a space. A technique we will use

is to take the asymptotic behavior of random complexes to become asymptotically

more intricate, meaning more vertices and smaller scale, to capture the details of

our space.

We motivate and examine one of the geometric complexes that is most prevalent

in the field: the Rips Complex.

The Rips Complex is interesting to study because of its close connection to the

more primitive geometric graph, from which we first motivated geometric com-

plexes. Our goal will be to access the rich homological information contained in a

geometric complex while limiting our analysis solely to the study of its 1-skeleton,

which is an underlying geometric graph for a Rips Complex. Thus, we will be able

to use combinatorial methods to access topological information.

The study of the random Rips Complex can be seen as an extension of the

study of random geometric graphs [5]. Instead of studying percolation, which can

be viewed as the study of 0-dimensional homology, we examine when homology of

higher dimensions appears and disappears. Furthermore, instead of directly varying

the probability that two adjacent vertices are connected and finding the percolation

threshold, we can instead vary the scale of the Rips Complex in relation to the
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number of vertices we have and find thresholds of vanishing and non-vanishing

homology. We present the remarkable result by Kahle [3] from 2010 that: if the

scale of our random Rips Complex is asymptotically within a specific tight interval

(with respect to the number of points in the complex), homology of every single

dimension exists as we asymptotically increase the number of points in our random

complex and does not exist otherwise.

This kind of asymptotic analysis ensures that we are approximating our space

as finely as possible as the number of vertices increases and scale decreases causing

our Rips Complex to fit snuggly into the ambient space. Kahle’s result is extremely

powerful when we are able to use a random Rips complex to asymptotically ap-

proximate a space, as we can pinpoint the existence and non-existence of homology

groups of the space by just the scale of our complex. The connections with perco-

lation theory are revealing as they tell us that we could actually access far more

information from just a geometric graph than might seem immediately obvious,

though the venture into random geometric complexes was necessary to make this

apparent.

2. Preliminaries

2.1. Geometric Complexes. We first establish the basic construction and power

of a geometric complex as a way to decompose spaces into simpler parts.

Definition 2.1. Given a set of vertices V = {v0, v1, ..., vk}, we define its convex

hull by the smallest convex set “wrapping” the vertices:

Conv(V ) =

{
k∑

i=0

αi · vi|
k∑

i=0

αi = 1, αi ≥ 0

}

Definition 2.2. A geometric k-simplex σ in X is the convex hull of an affinely

independent set of vertices V = {v0, v1, ..., vk} ⊆ X (requiring k + 1 vertices to

construct a k-simplex).

Definition 2.3. If U ⊆ V , τ = Conv(U) is a face of σ = Conv(V ) and σ is a

coface of τ .

Definition 2.4. A geometric simplicial complex or geometric complex K ⊆ X is

a finite collection of geometric simplices such that:

(1) If σ ∈ K and τ is a face of σ, then τ ∈ K

(2) If σ, τ ∈ K, then σ ∩ τ is either ∅ or a common face of σ and τ

Definition 2.5. The body of K is
⋃

σ∈K

σ ⊆ X, the conglomeration of all the sim-

plices of the complex as a single set which is triangulated by the complex K.

Definition 2.6. The n-skeleton of K is its set of m-simplices with m ≤ n
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The vocabulary we’ve defined above including face, body, triangulate, and skele-

ton highlight that the utility of geometric complexes is to understand shapes by

“tesselating” them: objects that can be disjointly decomposed in an organized

fashion are then much easier to study.

Remark 2.7. It is interchangeable to denote a simplex either by just its vertices

(abstract representation) or by the collection of all points in the simplex (geometric

realization). We will opt for the abstract representation.

2.2. The Rips Complexes. We motivate the use of Rips Complexes by show-

ing that it has hidden combinatorial structure which aids us in the study of its

homological properties.

Definition 2.8. The Vietoris-Rips Complex on vertices V ⊆ X with scale r ≥ 0 is

defined by (where each simplex is given by its abstract vertex set representation):

Rips(V, r) = {σ ⊂ V |∀x, y ∈ σ, d(x, y) ≤ r}

Definition 2.9. The geometric graph on n points Xn ⊆ Rd with scale r > 0 is

the undirected graph G(Xn, r) = (V,E) with vertex set V = Xn and edge set

E = {{x, y} ⊆ Xn|d(x, y) ≤ r}.

Definition 2.10. A k-clique of a graph G = (V,E) is a subset Wk ⊆ V of k vertices

that are all adjacent to each other i.e. ∀x, y ∈ Wk where x ̸= y, {x, y} ∈ E.

Definition 2.11. The clique complex of a graph G = (V,E) inherits the same

vertex set V where each (k+1)-clique of G forms a corresponding k-simplex.

Definition 2.12. Simplicial complexes that arise as the clique complex of a geo-

metric graph are called flag complexes.

Figure 1. Geometric Graph and corresponding Rips Complex in R2

Remark 2.13. Observe that Rips(Xn, r) is defined to be exactly the clique com-

plex of the geometric graph G(Xn, r). Consequently, our study of the Rips complex

can be shifted to studying the underlying geometric graph.
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2.3. Simplicial Graph Theory. We reveal the way in which the geometric graph

of a Rips Complex is connected to its homology.

Definition 2.14. The (k+1)-dimensional cross-polytope is the convex hull of the

2k + 2 mirrored Rk+1 standard basis vectors {±ei}1≤i≤k+1. The boundary of the

cross-polytope is a k-dimensional simplicial complex denoted Ok, which we will

refer to as a “vertex-minimal” k-sphere.

We now introduce the main combinatorial sleight of hand: the k’th homology

of a flag complex can be identified by “vertex-minimal” spheres in the underlying

geometric graph. This is geometrically intuitive up to 3-dimensions but we extend

the result generally.

Lemma 2.15. If △ is a flag complex, then any nontrivial element of Hk(△) also

exists on a subcomplex S ⊂ △ with at least 2k + 2 vertices. If S has exactly 2k + 2

vertices, then S is combinatorially isomorphic to Ok.

Proof. (Sketch) Any non-trivial element of Hk(△) indicates the existence of a k-

cycle that is not the boundary of a (k+1)-simplex and so must contain at least 2k

+ 2 vertices. We construct a minimal subcomplex S by combining all and only all

the simplices part of this k-cycle. By definition, since Ok is the simplex with the

smallest number of vertices homeomorphic to a k-sphere and S has exactly 2k +

2 vertices, it must be combinatorially isomorphic to Ok by the uniqueness of the

“vertex-minimal” k-sphere. □

Remark 2.16. We will thus transfer our study of k’th homology to the study of

the subgraphs of the geometric graph isomorphic to Ok.

Definition 2.17. A graph H = (VH , EH) is an induced subgraph of G = (VG, EG)

if for any x, y ∈ VH , we have that {x, y} ∈ EH if and only if {x, y} ∈ EG.

Remark 2.18. A connected graph is called feasible if it is geometrically realizable

as an induced subgraph of a geometric graph. We harmlessly add a feasibility

requirement as we are only interested in the geometric graph.

Example 2.19. The complete bipartite graph K1,7 is not feasible since a regular

heptahedron has longer distance from each vertex to its center than side lengths.

Definition 2.20. Induced Subgraph Counting Functions Denote the number

of induced subgraphs ofG(Xn, r) isomorphic toH byGn(H). In particular, Gn(Ok)

will tell us how many k-dimensional “holes” there are in the Rips complex.

Definition 2.21. Normalized Cross-Polytope Counting Function For a fea-

sible graph H of order k, define the indicator function hH : Xk ⊂ Rd → R by

hH(Xk) = 1 if G(Xk, 1) is isomorphic to H and 0 if not. If f : Rd → R is the
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density function from which the points Xk are drawn, we define:

µH = k!−1

∫
Rd

f(x)kdx

∫
(Rd)k−1

hH({0, x1, ..., xk−1})d(x1, ..., xk−1)

Theorem 2.22. Expectation of Subgraph Counts Suppose that lim
n→∞

r = 0 and

H is a feasible graph of order k ≥ 2, then:

lim
n→∞

r−d(k−1))n−kE[Gn(H)] = µH

Proof. The proof is purely measure-theoretic and thus rather unenlightening so we

will omit it, but it can be found in Proposition 3.1 in Penrose [5] □

Remark 2.23. Theorem 2.22 is the main result from Random Geometric Graph

Theory [5] which we rely on to understand the presence of “vertex-minimal” spheres.

Its versatility comes largely from the fact that we only need our scale to asymptot-

ically approach 0 with respect to the vertex count without any requirements to the

speed at which we do so.

2.4. Discrete Morse Theory. We will build up to the fundamental theorem of

discrete morse theory, which is the extremely powerful idea that we can analyze

just a select few simplices in a geometric complex to understand its homotopy class

completely.

Definition 2.24. CW Complexes A d-cell σ is homeomorphic to the d-ball. We

use attaching maps f : ∂σ → X to build a CW complex X by attaching cells of

increasing dimension (building first the 0-skeleton then 1-skeleton and so on) via

X ∪f σ where ∂σ is “glued” to f(∂σ) on the pre-existing structure of X.

Remark 2.25. A d-simplex is a d-cell so geometric complexes are CW Complexes

Definition 2.26. We now motivate Discrete Morse Theory with the notion of

homotopic simplification. (σp−1, τp) is called a free pair if τ is the only coface of

σ. Removing a free pair is a deformation retraction called an elementary collapse,

preserving homotopy type while “simplifying the complex.” Our goal is to simplify

the complex maximally and encode this simplification while preserving homotopy.

Definition 2.27. A discrete vector field V on K is a pairing of the faces of K

denoted by V = {(σ(p−1), τ (p)))|σ ⊂ τ} where each simplex is in at most one pair.

Definition 2.28. A V-path on a discrete vector field V is a sequence of simplices

{σ(p)
0 , τ

(p+1)
0 , σ

(p)
1 , τ

(p+1)
1 , ..., τ

(p+1)
k−1 , σ

(p)
k } such that (σ

(p)
i , τ

(p+1)
i ) ∈ V and σ

(p)
i is a

face of τ
(p+1)
i−1 . Crucially, if σ

(p)
0 = σ

(p)
k , then the V-path is closed.

Remark 2.29. The definition of a V-path reveals that a discrete vector field im-

plicitly assigns arrows pointing from a (p+1)-simplex to all of its p-faces while

potentially swapping the direction of at most one arrow per face. These arrows
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direct us toward some chosen scalar hierarchy, which we hope is decreasing “homo-

topic importance.” A closed V-loop is a sort of escherian stairwell preventing us

from constructing a notion of gravity.

Definition 2.30. A discrete vector field without closed V-paths is called a discrete

gradient vector field. A face that is not paired in a discrete gradient vector field is

called critical, a “highest” or “lowest” point in the hierarchy.

Example 2.31. If we map the complete elementary collapse of a geometric complex

by arrows between free pairs where we will “rip” out a random simplex when no

feasible collapses remain, those ripped out simplices are precisely the critical ones

that constitute the entire homotopy type of the complex. The best choice of a

discrete gradient vector field will give us the best critical simplices to approximate

the complex homotopically.

Figure 2. Complete elementary collapse with free pairs (depicted
by blue arrows) forming discrete gradient vector field

Theorem 2.32. Fundamental Theorem of Discrete Morse Theory (For-

man) If △ is a complex with discrete gradient vector field V, then △ is homotopy

equivalent to a CW complex with a k-cell attached for each critical k-simplex in V.

This formally describes that critical simplices are responsible for the entire homo-

topy of the complex.

3. Interval of Non-Vanishing Homology

We figure out for which scales the random Rips Complex has and does not have

non-trivial homology as we asymptotically increase vertex count and decrease scale.

Definition 3.1. Asymptotic Property An object Xn has a property P asymp-

totically almost surely (a.a.s) if lim
n→∞

IP{Xn ∈ P} = 1.

Remark 3.2. We will now prove the remarkable fact that as a random Rips Com-

plex becomes arbitrarily large, we can predict for which scales r > 0 the k’th
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homology for any k ∈ N is non-trivial. Intuitively, there is no homology when the

scale is too small for faces to form nor when the scale is too large and the com-

plex is completely connected, which is also when the underlying geometric graph

percolates.

Proposition 3.3. Interval Bounds Let our random Rips complex be generated

by a uniform distribution of points on a compact and convex set K ⊂ Rd with

nonempty interior. Then given any k ≥ 0, the following three statements describe

when the k’th homology appears and disappears:

(1)If r = o
(
n− 2k+2

d(2k+1)

)
, then a.a.s. Hk = 0

(2)If r = w
(
n− 2k+2

d(2k+1)

)
and r = o

((
log(n)

n

) 1
d

)
, then a.a.s. Hk ̸= 0

(3)If r = w

((
log(n)

n

) 1
d

)
, then a.a.s. Hk = 0

Figure 3. Depiction of homology for a single set of random ver-
tices at varying scales for a Rips Complex in R2

Remark 3.4. The convexity requirement is so that our Rips complex stays within

our ambient space. While it may seem troublesome to impose that our ambient

spaceK be bounded, this is actually quite a weak stipulation asK can be arbitrarily

large. Thus, we can analayze the topology in a local fashion and apply limiting

behavior if we want global properties. The rest of this section will prove the 3

components of Proposition 3.3.
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Theorem 3.5. Lower Vanishing If r = o
(
n− 2k+2

d(2k+1)

)
, then a.a.s. Hk = 0

Proof. If r = o
(
n− 2k+2

d(2k+1)

)
, this means that:

lim
n→∞

r

n− 2k+2
d(2k+1)

= lim
n→∞

rn
2k+2

d(2k+1) = 0

which implies that lim
n→∞

rd(2k+1)n2k+2 = 0 by continuity. Since we also observe that

lim
n→∞

r = 0, we apply our main combinatorial lemma for induced subgraph counting

(Theorem 2.22) by setting H = Ok as intentioned where |Ok| = 2k + 2 to get:

µOk
= (2k + 2)!−1

∫
Rd

f(x)2k+2dx

∫
(Rd)2k+1

hOk
({0, x1, ..., x2k+1})d(x1, ..., x2k+1)

= (2k + 2)!−1 · C · (2k + 2)! · V ol(Sk) = C · V ol(Sk) > 0

since the density function is integrated to some positive constant C > 0 and there

is a shell of radius 1 around 0 and we can place the vertices to be isomorphic to

Ok where we have (2k + 2)! permutations of each placement of vertices. Then by

Theorem 2.22, we have that:

lim
n→∞

E[Gn(Ok)]

rd(2k+1)n2k+2
= µOk

> 0

which implies that, since the denominator converges to 0, lim
n→∞

E[Gn(Ok)] = 0.

As established in Lemma 2.15, if the geometric graph has no induced subgraphs

forming “vertex-minimal spheres,” the corresponding Rips complex has no k’th

homology. □

Theorem 3.6. Interval of Non-Vanishing

If r = w
(
n− 2k+2

d(2k+1)

)
and r = o

((
log(n)

n

) 1
d

)
, then a.a.s. Hk ̸= 0

Proof. The proof is identical to Theorem 3.5 as we still observe that lim
r→∞

= 0

still holds so we apply our combinatorial method (Theorem 2.22) but this time

lim
n→∞

rd(2k+1)n2k+2 = ∞ where since µOk
< ∞, we have that lim

n→∞
E[Gn(Ok)] = ∞

must hold so that homology is non-vanishing (and in fact becomes richer as we take

more vertices and proportionally smaller scales from the unbounded expectation).

□

Remark 3.7. We can observe that the previous upper bound for the scale r > 0 is

as high as we can go before we lose lim
n→∞

r = 0 so can no longer apply the induced

subgraph counting method (Theorem 2.22). In fact, the underlying geometric graph

percolates precisely when homology becomes trivial. We will now formally prove

that once we surpass this bound, we indeed lose all but 0’th and 1’st homology

groups using discrete morse theoretic methods. First, we introduce a geometric

lemma.
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Lemma 3.8. Geometric Lemma Given {y0, ..., yl} ⊆ Rd such that ||y0|| ≤
||y1|| ≤ ... ≤ ||yl|| and ||y1|| ≥ 1

2 , ||y0 − y1|| > 1 and ||yi − yj || ≤ 1 for every other

0 ≤ i < j ≤ l, then there exists ϵd such that µ

(
l⋂

i=1

B(yi, 1) ∩B(0, ||y1||)
)

≥ ϵd

(where µ is Lebesgue measure i.e. volume).

Proof. Let ym = y0+y1

2 . Since ||y0 − y1|| > 1, then ||ym − y0|| = ||ym − y1|| > 1
2 .

Now let θ > 0 be the angle between y0 − y2 and y1 − y2. Since ||y0 − y2|| ≤ 1,

||y1 − y2|| ≤ 1, and ||y0 − y1|| > 1, the law of cosines yields that:

(y0 − y2) · (y1 − y2) = ||y0 − y2||||y1 − y2||cosθ

=
1

2

(
||y0 − y2||2 + ||y1 − y2||2 − ||y0 − y1||2

)
<

1

2

Then it follows that:

||ym − y2||2 = (ym − y2) · (ym − y2)

=

(
y0 + y1

2
− y2

)(
y0 + y1

2
− y2

)
=

(
y0 − y2

2
+

y1 − y2
2

)(
y0 − y2

2
+

y1 − y2
2

)

=
1

4

(
||y0 − y2||2 + ||y1 − y2||2 + 2(y0 − y2) · (y1 − y2)

)
<

1

4

(
1 + 1 + 2

(
1

2

))
=

3

4

so we can conclude that ||ym − y2|| <
√
3
2 . Replace y2 with any yi for 3 ≤ i ≤ l

and the same argument holds. Now let ρ = 1 −
√
3
2 . By the triangle inequality,

B(ym, ρ) ⊂ B(yi, 1) for 1 ≤ i ≤ l. Then B(ym, ρ) ∩ B(0, ||y1||) ⊂
l⋂

i=1

B(yi, 1) ∩

B(0, ||y1||).
Since ||y0|| ≤ ||y1||, ||y1|| ≥ 1

2 , ||y0 − y1|| > 1, and ||ym|| ≤ ||y1||, it follows that

µ

(
l⋂

i=1

B(yi, 1) ∩B(0, ||y1||)
)

≥ µ (B(ym, ρ) ∩B(0, ||y1||)) ≥ µ (B(y1, ρ) ∩B(0, ||y1||)) ≥

ϵd where we can set ϵd to the smallest volume when ||y1|| = 1
2 where the volume

depends on the Euclidean dimension d only. □
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Lemma 3.9. Scaled Geometric Lemma Given arbitrary r > 0 and {y0, ..., yl} ⊆
Rd such that ||yi − yj || ≤ r and ( 12 )r ≤ ||y1||, ||y0 − y1|| > r, and ||yi − yj || ≤ r for

every other 0 ≤ i < j ≤ l (excluding i = 0, j = 1), there exists ϵd (for any r > 0)

such that µ
(⋂l

i=1 B(yi, r) ∩B(0, ||y1||)
)
≥ ϵdr

d.

Proof. Mutatis mutandis as unscaled Lemma 3.8 with arbitrary r replacing 1. □

Theorem 3.10. Upper Vanishing If r = w

((
log(n)

n

) 1
d

)
, then a.a.s. Hk = 0

Proof. Without loss of generality by our nonempty interior assumption, letB(0, 1) ⊆
K (the space on which the vertices are distributed). Since we know with probability

1 that no two of our random vertices will be the same distance to the origin, we

can index Xn = {x1, ..., xn} so that ||x1|| < ||x2|| < ... < ||xn||.
Now we construct a discrete vector field V on Rips(Xn, r) as follows: whenever

possible, pair a face S = {xi1 , xi2 , ..., xij} with coface {xi0} ∪ S such that i0 < i1

and i0 is as small as possible (S will choose the coface with the smallest possible

i0). We verify the validity of this discrete vector field as follows:

• S cannot get paired with two cofaces {xa} ∪ S and {xb} ∪ S since it will

prefer min{a, b}
• S cannot get paired with a face and a coface since if S is paired with coface

{xa} ∪ S, then ||xa|| < ||s|| for every s ∈ S so any face L ⊂ S would also

prefer to be paired with {xa} ∪ S instead of S.

Since each face is in at most one pair, V is a well-defined discrete vector field.

Additionally, since the indices are decreasing along any V-path of V because the

smallest indice of two adjacent faces and cofaces (separated by 1 face in the V-

path) must be lower by the way we choose index-minimal pairings, V has no closed

V-loops and is a discrete graident vector field.

Denote W = nrd for notational ease. Define pk to be the probability that a random

set of k + 1 vertices of Xn span a k-face of Rips(Xn, r). If we are given a single

vertex v of the set, we know that the remaining k vertices must lie in B(v, r) so

that:

pk = O(rdk) = O

((
W

n

)k
)

(3.11)

Suppose that {xi1 , xi2 , ..., xik+1
} span a critical face F . Then we know that:

• There is no common neighbor xa of all the vertices of F where a < i1 or

else F would pair up with {xa} ∪ F

• There is a common neighbor xi0 of xi2 , ..., xik+1
(and not of xi1) such that

i0 < i1 or else F would be paired up with face F \ {xi1}
All requirements of the scaled geometric lemma (Lemma 3.9) have been met, namely

that ||xi0 || < ||xi1 || < ... < ||xik+1
||, ||xi0 −xi1 || > r since xi0 and xi1 are not neigh-

bors, ||xim − xin || > r for every other 0 ≤ m < n ≤ k + 1 since they are neighbors,
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and ||xi1 || ≥ ( 12 )r because otherwise ||xi0 −xi1 || < r, which is a contradiction. The

scaled geometric lemma allows us to conclude:

Let I =
k+1⋂
j=1

B(xij , r) ∩B(0, ||xi1 ||). There exists ϵd > 0 such that µ(I) ≥ ϵdr
d. We

observe that the probability that a single random point inK falls in I is µ(I)
µ(K) ≥

ϵdr
d

µ(K)

by our uniformity assumption.

We now observe that any vertex xa that falls in I will necessarily be neighbors with

all the vertices in F and also satisfy a < i1. Thus, the vertices of our critical face

{xi1 , xi2 , ..., xik+1
} and xi0 must be the only vertices that live in I. Thus, if we let

pc be the probability that an arbitrary (not necessarily critical anymore here) k-face

F is critical, we can bound pc by the probability that the remaining n − (k + 2)

points of Xn are not in the set I constructed from F .

pc ≤
(
1− ϵd

µ(K)
rd
)n−k−2

(3.12)

≤ exp

(
− ϵd
µ(K)

rd(n− k − 2)

)
= O(exp(−cW ))

where c is any constant satisfying 0 < c < ϵd
µ(K)

Now let Ck denote the number of critical k-faces with respect to our discrete gra-

dient vector field V where we conclude that:

E[Ck] ≤
(

n

k + 1

)
pkpc(3.13)

as we multiply all the number of ways to choose a k + 1 vertex subset by the

probability that the k + 1 set is a face by the probability that the k + 1 face is

critical. Extend (3.13) further by applying the bounds in (3.11) and (3.12)

≤
(

n

k + 1

)(
W

n

)k

e−cW = O
(
W kecWn

)
Since r = w

((
log(n)

n

) 1
d

)
, we have that eventually both r ≥

(
log(n)

n

) 1
d

i.e. rdn ≥

log(n) and n ≥ e so that we extend (3.13) further by

= O
(
(nrd)ke−cnrdn

)
= O

(
(nrd)kn1−cnrd

)
= O

(
(log(n))kn1−clog(n)

)
since the exponential term overpowers polynomial term asymptotically so we can

replace both appearances of nrd with log(n) even though the polynomial replace-

ment alone will lower our bound. Our extension of (3.13) allows us to conclude

that E[Ck] → 0 as n → ∞.

The only critical face that always exists is the 0-face that is the vertex closest to

the origin, which cannot be paired with any other face since it has the smallest

norm by our construction of our discrete gradient vector field V . This is the only

vertex set that is guaranteed to be both a face and unpairable.
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By the Fundamental Theorem of Morse Theory (Theorem 2.32), we have that

Rips(Xn, r) is a.a.s. homotopy equivalent to a CW-complex with just a 0-cell

and no other cells attached. Hence, Rips(Xn, r) is asymptotically contractible and

has no homology excluding 0’th homology. □

Remark 3.14. Proposition 3.3 establishes a tight “goldilocks” interval in which

the scale and number of vertices of the random Rips Complex is perfectly balanced

such that an infinitely dense complex will have non-trivial homology groups of

every dimension. We’ve narrowed our analysis primarily to the 1-skeleton of the

Rips Complex as promised while utilizing the core ideas from discrete morse theory,

namely extracting core simplices of a complex to crystallize our understanding of its

topology, both of which bring out the intuitive essence of geometric complexes. The

technique of using a random Rips Complex to fill out the “intricacies” of a space

is highly robust as the asymptotically increasing density frees us from having to

stipulate how our points are distributed, so that our results can be flexibly applied

in analyzing the homology of nearly any space via the random Rips Complex.
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